spapr.c 41.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/*
 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
 *
 * Copyright (c) 2004-2007 Fabrice Bellard
 * Copyright (c) 2007 Jocelyn Mayer
 * Copyright (c) 2010 David Gibson, IBM Corporation.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 *
 */
27
#include "sysemu/sysemu.h"
28
#include "hw/hw.h"
29
#include "elf.h"
P
Paolo Bonzini 已提交
30
#include "net/net.h"
31 32 33
#include "sysemu/blockdev.h"
#include "sysemu/cpus.h"
#include "sysemu/kvm.h"
34
#include "kvm_ppc.h"
35
#include "mmu-hash64.h"
36 37

#include "hw/boards.h"
P
Paolo Bonzini 已提交
38
#include "hw/ppc/ppc.h"
39 40
#include "hw/loader.h"

P
Paolo Bonzini 已提交
41 42 43 44
#include "hw/ppc/spapr.h"
#include "hw/ppc/spapr_vio.h"
#include "hw/pci-host/spapr.h"
#include "hw/ppc/xics.h"
45
#include "hw/pci/msi.h"
46

47
#include "hw/pci/pci.h"
48

49
#include "exec/address-spaces.h"
50
#include "hw/usb.h"
51
#include "qemu/config-file.h"
A
Avi Kivity 已提交
52

53 54
#include <libfdt.h>

55 56 57 58 59 60 61 62 63 64
/* SLOF memory layout:
 *
 * SLOF raw image loaded at 0, copies its romfs right below the flat
 * device-tree, then position SLOF itself 31M below that
 *
 * So we set FW_OVERHEAD to 40MB which should account for all of that
 * and more
 *
 * We load our kernel at 4M, leaving space for SLOF initial image
 */
65
#define FDT_MAX_SIZE            0x10000
66
#define RTAS_MAX_SIZE           0x10000
67 68
#define FW_MAX_SIZE             0x400000
#define FW_FILE_NAME            "slof.bin"
69 70
#define FW_OVERHEAD             0x2800000
#define KERNEL_LOAD_ADDR        FW_MAX_SIZE
71

72
#define MIN_RMA_SLOF            128UL
73 74 75

#define TIMEBASE_FREQ           512000000ULL

76
#define MAX_CPUS                256
77
#define XICS_IRQS               1024
78

79 80
#define PHANDLE_XICP            0x00001111

81 82
#define HTAB_SIZE(spapr)        (1ULL << ((spapr)->htab_shift))

83 84
sPAPREnvironment *spapr;

85
int spapr_allocate_irq(int hint, bool lsi)
86
{
87
    int irq;
88 89 90

    if (hint) {
        irq = hint;
91 92 93
        if (hint >= spapr->next_irq) {
            spapr->next_irq = hint + 1;
        }
94 95 96 97 98
        /* FIXME: we should probably check for collisions somehow */
    } else {
        irq = spapr->next_irq++;
    }

99 100 101
    /* Configure irq type */
    if (!xics_get_qirq(spapr->icp, irq)) {
        return 0;
102 103
    }

104
    xics_set_irq_type(spapr->icp, irq, lsi);
105

106
    return irq;
107 108
}

109 110 111 112 113
/*
 * Allocate block of consequtive IRQs, returns a number of the first.
 * If msi==true, aligns the first IRQ number to num.
 */
int spapr_allocate_irq_block(int num, bool lsi, bool msi)
114 115
{
    int first = -1;
116 117 118 119 120 121 122 123 124 125 126 127 128 129
    int i, hint = 0;

    /*
     * MSIMesage::data is used for storing VIRQ so
     * it has to be aligned to num to support multiple
     * MSI vectors. MSI-X is not affected by this.
     * The hint is used for the first IRQ, the rest should
     * be allocated continously.
     */
    if (msi) {
        assert((num == 1) || (num == 2) || (num == 4) ||
               (num == 8) || (num == 16) || (num == 32));
        hint = (spapr->next_irq + num - 1) & ~(num - 1);
    }
130 131 132 133

    for (i = 0; i < num; ++i) {
        int irq;

134
        irq = spapr_allocate_irq(hint, lsi);
135 136 137 138 139 140
        if (!irq) {
            return -1;
        }

        if (0 == i) {
            first = irq;
141
            hint = 0;
142 143 144 145 146 147 148 149 150 151
        }

        /* If the above doesn't create a consecutive block then that's
         * an internal bug */
        assert(irq == (first + i));
    }

    return first;
}

152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
static XICSState *try_create_xics(const char *type, int nr_servers,
                                  int nr_irqs)
{
    DeviceState *dev;

    dev = qdev_create(NULL, type);
    qdev_prop_set_uint32(dev, "nr_servers", nr_servers);
    qdev_prop_set_uint32(dev, "nr_irqs", nr_irqs);
    if (qdev_init(dev) < 0) {
        return NULL;
    }

    return XICS(dev);
}

static XICSState *xics_system_init(int nr_servers, int nr_irqs)
{
    XICSState *icp = NULL;

    icp = try_create_xics(TYPE_XICS, nr_servers, nr_irqs);
    if (!icp) {
        perror("Failed to create XICS\n");
        abort();
    }

    return icp;
}

180
static int spapr_fixup_cpu_dt(void *fdt, sPAPREnvironment *spapr)
181 182
{
    int ret = 0, offset;
183
    CPUState *cpu;
184 185
    char cpu_model[32];
    int smt = kvmppc_smt_threads();
186
    uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
187 188 189

    assert(spapr->cpu_model);

190
    for (cpu = first_cpu; cpu != NULL; cpu = cpu->next_cpu) {
191 192 193 194
        uint32_t associativity[] = {cpu_to_be32(0x5),
                                    cpu_to_be32(0x0),
                                    cpu_to_be32(0x0),
                                    cpu_to_be32(0x0),
195
                                    cpu_to_be32(cpu->numa_node),
196
                                    cpu_to_be32(cpu->cpu_index)};
197

198
        if ((cpu->cpu_index % smt) != 0) {
199 200 201 202
            continue;
        }

        snprintf(cpu_model, 32, "/cpus/%s@%x", spapr->cpu_model,
203
                 cpu->cpu_index);
204 205 206 207 208 209

        offset = fdt_path_offset(fdt, cpu_model);
        if (offset < 0) {
            return offset;
        }

210 211 212 213 214 215 216 217 218 219
        if (nb_numa_nodes > 1) {
            ret = fdt_setprop(fdt, offset, "ibm,associativity", associativity,
                              sizeof(associativity));
            if (ret < 0) {
                return ret;
            }
        }

        ret = fdt_setprop(fdt, offset, "ibm,pft-size",
                          pft_size_prop, sizeof(pft_size_prop));
220 221 222 223 224 225 226
        if (ret < 0) {
            return ret;
        }
    }
    return ret;
}

227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260

static size_t create_page_sizes_prop(CPUPPCState *env, uint32_t *prop,
                                     size_t maxsize)
{
    size_t maxcells = maxsize / sizeof(uint32_t);
    int i, j, count;
    uint32_t *p = prop;

    for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
        struct ppc_one_seg_page_size *sps = &env->sps.sps[i];

        if (!sps->page_shift) {
            break;
        }
        for (count = 0; count < PPC_PAGE_SIZES_MAX_SZ; count++) {
            if (sps->enc[count].page_shift == 0) {
                break;
            }
        }
        if ((p - prop) >= (maxcells - 3 - count * 2)) {
            break;
        }
        *(p++) = cpu_to_be32(sps->page_shift);
        *(p++) = cpu_to_be32(sps->slb_enc);
        *(p++) = cpu_to_be32(count);
        for (j = 0; j < count; j++) {
            *(p++) = cpu_to_be32(sps->enc[j].page_shift);
            *(p++) = cpu_to_be32(sps->enc[j].pte_enc);
        }
    }

    return (p - prop) * sizeof(uint32_t);
}

261 262 263 264 265 266 267 268 269 270 271
#define _FDT(exp) \
    do { \
        int ret = (exp);                                           \
        if (ret < 0) {                                             \
            fprintf(stderr, "qemu: error creating device tree: %s: %s\n", \
                    #exp, fdt_strerror(ret));                      \
            exit(1);                                               \
        }                                                          \
    } while (0)


272
static void *spapr_create_fdt_skel(const char *cpu_model,
A
Avi Kivity 已提交
273 274 275
                                   hwaddr initrd_base,
                                   hwaddr initrd_size,
                                   hwaddr kernel_size,
276
                                   const char *boot_device,
277 278
                                   const char *kernel_cmdline,
                                   uint32_t epow_irq)
279 280
{
    void *fdt;
281
    CPUState *cs;
282 283
    uint32_t start_prop = cpu_to_be32(initrd_base);
    uint32_t end_prop = cpu_to_be32(initrd_base + initrd_size);
284
    char hypertas_prop[] = "hcall-pft\0hcall-term\0hcall-dabr\0hcall-interrupt"
285
        "\0hcall-tce\0hcall-vio\0hcall-splpar\0hcall-bulk";
286
    char qemu_hypertas_prop[] = "hcall-memop1";
287
    uint32_t refpoints[] = {cpu_to_be32(0x4), cpu_to_be32(0x4)};
288
    uint32_t interrupt_server_ranges_prop[] = {0, cpu_to_be32(smp_cpus)};
289
    char *modelname;
290
    int i, smt = kvmppc_smt_threads();
291
    unsigned char vec5[] = {0x0, 0x0, 0x0, 0x0, 0x0, 0x80};
292

293
    fdt = g_malloc0(FDT_MAX_SIZE);
294 295
    _FDT((fdt_create(fdt, FDT_MAX_SIZE)));

296 297 298 299 300 301
    if (kernel_size) {
        _FDT((fdt_add_reservemap_entry(fdt, KERNEL_LOAD_ADDR, kernel_size)));
    }
    if (initrd_size) {
        _FDT((fdt_add_reservemap_entry(fdt, initrd_base, initrd_size)));
    }
302 303 304 305 306
    _FDT((fdt_finish_reservemap(fdt)));

    /* Root node */
    _FDT((fdt_begin_node(fdt, "")));
    _FDT((fdt_property_string(fdt, "device_type", "chrp")));
307
    _FDT((fdt_property_string(fdt, "model", "IBM pSeries (emulated by qemu)")));
308
    _FDT((fdt_property_string(fdt, "compatible", "qemu,pseries")));
309 310 311 312 313 314 315

    _FDT((fdt_property_cell(fdt, "#address-cells", 0x2)));
    _FDT((fdt_property_cell(fdt, "#size-cells", 0x2)));

    /* /chosen */
    _FDT((fdt_begin_node(fdt, "chosen")));

316 317 318
    /* Set Form1_affinity */
    _FDT((fdt_property(fdt, "ibm,architecture-vec-5", vec5, sizeof(vec5))));

319 320 321 322 323
    _FDT((fdt_property_string(fdt, "bootargs", kernel_cmdline)));
    _FDT((fdt_property(fdt, "linux,initrd-start",
                       &start_prop, sizeof(start_prop))));
    _FDT((fdt_property(fdt, "linux,initrd-end",
                       &end_prop, sizeof(end_prop))));
324 325 326
    if (kernel_size) {
        uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
                              cpu_to_be64(kernel_size) };
327

328 329
        _FDT((fdt_property(fdt, "qemu,boot-kernel", &kprop, sizeof(kprop))));
    }
A
Avik Sil 已提交
330 331 332
    if (boot_device) {
        _FDT((fdt_property_string(fdt, "qemu,boot-device", boot_device)));
    }
333 334 335
    _FDT((fdt_property_cell(fdt, "qemu,graphic-width", graphic_width)));
    _FDT((fdt_property_cell(fdt, "qemu,graphic-height", graphic_height)));
    _FDT((fdt_property_cell(fdt, "qemu,graphic-depth", graphic_depth)));
336

337 338 339 340 341 342 343 344
    _FDT((fdt_end_node(fdt)));

    /* cpus */
    _FDT((fdt_begin_node(fdt, "cpus")));

    _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
    _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));

345
    modelname = g_strdup(cpu_model);
346 347 348 349 350

    for (i = 0; i < strlen(modelname); i++) {
        modelname[i] = toupper(modelname[i]);
    }

351 352 353
    /* This is needed during FDT finalization */
    spapr->cpu_model = g_strdup(modelname);

354 355 356 357 358
    for (cs = first_cpu; cs != NULL; cs = cs->next_cpu) {
        PowerPCCPU *cpu = POWERPC_CPU(cs);
        CPUPPCState *env = &cpu->env;
        PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
        int index = cs->cpu_index;
359 360
        uint32_t servers_prop[smp_threads];
        uint32_t gservers_prop[smp_threads * 2];
361 362 363
        char *nodename;
        uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
                           0xffffffff, 0xffffffff};
364 365
        uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() : TIMEBASE_FREQ;
        uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
366 367
        uint32_t page_sizes_prop[64];
        size_t page_sizes_prop_size;
368

369 370 371 372
        if ((index % smt) != 0) {
            continue;
        }

373
        nodename = g_strdup_printf("%s@%x", modelname, index);
374 375 376

        _FDT((fdt_begin_node(fdt, nodename)));

377
        g_free(nodename);
378

D
David Gibson 已提交
379
        _FDT((fdt_property_cell(fdt, "reg", index)));
380 381 382
        _FDT((fdt_property_string(fdt, "device_type", "cpu")));

        _FDT((fdt_property_cell(fdt, "cpu-version", env->spr[SPR_PVR])));
383
        _FDT((fdt_property_cell(fdt, "d-cache-block-size",
384
                                env->dcache_line_size)));
385 386 387 388 389
        _FDT((fdt_property_cell(fdt, "d-cache-line-size",
                                env->dcache_line_size)));
        _FDT((fdt_property_cell(fdt, "i-cache-block-size",
                                env->icache_line_size)));
        _FDT((fdt_property_cell(fdt, "i-cache-line-size",
390
                                env->icache_line_size)));
391 392 393 394 395 396 397 398 399 400 401 402

        if (pcc->l1_dcache_size) {
            _FDT((fdt_property_cell(fdt, "d-cache-size", pcc->l1_dcache_size)));
        } else {
            fprintf(stderr, "Warning: Unknown L1 dcache size for cpu\n");
        }
        if (pcc->l1_icache_size) {
            _FDT((fdt_property_cell(fdt, "i-cache-size", pcc->l1_icache_size)));
        } else {
            fprintf(stderr, "Warning: Unknown L1 icache size for cpu\n");
        }

403 404
        _FDT((fdt_property_cell(fdt, "timebase-frequency", tbfreq)));
        _FDT((fdt_property_cell(fdt, "clock-frequency", cpufreq)));
405 406 407
        _FDT((fdt_property_cell(fdt, "ibm,slb-size", env->slb_nr)));
        _FDT((fdt_property_string(fdt, "status", "okay")));
        _FDT((fdt_property(fdt, "64-bit", NULL, 0)));
408 409 410 411 412 413 414 415 416 417

        /* Build interrupt servers and gservers properties */
        for (i = 0; i < smp_threads; i++) {
            servers_prop[i] = cpu_to_be32(index + i);
            /* Hack, direct the group queues back to cpu 0 */
            gservers_prop[i*2] = cpu_to_be32(index + i);
            gservers_prop[i*2 + 1] = 0;
        }
        _FDT((fdt_property(fdt, "ibm,ppc-interrupt-server#s",
                           servers_prop, sizeof(servers_prop))));
418
        _FDT((fdt_property(fdt, "ibm,ppc-interrupt-gserver#s",
419
                           gservers_prop, sizeof(gservers_prop))));
420

D
David Gibson 已提交
421
        if (env->mmu_model & POWERPC_MMU_1TSEG) {
422 423 424 425
            _FDT((fdt_property(fdt, "ibm,processor-segment-sizes",
                               segs, sizeof(segs))));
        }

426 427 428 429
        /* Advertise VMX/VSX (vector extensions) if available
         *   0 / no property == no vector extensions
         *   1               == VMX / Altivec available
         *   2               == VSX available */
430 431 432
        if (env->insns_flags & PPC_ALTIVEC) {
            uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;

433 434 435 436 437 438
            _FDT((fdt_property_cell(fdt, "ibm,vmx", vmx)));
        }

        /* Advertise DFP (Decimal Floating Point) if available
         *   0 / no property == no DFP
         *   1               == DFP available */
439 440
        if (env->insns_flags2 & PPC2_DFP) {
            _FDT((fdt_property_cell(fdt, "ibm,dfp", 1)));
441 442
        }

443 444 445 446 447 448 449
        page_sizes_prop_size = create_page_sizes_prop(env, page_sizes_prop,
                                                      sizeof(page_sizes_prop));
        if (page_sizes_prop_size) {
            _FDT((fdt_property(fdt, "ibm,segment-page-sizes",
                               page_sizes_prop, page_sizes_prop_size)));
        }

450 451 452
        _FDT((fdt_end_node(fdt)));
    }

453
    g_free(modelname);
454 455 456

    _FDT((fdt_end_node(fdt)));

457 458 459 460 461
    /* RTAS */
    _FDT((fdt_begin_node(fdt, "rtas")));

    _FDT((fdt_property(fdt, "ibm,hypertas-functions", hypertas_prop,
                       sizeof(hypertas_prop))));
462 463
    _FDT((fdt_property(fdt, "qemu,hypertas-functions", qemu_hypertas_prop,
                       sizeof(qemu_hypertas_prop))));
464

465 466 467
    _FDT((fdt_property(fdt, "ibm,associativity-reference-points",
        refpoints, sizeof(refpoints))));

468 469
    _FDT((fdt_property_cell(fdt, "rtas-error-log-max", RTAS_ERROR_LOG_MAX)));

470 471
    _FDT((fdt_end_node(fdt)));

472
    /* interrupt controller */
473
    _FDT((fdt_begin_node(fdt, "interrupt-controller")));
474 475 476 477 478 479 480 481

    _FDT((fdt_property_string(fdt, "device_type",
                              "PowerPC-External-Interrupt-Presentation")));
    _FDT((fdt_property_string(fdt, "compatible", "IBM,ppc-xicp")));
    _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
    _FDT((fdt_property(fdt, "ibm,interrupt-server-ranges",
                       interrupt_server_ranges_prop,
                       sizeof(interrupt_server_ranges_prop))));
482 483 484
    _FDT((fdt_property_cell(fdt, "#interrupt-cells", 2)));
    _FDT((fdt_property_cell(fdt, "linux,phandle", PHANDLE_XICP)));
    _FDT((fdt_property_cell(fdt, "phandle", PHANDLE_XICP)));
485 486 487

    _FDT((fdt_end_node(fdt)));

488 489 490 491 492 493 494
    /* vdevice */
    _FDT((fdt_begin_node(fdt, "vdevice")));

    _FDT((fdt_property_string(fdt, "device_type", "vdevice")));
    _FDT((fdt_property_string(fdt, "compatible", "IBM,vdevice")));
    _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
    _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
495 496
    _FDT((fdt_property_cell(fdt, "#interrupt-cells", 0x2)));
    _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
497 498 499

    _FDT((fdt_end_node(fdt)));

500 501 502
    /* event-sources */
    spapr_events_fdt_skel(fdt, epow_irq);

503 504 505
    _FDT((fdt_end_node(fdt))); /* close root node */
    _FDT((fdt_finish(fdt)));

506 507 508
    return fdt;
}

509 510 511 512 513 514
static int spapr_populate_memory(sPAPREnvironment *spapr, void *fdt)
{
    uint32_t associativity[] = {cpu_to_be32(0x4), cpu_to_be32(0x0),
                                cpu_to_be32(0x0), cpu_to_be32(0x0),
                                cpu_to_be32(0x0)};
    char mem_name[32];
A
Avi Kivity 已提交
515
    hwaddr node0_size, mem_start;
516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
    uint64_t mem_reg_property[2];
    int i, off;

    /* memory node(s) */
    node0_size = (nb_numa_nodes > 1) ? node_mem[0] : ram_size;
    if (spapr->rma_size > node0_size) {
        spapr->rma_size = node0_size;
    }

    /* RMA */
    mem_reg_property[0] = 0;
    mem_reg_property[1] = cpu_to_be64(spapr->rma_size);
    off = fdt_add_subnode(fdt, 0, "memory@0");
    _FDT(off);
    _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
    _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
                      sizeof(mem_reg_property))));
    _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
                      sizeof(associativity))));

    /* RAM: Node 0 */
    if (node0_size > spapr->rma_size) {
        mem_reg_property[0] = cpu_to_be64(spapr->rma_size);
        mem_reg_property[1] = cpu_to_be64(node0_size - spapr->rma_size);

        sprintf(mem_name, "memory@" TARGET_FMT_lx, spapr->rma_size);
        off = fdt_add_subnode(fdt, 0, mem_name);
        _FDT(off);
        _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
        _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
                          sizeof(mem_reg_property))));
        _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
                          sizeof(associativity))));
    }

    /* RAM: Node 1 and beyond */
    mem_start = node0_size;
    for (i = 1; i < nb_numa_nodes; i++) {
        mem_reg_property[0] = cpu_to_be64(mem_start);
        mem_reg_property[1] = cpu_to_be64(node_mem[i]);
        associativity[3] = associativity[4] = cpu_to_be32(i);
        sprintf(mem_name, "memory@" TARGET_FMT_lx, mem_start);
        off = fdt_add_subnode(fdt, 0, mem_name);
        _FDT(off);
        _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
        _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
                          sizeof(mem_reg_property))));
        _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
                          sizeof(associativity))));
        mem_start += node_mem[i];
    }

    return 0;
}

571
static void spapr_finalize_fdt(sPAPREnvironment *spapr,
A
Avi Kivity 已提交
572 573 574
                               hwaddr fdt_addr,
                               hwaddr rtas_addr,
                               hwaddr rtas_size)
575 576 577
{
    int ret;
    void *fdt;
578
    sPAPRPHBState *phb;
579

580
    fdt = g_malloc(FDT_MAX_SIZE);
581 582 583

    /* open out the base tree into a temp buffer for the final tweaks */
    _FDT((fdt_open_into(spapr->fdt_skel, fdt, FDT_MAX_SIZE)));
584

585 586 587 588 589 590
    ret = spapr_populate_memory(spapr, fdt);
    if (ret < 0) {
        fprintf(stderr, "couldn't setup memory nodes in fdt\n");
        exit(1);
    }

591 592 593 594 595 596
    ret = spapr_populate_vdevice(spapr->vio_bus, fdt);
    if (ret < 0) {
        fprintf(stderr, "couldn't setup vio devices in fdt\n");
        exit(1);
    }

597
    QLIST_FOREACH(phb, &spapr->phbs, list) {
598
        ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
599 600 601 602 603 604 605
    }

    if (ret < 0) {
        fprintf(stderr, "couldn't setup PCI devices in fdt\n");
        exit(1);
    }

606 607 608 609 610 611
    /* RTAS */
    ret = spapr_rtas_device_tree_setup(fdt, rtas_addr, rtas_size);
    if (ret < 0) {
        fprintf(stderr, "Couldn't set up RTAS device tree properties\n");
    }

612
    /* Advertise NUMA via ibm,associativity */
613 614 615
    ret = spapr_fixup_cpu_dt(fdt, spapr);
    if (ret < 0) {
        fprintf(stderr, "Couldn't finalize CPU device tree properties\n");
616 617
    }

618
    if (!spapr->has_graphics) {
619 620
        spapr_populate_chosen_stdout(fdt, spapr->vio_bus);
    }
621

622 623
    _FDT((fdt_pack(fdt)));

624 625 626 627 628 629
    if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
        hw_error("FDT too big ! 0x%x bytes (max is 0x%x)\n",
                 fdt_totalsize(fdt), FDT_MAX_SIZE);
        exit(1);
    }

630
    cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
631

632
    g_free(fdt);
633 634 635 636 637 638 639
}

static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
{
    return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
}

640
static void emulate_spapr_hypercall(PowerPCCPU *cpu)
641
{
642 643
    CPUPPCState *env = &cpu->env;

644 645 646 647
    if (msr_pr) {
        hcall_dprintf("Hypercall made with MSR[PR]=1\n");
        env->gpr[3] = H_PRIVILEGE;
    } else {
648
        env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
649
    }
650 651
}

652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678
static void spapr_reset_htab(sPAPREnvironment *spapr)
{
    long shift;

    /* allocate hash page table.  For now we always make this 16mb,
     * later we should probably make it scale to the size of guest
     * RAM */

    shift = kvmppc_reset_htab(spapr->htab_shift);

    if (shift > 0) {
        /* Kernel handles htab, we don't need to allocate one */
        spapr->htab_shift = shift;
    } else {
        if (!spapr->htab) {
            /* Allocate an htab if we don't yet have one */
            spapr->htab = qemu_memalign(HTAB_SIZE(spapr), HTAB_SIZE(spapr));
        }

        /* And clear it */
        memset(spapr->htab, 0, HTAB_SIZE(spapr));
    }

    /* Update the RMA size if necessary */
    if (spapr->vrma_adjust) {
        spapr->rma_size = kvmppc_rma_size(ram_size, spapr->htab_shift);
    }
679 680
}

681
static void ppc_spapr_reset(void)
682
{
683
    PowerPCCPU *first_ppc_cpu;
684

685 686
    /* Reset the hash table & recalc the RMA */
    spapr_reset_htab(spapr);
687

688
    qemu_devices_reset();
689 690 691 692 693 694

    /* Load the fdt */
    spapr_finalize_fdt(spapr, spapr->fdt_addr, spapr->rtas_addr,
                       spapr->rtas_size);

    /* Set up the entry state */
695 696 697 698 699
    first_ppc_cpu = POWERPC_CPU(first_cpu);
    first_ppc_cpu->env.gpr[3] = spapr->fdt_addr;
    first_ppc_cpu->env.gpr[5] = 0;
    first_cpu->halted = 0;
    first_ppc_cpu->env.nip = spapr->entry_point;
700 701 702

}

703 704
static void spapr_cpu_reset(void *opaque)
{
705
    PowerPCCPU *cpu = opaque;
706
    CPUState *cs = CPU(cpu);
707
    CPUPPCState *env = &cpu->env;
708

709
    cpu_reset(cs);
710 711 712 713

    /* All CPUs start halted.  CPU0 is unhalted from the machine level
     * reset code and the rest are explicitly started up by the guest
     * using an RTAS call */
714
    cs->halted = 1;
715 716

    env->spr[SPR_HIOR] = 0;
717

718
    env->external_htab = (uint8_t *)spapr->htab;
719 720
    env->htab_base = -1;
    env->htab_mask = HTAB_SIZE(spapr) - 1;
721
    env->spr[SPR_SDR1] = (target_ulong)(uintptr_t)spapr->htab |
722
        (spapr->htab_shift - 18);
723 724
}

D
David Gibson 已提交
725 726
static void spapr_create_nvram(sPAPREnvironment *spapr)
{
727 728
    DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
    const char *drivename = qemu_opt_get(qemu_get_machine_opts(), "nvram");
D
David Gibson 已提交
729

730 731
    if (drivename) {
        BlockDriverState *bs;
D
David Gibson 已提交
732

733 734 735 736 737
        bs = bdrv_find(drivename);
        if (!bs) {
            fprintf(stderr, "No such block device \"%s\" for nvram\n",
                    drivename);
            exit(1);
D
David Gibson 已提交
738
        }
739
        qdev_prop_set_drive_nofail(dev, "drive", bs);
D
David Gibson 已提交
740 741 742 743 744 745 746
    }

    qdev_init_nofail(dev);

    spapr->nvram = (struct sPAPRNVRAM *)dev;
}

747
/* Returns whether we want to use VGA or not */
748 749
static int spapr_vga_init(PCIBus *pci_bus)
{
750 751
    switch (vga_interface_type) {
    case VGA_NONE:
752 753
    case VGA_STD:
        return pci_vga_init(pci_bus) != NULL;
754
    default:
755 756
        fprintf(stderr, "This vga model is not supported,"
                "currently it only supports -vga std\n");
757 758
        exit(0);
        break;
759 760 761
    }
}

762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788
static const VMStateDescription vmstate_spapr = {
    .name = "spapr",
    .version_id = 1,
    .minimum_version_id = 1,
    .minimum_version_id_old = 1,
    .fields      = (VMStateField []) {
        VMSTATE_UINT32(next_irq, sPAPREnvironment),

        /* RTC offset */
        VMSTATE_UINT64(rtc_offset, sPAPREnvironment),

        VMSTATE_END_OF_LIST()
    },
};

#define HPTE(_table, _i)   (void *)(((uint64_t *)(_table)) + ((_i) * 2))
#define HPTE_VALID(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
#define HPTE_DIRTY(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
#define CLEAN_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))

static int htab_save_setup(QEMUFile *f, void *opaque)
{
    sPAPREnvironment *spapr = opaque;

    /* "Iteration" header */
    qemu_put_be32(f, spapr->htab_shift);

789 790 791 792 793 794 795 796 797 798 799 800 801 802 803
    if (spapr->htab) {
        spapr->htab_save_index = 0;
        spapr->htab_first_pass = true;
    } else {
        assert(kvm_enabled());

        spapr->htab_fd = kvmppc_get_htab_fd(false);
        if (spapr->htab_fd < 0) {
            fprintf(stderr, "Unable to open fd for reading hash table from KVM: %s\n",
                    strerror(errno));
            return -1;
        }
    }


804 805 806 807 808 809 810 811
    return 0;
}

static void htab_save_first_pass(QEMUFile *f, sPAPREnvironment *spapr,
                                 int64_t max_ns)
{
    int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
    int index = spapr->htab_save_index;
812
    int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842

    assert(spapr->htab_first_pass);

    do {
        int chunkstart;

        /* Consume invalid HPTEs */
        while ((index < htabslots)
               && !HPTE_VALID(HPTE(spapr->htab, index))) {
            index++;
            CLEAN_HPTE(HPTE(spapr->htab, index));
        }

        /* Consume valid HPTEs */
        chunkstart = index;
        while ((index < htabslots)
               && HPTE_VALID(HPTE(spapr->htab, index))) {
            index++;
            CLEAN_HPTE(HPTE(spapr->htab, index));
        }

        if (index > chunkstart) {
            int n_valid = index - chunkstart;

            qemu_put_be32(f, chunkstart);
            qemu_put_be16(f, n_valid);
            qemu_put_be16(f, 0);
            qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
                            HASH_PTE_SIZE_64 * n_valid);

843
            if ((qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
844 845 846 847 848 849 850 851 852 853 854 855 856
                break;
            }
        }
    } while ((index < htabslots) && !qemu_file_rate_limit(f));

    if (index >= htabslots) {
        assert(index == htabslots);
        index = 0;
        spapr->htab_first_pass = false;
    }
    spapr->htab_save_index = index;
}

857 858
static int htab_save_later_pass(QEMUFile *f, sPAPREnvironment *spapr,
                                int64_t max_ns)
859 860 861 862 863
{
    bool final = max_ns < 0;
    int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
    int examined = 0, sent = 0;
    int index = spapr->htab_save_index;
864
    int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908

    assert(!spapr->htab_first_pass);

    do {
        int chunkstart, invalidstart;

        /* Consume non-dirty HPTEs */
        while ((index < htabslots)
               && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
            index++;
            examined++;
        }

        chunkstart = index;
        /* Consume valid dirty HPTEs */
        while ((index < htabslots)
               && HPTE_DIRTY(HPTE(spapr->htab, index))
               && HPTE_VALID(HPTE(spapr->htab, index))) {
            CLEAN_HPTE(HPTE(spapr->htab, index));
            index++;
            examined++;
        }

        invalidstart = index;
        /* Consume invalid dirty HPTEs */
        while ((index < htabslots)
               && HPTE_DIRTY(HPTE(spapr->htab, index))
               && !HPTE_VALID(HPTE(spapr->htab, index))) {
            CLEAN_HPTE(HPTE(spapr->htab, index));
            index++;
            examined++;
        }

        if (index > chunkstart) {
            int n_valid = invalidstart - chunkstart;
            int n_invalid = index - invalidstart;

            qemu_put_be32(f, chunkstart);
            qemu_put_be16(f, n_valid);
            qemu_put_be16(f, n_invalid);
            qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
                            HASH_PTE_SIZE_64 * n_valid);
            sent += index - chunkstart;

909
            if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930
                break;
            }
        }

        if (examined >= htabslots) {
            break;
        }

        if (index >= htabslots) {
            assert(index == htabslots);
            index = 0;
        }
    } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));

    if (index >= htabslots) {
        assert(index == htabslots);
        index = 0;
    }

    spapr->htab_save_index = index;

931
    return (examined >= htabslots) && (sent == 0) ? 1 : 0;
932 933
}

934 935 936
#define MAX_ITERATION_NS    5000000 /* 5 ms */
#define MAX_KVM_BUF_SIZE    2048

937 938 939
static int htab_save_iterate(QEMUFile *f, void *opaque)
{
    sPAPREnvironment *spapr = opaque;
940
    int rc = 0;
941 942 943 944

    /* Iteration header */
    qemu_put_be32(f, 0);

945 946 947 948 949 950 951 952 953
    if (!spapr->htab) {
        assert(kvm_enabled());

        rc = kvmppc_save_htab(f, spapr->htab_fd,
                              MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
        if (rc < 0) {
            return rc;
        }
    } else  if (spapr->htab_first_pass) {
954 955
        htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
    } else {
956
        rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
957 958 959 960 961 962 963
    }

    /* End marker */
    qemu_put_be32(f, 0);
    qemu_put_be16(f, 0);
    qemu_put_be16(f, 0);

964
    return rc;
965 966 967 968 969 970 971 972 973
}

static int htab_save_complete(QEMUFile *f, void *opaque)
{
    sPAPREnvironment *spapr = opaque;

    /* Iteration header */
    qemu_put_be32(f, 0);

974 975 976 977 978 979 980 981 982 983 984 985 986 987
    if (!spapr->htab) {
        int rc;

        assert(kvm_enabled());

        rc = kvmppc_save_htab(f, spapr->htab_fd, MAX_KVM_BUF_SIZE, -1);
        if (rc < 0) {
            return rc;
        }
        close(spapr->htab_fd);
        spapr->htab_fd = -1;
    } else {
        htab_save_later_pass(f, spapr, -1);
    }
988 989 990 991 992 993 994 995 996 997 998 999 1000

    /* End marker */
    qemu_put_be32(f, 0);
    qemu_put_be16(f, 0);
    qemu_put_be16(f, 0);

    return 0;
}

static int htab_load(QEMUFile *f, void *opaque, int version_id)
{
    sPAPREnvironment *spapr = opaque;
    uint32_t section_hdr;
1001
    int fd = -1;
1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017

    if (version_id < 1 || version_id > 1) {
        fprintf(stderr, "htab_load() bad version\n");
        return -EINVAL;
    }

    section_hdr = qemu_get_be32(f);

    if (section_hdr) {
        /* First section, just the hash shift */
        if (spapr->htab_shift != section_hdr) {
            return -EINVAL;
        }
        return 0;
    }

1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
    if (!spapr->htab) {
        assert(kvm_enabled());

        fd = kvmppc_get_htab_fd(true);
        if (fd < 0) {
            fprintf(stderr, "Unable to open fd to restore KVM hash table: %s\n",
                    strerror(errno));
        }
    }

1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
    while (true) {
        uint32_t index;
        uint16_t n_valid, n_invalid;

        index = qemu_get_be32(f);
        n_valid = qemu_get_be16(f);
        n_invalid = qemu_get_be16(f);

        if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
            /* End of Stream */
            break;
        }

1041
        if ((index + n_valid + n_invalid) >
1042 1043 1044
            (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
            /* Bad index in stream */
            fprintf(stderr, "htab_load() bad index %d (%hd+%hd entries) "
1045 1046
                    "in htab stream (htab_shift=%d)\n", index, n_valid, n_invalid,
                    spapr->htab_shift);
1047 1048 1049
            return -EINVAL;
        }

1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
        if (spapr->htab) {
            if (n_valid) {
                qemu_get_buffer(f, HPTE(spapr->htab, index),
                                HASH_PTE_SIZE_64 * n_valid);
            }
            if (n_invalid) {
                memset(HPTE(spapr->htab, index + n_valid), 0,
                       HASH_PTE_SIZE_64 * n_invalid);
            }
        } else {
            int rc;

            assert(fd >= 0);

            rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
            if (rc < 0) {
                return rc;
            }
1068 1069 1070
        }
    }

1071 1072 1073 1074 1075
    if (!spapr->htab) {
        assert(fd >= 0);
        close(fd);
    }

1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
    return 0;
}

static SaveVMHandlers savevm_htab_handlers = {
    .save_live_setup = htab_save_setup,
    .save_live_iterate = htab_save_iterate,
    .save_live_complete = htab_save_complete,
    .load_state = htab_load,
};

1086
/* pSeries LPAR / sPAPR hardware init */
1087
static void ppc_spapr_init(QEMUMachineInitArgs *args)
1088
{
1089 1090 1091 1092 1093 1094
    ram_addr_t ram_size = args->ram_size;
    const char *cpu_model = args->cpu_model;
    const char *kernel_filename = args->kernel_filename;
    const char *kernel_cmdline = args->kernel_cmdline;
    const char *initrd_filename = args->initrd_filename;
    const char *boot_device = args->boot_device;
1095
    PowerPCCPU *cpu;
A
Andreas Färber 已提交
1096
    CPUPPCState *env;
1097
    PCIHostState *phb;
1098
    int i;
A
Avi Kivity 已提交
1099 1100
    MemoryRegion *sysmem = get_system_memory();
    MemoryRegion *ram = g_new(MemoryRegion, 1);
A
Avi Kivity 已提交
1101
    hwaddr rma_alloc_size;
1102 1103 1104
    uint32_t initrd_base = 0;
    long kernel_size = 0, initrd_size = 0;
    long load_limit, rtas_limit, fw_size;
1105
    char *filename;
1106

1107 1108
    msi_supported = true;

1109 1110 1111
    spapr = g_malloc0(sizeof(*spapr));
    QLIST_INIT(&spapr->phbs);

1112 1113
    cpu_ppc_hypercall = emulate_spapr_hypercall;

1114 1115 1116 1117 1118 1119 1120
    /* Allocate RMA if necessary */
    rma_alloc_size = kvmppc_alloc_rma("ppc_spapr.rma", sysmem);

    if (rma_alloc_size == -1) {
        hw_error("qemu: Unable to create RMA\n");
        exit(1);
    }
1121

1122
    if (rma_alloc_size && (rma_alloc_size < ram_size)) {
1123
        spapr->rma_size = rma_alloc_size;
1124
    } else {
1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
        spapr->rma_size = ram_size;

        /* With KVM, we don't actually know whether KVM supports an
         * unbounded RMA (PR KVM) or is limited by the hash table size
         * (HV KVM using VRMA), so we always assume the latter
         *
         * In that case, we also limit the initial allocations for RTAS
         * etc... to 256M since we have no way to know what the VRMA size
         * is going to be as it depends on the size of the hash table
         * isn't determined yet.
         */
        if (kvm_enabled()) {
            spapr->vrma_adjust = 1;
            spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
        }
1140 1141
    }

1142
    /* We place the device tree and RTAS just below either the top of the RMA,
1143 1144
     * or just below 2GB, whichever is lowere, so that it can be
     * processed with 32-bit real mode code if necessary */
1145
    rtas_limit = MIN(spapr->rma_size, 0x80000000);
1146 1147 1148
    spapr->rtas_addr = rtas_limit - RTAS_MAX_SIZE;
    spapr->fdt_addr = spapr->rtas_addr - FDT_MAX_SIZE;
    load_limit = spapr->fdt_addr - FW_OVERHEAD;
1149

1150 1151 1152 1153 1154 1155 1156 1157 1158 1159
    /* We aim for a hash table of size 1/128 the size of RAM.  The
     * normal rule of thumb is 1/64 the size of RAM, but that's much
     * more than needed for the Linux guests we support. */
    spapr->htab_shift = 18; /* Minimum architected size */
    while (spapr->htab_shift <= 46) {
        if ((1ULL << (spapr->htab_shift + 7)) >= ram_size) {
            break;
        }
        spapr->htab_shift++;
    }
1160

1161 1162 1163 1164 1165
    /* Set up Interrupt Controller before we create the VCPUs */
    spapr->icp = xics_system_init(smp_cpus * kvmppc_smt_threads() / smp_threads,
                                  XICS_IRQS);
    spapr->next_irq = XICS_IRQ_BASE;

1166 1167
    /* init CPUs */
    if (cpu_model == NULL) {
1168
        cpu_model = kvm_enabled() ? "host" : "POWER7";
1169 1170
    }
    for (i = 0; i < smp_cpus; i++) {
1171 1172
        cpu = cpu_ppc_init(cpu_model);
        if (cpu == NULL) {
1173 1174 1175
            fprintf(stderr, "Unable to find PowerPC CPU definition\n");
            exit(1);
        }
1176 1177
        env = &cpu->env;

1178 1179
        xics_cpu_setup(spapr->icp, cpu);

1180 1181 1182
        /* Set time-base frequency to 512 MHz */
        cpu_ppc_tb_init(env, TIMEBASE_FREQ);

1183 1184 1185 1186
        /* PAPR always has exception vectors in RAM not ROM. To ensure this,
         * MSR[IP] should never be set.
         */
        env->msr_mask &= ~(1 << 6);
1187 1188 1189

        /* Tell KVM that we're in PAPR mode */
        if (kvm_enabled()) {
1190
            kvmppc_set_papr(cpu);
1191 1192 1193
        }

        qemu_register_reset(spapr_cpu_reset, cpu);
1194 1195 1196
    }

    /* allocate RAM */
1197
    spapr->ram_limit = ram_size;
1198 1199 1200 1201
    if (spapr->ram_limit > rma_alloc_size) {
        ram_addr_t nonrma_base = rma_alloc_size;
        ram_addr_t nonrma_size = spapr->ram_limit - rma_alloc_size;

1202
        memory_region_init_ram(ram, NULL, "ppc_spapr.ram", nonrma_size);
1203
        vmstate_register_ram_global(ram);
1204 1205
        memory_region_add_subregion(sysmem, nonrma_base, ram);
    }
1206

1207
    filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
1208
    spapr->rtas_size = load_image_targphys(filename, spapr->rtas_addr,
1209
                                           rtas_limit - spapr->rtas_addr);
1210
    if (spapr->rtas_size < 0) {
1211 1212 1213
        hw_error("qemu: could not load LPAR rtas '%s'\n", filename);
        exit(1);
    }
1214 1215 1216 1217 1218
    if (spapr->rtas_size > RTAS_MAX_SIZE) {
        hw_error("RTAS too big ! 0x%lx bytes (max is 0x%x)\n",
                 spapr->rtas_size, RTAS_MAX_SIZE);
        exit(1);
    }
1219
    g_free(filename);
1220

1221 1222 1223
    /* Set up EPOW events infrastructure */
    spapr_events_init(spapr);

1224
    /* Set up VIO bus */
1225 1226
    spapr->vio_bus = spapr_vio_bus_init();

P
Paolo Bonzini 已提交
1227
    for (i = 0; i < MAX_SERIAL_PORTS; i++) {
1228
        if (serial_hds[i]) {
1229
            spapr_vty_create(spapr->vio_bus, serial_hds[i]);
1230 1231
        }
    }
1232

D
David Gibson 已提交
1233 1234 1235
    /* We always have at least the nvram device on VIO */
    spapr_create_nvram(spapr);

1236
    /* Set up PCI */
1237
    spapr_pci_msi_init(spapr, SPAPR_PCI_MSI_WINDOW);
1238 1239
    spapr_pci_rtas_init();

1240
    phb = spapr_create_phb(spapr, 0);
1241

P
Paolo Bonzini 已提交
1242
    for (i = 0; i < nb_nics; i++) {
1243 1244 1245
        NICInfo *nd = &nd_table[i];

        if (!nd->model) {
1246
            nd->model = g_strdup("ibmveth");
1247 1248 1249
        }

        if (strcmp(nd->model, "ibmveth") == 0) {
1250
            spapr_vlan_create(spapr->vio_bus, nd);
1251
        } else {
1252
            pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
1253 1254 1255
        }
    }

1256
    for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
1257
        spapr_vscsi_create(spapr->vio_bus);
1258 1259
    }

1260
    /* Graphics */
1261
    if (spapr_vga_init(phb->bus)) {
1262
        spapr->has_graphics = true;
1263 1264
    }

1265
    if (usb_enabled(spapr->has_graphics)) {
1266
        pci_create_simple(phb->bus, -1, "pci-ohci");
1267 1268 1269 1270 1271 1272
        if (spapr->has_graphics) {
            usbdevice_create("keyboard");
            usbdevice_create("mouse");
        }
    }

1273
    if (spapr->rma_size < (MIN_RMA_SLOF << 20)) {
1274 1275 1276 1277 1278
        fprintf(stderr, "qemu: pSeries SLOF firmware requires >= "
                "%ldM guest RMA (Real Mode Area memory)\n", MIN_RMA_SLOF);
        exit(1);
    }

1279 1280 1281 1282 1283 1284
    if (kernel_filename) {
        uint64_t lowaddr = 0;

        kernel_size = load_elf(kernel_filename, translate_kernel_address, NULL,
                               NULL, &lowaddr, NULL, 1, ELF_MACHINE, 0);
        if (kernel_size < 0) {
1285 1286
            kernel_size = load_image_targphys(kernel_filename,
                                              KERNEL_LOAD_ADDR,
1287
                                              load_limit - KERNEL_LOAD_ADDR);
1288 1289 1290 1291 1292 1293 1294 1295 1296
        }
        if (kernel_size < 0) {
            fprintf(stderr, "qemu: could not load kernel '%s'\n",
                    kernel_filename);
            exit(1);
        }

        /* load initrd */
        if (initrd_filename) {
1297 1298 1299 1300
            /* Try to locate the initrd in the gap between the kernel
             * and the firmware. Add a bit of space just in case
             */
            initrd_base = (KERNEL_LOAD_ADDR + kernel_size + 0x1ffff) & ~0xffff;
1301
            initrd_size = load_image_targphys(initrd_filename, initrd_base,
1302
                                              load_limit - initrd_base);
1303 1304 1305 1306 1307 1308 1309 1310 1311
            if (initrd_size < 0) {
                fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
                        initrd_filename);
                exit(1);
            }
        } else {
            initrd_base = 0;
            initrd_size = 0;
        }
1312
    }
1313

1314 1315 1316 1317
    if (bios_name == NULL) {
        bios_name = FW_FILE_NAME;
    }
    filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1318 1319 1320 1321 1322 1323 1324 1325 1326
    fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
    if (fw_size < 0) {
        hw_error("qemu: could not load LPAR rtas '%s'\n", filename);
        exit(1);
    }
    g_free(filename);

    spapr->entry_point = 0x100;

1327 1328 1329 1330
    vmstate_register(NULL, 0, &vmstate_spapr, spapr);
    register_savevm_live(NULL, "spapr/htab", -1, 1,
                         &savevm_htab_handlers, spapr);

1331
    /* Prepare the device tree */
1332
    spapr->fdt_skel = spapr_create_fdt_skel(cpu_model,
1333
                                            initrd_base, initrd_size,
1334
                                            kernel_size,
1335 1336
                                            boot_device, kernel_cmdline,
                                            spapr->epow_irq);
1337
    assert(spapr->fdt_skel != NULL);
1338 1339 1340 1341 1342
}

static QEMUMachine spapr_machine = {
    .name = "pseries",
    .desc = "pSeries Logical Partition (PAPR compliant)",
1343
    .is_default = 1,
1344
    .init = ppc_spapr_init,
1345
    .reset = ppc_spapr_reset,
1346
    .block_default_type = IF_SCSI,
1347 1348
    .max_cpus = MAX_CPUS,
    .no_parallel = 1,
A
Avik Sil 已提交
1349
    .boot_order = NULL,
1350 1351 1352 1353 1354 1355 1356 1357
};

static void spapr_machine_init(void)
{
    qemu_register_machine(&spapr_machine);
}

machine_init(spapr_machine_init);