exec.c 105.5 KB
Newer Older
B
bellard 已提交
1
/*
2
 *  Virtual page mapping
3
 *
B
bellard 已提交
4 5 6 7 8 9 10 11 12 13 14 15 16
 *  Copyright (c) 2003 Fabrice Bellard
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
B
bellard 已提交
18
 */
P
Peter Maydell 已提交
19
#include "qemu/osdep.h"
20
#include "qapi/error.h"
21
#ifndef _WIN32
B
bellard 已提交
22
#endif
B
bellard 已提交
23

24
#include "qemu/cutils.h"
B
bellard 已提交
25
#include "cpu.h"
26
#include "exec/exec-all.h"
27
#include "exec/target_page.h"
B
bellard 已提交
28
#include "tcg.h"
29
#include "hw/qdev-core.h"
F
Fam Zheng 已提交
30
#include "hw/qdev-properties.h"
31
#if !defined(CONFIG_USER_ONLY)
32
#include "hw/boards.h"
33
#include "hw/xen/xen.h"
34
#endif
35
#include "sysemu/kvm.h"
36
#include "sysemu/sysemu.h"
37 38
#include "qemu/timer.h"
#include "qemu/config-file.h"
39
#include "qemu/error-report.h"
40
#if defined(CONFIG_USER_ONLY)
41
#include "qemu.h"
J
Jun Nakajima 已提交
42
#else /* !CONFIG_USER_ONLY */
43 44
#include "hw/hw.h"
#include "exec/memory.h"
P
Paolo Bonzini 已提交
45
#include "exec/ioport.h"
46
#include "sysemu/dma.h"
47
#include "sysemu/numa.h"
48
#include "sysemu/hw_accel.h"
49
#include "exec/address-spaces.h"
50
#include "sysemu/xen-mapcache.h"
51
#include "trace-root.h"
52

53 54 55 56 57
#ifdef CONFIG_FALLOCATE_PUNCH_HOLE
#include <fcntl.h>
#include <linux/falloc.h>
#endif

58
#endif
M
Mike Day 已提交
59
#include "qemu/rcu_queue.h"
60
#include "qemu/main-loop.h"
61
#include "translate-all.h"
62
#include "sysemu/replay.h"
63

64
#include "exec/memory-internal.h"
65
#include "exec/ram_addr.h"
66
#include "exec/log.h"
67

68 69
#include "migration/vmstate.h"

70
#include "qemu/range.h"
71 72 73
#ifndef _WIN32
#include "qemu/mmap-alloc.h"
#endif
74

75 76
#include "monitor/monitor.h"

77
//#define DEBUG_SUBPAGE
T
ths 已提交
78

79
#if !defined(CONFIG_USER_ONLY)
M
Mike Day 已提交
80 81 82
/* ram_list is read under rcu_read_lock()/rcu_read_unlock().  Writes
 * are protected by the ramlist lock.
 */
M
Mike Day 已提交
83
RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
A
Avi Kivity 已提交
84 85

static MemoryRegion *system_memory;
86
static MemoryRegion *system_io;
A
Avi Kivity 已提交
87

88 89
AddressSpace address_space_io;
AddressSpace address_space_memory;
90

91
MemoryRegion io_mem_rom, io_mem_notdirty;
92
static MemoryRegion io_mem_unassigned;
93

94 95 96
/* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
#define RAM_PREALLOC   (1 << 0)

97 98 99
/* RAM is mmap-ed with MAP_SHARED */
#define RAM_SHARED     (1 << 1)

100 101 102 103 104
/* Only a portion of RAM (used_length) is actually used, and migrated.
 * This used_length size can change across reboots.
 */
#define RAM_RESIZEABLE (1 << 2)

105
#endif
106

107 108 109 110 111
#ifdef TARGET_PAGE_BITS_VARY
int target_page_bits;
bool target_page_bits_decided;
#endif

A
Andreas Färber 已提交
112
struct CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
B
bellard 已提交
113 114
/* current CPU in the current thread. It is only valid inside
   cpu_exec() */
P
Paolo Bonzini 已提交
115
__thread CPUState *current_cpu;
P
pbrook 已提交
116
/* 0 = Do not count executed instructions.
T
ths 已提交
117
   1 = Precise instruction counting.
P
pbrook 已提交
118
   2 = Adaptive rate instruction counting.  */
119
int use_icount;
B
bellard 已提交
120

Y
Yang Zhong 已提交
121 122 123
uintptr_t qemu_host_page_size;
intptr_t qemu_host_page_mask;

124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
bool set_preferred_target_page_bits(int bits)
{
    /* The target page size is the lowest common denominator for all
     * the CPUs in the system, so we can only make it smaller, never
     * larger. And we can't make it smaller once we've committed to
     * a particular size.
     */
#ifdef TARGET_PAGE_BITS_VARY
    assert(bits >= TARGET_PAGE_BITS_MIN);
    if (target_page_bits == 0 || target_page_bits > bits) {
        if (target_page_bits_decided) {
            return false;
        }
        target_page_bits = bits;
    }
#endif
    return true;
}

143
#if !defined(CONFIG_USER_ONLY)
144

145 146 147 148 149 150 151 152 153 154
static void finalize_target_page_bits(void)
{
#ifdef TARGET_PAGE_BITS_VARY
    if (target_page_bits == 0) {
        target_page_bits = TARGET_PAGE_BITS_MIN;
    }
    target_page_bits_decided = true;
#endif
}

155 156 157
typedef struct PhysPageEntry PhysPageEntry;

struct PhysPageEntry {
M
Michael S. Tsirkin 已提交
158
    /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
159
    uint32_t skip : 6;
M
Michael S. Tsirkin 已提交
160
     /* index into phys_sections (!skip) or phys_map_nodes (skip) */
161
    uint32_t ptr : 26;
162 163
};

164 165
#define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)

166
/* Size of the L2 (and L3, etc) page tables.  */
167
#define ADDR_SPACE_BITS 64
168

M
Michael S. Tsirkin 已提交
169
#define P_L2_BITS 9
170 171 172 173 174
#define P_L2_SIZE (1 << P_L2_BITS)

#define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)

typedef PhysPageEntry Node[P_L2_SIZE];
175

176
typedef struct PhysPageMap {
177 178
    struct rcu_head rcu;

179 180 181 182 183 184 185 186
    unsigned sections_nb;
    unsigned sections_nb_alloc;
    unsigned nodes_nb;
    unsigned nodes_nb_alloc;
    Node *nodes;
    MemoryRegionSection *sections;
} PhysPageMap;

187
struct AddressSpaceDispatch {
188
    MemoryRegionSection *mru_section;
189 190 191 192
    /* This is a multi-level map on the physical address space.
     * The bottom level has pointers to MemoryRegionSections.
     */
    PhysPageEntry phys_map;
193
    PhysPageMap map;
194 195
};

196 197 198
#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
typedef struct subpage_t {
    MemoryRegion iomem;
199
    FlatView *fv;
200
    hwaddr base;
201
    uint16_t sub_section[];
202 203
} subpage_t;

204 205 206 207
#define PHYS_SECTION_UNASSIGNED 0
#define PHYS_SECTION_NOTDIRTY 1
#define PHYS_SECTION_ROM 2
#define PHYS_SECTION_WATCH 3
208

209
static void io_mem_init(void);
A
Avi Kivity 已提交
210
static void memory_map_init(void);
211
static void tcg_commit(MemoryListener *listener);
212

213
static MemoryRegion io_mem_watch;
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228

/**
 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
 * @cpu: the CPU whose AddressSpace this is
 * @as: the AddressSpace itself
 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
 * @tcg_as_listener: listener for tracking changes to the AddressSpace
 */
struct CPUAddressSpace {
    CPUState *cpu;
    AddressSpace *as;
    struct AddressSpaceDispatch *memory_dispatch;
    MemoryListener tcg_as_listener;
};

229 230 231 232 233 234
struct DirtyBitmapSnapshot {
    ram_addr_t start;
    ram_addr_t end;
    unsigned long dirty[];
};

235
#endif
B
bellard 已提交
236

237
#if !defined(CONFIG_USER_ONLY)
238

239
static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
240
{
241
    static unsigned alloc_hint = 16;
242
    if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
243
        map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, alloc_hint);
244 245
        map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes);
        map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
246
        alloc_hint = map->nodes_nb_alloc;
247
    }
248 249
}

250
static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
251 252
{
    unsigned i;
253
    uint32_t ret;
254 255
    PhysPageEntry e;
    PhysPageEntry *p;
256

257
    ret = map->nodes_nb++;
258
    p = map->nodes[ret];
259
    assert(ret != PHYS_MAP_NODE_NIL);
260
    assert(ret != map->nodes_nb_alloc);
261 262 263

    e.skip = leaf ? 0 : 1;
    e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
264
    for (i = 0; i < P_L2_SIZE; ++i) {
265
        memcpy(&p[i], &e, sizeof(e));
266
    }
267
    return ret;
268 269
}

270 271
static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
                                hwaddr *index, hwaddr *nb, uint16_t leaf,
272
                                int level)
273 274
{
    PhysPageEntry *p;
275
    hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
276

M
Michael S. Tsirkin 已提交
277
    if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
278
        lp->ptr = phys_map_node_alloc(map, level == 0);
B
bellard 已提交
279
    }
280
    p = map->nodes[lp->ptr];
281
    lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
282

283
    while (*nb && lp < &p[P_L2_SIZE]) {
284
        if ((*index & (step - 1)) == 0 && *nb >= step) {
M
Michael S. Tsirkin 已提交
285
            lp->skip = 0;
286
            lp->ptr = leaf;
287 288
            *index += step;
            *nb -= step;
289
        } else {
290
            phys_page_set_level(map, lp, index, nb, leaf, level - 1);
291 292
        }
        ++lp;
293 294 295
    }
}

A
Avi Kivity 已提交
296
static void phys_page_set(AddressSpaceDispatch *d,
A
Avi Kivity 已提交
297
                          hwaddr index, hwaddr nb,
298
                          uint16_t leaf)
299
{
300
    /* Wildly overreserve - it doesn't matter much. */
301
    phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
302

303
    phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
B
bellard 已提交
304 305
}

306 307 308
/* Compact a non leaf page entry. Simply detect that the entry has a single child,
 * and update our entry so we can skip it and go directly to the destination.
 */
309
static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
{
    unsigned valid_ptr = P_L2_SIZE;
    int valid = 0;
    PhysPageEntry *p;
    int i;

    if (lp->ptr == PHYS_MAP_NODE_NIL) {
        return;
    }

    p = nodes[lp->ptr];
    for (i = 0; i < P_L2_SIZE; i++) {
        if (p[i].ptr == PHYS_MAP_NODE_NIL) {
            continue;
        }

        valid_ptr = i;
        valid++;
        if (p[i].skip) {
329
            phys_page_compact(&p[i], nodes);
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
        }
    }

    /* We can only compress if there's only one child. */
    if (valid != 1) {
        return;
    }

    assert(valid_ptr < P_L2_SIZE);

    /* Don't compress if it won't fit in the # of bits we have. */
    if (lp->skip + p[valid_ptr].skip >= (1 << 3)) {
        return;
    }

    lp->ptr = p[valid_ptr].ptr;
    if (!p[valid_ptr].skip) {
        /* If our only child is a leaf, make this a leaf. */
        /* By design, we should have made this node a leaf to begin with so we
         * should never reach here.
         * But since it's so simple to handle this, let's do it just in case we
         * change this rule.
         */
        lp->skip = 0;
    } else {
        lp->skip += p[valid_ptr].skip;
    }
}

359
void address_space_dispatch_compact(AddressSpaceDispatch *d)
360 361
{
    if (d->phys_map.skip) {
362
        phys_page_compact(&d->phys_map, d->map.nodes);
363 364 365
    }
}

F
Fam Zheng 已提交
366 367 368 369 370 371
static inline bool section_covers_addr(const MemoryRegionSection *section,
                                       hwaddr addr)
{
    /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
     * the section must cover the entire address space.
     */
372
    return int128_gethi(section->size) ||
F
Fam Zheng 已提交
373
           range_covers_byte(section->offset_within_address_space,
374
                             int128_getlo(section->size), addr);
F
Fam Zheng 已提交
375 376
}

377
static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
B
bellard 已提交
378
{
379 380 381
    PhysPageEntry lp = d->phys_map, *p;
    Node *nodes = d->map.nodes;
    MemoryRegionSection *sections = d->map.sections;
382
    hwaddr index = addr >> TARGET_PAGE_BITS;
383
    int i;
384

M
Michael S. Tsirkin 已提交
385
    for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
386
        if (lp.ptr == PHYS_MAP_NODE_NIL) {
387
            return &sections[PHYS_SECTION_UNASSIGNED];
388
        }
389
        p = nodes[lp.ptr];
390
        lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
391
    }
392

F
Fam Zheng 已提交
393
    if (section_covers_addr(&sections[lp.ptr], addr)) {
394 395 396 397
        return &sections[lp.ptr];
    } else {
        return &sections[PHYS_SECTION_UNASSIGNED];
    }
398 399
}

B
Blue Swirl 已提交
400 401
bool memory_region_is_unassigned(MemoryRegion *mr)
{
P
Paolo Bonzini 已提交
402
    return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device
403
        && mr != &io_mem_watch;
B
bellard 已提交
404
}
405

406
/* Called from RCU critical section */
407
static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
408 409
                                                        hwaddr addr,
                                                        bool resolve_subpage)
410
{
411
    MemoryRegionSection *section = atomic_read(&d->mru_section);
412
    subpage_t *subpage;
413
    bool update;
414

415 416 417 418
    if (section && section != &d->map.sections[PHYS_SECTION_UNASSIGNED] &&
        section_covers_addr(section, addr)) {
        update = false;
    } else {
419
        section = phys_page_find(d, addr);
420 421
        update = true;
    }
422 423
    if (resolve_subpage && section->mr->subpage) {
        subpage = container_of(section->mr, subpage_t, iomem);
424
        section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
425
    }
426 427 428
    if (update) {
        atomic_set(&d->mru_section, section);
    }
429
    return section;
430 431
}

432
/* Called from RCU critical section */
433
static MemoryRegionSection *
434
address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
435
                                 hwaddr *plen, bool resolve_subpage)
436 437
{
    MemoryRegionSection *section;
438
    MemoryRegion *mr;
439
    Int128 diff;
440

441
    section = address_space_lookup_region(d, addr, resolve_subpage);
442 443 444 445 446 447
    /* Compute offset within MemoryRegionSection */
    addr -= section->offset_within_address_space;

    /* Compute offset within MemoryRegion */
    *xlat = addr + section->offset_within_region;

448
    mr = section->mr;
449 450 451 452 453 454 455 456 457 458 459 460

    /* MMIO registers can be expected to perform full-width accesses based only
     * on their address, without considering adjacent registers that could
     * decode to completely different MemoryRegions.  When such registers
     * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
     * regions overlap wildly.  For this reason we cannot clamp the accesses
     * here.
     *
     * If the length is small (as is the case for address_space_ldl/stl),
     * everything works fine.  If the incoming length is large, however,
     * the caller really has to do the clamping through memory_access_size.
     */
461
    if (memory_region_is_ram(mr)) {
462
        diff = int128_sub(section->size, int128_make64(addr));
463 464
        *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
    }
465 466
    return section;
}
467

468
/* Called from RCU critical section */
469 470 471 472 473 474 475
static MemoryRegionSection flatview_do_translate(FlatView *fv,
                                                 hwaddr addr,
                                                 hwaddr *xlat,
                                                 hwaddr *plen,
                                                 bool is_write,
                                                 bool is_mmio,
                                                 AddressSpace **target_as)
476
{
477
    IOMMUTLBEntry iotlb;
478
    MemoryRegionSection *section;
479
    IOMMUMemoryRegion *iommu_mr;
480
    IOMMUMemoryRegionClass *imrc;
481 482

    for (;;) {
483 484 485
        section = address_space_translate_internal(
                flatview_to_dispatch(fv), addr, &addr,
                plen, is_mmio);
486

487 488
        iommu_mr = memory_region_get_iommu(section->mr);
        if (!iommu_mr) {
489 490
            break;
        }
491
        imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
492

493 494
        iotlb = imrc->translate(iommu_mr, addr, is_write ?
                                IOMMU_WO : IOMMU_RO);
495 496 497
        addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
                | (addr & iotlb.addr_mask));
        *plen = MIN(*plen, (addr | iotlb.addr_mask) - addr + 1);
498
        if (!(iotlb.perm & (1 << is_write))) {
499
            goto translate_fail;
500 501
        }

502
        fv = address_space_to_flatview(iotlb.target_as);
503
        *target_as = iotlb.target_as;
504 505
    }

506 507 508 509 510 511
    *xlat = addr;

    return *section;

translate_fail:
    return (MemoryRegionSection) { .mr = &io_mem_unassigned };
512 513 514
}

/* Called from RCU critical section */
515 516
IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
                                            bool is_write)
517
{
518 519
    MemoryRegionSection section;
    hwaddr xlat, plen;
A
Avi Kivity 已提交
520

521 522
    /* Try to get maximum page mask during translation. */
    plen = (hwaddr)-1;
A
Avi Kivity 已提交
523

524
    /* This can never be MMIO. */
525 526
    section = flatview_do_translate(address_space_to_flatview(as), addr,
                                    &xlat, &plen, is_write, false, &as);
A
Avi Kivity 已提交
527

528 529 530 531
    /* Illegal translation */
    if (section.mr == &io_mem_unassigned) {
        goto iotlb_fail;
    }
A
Avi Kivity 已提交
532

533 534 535 536 537 538 539 540 541 542
    /* Convert memory region offset into address space offset */
    xlat += section.offset_within_address_space -
        section.offset_within_region;

    if (plen == (hwaddr)-1) {
        /*
         * We use default page size here. Logically it only happens
         * for identity mappings.
         */
        plen = TARGET_PAGE_SIZE;
A
Avi Kivity 已提交
543 544
    }

545 546 547 548
    /* Convert to address mask */
    plen -= 1;

    return (IOMMUTLBEntry) {
549
        .target_as = as,
550 551 552 553 554 555 556 557 558 559 560 561
        .iova = addr & ~plen,
        .translated_addr = xlat & ~plen,
        .addr_mask = plen,
        /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
        .perm = IOMMU_RW,
    };

iotlb_fail:
    return (IOMMUTLBEntry) {0};
}

/* Called from RCU critical section */
562 563
MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
                                 hwaddr *plen, bool is_write)
564 565 566
{
    MemoryRegion *mr;
    MemoryRegionSection section;
567
    AddressSpace *as = NULL;
568 569

    /* This can be MMIO, so setup MMIO bit. */
570
    section = flatview_do_translate(fv, addr, xlat, plen, is_write, true, &as);
571 572
    mr = section.mr;

573
    if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
574
        hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
575
        *plen = MIN(page, *plen);
576 577
    }

A
Avi Kivity 已提交
578
    return mr;
579 580
}

581
/* Called from RCU critical section */
582
MemoryRegionSection *
583
address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
P
Paolo Bonzini 已提交
584
                                  hwaddr *xlat, hwaddr *plen)
585
{
A
Avi Kivity 已提交
586
    MemoryRegionSection *section;
587
    AddressSpaceDispatch *d = atomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
588 589

    section = address_space_translate_internal(d, addr, xlat, plen, false);
A
Avi Kivity 已提交
590

591
    assert(!memory_region_is_iommu(section->mr));
A
Avi Kivity 已提交
592
    return section;
593
}
594
#endif
B
bellard 已提交
595

596
#if !defined(CONFIG_USER_ONLY)
597 598

static int cpu_common_post_load(void *opaque, int version_id)
B
bellard 已提交
599
{
600
    CPUState *cpu = opaque;
B
bellard 已提交
601

602 603
    /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
       version_id is increased. */
604
    cpu->interrupt_request &= ~0x01;
605
    tlb_flush(cpu);
606 607

    return 0;
B
bellard 已提交
608
}
B
bellard 已提交
609

610 611 612 613
static int cpu_common_pre_load(void *opaque)
{
    CPUState *cpu = opaque;

614
    cpu->exception_index = -1;
615 616 617 618 619 620 621 622

    return 0;
}

static bool cpu_common_exception_index_needed(void *opaque)
{
    CPUState *cpu = opaque;

623
    return tcg_enabled() && cpu->exception_index != -1;
624 625 626 627 628 629
}

static const VMStateDescription vmstate_cpu_common_exception_index = {
    .name = "cpu_common/exception_index",
    .version_id = 1,
    .minimum_version_id = 1,
630
    .needed = cpu_common_exception_index_needed,
631 632 633 634 635 636
    .fields = (VMStateField[]) {
        VMSTATE_INT32(exception_index, CPUState),
        VMSTATE_END_OF_LIST()
    }
};

637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654
static bool cpu_common_crash_occurred_needed(void *opaque)
{
    CPUState *cpu = opaque;

    return cpu->crash_occurred;
}

static const VMStateDescription vmstate_cpu_common_crash_occurred = {
    .name = "cpu_common/crash_occurred",
    .version_id = 1,
    .minimum_version_id = 1,
    .needed = cpu_common_crash_occurred_needed,
    .fields = (VMStateField[]) {
        VMSTATE_BOOL(crash_occurred, CPUState),
        VMSTATE_END_OF_LIST()
    }
};

655
const VMStateDescription vmstate_cpu_common = {
656 657 658
    .name = "cpu_common",
    .version_id = 1,
    .minimum_version_id = 1,
659
    .pre_load = cpu_common_pre_load,
660
    .post_load = cpu_common_post_load,
661
    .fields = (VMStateField[]) {
662 663
        VMSTATE_UINT32(halted, CPUState),
        VMSTATE_UINT32(interrupt_request, CPUState),
664
        VMSTATE_END_OF_LIST()
665
    },
666 667
    .subsections = (const VMStateDescription*[]) {
        &vmstate_cpu_common_exception_index,
668
        &vmstate_cpu_common_crash_occurred,
669
        NULL
670 671
    }
};
672

673
#endif
B
bellard 已提交
674

675
CPUState *qemu_get_cpu(int index)
B
bellard 已提交
676
{
A
Andreas Färber 已提交
677
    CPUState *cpu;
B
bellard 已提交
678

A
Andreas Färber 已提交
679
    CPU_FOREACH(cpu) {
680
        if (cpu->cpu_index == index) {
A
Andreas Färber 已提交
681
            return cpu;
682
        }
B
bellard 已提交
683
    }
684

A
Andreas Färber 已提交
685
    return NULL;
B
bellard 已提交
686 687
}

688
#if !defined(CONFIG_USER_ONLY)
689
void cpu_address_space_init(CPUState *cpu, AddressSpace *as, int asidx)
690
{
691 692 693 694 695
    CPUAddressSpace *newas;

    /* Target code should have set num_ases before calling us */
    assert(asidx < cpu->num_ases);

696 697 698 699 700
    if (asidx == 0) {
        /* address space 0 gets the convenience alias */
        cpu->as = as;
    }

701 702
    /* KVM cannot currently support multiple address spaces. */
    assert(asidx == 0 || !kvm_enabled());
703

704 705
    if (!cpu->cpu_ases) {
        cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
706
    }
707

708 709 710
    newas = &cpu->cpu_ases[asidx];
    newas->cpu = cpu;
    newas->as = as;
711
    if (tcg_enabled()) {
712 713
        newas->tcg_as_listener.commit = tcg_commit;
        memory_listener_register(&newas->tcg_as_listener, as);
714
    }
715
}
716 717 718 719 720 721

AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
{
    /* Return the AddressSpace corresponding to the specified index */
    return cpu->cpu_ases[asidx].as;
}
722 723
#endif

724
void cpu_exec_unrealizefn(CPUState *cpu)
725
{
726 727
    CPUClass *cc = CPU_GET_CLASS(cpu);

728
    cpu_list_remove(cpu);
729 730 731 732 733 734 735

    if (cc->vmsd != NULL) {
        vmstate_unregister(NULL, cc->vmsd, cpu);
    }
    if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
        vmstate_unregister(NULL, &vmstate_cpu_common, cpu);
    }
736 737
}

F
Fam Zheng 已提交
738 739 740 741 742 743 744 745 746 747 748 749 750 751
Property cpu_common_props[] = {
#ifndef CONFIG_USER_ONLY
    /* Create a memory property for softmmu CPU object,
     * so users can wire up its memory. (This can't go in qom/cpu.c
     * because that file is compiled only once for both user-mode
     * and system builds.) The default if no link is set up is to use
     * the system address space.
     */
    DEFINE_PROP_LINK("memory", CPUState, memory, TYPE_MEMORY_REGION,
                     MemoryRegion *),
#endif
    DEFINE_PROP_END_OF_LIST(),
};

L
Laurent Vivier 已提交
752
void cpu_exec_initfn(CPUState *cpu)
B
bellard 已提交
753
{
754
    cpu->as = NULL;
755
    cpu->num_ases = 0;
756

757 758
#ifndef CONFIG_USER_ONLY
    cpu->thread_id = qemu_get_thread_id();
759 760
    cpu->memory = system_memory;
    object_ref(OBJECT(cpu->memory));
761
#endif
L
Laurent Vivier 已提交
762 763
}

764
void cpu_exec_realizefn(CPUState *cpu, Error **errp)
L
Laurent Vivier 已提交
765 766
{
    CPUClass *cc ATTRIBUTE_UNUSED = CPU_GET_CLASS(cpu);
767

768
    cpu_list_add(cpu);
769 770

#ifndef CONFIG_USER_ONLY
771
    if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
772
        vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu);
773
    }
774
    if (cc->vmsd != NULL) {
775
        vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu);
776
    }
777
#endif
B
bellard 已提交
778 779
}

780
#if defined(CONFIG_USER_ONLY)
781
static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
782
{
783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799
    mmap_lock();
    tb_lock();
    tb_invalidate_phys_page_range(pc, pc + 1, 0);
    tb_unlock();
    mmap_unlock();
}
#else
static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
{
    MemTxAttrs attrs;
    hwaddr phys = cpu_get_phys_page_attrs_debug(cpu, pc, &attrs);
    int asidx = cpu_asidx_from_attrs(cpu, attrs);
    if (phys != -1) {
        /* Locks grabbed by tb_invalidate_phys_addr */
        tb_invalidate_phys_addr(cpu->cpu_ases[asidx].as,
                                phys | (pc & ~TARGET_PAGE_MASK));
    }
800
}
801
#endif
B
bellard 已提交
802

803
#if defined(CONFIG_USER_ONLY)
804
void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
805 806 807 808

{
}

809 810 811 812 813 814 815 816 817 818
int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
                          int flags)
{
    return -ENOSYS;
}

void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
{
}

819
int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
820 821 822 823 824
                          int flags, CPUWatchpoint **watchpoint)
{
    return -ENOSYS;
}
#else
825
/* Add a watchpoint.  */
826
int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
827
                          int flags, CPUWatchpoint **watchpoint)
828
{
829
    CPUWatchpoint *wp;
830

831
    /* forbid ranges which are empty or run off the end of the address space */
832
    if (len == 0 || (addr + len - 1) < addr) {
833 834
        error_report("tried to set invalid watchpoint at %"
                     VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
835 836
        return -EINVAL;
    }
837
    wp = g_malloc(sizeof(*wp));
838 839

    wp->vaddr = addr;
840
    wp->len = len;
841 842
    wp->flags = flags;

843
    /* keep all GDB-injected watchpoints in front */
844 845 846 847 848
    if (flags & BP_GDB) {
        QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
    } else {
        QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
    }
849

850
    tlb_flush_page(cpu, addr);
851 852 853 854

    if (watchpoint)
        *watchpoint = wp;
    return 0;
855 856
}

857
/* Remove a specific watchpoint.  */
858
int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
859
                          int flags)
860
{
861
    CPUWatchpoint *wp;
862

863
    QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
864
        if (addr == wp->vaddr && len == wp->len
865
                && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
866
            cpu_watchpoint_remove_by_ref(cpu, wp);
867 868 869
            return 0;
        }
    }
870
    return -ENOENT;
871 872
}

873
/* Remove a specific watchpoint by reference.  */
874
void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
875
{
876
    QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
877

878
    tlb_flush_page(cpu, watchpoint->vaddr);
879

880
    g_free(watchpoint);
881 882 883
}

/* Remove all matching watchpoints.  */
884
void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
885
{
886
    CPUWatchpoint *wp, *next;
887

888
    QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
889 890 891
        if (wp->flags & mask) {
            cpu_watchpoint_remove_by_ref(cpu, wp);
        }
892
    }
893
}
894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914

/* Return true if this watchpoint address matches the specified
 * access (ie the address range covered by the watchpoint overlaps
 * partially or completely with the address range covered by the
 * access).
 */
static inline bool cpu_watchpoint_address_matches(CPUWatchpoint *wp,
                                                  vaddr addr,
                                                  vaddr len)
{
    /* We know the lengths are non-zero, but a little caution is
     * required to avoid errors in the case where the range ends
     * exactly at the top of the address space and so addr + len
     * wraps round to zero.
     */
    vaddr wpend = wp->vaddr + wp->len - 1;
    vaddr addrend = addr + len - 1;

    return !(addr > wpend || wp->vaddr > addrend);
}

915
#endif
916

917
/* Add a breakpoint.  */
918
int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
919
                          CPUBreakpoint **breakpoint)
B
bellard 已提交
920
{
921
    CPUBreakpoint *bp;
922

923
    bp = g_malloc(sizeof(*bp));
B
bellard 已提交
924

925 926 927
    bp->pc = pc;
    bp->flags = flags;

928
    /* keep all GDB-injected breakpoints in front */
929
    if (flags & BP_GDB) {
930
        QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
931
    } else {
932
        QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
933
    }
934

935
    breakpoint_invalidate(cpu, pc);
936

937
    if (breakpoint) {
938
        *breakpoint = bp;
939
    }
B
bellard 已提交
940 941 942
    return 0;
}

943
/* Remove a specific breakpoint.  */
944
int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
945 946 947
{
    CPUBreakpoint *bp;

948
    QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
949
        if (bp->pc == pc && bp->flags == flags) {
950
            cpu_breakpoint_remove_by_ref(cpu, bp);
951 952
            return 0;
        }
953
    }
954
    return -ENOENT;
955 956
}

957
/* Remove a specific breakpoint by reference.  */
958
void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
B
bellard 已提交
959
{
960 961 962
    QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);

    breakpoint_invalidate(cpu, breakpoint->pc);
963

964
    g_free(breakpoint);
965 966 967
}

/* Remove all matching breakpoints. */
968
void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
969
{
970
    CPUBreakpoint *bp, *next;
971

972
    QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
973 974 975
        if (bp->flags & mask) {
            cpu_breakpoint_remove_by_ref(cpu, bp);
        }
976
    }
B
bellard 已提交
977 978
}

B
bellard 已提交
979 980
/* enable or disable single step mode. EXCP_DEBUG is returned by the
   CPU loop after each instruction */
981
void cpu_single_step(CPUState *cpu, int enabled)
B
bellard 已提交
982
{
983 984 985
    if (cpu->singlestep_enabled != enabled) {
        cpu->singlestep_enabled = enabled;
        if (kvm_enabled()) {
986
            kvm_update_guest_debug(cpu, 0);
987
        } else {
S
Stuart Brady 已提交
988
            /* must flush all the translated code to avoid inconsistencies */
989
            /* XXX: only flush what is necessary */
990
            tb_flush(cpu);
991
        }
B
bellard 已提交
992 993 994
    }
}

995
void cpu_abort(CPUState *cpu, const char *fmt, ...)
B
bellard 已提交
996 997
{
    va_list ap;
P
pbrook 已提交
998
    va_list ap2;
B
bellard 已提交
999 1000

    va_start(ap, fmt);
P
pbrook 已提交
1001
    va_copy(ap2, ap);
B
bellard 已提交
1002 1003 1004
    fprintf(stderr, "qemu: fatal: ");
    vfprintf(stderr, fmt, ap);
    fprintf(stderr, "\n");
1005
    cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1006
    if (qemu_log_separate()) {
1007
        qemu_log_lock();
1008 1009 1010
        qemu_log("qemu: fatal: ");
        qemu_log_vprintf(fmt, ap2);
        qemu_log("\n");
1011
        log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1012
        qemu_log_flush();
1013
        qemu_log_unlock();
1014
        qemu_log_close();
1015
    }
P
pbrook 已提交
1016
    va_end(ap2);
1017
    va_end(ap);
1018
    replay_finish();
1019 1020 1021 1022 1023 1024 1025 1026
#if defined(CONFIG_USER_ONLY)
    {
        struct sigaction act;
        sigfillset(&act.sa_mask);
        act.sa_handler = SIG_DFL;
        sigaction(SIGABRT, &act, NULL);
    }
#endif
B
bellard 已提交
1027 1028 1029
    abort();
}

1030
#if !defined(CONFIG_USER_ONLY)
M
Mike Day 已提交
1031
/* Called from RCU critical section */
P
Paolo Bonzini 已提交
1032 1033 1034 1035
static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
{
    RAMBlock *block;

P
Paolo Bonzini 已提交
1036
    block = atomic_rcu_read(&ram_list.mru_block);
1037
    if (block && addr - block->offset < block->max_length) {
1038
        return block;
P
Paolo Bonzini 已提交
1039
    }
P
Peter Xu 已提交
1040
    RAMBLOCK_FOREACH(block) {
1041
        if (addr - block->offset < block->max_length) {
P
Paolo Bonzini 已提交
1042 1043 1044 1045 1046 1047 1048 1049
            goto found;
        }
    }

    fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
    abort();

found:
P
Paolo Bonzini 已提交
1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
    /* It is safe to write mru_block outside the iothread lock.  This
     * is what happens:
     *
     *     mru_block = xxx
     *     rcu_read_unlock()
     *                                        xxx removed from list
     *                  rcu_read_lock()
     *                  read mru_block
     *                                        mru_block = NULL;
     *                                        call_rcu(reclaim_ramblock, xxx);
     *                  rcu_read_unlock()
     *
     * atomic_rcu_set is not needed here.  The block was already published
     * when it was placed into the list.  Here we're just making an extra
     * copy of the pointer.
     */
P
Paolo Bonzini 已提交
1066 1067 1068 1069
    ram_list.mru_block = block;
    return block;
}

1070
static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
J
Juan Quintela 已提交
1071
{
1072
    CPUState *cpu;
P
Paolo Bonzini 已提交
1073
    ram_addr_t start1;
1074 1075 1076 1077 1078
    RAMBlock *block;
    ram_addr_t end;

    end = TARGET_PAGE_ALIGN(start + length);
    start &= TARGET_PAGE_MASK;
J
Juan Quintela 已提交
1079

M
Mike Day 已提交
1080
    rcu_read_lock();
P
Paolo Bonzini 已提交
1081 1082
    block = qemu_get_ram_block(start);
    assert(block == qemu_get_ram_block(end - 1));
1083
    start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
1084 1085 1086
    CPU_FOREACH(cpu) {
        tlb_reset_dirty(cpu, start1, length);
    }
M
Mike Day 已提交
1087
    rcu_read_unlock();
J
Juan Quintela 已提交
1088 1089
}

P
pbrook 已提交
1090
/* Note: start and end must be within the same ram block.  */
1091 1092 1093
bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
                                              ram_addr_t length,
                                              unsigned client)
1094
{
1095
    DirtyMemoryBlocks *blocks;
1096
    unsigned long end, page;
1097
    bool dirty = false;
1098 1099 1100 1101

    if (length == 0) {
        return false;
    }
B
bellard 已提交
1102

1103 1104
    end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
    page = start >> TARGET_PAGE_BITS;
1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120

    rcu_read_lock();

    blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);

    while (page < end) {
        unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
        unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
        unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);

        dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
                                              offset, num);
        page += num;
    }

    rcu_read_unlock();
1121 1122

    if (dirty && tcg_enabled()) {
1123
        tlb_reset_dirty_range_all(start, length);
P
pbrook 已提交
1124
    }
1125 1126

    return dirty;
1127 1128
}

1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
     (ram_addr_t start, ram_addr_t length, unsigned client)
{
    DirtyMemoryBlocks *blocks;
    unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
    ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
    ram_addr_t last  = QEMU_ALIGN_UP(start + length, align);
    DirtyBitmapSnapshot *snap;
    unsigned long page, end, dest;

    snap = g_malloc0(sizeof(*snap) +
                     ((last - first) >> (TARGET_PAGE_BITS + 3)));
    snap->start = first;
    snap->end   = last;

    page = first >> TARGET_PAGE_BITS;
    end  = last  >> TARGET_PAGE_BITS;
    dest = 0;

    rcu_read_lock();

    blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);

    while (page < end) {
        unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
        unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
        unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);

        assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
        assert(QEMU_IS_ALIGNED(num,    (1 << BITS_PER_LEVEL)));
        offset >>= BITS_PER_LEVEL;

        bitmap_copy_and_clear_atomic(snap->dirty + dest,
                                     blocks->blocks[idx] + offset,
                                     num);
        page += num;
        dest += num >> BITS_PER_LEVEL;
    }

    rcu_read_unlock();

    if (tcg_enabled()) {
        tlb_reset_dirty_range_all(start, length);
    }

    return snap;
}

bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
                                            ram_addr_t start,
                                            ram_addr_t length)
{
    unsigned long page, end;

    assert(start >= snap->start);
    assert(start + length <= snap->end);

    end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
    page = (start - snap->start) >> TARGET_PAGE_BITS;

    while (page < end) {
        if (test_bit(page, snap->dirty)) {
            return true;
        }
        page++;
    }
    return false;
}

1198
/* Called from RCU critical section */
1199
hwaddr memory_region_section_get_iotlb(CPUState *cpu,
1200 1201 1202 1203 1204
                                       MemoryRegionSection *section,
                                       target_ulong vaddr,
                                       hwaddr paddr, hwaddr xlat,
                                       int prot,
                                       target_ulong *address)
B
Blue Swirl 已提交
1205
{
A
Avi Kivity 已提交
1206
    hwaddr iotlb;
B
Blue Swirl 已提交
1207 1208
    CPUWatchpoint *wp;

1209
    if (memory_region_is_ram(section->mr)) {
B
Blue Swirl 已提交
1210
        /* Normal RAM.  */
1211
        iotlb = memory_region_get_ram_addr(section->mr) + xlat;
B
Blue Swirl 已提交
1212
        if (!section->readonly) {
1213
            iotlb |= PHYS_SECTION_NOTDIRTY;
B
Blue Swirl 已提交
1214
        } else {
1215
            iotlb |= PHYS_SECTION_ROM;
B
Blue Swirl 已提交
1216 1217
        }
    } else {
1218 1219
        AddressSpaceDispatch *d;

1220
        d = flatview_to_dispatch(section->fv);
1221
        iotlb = section - d->map.sections;
1222
        iotlb += xlat;
B
Blue Swirl 已提交
1223 1224 1225 1226
    }

    /* Make accesses to pages with watchpoints go via the
       watchpoint trap routines.  */
1227
    QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1228
        if (cpu_watchpoint_address_matches(wp, vaddr, TARGET_PAGE_SIZE)) {
B
Blue Swirl 已提交
1229 1230
            /* Avoid trapping reads of pages with a write breakpoint. */
            if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
1231
                iotlb = PHYS_SECTION_WATCH + paddr;
B
Blue Swirl 已提交
1232 1233 1234 1235 1236 1237 1238 1239
                *address |= TLB_MMIO;
                break;
            }
        }
    }

    return iotlb;
}
1240 1241
#endif /* defined(CONFIG_USER_ONLY) */

1242
#if !defined(CONFIG_USER_ONLY)
1243

A
Anthony Liguori 已提交
1244
static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
1245
                             uint16_t section);
1246
static subpage_t *subpage_init(FlatView *fv, hwaddr base);
1247

1248 1249
static void *(*phys_mem_alloc)(size_t size, uint64_t *align) =
                               qemu_anon_ram_alloc;
1250 1251 1252 1253 1254 1255

/*
 * Set a custom physical guest memory alloator.
 * Accelerators with unusual needs may need this.  Hopefully, we can
 * get rid of it eventually.
 */
1256
void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align))
1257 1258 1259 1260
{
    phys_mem_alloc = alloc;
}

1261 1262
static uint16_t phys_section_add(PhysPageMap *map,
                                 MemoryRegionSection *section)
1263
{
1264 1265 1266 1267
    /* The physical section number is ORed with a page-aligned
     * pointer to produce the iotlb entries.  Thus it should
     * never overflow into the page-aligned value.
     */
1268
    assert(map->sections_nb < TARGET_PAGE_SIZE);
1269

1270 1271 1272 1273
    if (map->sections_nb == map->sections_nb_alloc) {
        map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
        map->sections = g_renew(MemoryRegionSection, map->sections,
                                map->sections_nb_alloc);
1274
    }
1275
    map->sections[map->sections_nb] = *section;
P
Paolo Bonzini 已提交
1276
    memory_region_ref(section->mr);
1277
    return map->sections_nb++;
1278 1279
}

1280 1281
static void phys_section_destroy(MemoryRegion *mr)
{
D
Don Slutz 已提交
1282 1283
    bool have_sub_page = mr->subpage;

P
Paolo Bonzini 已提交
1284 1285
    memory_region_unref(mr);

D
Don Slutz 已提交
1286
    if (have_sub_page) {
1287
        subpage_t *subpage = container_of(mr, subpage_t, iomem);
P
Peter Crosthwaite 已提交
1288
        object_unref(OBJECT(&subpage->iomem));
1289 1290 1291 1292
        g_free(subpage);
    }
}

P
Paolo Bonzini 已提交
1293
static void phys_sections_free(PhysPageMap *map)
1294
{
1295 1296
    while (map->sections_nb > 0) {
        MemoryRegionSection *section = &map->sections[--map->sections_nb];
1297 1298
        phys_section_destroy(section->mr);
    }
1299 1300
    g_free(map->sections);
    g_free(map->nodes);
1301 1302
}

1303
static void register_subpage(FlatView *fv, MemoryRegionSection *section)
1304
{
1305
    AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1306
    subpage_t *subpage;
A
Avi Kivity 已提交
1307
    hwaddr base = section->offset_within_address_space
1308
        & TARGET_PAGE_MASK;
1309
    MemoryRegionSection *existing = phys_page_find(d, base);
1310 1311
    MemoryRegionSection subsection = {
        .offset_within_address_space = base,
1312
        .size = int128_make64(TARGET_PAGE_SIZE),
1313
    };
A
Avi Kivity 已提交
1314
    hwaddr start, end;
1315

1316
    assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
1317

1318
    if (!(existing->mr->subpage)) {
1319 1320
        subpage = subpage_init(fv, base);
        subsection.fv = fv;
1321
        subsection.mr = &subpage->iomem;
A
Avi Kivity 已提交
1322
        phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
1323
                      phys_section_add(&d->map, &subsection));
1324
    } else {
1325
        subpage = container_of(existing->mr, subpage_t, iomem);
1326 1327
    }
    start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
1328
    end = start + int128_get64(section->size) - 1;
1329 1330
    subpage_register(subpage, start, end,
                     phys_section_add(&d->map, section));
1331 1332 1333
}


1334
static void register_multipage(FlatView *fv,
1335
                               MemoryRegionSection *section)
1336
{
1337
    AddressSpaceDispatch *d = flatview_to_dispatch(fv);
A
Avi Kivity 已提交
1338
    hwaddr start_addr = section->offset_within_address_space;
1339
    uint16_t section_index = phys_section_add(&d->map, section);
1340 1341
    uint64_t num_pages = int128_get64(int128_rshift(section->size,
                                                    TARGET_PAGE_BITS));
1342

1343 1344
    assert(num_pages);
    phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
1345 1346
}

1347
void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
1348
{
1349
    MemoryRegionSection now = *section, remain = *section;
1350
    Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
1351

1352 1353 1354 1355
    if (now.offset_within_address_space & ~TARGET_PAGE_MASK) {
        uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space)
                       - now.offset_within_address_space;

1356
        now.size = int128_min(int128_make64(left), now.size);
1357
        register_subpage(fv, &now);
1358
    } else {
1359
        now.size = int128_zero();
1360
    }
1361 1362 1363 1364
    while (int128_ne(remain.size, now.size)) {
        remain.size = int128_sub(remain.size, now.size);
        remain.offset_within_address_space += int128_get64(now.size);
        remain.offset_within_region += int128_get64(now.size);
1365
        now = remain;
1366
        if (int128_lt(remain.size, page_size)) {
1367
            register_subpage(fv, &now);
1368
        } else if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1369
            now.size = page_size;
1370
            register_subpage(fv, &now);
1371
        } else {
1372
            now.size = int128_and(now.size, int128_neg(page_size));
1373
            register_multipage(fv, &now);
1374
        }
1375 1376 1377
    }
}

1378 1379 1380 1381 1382 1383
void qemu_flush_coalesced_mmio_buffer(void)
{
    if (kvm_enabled())
        kvm_flush_coalesced_mmio_buffer();
}

1384 1385 1386 1387 1388 1389 1390 1391 1392 1393
void qemu_mutex_lock_ramlist(void)
{
    qemu_mutex_lock(&ram_list.mutex);
}

void qemu_mutex_unlock_ramlist(void)
{
    qemu_mutex_unlock(&ram_list.mutex);
}

1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413
void ram_block_dump(Monitor *mon)
{
    RAMBlock *block;
    char *psize;

    rcu_read_lock();
    monitor_printf(mon, "%24s %8s  %18s %18s %18s\n",
                   "Block Name", "PSize", "Offset", "Used", "Total");
    RAMBLOCK_FOREACH(block) {
        psize = size_to_str(block->page_size);
        monitor_printf(mon, "%24s %8s  0x%016" PRIx64 " 0x%016" PRIx64
                       " 0x%016" PRIx64 "\n", block->idstr, psize,
                       (uint64_t)block->offset,
                       (uint64_t)block->used_length,
                       (uint64_t)block->max_length);
        g_free(psize);
    }
    rcu_read_unlock();
}

1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494
#ifdef __linux__
/*
 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
 * may or may not name the same files / on the same filesystem now as
 * when we actually open and map them.  Iterate over the file
 * descriptors instead, and use qemu_fd_getpagesize().
 */
static int find_max_supported_pagesize(Object *obj, void *opaque)
{
    char *mem_path;
    long *hpsize_min = opaque;

    if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
        mem_path = object_property_get_str(obj, "mem-path", NULL);
        if (mem_path) {
            long hpsize = qemu_mempath_getpagesize(mem_path);
            if (hpsize < *hpsize_min) {
                *hpsize_min = hpsize;
            }
        } else {
            *hpsize_min = getpagesize();
        }
    }

    return 0;
}

long qemu_getrampagesize(void)
{
    long hpsize = LONG_MAX;
    long mainrampagesize;
    Object *memdev_root;

    if (mem_path) {
        mainrampagesize = qemu_mempath_getpagesize(mem_path);
    } else {
        mainrampagesize = getpagesize();
    }

    /* it's possible we have memory-backend objects with
     * hugepage-backed RAM. these may get mapped into system
     * address space via -numa parameters or memory hotplug
     * hooks. we want to take these into account, but we
     * also want to make sure these supported hugepage
     * sizes are applicable across the entire range of memory
     * we may boot from, so we take the min across all
     * backends, and assume normal pages in cases where a
     * backend isn't backed by hugepages.
     */
    memdev_root = object_resolve_path("/objects", NULL);
    if (memdev_root) {
        object_child_foreach(memdev_root, find_max_supported_pagesize, &hpsize);
    }
    if (hpsize == LONG_MAX) {
        /* No additional memory regions found ==> Report main RAM page size */
        return mainrampagesize;
    }

    /* If NUMA is disabled or the NUMA nodes are not backed with a
     * memory-backend, then there is at least one node using "normal" RAM,
     * so if its page size is smaller we have got to report that size instead.
     */
    if (hpsize > mainrampagesize &&
        (nb_numa_nodes == 0 || numa_info[0].node_memdev == NULL)) {
        static bool warned;
        if (!warned) {
            error_report("Huge page support disabled (n/a for main memory).");
            warned = true;
        }
        return mainrampagesize;
    }

    return hpsize;
}
#else
long qemu_getrampagesize(void)
{
    return getpagesize();
}
#endif

1495
#ifdef __linux__
1496 1497 1498 1499 1500 1501 1502 1503 1504
static int64_t get_file_size(int fd)
{
    int64_t size = lseek(fd, 0, SEEK_END);
    if (size < 0) {
        return -errno;
    }
    return size;
}

1505 1506 1507 1508
static int file_ram_open(const char *path,
                         const char *region_name,
                         bool *created,
                         Error **errp)
1509 1510
{
    char *filename;
1511 1512
    char *sanitized_name;
    char *c;
1513
    int fd = -1;
1514

1515
    *created = false;
1516 1517 1518 1519 1520
    for (;;) {
        fd = open(path, O_RDWR);
        if (fd >= 0) {
            /* @path names an existing file, use it */
            break;
1521
        }
1522 1523 1524 1525
        if (errno == ENOENT) {
            /* @path names a file that doesn't exist, create it */
            fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
            if (fd >= 0) {
1526
                *created = true;
1527 1528 1529 1530 1531
                break;
            }
        } else if (errno == EISDIR) {
            /* @path names a directory, create a file there */
            /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1532
            sanitized_name = g_strdup(region_name);
1533 1534 1535 1536 1537
            for (c = sanitized_name; *c != '\0'; c++) {
                if (*c == '/') {
                    *c = '_';
                }
            }
1538

1539 1540 1541
            filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
                                       sanitized_name);
            g_free(sanitized_name);
1542

1543 1544 1545 1546 1547 1548 1549
            fd = mkstemp(filename);
            if (fd >= 0) {
                unlink(filename);
                g_free(filename);
                break;
            }
            g_free(filename);
1550
        }
1551 1552 1553 1554
        if (errno != EEXIST && errno != EINTR) {
            error_setg_errno(errp, errno,
                             "can't open backing store %s for guest RAM",
                             path);
1555
            return -1;
1556 1557 1558 1559 1560
        }
        /*
         * Try again on EINTR and EEXIST.  The latter happens when
         * something else creates the file between our two open().
         */
1561
    }
1562

1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573
    return fd;
}

static void *file_ram_alloc(RAMBlock *block,
                            ram_addr_t memory,
                            int fd,
                            bool truncate,
                            Error **errp)
{
    void *area;

1574
    block->page_size = qemu_fd_getpagesize(fd);
1575 1576 1577 1578 1579 1580
    block->mr->align = block->page_size;
#if defined(__s390x__)
    if (kvm_enabled()) {
        block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
    }
#endif
1581

1582
    if (memory < block->page_size) {
1583
        error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1584 1585
                   "or larger than page size 0x%zx",
                   memory, block->page_size);
1586
        return NULL;
1587 1588
    }

1589
    memory = ROUND_UP(memory, block->page_size);
1590 1591 1592 1593 1594 1595

    /*
     * ftruncate is not supported by hugetlbfs in older
     * hosts, so don't bother bailing out on errors.
     * If anything goes wrong with it under other filesystems,
     * mmap will fail.
1596 1597 1598 1599 1600 1601 1602 1603
     *
     * Do not truncate the non-empty backend file to avoid corrupting
     * the existing data in the file. Disabling shrinking is not
     * enough. For example, the current vNVDIMM implementation stores
     * the guest NVDIMM labels at the end of the backend file. If the
     * backend file is later extended, QEMU will not be able to find
     * those labels. Therefore, extending the non-empty backend file
     * is disabled as well.
1604
     */
1605
    if (truncate && ftruncate(fd, memory)) {
Y
Yoshiaki Tamura 已提交
1606
        perror("ftruncate");
1607
    }
1608

1609 1610
    area = qemu_ram_mmap(fd, memory, block->mr->align,
                         block->flags & RAM_SHARED);
1611
    if (area == MAP_FAILED) {
1612
        error_setg_errno(errp, errno,
1613
                         "unable to map backing store for guest RAM");
1614
        return NULL;
1615
    }
1616 1617

    if (mem_prealloc) {
1618
        os_mem_prealloc(fd, area, memory, smp_cpus, errp);
1619
        if (errp && *errp) {
1620 1621
            qemu_ram_munmap(area, memory);
            return NULL;
1622
        }
1623 1624
    }

A
Alex Williamson 已提交
1625
    block->fd = fd;
1626 1627 1628 1629
    return area;
}
#endif

M
Mike Day 已提交
1630
/* Called with the ramlist lock held.  */
1631
static ram_addr_t find_ram_offset(ram_addr_t size)
A
Alex Williamson 已提交
1632 1633
{
    RAMBlock *block, *next_block;
A
Alex Williamson 已提交
1634
    ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
A
Alex Williamson 已提交
1635

1636 1637
    assert(size != 0); /* it would hand out same offset multiple times */

M
Mike Day 已提交
1638
    if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
A
Alex Williamson 已提交
1639
        return 0;
M
Mike Day 已提交
1640
    }
A
Alex Williamson 已提交
1641

P
Peter Xu 已提交
1642
    RAMBLOCK_FOREACH(block) {
1643
        ram_addr_t end, next = RAM_ADDR_MAX;
A
Alex Williamson 已提交
1644

1645
        end = block->offset + block->max_length;
A
Alex Williamson 已提交
1646

P
Peter Xu 已提交
1647
        RAMBLOCK_FOREACH(next_block) {
A
Alex Williamson 已提交
1648 1649 1650 1651 1652
            if (next_block->offset >= end) {
                next = MIN(next, next_block->offset);
            }
        }
        if (next - end >= size && next - end < mingap) {
A
Alex Williamson 已提交
1653
            offset = end;
A
Alex Williamson 已提交
1654 1655 1656
            mingap = next - end;
        }
    }
A
Alex Williamson 已提交
1657 1658 1659 1660 1661 1662 1663

    if (offset == RAM_ADDR_MAX) {
        fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
                (uint64_t)size);
        abort();
    }

A
Alex Williamson 已提交
1664 1665 1666
    return offset;
}

1667
unsigned long last_ram_page(void)
1668 1669 1670 1671
{
    RAMBlock *block;
    ram_addr_t last = 0;

M
Mike Day 已提交
1672
    rcu_read_lock();
P
Peter Xu 已提交
1673
    RAMBLOCK_FOREACH(block) {
1674
        last = MAX(last, block->offset + block->max_length);
M
Mike Day 已提交
1675
    }
M
Mike Day 已提交
1676
    rcu_read_unlock();
1677
    return last >> TARGET_PAGE_BITS;
1678 1679
}

1680 1681 1682 1683 1684
static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
{
    int ret;

    /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1685
    if (!machine_dump_guest_core(current_machine)) {
1686 1687 1688 1689 1690 1691 1692 1693 1694
        ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
        if (ret) {
            perror("qemu_madvise");
            fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
                            "but dump_guest_core=off specified\n");
        }
    }
}

D
Dr. David Alan Gilbert 已提交
1695 1696 1697 1698 1699
const char *qemu_ram_get_idstr(RAMBlock *rb)
{
    return rb->idstr;
}

1700 1701 1702 1703 1704
bool qemu_ram_is_shared(RAMBlock *rb)
{
    return rb->flags & RAM_SHARED;
}

1705
/* Called with iothread lock held.  */
G
Gonglei 已提交
1706
void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
1707
{
G
Gonglei 已提交
1708
    RAMBlock *block;
1709

1710 1711
    assert(new_block);
    assert(!new_block->idstr[0]);
1712

1713 1714
    if (dev) {
        char *id = qdev_get_dev_path(dev);
1715 1716
        if (id) {
            snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
1717
            g_free(id);
1718 1719 1720 1721
        }
    }
    pstrcat(new_block->idstr, sizeof(new_block->idstr), name);

G
Gonglei 已提交
1722
    rcu_read_lock();
P
Peter Xu 已提交
1723
    RAMBLOCK_FOREACH(block) {
G
Gonglei 已提交
1724 1725
        if (block != new_block &&
            !strcmp(block->idstr, new_block->idstr)) {
1726 1727 1728 1729 1730
            fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
                    new_block->idstr);
            abort();
        }
    }
M
Mike Day 已提交
1731
    rcu_read_unlock();
1732 1733
}

1734
/* Called with iothread lock held.  */
G
Gonglei 已提交
1735
void qemu_ram_unset_idstr(RAMBlock *block)
1736
{
1737 1738 1739 1740
    /* FIXME: arch_init.c assumes that this is not called throughout
     * migration.  Ignore the problem since hot-unplug during migration
     * does not work anyway.
     */
1741 1742 1743 1744 1745
    if (block) {
        memset(block->idstr, 0, sizeof(block->idstr));
    }
}

1746 1747 1748 1749 1750
size_t qemu_ram_pagesize(RAMBlock *rb)
{
    return rb->page_size;
}

1751 1752 1753 1754 1755 1756
/* Returns the largest size of page in use */
size_t qemu_ram_pagesize_largest(void)
{
    RAMBlock *block;
    size_t largest = 0;

P
Peter Xu 已提交
1757
    RAMBLOCK_FOREACH(block) {
1758 1759 1760 1761 1762 1763
        largest = MAX(largest, qemu_ram_pagesize(block));
    }

    return largest;
}

1764 1765
static int memory_try_enable_merging(void *addr, size_t len)
{
1766
    if (!machine_mem_merge(current_machine)) {
1767 1768 1769 1770 1771 1772 1773
        /* disabled by the user */
        return 0;
    }

    return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
}

1774 1775 1776 1777 1778 1779 1780
/* Only legal before guest might have detected the memory size: e.g. on
 * incoming migration, or right after reset.
 *
 * As memory core doesn't know how is memory accessed, it is up to
 * resize callback to update device state and/or add assertions to detect
 * misuse, if necessary.
 */
G
Gonglei 已提交
1781
int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
1782 1783 1784
{
    assert(block);

1785
    newsize = HOST_PAGE_ALIGN(newsize);
1786

1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808
    if (block->used_length == newsize) {
        return 0;
    }

    if (!(block->flags & RAM_RESIZEABLE)) {
        error_setg_errno(errp, EINVAL,
                         "Length mismatch: %s: 0x" RAM_ADDR_FMT
                         " in != 0x" RAM_ADDR_FMT, block->idstr,
                         newsize, block->used_length);
        return -EINVAL;
    }

    if (block->max_length < newsize) {
        error_setg_errno(errp, EINVAL,
                         "Length too large: %s: 0x" RAM_ADDR_FMT
                         " > 0x" RAM_ADDR_FMT, block->idstr,
                         newsize, block->max_length);
        return -EINVAL;
    }

    cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
    block->used_length = newsize;
1809 1810
    cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
                                        DIRTY_CLIENTS_ALL);
1811 1812 1813 1814 1815 1816 1817
    memory_region_set_size(block->mr, newsize);
    if (block->resized) {
        block->resized(block->idstr, newsize, block->host);
    }
    return 0;
}

1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858
/* Called with ram_list.mutex held */
static void dirty_memory_extend(ram_addr_t old_ram_size,
                                ram_addr_t new_ram_size)
{
    ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
                                             DIRTY_MEMORY_BLOCK_SIZE);
    ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
                                             DIRTY_MEMORY_BLOCK_SIZE);
    int i;

    /* Only need to extend if block count increased */
    if (new_num_blocks <= old_num_blocks) {
        return;
    }

    for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
        DirtyMemoryBlocks *old_blocks;
        DirtyMemoryBlocks *new_blocks;
        int j;

        old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]);
        new_blocks = g_malloc(sizeof(*new_blocks) +
                              sizeof(new_blocks->blocks[0]) * new_num_blocks);

        if (old_num_blocks) {
            memcpy(new_blocks->blocks, old_blocks->blocks,
                   old_num_blocks * sizeof(old_blocks->blocks[0]));
        }

        for (j = old_num_blocks; j < new_num_blocks; j++) {
            new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
        }

        atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);

        if (old_blocks) {
            g_free_rcu(old_blocks, rcu);
        }
    }
}

1859
static void ram_block_add(RAMBlock *new_block, Error **errp)
1860
{
1861
    RAMBlock *block;
M
Mike Day 已提交
1862
    RAMBlock *last_block = NULL;
1863
    ram_addr_t old_ram_size, new_ram_size;
1864
    Error *err = NULL;
1865

1866
    old_ram_size = last_ram_page();
1867

1868
    qemu_mutex_lock_ramlist();
1869
    new_block->offset = find_ram_offset(new_block->max_length);
1870 1871 1872

    if (!new_block->host) {
        if (xen_enabled()) {
1873
            xen_ram_alloc(new_block->offset, new_block->max_length,
1874 1875 1876 1877
                          new_block->mr, &err);
            if (err) {
                error_propagate(errp, err);
                qemu_mutex_unlock_ramlist();
1878
                return;
1879
            }
1880
        } else {
1881
            new_block->host = phys_mem_alloc(new_block->max_length,
1882
                                             &new_block->mr->align);
1883
            if (!new_block->host) {
1884 1885 1886 1887
                error_setg_errno(errp, errno,
                                 "cannot set up guest memory '%s'",
                                 memory_region_name(new_block->mr));
                qemu_mutex_unlock_ramlist();
1888
                return;
1889
            }
1890
            memory_try_enable_merging(new_block->host, new_block->max_length);
1891
        }
1892
    }
P
pbrook 已提交
1893

L
Li Zhijian 已提交
1894 1895 1896
    new_ram_size = MAX(old_ram_size,
              (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
    if (new_ram_size > old_ram_size) {
1897
        dirty_memory_extend(old_ram_size, new_ram_size);
L
Li Zhijian 已提交
1898
    }
M
Mike Day 已提交
1899 1900 1901 1902
    /* Keep the list sorted from biggest to smallest block.  Unlike QTAILQ,
     * QLIST (which has an RCU-friendly variant) does not have insertion at
     * tail, so save the last element in last_block.
     */
P
Peter Xu 已提交
1903
    RAMBLOCK_FOREACH(block) {
M
Mike Day 已提交
1904
        last_block = block;
1905
        if (block->max_length < new_block->max_length) {
1906 1907 1908 1909
            break;
        }
    }
    if (block) {
M
Mike Day 已提交
1910
        QLIST_INSERT_BEFORE_RCU(block, new_block, next);
M
Mike Day 已提交
1911
    } else if (last_block) {
M
Mike Day 已提交
1912
        QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
M
Mike Day 已提交
1913
    } else { /* list is empty */
M
Mike Day 已提交
1914
        QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
1915
    }
1916
    ram_list.mru_block = NULL;
P
pbrook 已提交
1917

M
Mike Day 已提交
1918 1919
    /* Write list before version */
    smp_wmb();
U
Umesh Deshpande 已提交
1920
    ram_list.version++;
1921
    qemu_mutex_unlock_ramlist();
U
Umesh Deshpande 已提交
1922

1923
    cpu_physical_memory_set_dirty_range(new_block->offset,
1924 1925
                                        new_block->used_length,
                                        DIRTY_CLIENTS_ALL);
P
pbrook 已提交
1926

1927 1928 1929
    if (new_block->host) {
        qemu_ram_setup_dump(new_block->host, new_block->max_length);
        qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
C
Cao jin 已提交
1930
        /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */
1931
        qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK);
P
Paolo Bonzini 已提交
1932
        ram_block_notify_add(new_block->host, new_block->max_length);
1933
    }
P
pbrook 已提交
1934
}
B
bellard 已提交
1935

1936
#ifdef __linux__
1937 1938 1939
RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
                                 bool share, int fd,
                                 Error **errp)
1940 1941
{
    RAMBlock *new_block;
1942
    Error *local_err = NULL;
1943
    int64_t file_size;
1944 1945

    if (xen_enabled()) {
1946
        error_setg(errp, "-mem-path not supported with Xen");
1947
        return NULL;
1948 1949
    }

1950 1951 1952 1953 1954 1955
    if (kvm_enabled() && !kvm_has_sync_mmu()) {
        error_setg(errp,
                   "host lacks kvm mmu notifiers, -mem-path unsupported");
        return NULL;
    }

1956 1957 1958 1959 1960 1961
    if (phys_mem_alloc != qemu_anon_ram_alloc) {
        /*
         * file_ram_alloc() needs to allocate just like
         * phys_mem_alloc, but we haven't bothered to provide
         * a hook there.
         */
1962 1963
        error_setg(errp,
                   "-mem-path not supported with this accelerator");
1964
        return NULL;
1965 1966
    }

1967
    size = HOST_PAGE_ALIGN(size);
1968 1969 1970 1971 1972 1973 1974 1975
    file_size = get_file_size(fd);
    if (file_size > 0 && file_size < size) {
        error_setg(errp, "backing store %s size 0x%" PRIx64
                   " does not match 'size' option 0x" RAM_ADDR_FMT,
                   mem_path, file_size, size);
        return NULL;
    }

1976 1977
    new_block = g_malloc0(sizeof(*new_block));
    new_block->mr = mr;
1978 1979
    new_block->used_length = size;
    new_block->max_length = size;
1980
    new_block->flags = share ? RAM_SHARED : 0;
1981
    new_block->host = file_ram_alloc(new_block, size, fd, !file_size, errp);
1982 1983
    if (!new_block->host) {
        g_free(new_block);
1984
        return NULL;
1985 1986
    }

1987
    ram_block_add(new_block, &local_err);
1988 1989 1990
    if (local_err) {
        g_free(new_block);
        error_propagate(errp, local_err);
1991
        return NULL;
1992
    }
1993
    return new_block;
1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

}


RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
                                   bool share, const char *mem_path,
                                   Error **errp)
{
    int fd;
    bool created;
    RAMBlock *block;

    fd = file_ram_open(mem_path, memory_region_name(mr), &created, errp);
    if (fd < 0) {
        return NULL;
    }

    block = qemu_ram_alloc_from_fd(size, mr, share, fd, errp);
    if (!block) {
        if (created) {
            unlink(mem_path);
        }
        close(fd);
        return NULL;
    }

    return block;
2021
}
2022
#endif
2023

2024
static
2025 2026 2027 2028 2029 2030
RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
                                  void (*resized)(const char*,
                                                  uint64_t length,
                                                  void *host),
                                  void *host, bool resizeable,
                                  MemoryRegion *mr, Error **errp)
2031 2032
{
    RAMBlock *new_block;
2033
    Error *local_err = NULL;
2034

2035 2036
    size = HOST_PAGE_ALIGN(size);
    max_size = HOST_PAGE_ALIGN(max_size);
2037 2038
    new_block = g_malloc0(sizeof(*new_block));
    new_block->mr = mr;
2039
    new_block->resized = resized;
2040 2041
    new_block->used_length = size;
    new_block->max_length = max_size;
2042
    assert(max_size >= size);
2043
    new_block->fd = -1;
2044
    new_block->page_size = getpagesize();
2045 2046
    new_block->host = host;
    if (host) {
2047
        new_block->flags |= RAM_PREALLOC;
2048
    }
2049 2050 2051
    if (resizeable) {
        new_block->flags |= RAM_RESIZEABLE;
    }
2052
    ram_block_add(new_block, &local_err);
2053 2054 2055
    if (local_err) {
        g_free(new_block);
        error_propagate(errp, local_err);
2056
        return NULL;
2057
    }
2058
    return new_block;
2059 2060
}

2061
RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
2062 2063 2064 2065 2066
                                   MemoryRegion *mr, Error **errp)
{
    return qemu_ram_alloc_internal(size, size, NULL, host, false, mr, errp);
}

2067
RAMBlock *qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr, Error **errp)
2068
{
2069 2070 2071
    return qemu_ram_alloc_internal(size, size, NULL, NULL, false, mr, errp);
}

2072
RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
2073 2074 2075 2076 2077 2078
                                     void (*resized)(const char*,
                                                     uint64_t length,
                                                     void *host),
                                     MemoryRegion *mr, Error **errp)
{
    return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true, mr, errp);
2079 2080
}

P
Paolo Bonzini 已提交
2081 2082 2083 2084 2085 2086 2087 2088
static void reclaim_ramblock(RAMBlock *block)
{
    if (block->flags & RAM_PREALLOC) {
        ;
    } else if (xen_enabled()) {
        xen_invalidate_map_cache_entry(block->host);
#ifndef _WIN32
    } else if (block->fd >= 0) {
2089
        qemu_ram_munmap(block->host, block->max_length);
P
Paolo Bonzini 已提交
2090 2091 2092 2093 2094 2095 2096 2097
        close(block->fd);
#endif
    } else {
        qemu_anon_ram_free(block->host, block->max_length);
    }
    g_free(block);
}

2098
void qemu_ram_free(RAMBlock *block)
B
bellard 已提交
2099
{
2100 2101 2102 2103
    if (!block) {
        return;
    }

P
Paolo Bonzini 已提交
2104 2105 2106 2107
    if (block->host) {
        ram_block_notify_remove(block->host, block->max_length);
    }

2108
    qemu_mutex_lock_ramlist();
2109 2110 2111 2112 2113 2114
    QLIST_REMOVE_RCU(block, next);
    ram_list.mru_block = NULL;
    /* Write list before version */
    smp_wmb();
    ram_list.version++;
    call_rcu(block, reclaim_ramblock, rcu);
2115
    qemu_mutex_unlock_ramlist();
B
bellard 已提交
2116 2117
}

H
Huang Ying 已提交
2118 2119 2120 2121 2122 2123 2124 2125
#ifndef _WIN32
void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
{
    RAMBlock *block;
    ram_addr_t offset;
    int flags;
    void *area, *vaddr;

P
Peter Xu 已提交
2126
    RAMBLOCK_FOREACH(block) {
H
Huang Ying 已提交
2127
        offset = addr - block->offset;
2128
        if (offset < block->max_length) {
2129
            vaddr = ramblock_ptr(block, offset);
2130
            if (block->flags & RAM_PREALLOC) {
H
Huang Ying 已提交
2131
                ;
2132 2133
            } else if (xen_enabled()) {
                abort();
H
Huang Ying 已提交
2134 2135
            } else {
                flags = MAP_FIXED;
2136
                if (block->fd >= 0) {
2137 2138
                    flags |= (block->flags & RAM_SHARED ?
                              MAP_SHARED : MAP_PRIVATE);
2139 2140
                    area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
                                flags, block->fd, offset);
H
Huang Ying 已提交
2141
                } else {
2142 2143 2144 2145 2146 2147 2148
                    /*
                     * Remap needs to match alloc.  Accelerators that
                     * set phys_mem_alloc never remap.  If they did,
                     * we'd need a remap hook here.
                     */
                    assert(phys_mem_alloc == qemu_anon_ram_alloc);

H
Huang Ying 已提交
2149 2150 2151 2152 2153
                    flags |= MAP_PRIVATE | MAP_ANONYMOUS;
                    area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
                                flags, -1, 0);
                }
                if (area != vaddr) {
2154 2155
                    fprintf(stderr, "Could not remap addr: "
                            RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
H
Huang Ying 已提交
2156 2157 2158
                            length, addr);
                    exit(1);
                }
2159
                memory_try_enable_merging(vaddr, length);
2160
                qemu_ram_setup_dump(vaddr, length);
H
Huang Ying 已提交
2161 2162 2163 2164 2165 2166
            }
        }
    }
}
#endif /* !_WIN32 */

2167
/* Return a host pointer to ram allocated with qemu_ram_alloc.
2168 2169 2170
 * This should not be used for general purpose DMA.  Use address_space_map
 * or address_space_rw instead. For local memory (e.g. video ram) that the
 * device owns, use memory_region_get_ram_ptr.
M
Mike Day 已提交
2171
 *
2172
 * Called within RCU critical section.
2173
 */
2174
void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
2175
{
2176 2177 2178 2179
    RAMBlock *block = ram_block;

    if (block == NULL) {
        block = qemu_get_ram_block(addr);
2180
        addr -= block->offset;
2181
    }
2182 2183

    if (xen_enabled() && block->host == NULL) {
2184 2185 2186 2187 2188
        /* We need to check if the requested address is in the RAM
         * because we don't want to map the entire memory in QEMU.
         * In that case just map until the end of the page.
         */
        if (block->offset == 0) {
2189
            return xen_map_cache(addr, 0, 0, false);
2190
        }
2191

2192
        block->host = xen_map_cache(block->offset, block->max_length, 1, false);
2193
    }
2194
    return ramblock_ptr(block, addr);
2195 2196
}

2197
/* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
2198
 * but takes a size argument.
M
Mike Day 已提交
2199
 *
2200
 * Called within RCU critical section.
2201
 */
2202
static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
2203
                                 hwaddr *size, bool lock)
2204
{
2205
    RAMBlock *block = ram_block;
2206 2207 2208
    if (*size == 0) {
        return NULL;
    }
2209

2210 2211
    if (block == NULL) {
        block = qemu_get_ram_block(addr);
2212
        addr -= block->offset;
2213
    }
2214
    *size = MIN(*size, block->max_length - addr);
2215 2216 2217 2218 2219 2220 2221

    if (xen_enabled() && block->host == NULL) {
        /* We need to check if the requested address is in the RAM
         * because we don't want to map the entire memory in QEMU.
         * In that case just map the requested area.
         */
        if (block->offset == 0) {
2222
            return xen_map_cache(addr, *size, lock, lock);
2223 2224
        }

2225
        block->host = xen_map_cache(block->offset, block->max_length, 1, lock);
2226
    }
2227

2228
    return ramblock_ptr(block, addr);
2229 2230
}

D
Dr. David Alan Gilbert 已提交
2231 2232 2233 2234 2235 2236 2237 2238 2239 2240
/*
 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
 * in that RAMBlock.
 *
 * ptr: Host pointer to look up
 * round_offset: If true round the result offset down to a page boundary
 * *ram_addr: set to result ram_addr
 * *offset: set to result offset within the RAMBlock
 *
 * Returns: RAMBlock (or NULL if not found)
2241 2242 2243 2244 2245 2246 2247
 *
 * By the time this function returns, the returned pointer is not protected
 * by RCU anymore.  If the caller is not within an RCU critical section and
 * does not hold the iothread lock, it must have other means of protecting the
 * pointer, such as a reference to the region that includes the incoming
 * ram_addr_t.
 */
D
Dr. David Alan Gilbert 已提交
2248 2249
RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
                                   ram_addr_t *offset)
P
pbrook 已提交
2250
{
P
pbrook 已提交
2251 2252 2253
    RAMBlock *block;
    uint8_t *host = ptr;

2254
    if (xen_enabled()) {
2255
        ram_addr_t ram_addr;
M
Mike Day 已提交
2256
        rcu_read_lock();
2257 2258
        ram_addr = xen_ram_addr_from_mapcache(ptr);
        block = qemu_get_ram_block(ram_addr);
D
Dr. David Alan Gilbert 已提交
2259
        if (block) {
2260
            *offset = ram_addr - block->offset;
D
Dr. David Alan Gilbert 已提交
2261
        }
M
Mike Day 已提交
2262
        rcu_read_unlock();
D
Dr. David Alan Gilbert 已提交
2263
        return block;
2264 2265
    }

M
Mike Day 已提交
2266 2267
    rcu_read_lock();
    block = atomic_rcu_read(&ram_list.mru_block);
2268
    if (block && block->host && host - block->host < block->max_length) {
2269 2270 2271
        goto found;
    }

P
Peter Xu 已提交
2272
    RAMBLOCK_FOREACH(block) {
J
Jun Nakajima 已提交
2273 2274 2275 2276
        /* This case append when the block is not mapped. */
        if (block->host == NULL) {
            continue;
        }
2277
        if (host - block->host < block->max_length) {
2278
            goto found;
A
Alex Williamson 已提交
2279
        }
P
pbrook 已提交
2280
    }
J
Jun Nakajima 已提交
2281

M
Mike Day 已提交
2282
    rcu_read_unlock();
2283
    return NULL;
2284 2285

found:
D
Dr. David Alan Gilbert 已提交
2286 2287 2288 2289
    *offset = (host - block->host);
    if (round_offset) {
        *offset &= TARGET_PAGE_MASK;
    }
M
Mike Day 已提交
2290
    rcu_read_unlock();
D
Dr. David Alan Gilbert 已提交
2291 2292 2293
    return block;
}

D
Dr. David Alan Gilbert 已提交
2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304
/*
 * Finds the named RAMBlock
 *
 * name: The name of RAMBlock to find
 *
 * Returns: RAMBlock (or NULL if not found)
 */
RAMBlock *qemu_ram_block_by_name(const char *name)
{
    RAMBlock *block;

P
Peter Xu 已提交
2305
    RAMBLOCK_FOREACH(block) {
D
Dr. David Alan Gilbert 已提交
2306 2307 2308 2309 2310 2311 2312 2313
        if (!strcmp(name, block->idstr)) {
            return block;
        }
    }

    return NULL;
}

D
Dr. David Alan Gilbert 已提交
2314 2315
/* Some of the softmmu routines need to translate from a host pointer
   (typically a TLB entry) back to a ram offset.  */
2316
ram_addr_t qemu_ram_addr_from_host(void *ptr)
D
Dr. David Alan Gilbert 已提交
2317 2318
{
    RAMBlock *block;
2319
    ram_addr_t offset;
D
Dr. David Alan Gilbert 已提交
2320

2321
    block = qemu_ram_block_from_host(ptr, false, &offset);
D
Dr. David Alan Gilbert 已提交
2322
    if (!block) {
2323
        return RAM_ADDR_INVALID;
D
Dr. David Alan Gilbert 已提交
2324 2325
    }

2326
    return block->offset + offset;
M
Marcelo Tosatti 已提交
2327
}
A
Alex Williamson 已提交
2328

2329
/* Called within RCU critical section.  */
A
Avi Kivity 已提交
2330
static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
2331
                               uint64_t val, unsigned size)
2332
{
2333 2334
    bool locked = false;

2335
    assert(tcg_enabled());
2336
    if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
2337 2338
        locked = true;
        tb_lock();
2339
        tb_invalidate_phys_page_fast(ram_addr, size);
2340
    }
2341 2342
    switch (size) {
    case 1:
2343
        stb_p(qemu_map_ram_ptr(NULL, ram_addr), val);
2344 2345
        break;
    case 2:
2346
        stw_p(qemu_map_ram_ptr(NULL, ram_addr), val);
2347 2348
        break;
    case 4:
2349
        stl_p(qemu_map_ram_ptr(NULL, ram_addr), val);
2350 2351 2352
        break;
    default:
        abort();
2353
    }
2354 2355 2356 2357 2358

    if (locked) {
        tb_unlock();
    }

2359 2360 2361 2362 2363
    /* Set both VGA and migration bits for simplicity and to remove
     * the notdirty callback faster.
     */
    cpu_physical_memory_set_dirty_range(ram_addr, size,
                                        DIRTY_CLIENTS_NOCODE);
B
bellard 已提交
2364 2365
    /* we remove the notdirty callback only if the code has been
       flushed */
2366
    if (!cpu_physical_memory_is_clean(ram_addr)) {
2367
        tlb_set_dirty(current_cpu, current_cpu->mem_io_vaddr);
2368
    }
2369 2370
}

2371 2372 2373 2374 2375 2376
static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
                                 unsigned size, bool is_write)
{
    return is_write;
}

2377 2378
static const MemoryRegionOps notdirty_mem_ops = {
    .write = notdirty_mem_write,
2379
    .valid.accepts = notdirty_mem_accepts,
2380
    .endianness = DEVICE_NATIVE_ENDIAN,
2381 2382
};

P
pbrook 已提交
2383
/* Generate a debug exception if a watchpoint has been hit.  */
2384
static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags)
P
pbrook 已提交
2385
{
2386
    CPUState *cpu = current_cpu;
2387
    CPUClass *cc = CPU_GET_CLASS(cpu);
2388
    CPUArchState *env = cpu->env_ptr;
2389
    target_ulong pc, cs_base;
P
pbrook 已提交
2390
    target_ulong vaddr;
2391
    CPUWatchpoint *wp;
2392
    uint32_t cpu_flags;
P
pbrook 已提交
2393

2394
    assert(tcg_enabled());
2395
    if (cpu->watchpoint_hit) {
2396 2397 2398
        /* We re-entered the check after replacing the TB. Now raise
         * the debug interrupt so that is will trigger after the
         * current instruction. */
2399
        cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
2400 2401
        return;
    }
2402
    vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
2403
    vaddr = cc->adjust_watchpoint_address(cpu, vaddr, len);
2404
    QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
2405 2406
        if (cpu_watchpoint_address_matches(wp, vaddr, len)
            && (wp->flags & flags)) {
2407 2408 2409 2410 2411 2412
            if (flags == BP_MEM_READ) {
                wp->flags |= BP_WATCHPOINT_HIT_READ;
            } else {
                wp->flags |= BP_WATCHPOINT_HIT_WRITE;
            }
            wp->hitaddr = vaddr;
2413
            wp->hitattrs = attrs;
2414
            if (!cpu->watchpoint_hit) {
2415 2416 2417 2418 2419
                if (wp->flags & BP_CPU &&
                    !cc->debug_check_watchpoint(cpu, wp)) {
                    wp->flags &= ~BP_WATCHPOINT_HIT;
                    continue;
                }
2420
                cpu->watchpoint_hit = wp;
2421

2422 2423 2424
                /* Both tb_lock and iothread_mutex will be reset when
                 * cpu_loop_exit or cpu_loop_exit_noexc longjmp
                 * back into the cpu_exec main loop.
2425 2426
                 */
                tb_lock();
2427
                tb_check_watchpoint(cpu);
2428
                if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2429
                    cpu->exception_index = EXCP_DEBUG;
2430
                    cpu_loop_exit(cpu);
2431 2432
                } else {
                    cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
2433
                    tb_gen_code(cpu, pc, cs_base, cpu_flags, 1);
2434
                    cpu_loop_exit_noexc(cpu);
2435
                }
2436
            }
2437 2438
        } else {
            wp->flags &= ~BP_WATCHPOINT_HIT;
P
pbrook 已提交
2439 2440 2441 2442
        }
    }
}

2443 2444 2445
/* Watchpoint access routines.  Watchpoints are inserted using TLB tricks,
   so these check for a hit then pass through to the normal out-of-line
   phys routines.  */
2446 2447
static MemTxResult watch_mem_read(void *opaque, hwaddr addr, uint64_t *pdata,
                                  unsigned size, MemTxAttrs attrs)
2448
{
2449 2450
    MemTxResult res;
    uint64_t data;
2451 2452
    int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
    AddressSpace *as = current_cpu->cpu_ases[asidx].as;
2453 2454

    check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_READ);
2455
    switch (size) {
2456
    case 1:
2457
        data = address_space_ldub(as, addr, attrs, &res);
2458 2459
        break;
    case 2:
2460
        data = address_space_lduw(as, addr, attrs, &res);
2461 2462
        break;
    case 4:
2463
        data = address_space_ldl(as, addr, attrs, &res);
2464
        break;
2465 2466
    default: abort();
    }
2467 2468
    *pdata = data;
    return res;
2469 2470
}

2471 2472 2473
static MemTxResult watch_mem_write(void *opaque, hwaddr addr,
                                   uint64_t val, unsigned size,
                                   MemTxAttrs attrs)
2474
{
2475
    MemTxResult res;
2476 2477
    int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
    AddressSpace *as = current_cpu->cpu_ases[asidx].as;
2478 2479

    check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_WRITE);
2480
    switch (size) {
2481
    case 1:
2482
        address_space_stb(as, addr, val, attrs, &res);
2483 2484
        break;
    case 2:
2485
        address_space_stw(as, addr, val, attrs, &res);
2486 2487
        break;
    case 4:
2488
        address_space_stl(as, addr, val, attrs, &res);
2489
        break;
2490 2491
    default: abort();
    }
2492
    return res;
2493 2494
}

2495
static const MemoryRegionOps watch_mem_ops = {
2496 2497
    .read_with_attrs = watch_mem_read,
    .write_with_attrs = watch_mem_write,
2498
    .endianness = DEVICE_NATIVE_ENDIAN,
2499 2500
};

2501 2502 2503 2504 2505
static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
                                  const uint8_t *buf, int len);
static bool flatview_access_valid(FlatView *fv, hwaddr addr, int len,
                                  bool is_write);

2506 2507
static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
                                unsigned len, MemTxAttrs attrs)
2508
{
2509
    subpage_t *subpage = opaque;
2510
    uint8_t buf[8];
2511
    MemTxResult res;
2512

2513
#if defined(DEBUG_SUBPAGE)
A
Amos Kong 已提交
2514
    printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
2515
           subpage, len, addr);
2516
#endif
2517
    res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
2518 2519
    if (res) {
        return res;
2520
    }
2521 2522
    switch (len) {
    case 1:
2523 2524
        *data = ldub_p(buf);
        return MEMTX_OK;
2525
    case 2:
2526 2527
        *data = lduw_p(buf);
        return MEMTX_OK;
2528
    case 4:
2529 2530
        *data = ldl_p(buf);
        return MEMTX_OK;
2531
    case 8:
2532 2533
        *data = ldq_p(buf);
        return MEMTX_OK;
2534 2535 2536
    default:
        abort();
    }
2537 2538
}

2539 2540
static MemTxResult subpage_write(void *opaque, hwaddr addr,
                                 uint64_t value, unsigned len, MemTxAttrs attrs)
2541
{
2542
    subpage_t *subpage = opaque;
2543
    uint8_t buf[8];
2544

2545
#if defined(DEBUG_SUBPAGE)
A
Amos Kong 已提交
2546
    printf("%s: subpage %p len %u addr " TARGET_FMT_plx
2547 2548
           " value %"PRIx64"\n",
           __func__, subpage, len, addr, value);
2549
#endif
2550 2551 2552 2553 2554 2555 2556 2557 2558 2559
    switch (len) {
    case 1:
        stb_p(buf, value);
        break;
    case 2:
        stw_p(buf, value);
        break;
    case 4:
        stl_p(buf, value);
        break;
2560 2561 2562
    case 8:
        stq_p(buf, value);
        break;
2563 2564 2565
    default:
        abort();
    }
2566
    return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
2567 2568
}

2569
static bool subpage_accepts(void *opaque, hwaddr addr,
A
Amos Kong 已提交
2570
                            unsigned len, bool is_write)
2571
{
2572
    subpage_t *subpage = opaque;
2573
#if defined(DEBUG_SUBPAGE)
A
Amos Kong 已提交
2574
    printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
2575
           __func__, subpage, is_write ? 'w' : 'r', len, addr);
2576 2577
#endif

2578 2579
    return flatview_access_valid(subpage->fv, addr + subpage->base,
                                 len, is_write);
2580 2581
}

2582
static const MemoryRegionOps subpage_ops = {
2583 2584
    .read_with_attrs = subpage_read,
    .write_with_attrs = subpage_write,
2585 2586 2587 2588
    .impl.min_access_size = 1,
    .impl.max_access_size = 8,
    .valid.min_access_size = 1,
    .valid.max_access_size = 8,
2589
    .valid.accepts = subpage_accepts,
2590
    .endianness = DEVICE_NATIVE_ENDIAN,
2591 2592
};

A
Anthony Liguori 已提交
2593
static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2594
                             uint16_t section)
2595 2596 2597 2598 2599 2600 2601 2602
{
    int idx, eidx;

    if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
        return -1;
    idx = SUBPAGE_IDX(start);
    eidx = SUBPAGE_IDX(end);
#if defined(DEBUG_SUBPAGE)
A
Amos Kong 已提交
2603 2604
    printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
           __func__, mmio, start, end, idx, eidx, section);
2605 2606
#endif
    for (; idx <= eidx; idx++) {
2607
        mmio->sub_section[idx] = section;
2608 2609 2610 2611 2612
    }

    return 0;
}

2613
static subpage_t *subpage_init(FlatView *fv, hwaddr base)
2614
{
A
Anthony Liguori 已提交
2615
    subpage_t *mmio;
2616

2617
    mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
2618
    mmio->fv = fv;
2619
    mmio->base = base;
2620
    memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
P
Peter Crosthwaite 已提交
2621
                          NULL, TARGET_PAGE_SIZE);
A
Avi Kivity 已提交
2622
    mmio->iomem.subpage = true;
2623
#if defined(DEBUG_SUBPAGE)
A
Amos Kong 已提交
2624 2625
    printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
           mmio, base, TARGET_PAGE_SIZE);
2626
#endif
2627
    subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
2628 2629 2630 2631

    return mmio;
}

2632
static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
2633
{
2634
    assert(fv);
2635
    MemoryRegionSection section = {
2636
        .fv = fv,
2637 2638 2639
        .mr = mr,
        .offset_within_address_space = 0,
        .offset_within_region = 0,
2640
        .size = int128_2_64(),
2641 2642
    };

2643
    return phys_section_add(map, &section);
2644 2645
}

2646
MemoryRegion *iotlb_to_region(CPUState *cpu, hwaddr index, MemTxAttrs attrs)
2647
{
2648 2649
    int asidx = cpu_asidx_from_attrs(cpu, attrs);
    CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
2650
    AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch);
2651
    MemoryRegionSection *sections = d->map.sections;
P
Paolo Bonzini 已提交
2652 2653

    return sections[index & ~TARGET_PAGE_MASK].mr;
2654 2655
}

A
Avi Kivity 已提交
2656 2657
static void io_mem_init(void)
{
2658
    memory_region_init_io(&io_mem_rom, NULL, &unassigned_mem_ops, NULL, NULL, UINT64_MAX);
2659
    memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
2660
                          NULL, UINT64_MAX);
2661 2662 2663 2664

    /* io_mem_notdirty calls tb_invalidate_phys_page_fast,
     * which can be called without the iothread mutex.
     */
2665
    memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
2666
                          NULL, UINT64_MAX);
2667 2668
    memory_region_clear_global_locking(&io_mem_notdirty);

2669
    memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
2670
                          NULL, UINT64_MAX);
A
Avi Kivity 已提交
2671 2672
}

2673
AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
2674
{
2675 2676 2677
    AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
    uint16_t n;

2678
    n = dummy_section(&d->map, fv, &io_mem_unassigned);
2679
    assert(n == PHYS_SECTION_UNASSIGNED);
2680
    n = dummy_section(&d->map, fv, &io_mem_notdirty);
2681
    assert(n == PHYS_SECTION_NOTDIRTY);
2682
    n = dummy_section(&d->map, fv, &io_mem_rom);
2683
    assert(n == PHYS_SECTION_ROM);
2684
    n = dummy_section(&d->map, fv, &io_mem_watch);
2685
    assert(n == PHYS_SECTION_WATCH);
2686

M
Michael S. Tsirkin 已提交
2687
    d->phys_map  = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
2688 2689

    return d;
2690 2691
}

2692
void address_space_dispatch_free(AddressSpaceDispatch *d)
2693 2694 2695 2696 2697
{
    phys_sections_free(&d->map);
    g_free(d);
}

2698
static void tcg_commit(MemoryListener *listener)
2699
{
2700 2701
    CPUAddressSpace *cpuas;
    AddressSpaceDispatch *d;
2702 2703 2704

    /* since each CPU stores ram addresses in its TLB cache, we must
       reset the modified entries */
2705 2706 2707 2708 2709 2710
    cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
    cpu_reloading_memory_map();
    /* The CPU and TLB are protected by the iothread lock.
     * We reload the dispatch pointer now because cpu_reloading_memory_map()
     * may have split the RCU critical section.
     */
2711
    d = address_space_to_dispatch(cpuas->as);
2712
    atomic_rcu_set(&cpuas->memory_dispatch, d);
2713
    tlb_flush(cpuas->cpu);
2714 2715
}

A
Avi Kivity 已提交
2716 2717
static void memory_map_init(void)
{
2718
    system_memory = g_malloc(sizeof(*system_memory));
2719

2720
    memory_region_init(system_memory, NULL, "system", UINT64_MAX);
2721
    address_space_init(&address_space_memory, system_memory, "memory");
2722

2723
    system_io = g_malloc(sizeof(*system_io));
2724 2725
    memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
                          65536);
2726
    address_space_init(&address_space_io, system_io, "I/O");
A
Avi Kivity 已提交
2727 2728 2729 2730 2731 2732 2733
}

MemoryRegion *get_system_memory(void)
{
    return system_memory;
}

2734 2735 2736 2737 2738
MemoryRegion *get_system_io(void)
{
    return system_io;
}

2739 2740
#endif /* !defined(CONFIG_USER_ONLY) */

B
bellard 已提交
2741 2742
/* physical memory access (slow version, mainly for debug) */
#if defined(CONFIG_USER_ONLY)
2743
int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
P
Paul Brook 已提交
2744
                        uint8_t *buf, int len, int is_write)
B
bellard 已提交
2745 2746 2747
{
    int l, flags;
    target_ulong page;
2748
    void * p;
B
bellard 已提交
2749 2750 2751 2752 2753 2754 2755 2756

    while (len > 0) {
        page = addr & TARGET_PAGE_MASK;
        l = (page + TARGET_PAGE_SIZE) - addr;
        if (l > len)
            l = len;
        flags = page_get_flags(page);
        if (!(flags & PAGE_VALID))
P
Paul Brook 已提交
2757
            return -1;
B
bellard 已提交
2758 2759
        if (is_write) {
            if (!(flags & PAGE_WRITE))
P
Paul Brook 已提交
2760
                return -1;
2761
            /* XXX: this code should not depend on lock_user */
A
aurel32 已提交
2762
            if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
P
Paul Brook 已提交
2763
                return -1;
A
aurel32 已提交
2764 2765
            memcpy(p, buf, l);
            unlock_user(p, addr, l);
B
bellard 已提交
2766 2767
        } else {
            if (!(flags & PAGE_READ))
P
Paul Brook 已提交
2768
                return -1;
2769
            /* XXX: this code should not depend on lock_user */
A
aurel32 已提交
2770
            if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
P
Paul Brook 已提交
2771
                return -1;
A
aurel32 已提交
2772
            memcpy(buf, p, l);
A
aurel32 已提交
2773
            unlock_user(p, addr, 0);
B
bellard 已提交
2774 2775 2776 2777 2778
        }
        len -= l;
        buf += l;
        addr += l;
    }
P
Paul Brook 已提交
2779
    return 0;
B
bellard 已提交
2780
}
B
bellard 已提交
2781

B
bellard 已提交
2782
#else
2783

2784
static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
A
Avi Kivity 已提交
2785
                                     hwaddr length)
2786
{
2787
    uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
2788 2789
    addr += memory_region_get_ram_addr(mr);

2790 2791 2792 2793 2794 2795 2796 2797 2798
    /* No early return if dirty_log_mask is or becomes 0, because
     * cpu_physical_memory_set_dirty_range will still call
     * xen_modified_memory.
     */
    if (dirty_log_mask) {
        dirty_log_mask =
            cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
    }
    if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
2799
        assert(tcg_enabled());
2800
        tb_lock();
2801
        tb_invalidate_phys_range(addr, addr + length);
2802
        tb_unlock();
2803
        dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
2804
    }
2805
    cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
2806 2807
}

2808
static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
2809
{
2810
    unsigned access_size_max = mr->ops->valid.max_access_size;
2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823

    /* Regions are assumed to support 1-4 byte accesses unless
       otherwise specified.  */
    if (access_size_max == 0) {
        access_size_max = 4;
    }

    /* Bound the maximum access by the alignment of the address.  */
    if (!mr->ops->impl.unaligned) {
        unsigned align_size_max = addr & -addr;
        if (align_size_max != 0 && align_size_max < access_size_max) {
            access_size_max = align_size_max;
        }
2824
    }
2825 2826 2827 2828

    /* Don't attempt accesses larger than the maximum.  */
    if (l > access_size_max) {
        l = access_size_max;
2829
    }
2830
    l = pow2floor(l);
2831 2832

    return l;
2833 2834
}

2835
static bool prepare_mmio_access(MemoryRegion *mr)
2836
{
2837 2838 2839 2840 2841 2842 2843 2844
    bool unlocked = !qemu_mutex_iothread_locked();
    bool release_lock = false;

    if (unlocked && mr->global_locking) {
        qemu_mutex_lock_iothread();
        unlocked = false;
        release_lock = true;
    }
2845
    if (mr->flush_coalesced_mmio) {
2846 2847 2848
        if (unlocked) {
            qemu_mutex_lock_iothread();
        }
2849
        qemu_flush_coalesced_mmio_buffer();
2850 2851 2852
        if (unlocked) {
            qemu_mutex_unlock_iothread();
        }
2853
    }
2854 2855

    return release_lock;
2856 2857
}

2858
/* Called within RCU critical section.  */
2859 2860 2861 2862 2863
static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
                                           MemTxAttrs attrs,
                                           const uint8_t *buf,
                                           int len, hwaddr addr1,
                                           hwaddr l, MemoryRegion *mr)
B
bellard 已提交
2864 2865
{
    uint8_t *ptr;
2866
    uint64_t val;
2867
    MemTxResult result = MEMTX_OK;
2868
    bool release_lock = false;
2869

2870
    for (;;) {
2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884
        if (!memory_access_is_direct(mr, true)) {
            release_lock |= prepare_mmio_access(mr);
            l = memory_access_size(mr, l, addr1);
            /* XXX: could force current_cpu to NULL to avoid
               potential bugs */
            switch (l) {
            case 8:
                /* 64 bit write access */
                val = ldq_p(buf);
                result |= memory_region_dispatch_write(mr, addr1, val, 8,
                                                       attrs);
                break;
            case 4:
                /* 32 bit write access */
2885
                val = (uint32_t)ldl_p(buf);
2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902
                result |= memory_region_dispatch_write(mr, addr1, val, 4,
                                                       attrs);
                break;
            case 2:
                /* 16 bit write access */
                val = lduw_p(buf);
                result |= memory_region_dispatch_write(mr, addr1, val, 2,
                                                       attrs);
                break;
            case 1:
                /* 8 bit write access */
                val = ldub_p(buf);
                result |= memory_region_dispatch_write(mr, addr1, val, 1,
                                                       attrs);
                break;
            default:
                abort();
B
bellard 已提交
2903 2904
            }
        } else {
2905
            /* RAM case */
2906
            ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
2907 2908
            memcpy(ptr, buf, l);
            invalidate_and_set_dirty(mr, addr1, l);
B
bellard 已提交
2909
        }
2910 2911 2912 2913 2914 2915

        if (release_lock) {
            qemu_mutex_unlock_iothread();
            release_lock = false;
        }

B
bellard 已提交
2916 2917 2918
        len -= l;
        buf += l;
        addr += l;
2919 2920 2921 2922 2923 2924

        if (!len) {
            break;
        }

        l = len;
2925
        mr = flatview_translate(fv, addr, &addr1, &l, true);
B
bellard 已提交
2926
    }
2927

2928
    return result;
B
bellard 已提交
2929
}
B
bellard 已提交
2930

2931 2932
static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
                                  const uint8_t *buf, int len)
A
Avi Kivity 已提交
2933
{
2934 2935 2936 2937 2938
    hwaddr l;
    hwaddr addr1;
    MemoryRegion *mr;
    MemTxResult result = MEMTX_OK;

2939 2940
    if (len > 0) {
        rcu_read_lock();
2941
        l = len;
2942 2943 2944
        mr = flatview_translate(fv, addr, &addr1, &l, true);
        result = flatview_write_continue(fv, addr, attrs, buf, len,
                                         addr1, l, mr);
2945 2946 2947 2948 2949 2950
        rcu_read_unlock();
    }

    return result;
}

2951 2952 2953 2954 2955 2956 2957
MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
                                              MemTxAttrs attrs,
                                              const uint8_t *buf, int len)
{
    return flatview_write(address_space_to_flatview(as), addr, attrs, buf, len);
}

2958
/* Called within RCU critical section.  */
2959 2960 2961 2962
MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
                                   MemTxAttrs attrs, uint8_t *buf,
                                   int len, hwaddr addr1, hwaddr l,
                                   MemoryRegion *mr)
2963 2964 2965 2966 2967
{
    uint8_t *ptr;
    uint64_t val;
    MemTxResult result = MEMTX_OK;
    bool release_lock = false;
2968

2969
    for (;;) {
2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003
        if (!memory_access_is_direct(mr, false)) {
            /* I/O case */
            release_lock |= prepare_mmio_access(mr);
            l = memory_access_size(mr, l, addr1);
            switch (l) {
            case 8:
                /* 64 bit read access */
                result |= memory_region_dispatch_read(mr, addr1, &val, 8,
                                                      attrs);
                stq_p(buf, val);
                break;
            case 4:
                /* 32 bit read access */
                result |= memory_region_dispatch_read(mr, addr1, &val, 4,
                                                      attrs);
                stl_p(buf, val);
                break;
            case 2:
                /* 16 bit read access */
                result |= memory_region_dispatch_read(mr, addr1, &val, 2,
                                                      attrs);
                stw_p(buf, val);
                break;
            case 1:
                /* 8 bit read access */
                result |= memory_region_dispatch_read(mr, addr1, &val, 1,
                                                      attrs);
                stb_p(buf, val);
                break;
            default:
                abort();
            }
        } else {
            /* RAM case */
3004
            ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015
            memcpy(buf, ptr, l);
        }

        if (release_lock) {
            qemu_mutex_unlock_iothread();
            release_lock = false;
        }

        len -= l;
        buf += l;
        addr += l;
3016 3017 3018 3019 3020 3021

        if (!len) {
            break;
        }

        l = len;
3022
        mr = flatview_translate(fv, addr, &addr1, &l, false);
3023 3024 3025 3026 3027
    }

    return result;
}

3028 3029
MemTxResult flatview_read_full(FlatView *fv, hwaddr addr,
                               MemTxAttrs attrs, uint8_t *buf, int len)
3030 3031 3032 3033 3034 3035 3036 3037 3038
{
    hwaddr l;
    hwaddr addr1;
    MemoryRegion *mr;
    MemTxResult result = MEMTX_OK;

    if (len > 0) {
        rcu_read_lock();
        l = len;
3039 3040 3041
        mr = flatview_translate(fv, addr, &addr1, &l, false);
        result = flatview_read_continue(fv, addr, attrs, buf, len,
                                        addr1, l, mr);
3042
        rcu_read_unlock();
3043 3044 3045
    }

    return result;
A
Avi Kivity 已提交
3046 3047
}

3048 3049
static MemTxResult flatview_rw(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
                               uint8_t *buf, int len, bool is_write)
3050 3051
{
    if (is_write) {
3052
        return flatview_write(fv, addr, attrs, (uint8_t *)buf, len);
3053
    } else {
3054
        return flatview_read(fv, addr, attrs, (uint8_t *)buf, len);
3055 3056
    }
}
A
Avi Kivity 已提交
3057

3058 3059 3060 3061 3062 3063 3064 3065
MemTxResult address_space_rw(AddressSpace *as, hwaddr addr,
                             MemTxAttrs attrs, uint8_t *buf,
                             int len, bool is_write)
{
    return flatview_rw(address_space_to_flatview(as),
                       addr, attrs, buf, len, is_write);
}

A
Avi Kivity 已提交
3066
void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
A
Avi Kivity 已提交
3067 3068
                            int len, int is_write)
{
3069 3070
    address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
                     buf, len, is_write);
A
Avi Kivity 已提交
3071 3072
}

3073 3074 3075 3076 3077
enum write_rom_type {
    WRITE_DATA,
    FLUSH_CACHE,
};

3078
static inline void cpu_physical_memory_write_rom_internal(AddressSpace *as,
3079
    hwaddr addr, const uint8_t *buf, int len, enum write_rom_type type)
B
bellard 已提交
3080
{
3081
    hwaddr l;
B
bellard 已提交
3082
    uint8_t *ptr;
3083
    hwaddr addr1;
3084
    MemoryRegion *mr;
3085

3086
    rcu_read_lock();
B
bellard 已提交
3087
    while (len > 0) {
3088
        l = len;
3089
        mr = address_space_translate(as, addr, &addr1, &l, true);
3090

3091 3092
        if (!(memory_region_is_ram(mr) ||
              memory_region_is_romd(mr))) {
3093
            l = memory_access_size(mr, l, addr1);
B
bellard 已提交
3094 3095
        } else {
            /* ROM/RAM case */
3096
            ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
3097 3098 3099
            switch (type) {
            case WRITE_DATA:
                memcpy(ptr, buf, l);
3100
                invalidate_and_set_dirty(mr, addr1, l);
3101 3102 3103 3104 3105
                break;
            case FLUSH_CACHE:
                flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
                break;
            }
B
bellard 已提交
3106 3107 3108 3109 3110
        }
        len -= l;
        buf += l;
        addr += l;
    }
3111
    rcu_read_unlock();
B
bellard 已提交
3112 3113
}

3114
/* used for ROM loading : can write in RAM and ROM */
3115
void cpu_physical_memory_write_rom(AddressSpace *as, hwaddr addr,
3116 3117
                                   const uint8_t *buf, int len)
{
3118
    cpu_physical_memory_write_rom_internal(as, addr, buf, len, WRITE_DATA);
3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132
}

void cpu_flush_icache_range(hwaddr start, int len)
{
    /*
     * This function should do the same thing as an icache flush that was
     * triggered from within the guest. For TCG we are always cache coherent,
     * so there is no need to flush anything. For KVM / Xen we need to flush
     * the host's instruction cache at least.
     */
    if (tcg_enabled()) {
        return;
    }

3133 3134
    cpu_physical_memory_write_rom_internal(&address_space_memory,
                                           start, NULL, len, FLUSH_CACHE);
3135 3136
}

3137
typedef struct {
3138
    MemoryRegion *mr;
3139
    void *buffer;
A
Avi Kivity 已提交
3140 3141
    hwaddr addr;
    hwaddr len;
F
Fam Zheng 已提交
3142
    bool in_use;
3143 3144 3145 3146
} BounceBuffer;

static BounceBuffer bounce;

3147
typedef struct MapClient {
3148
    QEMUBH *bh;
B
Blue Swirl 已提交
3149
    QLIST_ENTRY(MapClient) link;
3150 3151
} MapClient;

3152
QemuMutex map_client_list_lock;
B
Blue Swirl 已提交
3153 3154
static QLIST_HEAD(map_client_list, MapClient) map_client_list
    = QLIST_HEAD_INITIALIZER(map_client_list);
3155

3156 3157 3158 3159 3160 3161
static void cpu_unregister_map_client_do(MapClient *client)
{
    QLIST_REMOVE(client, link);
    g_free(client);
}

3162 3163 3164 3165 3166 3167
static void cpu_notify_map_clients_locked(void)
{
    MapClient *client;

    while (!QLIST_EMPTY(&map_client_list)) {
        client = QLIST_FIRST(&map_client_list);
3168 3169
        qemu_bh_schedule(client->bh);
        cpu_unregister_map_client_do(client);
3170 3171 3172
    }
}

3173
void cpu_register_map_client(QEMUBH *bh)
3174
{
3175
    MapClient *client = g_malloc(sizeof(*client));
3176

3177
    qemu_mutex_lock(&map_client_list_lock);
3178
    client->bh = bh;
B
Blue Swirl 已提交
3179
    QLIST_INSERT_HEAD(&map_client_list, client, link);
3180 3181 3182
    if (!atomic_read(&bounce.in_use)) {
        cpu_notify_map_clients_locked();
    }
3183
    qemu_mutex_unlock(&map_client_list_lock);
3184 3185
}

3186
void cpu_exec_init_all(void)
3187
{
3188
    qemu_mutex_init(&ram_list.mutex);
3189 3190 3191 3192 3193 3194 3195 3196
    /* The data structures we set up here depend on knowing the page size,
     * so no more changes can be made after this point.
     * In an ideal world, nothing we did before we had finished the
     * machine setup would care about the target page size, and we could
     * do this much later, rather than requiring board models to state
     * up front what their requirements are.
     */
    finalize_target_page_bits();
3197
    io_mem_init();
3198
    memory_map_init();
3199
    qemu_mutex_init(&map_client_list_lock);
3200 3201
}

3202
void cpu_unregister_map_client(QEMUBH *bh)
3203 3204 3205
{
    MapClient *client;

3206 3207 3208 3209 3210 3211
    qemu_mutex_lock(&map_client_list_lock);
    QLIST_FOREACH(client, &map_client_list, link) {
        if (client->bh == bh) {
            cpu_unregister_map_client_do(client);
            break;
        }
3212
    }
3213
    qemu_mutex_unlock(&map_client_list_lock);
3214 3215 3216 3217
}

static void cpu_notify_map_clients(void)
{
3218
    qemu_mutex_lock(&map_client_list_lock);
3219
    cpu_notify_map_clients_locked();
3220
    qemu_mutex_unlock(&map_client_list_lock);
3221 3222
}

3223 3224
static bool flatview_access_valid(FlatView *fv, hwaddr addr, int len,
                                  bool is_write)
3225
{
3226
    MemoryRegion *mr;
3227 3228
    hwaddr l, xlat;

3229
    rcu_read_lock();
3230 3231
    while (len > 0) {
        l = len;
3232
        mr = flatview_translate(fv, addr, &xlat, &l, is_write);
3233 3234 3235
        if (!memory_access_is_direct(mr, is_write)) {
            l = memory_access_size(mr, l, addr);
            if (!memory_region_access_valid(mr, xlat, l, is_write)) {
R
Roman Kapl 已提交
3236
                rcu_read_unlock();
3237 3238 3239 3240 3241 3242 3243
                return false;
            }
        }

        len -= l;
        addr += l;
    }
3244
    rcu_read_unlock();
3245 3246 3247
    return true;
}

3248 3249 3250 3251 3252 3253 3254
bool address_space_access_valid(AddressSpace *as, hwaddr addr,
                                int len, bool is_write)
{
    return flatview_access_valid(address_space_to_flatview(as),
                                 addr, len, is_write);
}

3255
static hwaddr
3256 3257
flatview_extend_translation(FlatView *fv, hwaddr addr,
                                 hwaddr target_len,
3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273
                                 MemoryRegion *mr, hwaddr base, hwaddr len,
                                 bool is_write)
{
    hwaddr done = 0;
    hwaddr xlat;
    MemoryRegion *this_mr;

    for (;;) {
        target_len -= len;
        addr += len;
        done += len;
        if (target_len == 0) {
            return done;
        }

        len = target_len;
3274 3275
        this_mr = flatview_translate(fv, addr, &xlat,
                                                   &len, is_write);
3276 3277 3278 3279 3280 3281
        if (this_mr != mr || xlat != base + done) {
            return done;
        }
    }
}

3282 3283 3284 3285
/* Map a physical memory region into a host virtual address.
 * May map a subset of the requested range, given by and returned in *plen.
 * May return NULL if resources needed to perform the mapping are exhausted.
 * Use only for reads OR writes - not for read-modify-write operations.
3286 3287
 * Use cpu_register_map_client() to know when retrying the map operation is
 * likely to succeed.
3288
 */
A
Avi Kivity 已提交
3289
void *address_space_map(AddressSpace *as,
A
Avi Kivity 已提交
3290 3291
                        hwaddr addr,
                        hwaddr *plen,
A
Avi Kivity 已提交
3292
                        bool is_write)
3293
{
A
Avi Kivity 已提交
3294
    hwaddr len = *plen;
3295 3296
    hwaddr l, xlat;
    MemoryRegion *mr;
3297
    void *ptr;
3298
    FlatView *fv = address_space_to_flatview(as);
3299

3300 3301 3302
    if (len == 0) {
        return NULL;
    }
3303

3304
    l = len;
3305
    rcu_read_lock();
3306
    mr = flatview_translate(fv, addr, &xlat, &l, is_write);
3307

3308
    if (!memory_access_is_direct(mr, is_write)) {
F
Fam Zheng 已提交
3309
        if (atomic_xchg(&bounce.in_use, true)) {
3310
            rcu_read_unlock();
3311
            return NULL;
3312
        }
3313 3314 3315
        /* Avoid unbounded allocations */
        l = MIN(l, TARGET_PAGE_SIZE);
        bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
3316 3317
        bounce.addr = addr;
        bounce.len = l;
3318 3319 3320

        memory_region_ref(mr);
        bounce.mr = mr;
3321
        if (!is_write) {
3322
            flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
3323
                               bounce.buffer, l);
3324
        }
3325

3326
        rcu_read_unlock();
3327 3328 3329 3330 3331
        *plen = l;
        return bounce.buffer;
    }


3332
    memory_region_ref(mr);
3333 3334
    *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
                                             l, is_write);
3335
    ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen, true);
3336 3337 3338
    rcu_read_unlock();

    return ptr;
3339 3340
}

A
Avi Kivity 已提交
3341
/* Unmaps a memory region previously mapped by address_space_map().
3342 3343 3344
 * Will also mark the memory as dirty if is_write == 1.  access_len gives
 * the amount of memory that was actually read or written by the caller.
 */
A
Avi Kivity 已提交
3345 3346
void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
                         int is_write, hwaddr access_len)
3347 3348
{
    if (buffer != bounce.buffer) {
3349 3350 3351
        MemoryRegion *mr;
        ram_addr_t addr1;

3352
        mr = memory_region_from_host(buffer, &addr1);
3353
        assert(mr != NULL);
3354
        if (is_write) {
3355
            invalidate_and_set_dirty(mr, addr1, access_len);
3356
        }
3357
        if (xen_enabled()) {
J
Jan Kiszka 已提交
3358
            xen_invalidate_map_cache_entry(buffer);
A
Anthony PERARD 已提交
3359
        }
3360
        memory_region_unref(mr);
3361 3362 3363
        return;
    }
    if (is_write) {
3364 3365
        address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
                            bounce.buffer, access_len);
3366
    }
3367
    qemu_vfree(bounce.buffer);
3368
    bounce.buffer = NULL;
3369
    memory_region_unref(bounce.mr);
F
Fam Zheng 已提交
3370
    atomic_mb_set(&bounce.in_use, false);
3371
    cpu_notify_map_clients();
3372
}
B
bellard 已提交
3373

A
Avi Kivity 已提交
3374 3375
void *cpu_physical_memory_map(hwaddr addr,
                              hwaddr *plen,
A
Avi Kivity 已提交
3376 3377 3378 3379 3380
                              int is_write)
{
    return address_space_map(&address_space_memory, addr, plen, is_write);
}

A
Avi Kivity 已提交
3381 3382
void cpu_physical_memory_unmap(void *buffer, hwaddr len,
                               int is_write, hwaddr access_len)
A
Avi Kivity 已提交
3383 3384 3385 3386
{
    return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
}

P
Paolo Bonzini 已提交
3387 3388 3389 3390 3391 3392 3393 3394 3395 3396
#define ARG1_DECL                AddressSpace *as
#define ARG1                     as
#define SUFFIX
#define TRANSLATE(...)           address_space_translate(as, __VA_ARGS__)
#define IS_DIRECT(mr, is_write)  memory_access_is_direct(mr, is_write)
#define MAP_RAM(mr, ofs)         qemu_map_ram_ptr((mr)->ram_block, ofs)
#define INVALIDATE(mr, ofs, len) invalidate_and_set_dirty(mr, ofs, len)
#define RCU_READ_LOCK(...)       rcu_read_lock()
#define RCU_READ_UNLOCK(...)     rcu_read_unlock()
#include "memory_ldst.inc.c"
3397

P
Paolo Bonzini 已提交
3398 3399 3400 3401 3402 3403
int64_t address_space_cache_init(MemoryRegionCache *cache,
                                 AddressSpace *as,
                                 hwaddr addr,
                                 hwaddr len,
                                 bool is_write)
{
P
Paolo Bonzini 已提交
3404 3405 3406 3407
    cache->len = len;
    cache->as = as;
    cache->xlat = addr;
    return len;
P
Paolo Bonzini 已提交
3408 3409 3410 3411 3412 3413 3414 3415 3416 3417
}

void address_space_cache_invalidate(MemoryRegionCache *cache,
                                    hwaddr addr,
                                    hwaddr access_len)
{
}

void address_space_cache_destroy(MemoryRegionCache *cache)
{
P
Paolo Bonzini 已提交
3418
    cache->as = NULL;
P
Paolo Bonzini 已提交
3419 3420 3421 3422 3423
}

#define ARG1_DECL                MemoryRegionCache *cache
#define ARG1                     cache
#define SUFFIX                   _cached
P
Paolo Bonzini 已提交
3424 3425
#define TRANSLATE(addr, ...)     \
    address_space_translate(cache->as, cache->xlat + (addr), __VA_ARGS__)
P
Paolo Bonzini 已提交
3426
#define IS_DIRECT(mr, is_write)  true
P
Paolo Bonzini 已提交
3427 3428 3429 3430
#define MAP_RAM(mr, ofs)         qemu_map_ram_ptr((mr)->ram_block, ofs)
#define INVALIDATE(mr, ofs, len) invalidate_and_set_dirty(mr, ofs, len)
#define RCU_READ_LOCK()          rcu_read_lock()
#define RCU_READ_UNLOCK()        rcu_read_unlock()
P
Paolo Bonzini 已提交
3431 3432
#include "memory_ldst.inc.c"

3433
/* virtual memory access for debug (includes writing to ROM) */
3434
int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
3435
                        uint8_t *buf, int len, int is_write)
B
bellard 已提交
3436 3437
{
    int l;
A
Avi Kivity 已提交
3438
    hwaddr phys_addr;
3439
    target_ulong page;
B
bellard 已提交
3440

3441
    cpu_synchronize_state(cpu);
B
bellard 已提交
3442
    while (len > 0) {
3443 3444 3445
        int asidx;
        MemTxAttrs attrs;

B
bellard 已提交
3446
        page = addr & TARGET_PAGE_MASK;
3447 3448
        phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
        asidx = cpu_asidx_from_attrs(cpu, attrs);
B
bellard 已提交
3449 3450 3451 3452 3453 3454
        /* if no physical page mapped, return an error */
        if (phys_addr == -1)
            return -1;
        l = (page + TARGET_PAGE_SIZE) - addr;
        if (l > len)
            l = len;
3455
        phys_addr += (addr & ~TARGET_PAGE_MASK);
3456
        if (is_write) {
3457 3458
            cpu_physical_memory_write_rom(cpu->cpu_ases[asidx].as,
                                          phys_addr, buf, l);
3459
        } else {
3460 3461
            address_space_rw(cpu->cpu_ases[asidx].as, phys_addr,
                             MEMTXATTRS_UNSPECIFIED,
3462
                             buf, l, 0);
3463
        }
B
bellard 已提交
3464 3465 3466 3467 3468 3469
        len -= l;
        buf += l;
        addr += l;
    }
    return 0;
}
3470 3471 3472 3473 3474

/*
 * Allows code that needs to deal with migration bitmaps etc to still be built
 * target independent.
 */
3475
size_t qemu_target_page_size(void)
3476
{
3477
    return TARGET_PAGE_SIZE;
3478 3479
}

3480 3481 3482 3483 3484 3485 3486 3487 3488
int qemu_target_page_bits(void)
{
    return TARGET_PAGE_BITS;
}

int qemu_target_page_bits_min(void)
{
    return TARGET_PAGE_BITS_MIN;
}
P
Paul Brook 已提交
3489
#endif
B
bellard 已提交
3490

3491 3492 3493 3494
/*
 * A helper function for the _utterly broken_ virtio device model to find out if
 * it's running on a big endian machine. Don't do this at home kids!
 */
3495 3496
bool target_words_bigendian(void);
bool target_words_bigendian(void)
3497 3498 3499 3500 3501 3502 3503 3504
{
#if defined(TARGET_WORDS_BIGENDIAN)
    return true;
#else
    return false;
#endif
}

3505
#ifndef CONFIG_USER_ONLY
A
Avi Kivity 已提交
3506
bool cpu_physical_memory_is_io(hwaddr phys_addr)
3507
{
3508
    MemoryRegion*mr;
3509
    hwaddr l = 1;
3510
    bool res;
3511

3512
    rcu_read_lock();
3513 3514
    mr = address_space_translate(&address_space_memory,
                                 phys_addr, &phys_addr, &l, false);
3515

3516 3517 3518
    res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
    rcu_read_unlock();
    return res;
3519
}
3520

3521
int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
3522 3523
{
    RAMBlock *block;
3524
    int ret = 0;
3525

M
Mike Day 已提交
3526
    rcu_read_lock();
P
Peter Xu 已提交
3527
    RAMBLOCK_FOREACH(block) {
3528 3529 3530 3531 3532
        ret = func(block->idstr, block->host, block->offset,
                   block->used_length, opaque);
        if (ret) {
            break;
        }
3533
    }
M
Mike Day 已提交
3534
    rcu_read_unlock();
3535
    return ret;
3536
}
3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567

/*
 * Unmap pages of memory from start to start+length such that
 * they a) read as 0, b) Trigger whatever fault mechanism
 * the OS provides for postcopy.
 * The pages must be unmapped by the end of the function.
 * Returns: 0 on success, none-0 on failure
 *
 */
int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
{
    int ret = -1;

    uint8_t *host_startaddr = rb->host + start;

    if ((uintptr_t)host_startaddr & (rb->page_size - 1)) {
        error_report("ram_block_discard_range: Unaligned start address: %p",
                     host_startaddr);
        goto err;
    }

    if ((start + length) <= rb->used_length) {
        uint8_t *host_endaddr = host_startaddr + length;
        if ((uintptr_t)host_endaddr & (rb->page_size - 1)) {
            error_report("ram_block_discard_range: Unaligned end address: %p",
                         host_endaddr);
            goto err;
        }

        errno = ENOTSUP; /* If we are missing MADVISE etc */

3568
        if (rb->page_size == qemu_host_page_size) {
3569
#if defined(CONFIG_MADVISE)
3570 3571 3572 3573
            /* Note: We need the madvise MADV_DONTNEED behaviour of definitely
             * freeing the page.
             */
            ret = madvise(host_startaddr, length, MADV_DONTNEED);
3574
#endif
3575 3576 3577 3578 3579 3580 3581 3582 3583 3584
        } else {
            /* Huge page case  - unfortunately it can't do DONTNEED, but
             * it can do the equivalent by FALLOC_FL_PUNCH_HOLE in the
             * huge page file.
             */
#ifdef CONFIG_FALLOCATE_PUNCH_HOLE
            ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
                            start, length);
#endif
        }
3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600
        if (ret) {
            ret = -errno;
            error_report("ram_block_discard_range: Failed to discard range "
                         "%s:%" PRIx64 " +%zx (%d)",
                         rb->idstr, start, length, ret);
        }
    } else {
        error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
                     "/%zx/" RAM_ADDR_FMT")",
                     rb->idstr, start, length, rb->used_length);
    }

err:
    return ret;
}

3601
#endif
Y
Yang Zhong 已提交
3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614

void page_size_init(void)
{
    /* NOTE: we can always suppose that qemu_host_page_size >=
       TARGET_PAGE_SIZE */
    if (qemu_host_page_size == 0) {
        qemu_host_page_size = qemu_real_host_page_size;
    }
    if (qemu_host_page_size < TARGET_PAGE_SIZE) {
        qemu_host_page_size = TARGET_PAGE_SIZE;
    }
    qemu_host_page_mask = -(intptr_t)qemu_host_page_size;
}
3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698

#if !defined(CONFIG_USER_ONLY)

static void mtree_print_phys_entries(fprintf_function mon, void *f,
                                     int start, int end, int skip, int ptr)
{
    if (start == end - 1) {
        mon(f, "\t%3d      ", start);
    } else {
        mon(f, "\t%3d..%-3d ", start, end - 1);
    }
    mon(f, " skip=%d ", skip);
    if (ptr == PHYS_MAP_NODE_NIL) {
        mon(f, " ptr=NIL");
    } else if (!skip) {
        mon(f, " ptr=#%d", ptr);
    } else {
        mon(f, " ptr=[%d]", ptr);
    }
    mon(f, "\n");
}

#define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
                           int128_sub((size), int128_one())) : 0)

void mtree_print_dispatch(fprintf_function mon, void *f,
                          AddressSpaceDispatch *d, MemoryRegion *root)
{
    int i;

    mon(f, "  Dispatch\n");
    mon(f, "    Physical sections\n");

    for (i = 0; i < d->map.sections_nb; ++i) {
        MemoryRegionSection *s = d->map.sections + i;
        const char *names[] = { " [unassigned]", " [not dirty]",
                                " [ROM]", " [watch]" };

        mon(f, "      #%d @" TARGET_FMT_plx ".." TARGET_FMT_plx " %s%s%s%s%s",
            i,
            s->offset_within_address_space,
            s->offset_within_address_space + MR_SIZE(s->mr->size),
            s->mr->name ? s->mr->name : "(noname)",
            i < ARRAY_SIZE(names) ? names[i] : "",
            s->mr == root ? " [ROOT]" : "",
            s == d->mru_section ? " [MRU]" : "",
            s->mr->is_iommu ? " [iommu]" : "");

        if (s->mr->alias) {
            mon(f, " alias=%s", s->mr->alias->name ?
                    s->mr->alias->name : "noname");
        }
        mon(f, "\n");
    }

    mon(f, "    Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
               P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
    for (i = 0; i < d->map.nodes_nb; ++i) {
        int j, jprev;
        PhysPageEntry prev;
        Node *n = d->map.nodes + i;

        mon(f, "      [%d]\n", i);

        for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
            PhysPageEntry *pe = *n + j;

            if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
                continue;
            }

            mtree_print_phys_entries(mon, f, jprev, j, prev.skip, prev.ptr);

            jprev = j;
            prev = *pe;
        }

        if (jprev != ARRAY_SIZE(*n)) {
            mtree_print_phys_entries(mon, f, jprev, j, prev.skip, prev.ptr);
        }
    }
}

#endif