net_tx_pkt.c 17.3 KB
Newer Older
1
/*
2
 * QEMU TX packets abstractions
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
 *
 * Copyright (c) 2012 Ravello Systems LTD (http://ravellosystems.com)
 *
 * Developed by Daynix Computing LTD (http://www.daynix.com)
 *
 * Authors:
 * Dmitry Fleytman <dmitry@daynix.com>
 * Tamir Shomer <tamirs@daynix.com>
 * Yan Vugenfirer <yan@daynix.com>
 *
 * This work is licensed under the terms of the GNU GPL, version 2 or later.
 * See the COPYING file in the top-level directory.
 *
 */

P
Paolo Bonzini 已提交
18
#include "qemu/osdep.h"
19
#include "net_tx_pkt.h"
20 21 22 23
#include "net/eth.h"
#include "net/checksum.h"
#include "net/tap.h"
#include "net/net.h"
24
#include "hw/pci/pci.h"
25 26

enum {
27 28 29 30
    NET_TX_PKT_VHDR_FRAG = 0,
    NET_TX_PKT_L2HDR_FRAG,
    NET_TX_PKT_L3HDR_FRAG,
    NET_TX_PKT_PL_START_FRAG
31 32 33
};

/* TX packet private context */
34
struct NetTxPkt {
35 36
    PCIDevice *pci_dev;

37 38 39 40 41 42 43 44 45 46
    struct virtio_net_hdr virt_hdr;
    bool has_virt_hdr;

    struct iovec *raw;
    uint32_t raw_frags;
    uint32_t max_raw_frags;

    struct iovec *vec;

    uint8_t l2_hdr[ETH_MAX_L2_HDR_LEN];
47
    uint8_t l3_hdr[ETH_MAX_IP_DGRAM_LEN];
48 49 50 51 52 53 54 55 56

    uint32_t payload_len;

    uint32_t payload_frags;
    uint32_t max_payload_frags;

    uint16_t hdr_len;
    eth_pkt_types_e packet_type;
    uint8_t l4proto;
57 58

    bool is_loopback;
59 60
};

61 62
void net_tx_pkt_init(struct NetTxPkt **pkt, PCIDevice *pci_dev,
    uint32_t max_frags, bool has_virt_hdr)
63
{
64
    struct NetTxPkt *p = g_malloc0(sizeof *p);
65

66 67
    p->pci_dev = pci_dev;

68
    p->vec = g_malloc((sizeof *p->vec) *
69
        (max_frags + NET_TX_PKT_PL_START_FRAG));
70 71 72 73 74 75

    p->raw = g_malloc((sizeof *p->raw) * max_frags);

    p->max_payload_frags = max_frags;
    p->max_raw_frags = max_frags;
    p->has_virt_hdr = has_virt_hdr;
76 77
    p->vec[NET_TX_PKT_VHDR_FRAG].iov_base = &p->virt_hdr;
    p->vec[NET_TX_PKT_VHDR_FRAG].iov_len =
78
        p->has_virt_hdr ? sizeof p->virt_hdr : 0;
79
    p->vec[NET_TX_PKT_L2HDR_FRAG].iov_base = &p->l2_hdr;
80
    p->vec[NET_TX_PKT_L3HDR_FRAG].iov_base = &p->l3_hdr;
81 82 83 84

    *pkt = p;
}

85
void net_tx_pkt_uninit(struct NetTxPkt *pkt)
86 87 88 89 90 91 92 93
{
    if (pkt) {
        g_free(pkt->vec);
        g_free(pkt->raw);
        g_free(pkt);
    }
}

94
void net_tx_pkt_update_ip_hdr_checksum(struct NetTxPkt *pkt)
95 96 97 98
{
    uint16_t csum;
    assert(pkt);
    struct ip_header *ip_hdr;
99
    ip_hdr = pkt->vec[NET_TX_PKT_L3HDR_FRAG].iov_base;
100 101

    ip_hdr->ip_len = cpu_to_be16(pkt->payload_len +
102
        pkt->vec[NET_TX_PKT_L3HDR_FRAG].iov_len);
103 104 105

    ip_hdr->ip_sum = 0;
    csum = net_raw_checksum((uint8_t *)ip_hdr,
106
        pkt->vec[NET_TX_PKT_L3HDR_FRAG].iov_len);
107
    ip_hdr->ip_sum = cpu_to_be16(csum);
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
}

void net_tx_pkt_update_ip_checksums(struct NetTxPkt *pkt)
{
    uint16_t csum;
    uint32_t cntr, cso;
    assert(pkt);
    uint8_t gso_type = pkt->virt_hdr.gso_type & ~VIRTIO_NET_HDR_GSO_ECN;
    void *ip_hdr = pkt->vec[NET_TX_PKT_L3HDR_FRAG].iov_base;

    if (pkt->payload_len + pkt->vec[NET_TX_PKT_L3HDR_FRAG].iov_len >
        ETH_MAX_IP_DGRAM_LEN) {
        return;
    }

    if (gso_type == VIRTIO_NET_HDR_GSO_TCPV4 ||
        gso_type == VIRTIO_NET_HDR_GSO_UDP) {
        /* Calculate IP header checksum */
        net_tx_pkt_update_ip_hdr_checksum(pkt);

        /* Calculate IP pseudo header checksum */
        cntr = eth_calc_ip4_pseudo_hdr_csum(ip_hdr, pkt->payload_len, &cso);
        csum = cpu_to_be16(~net_checksum_finish(cntr));
    } else if (gso_type == VIRTIO_NET_HDR_GSO_TCPV6) {
        /* Calculate IP pseudo header checksum */
        cntr = eth_calc_ip6_pseudo_hdr_csum(ip_hdr, pkt->payload_len,
                                            IP_PROTO_TCP, &cso);
        csum = cpu_to_be16(~net_checksum_finish(cntr));
    } else {
        return;
    }
139

140
    iov_from_buf(&pkt->vec[NET_TX_PKT_PL_START_FRAG], pkt->payload_frags,
141 142 143
                 pkt->virt_hdr.csum_offset, &csum, sizeof(csum));
}

144
static void net_tx_pkt_calculate_hdr_len(struct NetTxPkt *pkt)
145
{
146 147
    pkt->hdr_len = pkt->vec[NET_TX_PKT_L2HDR_FRAG].iov_len +
        pkt->vec[NET_TX_PKT_L3HDR_FRAG].iov_len;
148 149
}

150
static bool net_tx_pkt_parse_headers(struct NetTxPkt *pkt)
151 152 153 154 155 156 157 158
{
    struct iovec *l2_hdr, *l3_hdr;
    size_t bytes_read;
    size_t full_ip6hdr_len;
    uint16_t l3_proto;

    assert(pkt);

159 160
    l2_hdr = &pkt->vec[NET_TX_PKT_L2HDR_FRAG];
    l3_hdr = &pkt->vec[NET_TX_PKT_L3HDR_FRAG];
161 162 163

    bytes_read = iov_to_buf(pkt->raw, pkt->raw_frags, 0, l2_hdr->iov_base,
                            ETH_MAX_L2_HDR_LEN);
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
    if (bytes_read < sizeof(struct eth_header)) {
        l2_hdr->iov_len = 0;
        return false;
    }

    l2_hdr->iov_len = sizeof(struct eth_header);
    switch (be16_to_cpu(PKT_GET_ETH_HDR(l2_hdr->iov_base)->h_proto)) {
    case ETH_P_VLAN:
        l2_hdr->iov_len += sizeof(struct vlan_header);
        break;
    case ETH_P_DVLAN:
        l2_hdr->iov_len += 2 * sizeof(struct vlan_header);
        break;
    }

    if (bytes_read < l2_hdr->iov_len) {
180
        l2_hdr->iov_len = 0;
181 182
        l3_hdr->iov_len = 0;
        pkt->packet_type = ETH_PKT_UCAST;
183
        return false;
184 185 186 187
    } else {
        l2_hdr->iov_len = ETH_MAX_L2_HDR_LEN;
        l2_hdr->iov_len = eth_get_l2_hdr_length(l2_hdr->iov_base);
        pkt->packet_type = get_eth_packet_type(l2_hdr->iov_base);
188 189
    }

190
    l3_proto = eth_get_l3_proto(l2_hdr, 1, l2_hdr->iov_len);
191 192 193 194 195 196 197 198 199 200 201 202 203

    switch (l3_proto) {
    case ETH_P_IP:
        bytes_read = iov_to_buf(pkt->raw, pkt->raw_frags, l2_hdr->iov_len,
                                l3_hdr->iov_base, sizeof(struct ip_header));

        if (bytes_read < sizeof(struct ip_header)) {
            l3_hdr->iov_len = 0;
            return false;
        }

        l3_hdr->iov_len = IP_HDR_GET_LEN(l3_hdr->iov_base);

204
        if (l3_hdr->iov_len < sizeof(struct ip_header)) {
205 206 207
            l3_hdr->iov_len = 0;
            return false;
        }
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222

        pkt->l4proto = ((struct ip_header *) l3_hdr->iov_base)->ip_p;

        if (IP_HDR_GET_LEN(l3_hdr->iov_base) != sizeof(struct ip_header)) {
            /* copy optional IPv4 header data if any*/
            bytes_read = iov_to_buf(pkt->raw, pkt->raw_frags,
                                    l2_hdr->iov_len + sizeof(struct ip_header),
                                    l3_hdr->iov_base + sizeof(struct ip_header),
                                    l3_hdr->iov_len - sizeof(struct ip_header));
            if (bytes_read < l3_hdr->iov_len - sizeof(struct ip_header)) {
                l3_hdr->iov_len = 0;
                return false;
            }
        }

223 224 225
        break;

    case ETH_P_IPV6:
226 227 228
    {
        eth_ip6_hdr_info hdrinfo;

229
        if (!eth_parse_ipv6_hdr(pkt->raw, pkt->raw_frags, l2_hdr->iov_len,
230
                                &hdrinfo)) {
231 232 233 234
            l3_hdr->iov_len = 0;
            return false;
        }

235 236 237 238 239 240 241
        pkt->l4proto = hdrinfo.l4proto;
        full_ip6hdr_len = hdrinfo.full_hdr_len;

        if (full_ip6hdr_len > ETH_MAX_IP_DGRAM_LEN) {
            l3_hdr->iov_len = 0;
            return false;
        }
242 243 244 245 246 247 248 249 250 251 252

        bytes_read = iov_to_buf(pkt->raw, pkt->raw_frags, l2_hdr->iov_len,
                                l3_hdr->iov_base, full_ip6hdr_len);

        if (bytes_read < full_ip6hdr_len) {
            l3_hdr->iov_len = 0;
            return false;
        } else {
            l3_hdr->iov_len = full_ip6hdr_len;
        }
        break;
253
    }
254 255 256 257 258
    default:
        l3_hdr->iov_len = 0;
        break;
    }

259
    net_tx_pkt_calculate_hdr_len(pkt);
260 261 262
    return true;
}

263
static void net_tx_pkt_rebuild_payload(struct NetTxPkt *pkt)
264
{
265
    pkt->payload_len = iov_size(pkt->raw, pkt->raw_frags) - pkt->hdr_len;
266
    pkt->payload_frags = iov_copy(&pkt->vec[NET_TX_PKT_PL_START_FRAG],
267 268
                                pkt->max_payload_frags,
                                pkt->raw, pkt->raw_frags,
269 270
                                pkt->hdr_len, pkt->payload_len);
}
271

272 273 274 275
bool net_tx_pkt_parse(struct NetTxPkt *pkt)
{
    if (net_tx_pkt_parse_headers(pkt)) {
        net_tx_pkt_rebuild_payload(pkt);
276 277 278 279 280 281
        return true;
    } else {
        return false;
    }
}

282
struct virtio_net_hdr *net_tx_pkt_get_vhdr(struct NetTxPkt *pkt)
283 284 285 286 287
{
    assert(pkt);
    return &pkt->virt_hdr;
}

288
static uint8_t net_tx_pkt_get_gso_type(struct NetTxPkt *pkt,
289 290 291 292 293
                                          bool tso_enable)
{
    uint8_t rc = VIRTIO_NET_HDR_GSO_NONE;
    uint16_t l3_proto;

294
    l3_proto = eth_get_l3_proto(&pkt->vec[NET_TX_PKT_L2HDR_FRAG], 1,
295
        pkt->vec[NET_TX_PKT_L2HDR_FRAG].iov_len);
296 297 298 299 300

    if (!tso_enable) {
        goto func_exit;
    }

301
    rc = eth_get_gso_type(l3_proto, pkt->vec[NET_TX_PKT_L3HDR_FRAG].iov_base,
302 303 304 305 306 307
                          pkt->l4proto);

func_exit:
    return rc;
}

308
void net_tx_pkt_build_vheader(struct NetTxPkt *pkt, bool tso_enable,
309 310 311 312 313 314 315 316
    bool csum_enable, uint32_t gso_size)
{
    struct tcp_hdr l4hdr;
    assert(pkt);

    /* csum has to be enabled if tso is. */
    assert(csum_enable || !tso_enable);

317
    pkt->virt_hdr.gso_type = net_tx_pkt_get_gso_type(pkt, tso_enable);
318 319 320 321 322 323 324 325

    switch (pkt->virt_hdr.gso_type & ~VIRTIO_NET_HDR_GSO_ECN) {
    case VIRTIO_NET_HDR_GSO_NONE:
        pkt->virt_hdr.hdr_len = 0;
        pkt->virt_hdr.gso_size = 0;
        break;

    case VIRTIO_NET_HDR_GSO_UDP:
326
        pkt->virt_hdr.gso_size = gso_size;
327 328 329 330 331
        pkt->virt_hdr.hdr_len = pkt->hdr_len + sizeof(struct udp_header);
        break;

    case VIRTIO_NET_HDR_GSO_TCPV4:
    case VIRTIO_NET_HDR_GSO_TCPV6:
332
        iov_to_buf(&pkt->vec[NET_TX_PKT_PL_START_FRAG], pkt->payload_frags,
333 334
                   0, &l4hdr, sizeof(l4hdr));
        pkt->virt_hdr.hdr_len = pkt->hdr_len + l4hdr.th_off * sizeof(uint32_t);
335
        pkt->virt_hdr.gso_size = gso_size;
336 337 338
        break;

    default:
339
        g_assert_not_reached();
340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
    }

    if (csum_enable) {
        switch (pkt->l4proto) {
        case IP_PROTO_TCP:
            pkt->virt_hdr.flags = VIRTIO_NET_HDR_F_NEEDS_CSUM;
            pkt->virt_hdr.csum_start = pkt->hdr_len;
            pkt->virt_hdr.csum_offset = offsetof(struct tcp_hdr, th_sum);
            break;
        case IP_PROTO_UDP:
            pkt->virt_hdr.flags = VIRTIO_NET_HDR_F_NEEDS_CSUM;
            pkt->virt_hdr.csum_start = pkt->hdr_len;
            pkt->virt_hdr.csum_offset = offsetof(struct udp_hdr, uh_sum);
            break;
        default:
            break;
        }
    }
}

360 361
void net_tx_pkt_setup_vlan_header_ex(struct NetTxPkt *pkt,
    uint16_t vlan, uint16_t vlan_ethtype)
362 363 364 365
{
    bool is_new;
    assert(pkt);

366 367
    eth_setup_vlan_headers_ex(pkt->vec[NET_TX_PKT_L2HDR_FRAG].iov_base,
        vlan, vlan_ethtype, &is_new);
368 369 370 371

    /* update l2hdrlen */
    if (is_new) {
        pkt->hdr_len += sizeof(struct vlan_header);
372
        pkt->vec[NET_TX_PKT_L2HDR_FRAG].iov_len +=
373 374 375 376
            sizeof(struct vlan_header);
    }
}

377
bool net_tx_pkt_add_raw_fragment(struct NetTxPkt *pkt, hwaddr pa,
378 379 380 381 382 383 384 385 386 387 388 389 390 391
    size_t len)
{
    hwaddr mapped_len = 0;
    struct iovec *ventry;
    assert(pkt);
    assert(pkt->max_raw_frags > pkt->raw_frags);

    if (!len) {
        return true;
     }

    ventry = &pkt->raw[pkt->raw_frags];
    mapped_len = len;

392 393
    ventry->iov_base = pci_dma_map(pkt->pci_dev, pa,
                                   &mapped_len, DMA_DIRECTION_TO_DEVICE);
394

395 396 397 398 399
    if ((ventry->iov_base != NULL) && (len == mapped_len)) {
        ventry->iov_len = mapped_len;
        pkt->raw_frags++;
        return true;
    } else {
400 401
        return false;
    }
402
}
403

404 405 406
bool net_tx_pkt_has_fragments(struct NetTxPkt *pkt)
{
    return pkt->raw_frags > 0;
407 408
}

409
eth_pkt_types_e net_tx_pkt_get_packet_type(struct NetTxPkt *pkt)
410 411 412 413 414 415
{
    assert(pkt);

    return pkt->packet_type;
}

416
size_t net_tx_pkt_get_total_len(struct NetTxPkt *pkt)
417 418 419 420 421 422
{
    assert(pkt);

    return pkt->hdr_len + pkt->payload_len;
}

423
void net_tx_pkt_dump(struct NetTxPkt *pkt)
424
{
425
#ifdef NET_TX_PKT_DEBUG
426 427 428 429
    assert(pkt);

    printf("TX PKT: hdr_len: %d, pkt_type: 0x%X, l2hdr_len: %lu, "
        "l3hdr_len: %lu, payload_len: %u\n", pkt->hdr_len, pkt->packet_type,
430 431
        pkt->vec[NET_TX_PKT_L2HDR_FRAG].iov_len,
        pkt->vec[NET_TX_PKT_L3HDR_FRAG].iov_len, pkt->payload_len);
432 433 434
#endif
}

435
void net_tx_pkt_reset(struct NetTxPkt *pkt)
436 437 438 439 440 441 442 443 444 445 446
{
    int i;

    /* no assert, as reset can be called before tx_pkt_init */
    if (!pkt) {
        return;
    }

    memset(&pkt->virt_hdr, 0, sizeof(pkt->virt_hdr));

    assert(pkt->vec);
447

448 449 450 451 452 453
    pkt->payload_len = 0;
    pkt->payload_frags = 0;

    assert(pkt->raw);
    for (i = 0; i < pkt->raw_frags; i++) {
        assert(pkt->raw[i].iov_base);
454 455
        pci_dma_unmap(pkt->pci_dev, pkt->raw[i].iov_base, pkt->raw[i].iov_len,
                      DMA_DIRECTION_TO_DEVICE, 0);
456 457 458 459 460 461 462
    }
    pkt->raw_frags = 0;

    pkt->hdr_len = 0;
    pkt->l4proto = 0;
}

463
static void net_tx_pkt_do_sw_csum(struct NetTxPkt *pkt)
464
{
465
    struct iovec *iov = &pkt->vec[NET_TX_PKT_L2HDR_FRAG];
466 467
    uint32_t csum_cntr;
    uint16_t csum = 0;
468
    uint32_t cso;
469
    /* num of iovec without vhdr */
470
    uint32_t iov_len = pkt->payload_frags + NET_TX_PKT_PL_START_FRAG - 1;
471 472 473 474 475 476 477 478 479 480 481
    uint16_t csl;
    struct ip_header *iphdr;
    size_t csum_offset = pkt->virt_hdr.csum_start + pkt->virt_hdr.csum_offset;

    /* Put zero to checksum field */
    iov_from_buf(iov, iov_len, csum_offset, &csum, sizeof csum);

    /* Calculate L4 TCP/UDP checksum */
    csl = pkt->payload_len;

    /* add pseudo header to csum */
482
    iphdr = pkt->vec[NET_TX_PKT_L3HDR_FRAG].iov_base;
483 484 485 486 487
    csum_cntr = eth_calc_ip4_pseudo_hdr_csum(iphdr, csl, &cso);

    /* data checksum */
    csum_cntr +=
        net_checksum_add_iov(iov, iov_len, pkt->virt_hdr.csum_start, csl, cso);
488 489 490 491 492 493 494

    /* Put the checksum obtained into the packet */
    csum = cpu_to_be16(net_checksum_finish(csum_cntr));
    iov_from_buf(iov, iov_len, csum_offset, &csum, sizeof csum);
}

enum {
495 496 497
    NET_TX_PKT_FRAGMENT_L2_HDR_POS = 0,
    NET_TX_PKT_FRAGMENT_L3_HDR_POS,
    NET_TX_PKT_FRAGMENT_HEADER_NUM
498 499
};

500
#define NET_MAX_FRAG_SG_LIST (64)
501

502
static size_t net_tx_pkt_fetch_fragment(struct NetTxPkt *pkt,
503 504 505 506 507
    int *src_idx, size_t *src_offset, struct iovec *dst, int *dst_idx)
{
    size_t fetched = 0;
    struct iovec *src = pkt->vec;

508
    *dst_idx = NET_TX_PKT_FRAGMENT_HEADER_NUM;
509

510
    while (fetched < IP_FRAG_ALIGN_SIZE(pkt->virt_hdr.gso_size)) {
511 512

        /* no more place in fragment iov */
513
        if (*dst_idx == NET_MAX_FRAG_SG_LIST) {
514 515 516 517
            break;
        }

        /* no more data in iovec */
518
        if (*src_idx == (pkt->payload_frags + NET_TX_PKT_PL_START_FRAG)) {
519 520 521 522 523 524
            break;
        }


        dst[*dst_idx].iov_base = src[*src_idx].iov_base + *src_offset;
        dst[*dst_idx].iov_len = MIN(src[*src_idx].iov_len - *src_offset,
525
            IP_FRAG_ALIGN_SIZE(pkt->virt_hdr.gso_size) - fetched);
526 527 528 529 530 531 532 533 534 535 536 537 538 539 540

        *src_offset += dst[*dst_idx].iov_len;
        fetched += dst[*dst_idx].iov_len;

        if (*src_offset == src[*src_idx].iov_len) {
            *src_offset = 0;
            (*src_idx)++;
        }

        (*dst_idx)++;
    }

    return fetched;
}

541 542 543 544 545 546 547 548 549 550
static inline void net_tx_pkt_sendv(struct NetTxPkt *pkt,
    NetClientState *nc, const struct iovec *iov, int iov_cnt)
{
    if (pkt->is_loopback) {
        nc->info->receive_iov(nc, iov, iov_cnt);
    } else {
        qemu_sendv_packet(nc, iov, iov_cnt);
    }
}

551
static bool net_tx_pkt_do_sw_fragmentation(struct NetTxPkt *pkt,
552 553
    NetClientState *nc)
{
554
    struct iovec fragment[NET_MAX_FRAG_SG_LIST];
555 556 557 558 559 560
    size_t fragment_len = 0;
    bool more_frags = false;

    /* some pointers for shorter code */
    void *l2_iov_base, *l3_iov_base;
    size_t l2_iov_len, l3_iov_len;
561
    int src_idx =  NET_TX_PKT_PL_START_FRAG, dst_idx;
562 563 564
    size_t src_offset = 0;
    size_t fragment_offset = 0;

565 566 567 568
    l2_iov_base = pkt->vec[NET_TX_PKT_L2HDR_FRAG].iov_base;
    l2_iov_len = pkt->vec[NET_TX_PKT_L2HDR_FRAG].iov_len;
    l3_iov_base = pkt->vec[NET_TX_PKT_L3HDR_FRAG].iov_base;
    l3_iov_len = pkt->vec[NET_TX_PKT_L3HDR_FRAG].iov_len;
569 570

    /* Copy headers */
571 572 573 574
    fragment[NET_TX_PKT_FRAGMENT_L2_HDR_POS].iov_base = l2_iov_base;
    fragment[NET_TX_PKT_FRAGMENT_L2_HDR_POS].iov_len = l2_iov_len;
    fragment[NET_TX_PKT_FRAGMENT_L3_HDR_POS].iov_base = l3_iov_base;
    fragment[NET_TX_PKT_FRAGMENT_L3_HDR_POS].iov_len = l3_iov_len;
575 576 577 578


    /* Put as much data as possible and send */
    do {
579
        fragment_len = net_tx_pkt_fetch_fragment(pkt, &src_idx, &src_offset,
580 581 582 583 584 585 586 587 588
            fragment, &dst_idx);

        more_frags = (fragment_offset + fragment_len < pkt->payload_len);

        eth_setup_ip4_fragmentation(l2_iov_base, l2_iov_len, l3_iov_base,
            l3_iov_len, fragment_len, fragment_offset, more_frags);

        eth_fix_ip4_checksum(l3_iov_base, l3_iov_len);

589
        net_tx_pkt_sendv(pkt, nc, fragment, dst_idx);
590 591 592 593 594 595 596 597

        fragment_offset += fragment_len;

    } while (more_frags);

    return true;
}

598
bool net_tx_pkt_send(struct NetTxPkt *pkt, NetClientState *nc)
599 600 601 602 603
{
    assert(pkt);

    if (!pkt->has_virt_hdr &&
        pkt->virt_hdr.flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) {
604
        net_tx_pkt_do_sw_csum(pkt);
605 606 607 608 609 610 611 612 613
    }

    /*
     * Since underlying infrastructure does not support IP datagrams longer
     * than 64K we should drop such packets and don't even try to send
     */
    if (VIRTIO_NET_HDR_GSO_NONE != pkt->virt_hdr.gso_type) {
        if (pkt->payload_len >
            ETH_MAX_IP_DGRAM_LEN -
614
            pkt->vec[NET_TX_PKT_L3HDR_FRAG].iov_len) {
615 616 617 618 619 620
            return false;
        }
    }

    if (pkt->has_virt_hdr ||
        pkt->virt_hdr.gso_type == VIRTIO_NET_HDR_GSO_NONE) {
621
        net_tx_pkt_sendv(pkt, nc, pkt->vec,
622
            pkt->payload_frags + NET_TX_PKT_PL_START_FRAG);
623 624 625
        return true;
    }

626
    return net_tx_pkt_do_sw_fragmentation(pkt, nc);
627
}
628 629 630 631 632 633 634 635 636 637 638

bool net_tx_pkt_send_loopback(struct NetTxPkt *pkt, NetClientState *nc)
{
    bool res;

    pkt->is_loopback = true;
    res = net_tx_pkt_send(pkt, nc);
    pkt->is_loopback = false;

    return res;
}