cadence_gem.c 52.5 KB
Newer Older
1
/*
2
 * QEMU Cadence GEM emulation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
 *
 * Copyright (c) 2011 Xilinx, Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */

P
Peter Maydell 已提交
25
#include "qemu/osdep.h"
26 27
#include <zlib.h> /* For crc32 */

28
#include "hw/net/cadence_gem.h"
29
#include "qapi/error.h"
30
#include "qemu/log.h"
31 32 33 34 35 36
#include "net/checksum.h"

#ifdef CADENCE_GEM_ERR_DEBUG
#define DB_PRINT(...) do { \
    fprintf(stderr,  ": %s: ", __func__); \
    fprintf(stderr, ## __VA_ARGS__); \
37
    } while (0)
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
#else
    #define DB_PRINT(...)
#endif

#define GEM_NWCTRL        (0x00000000/4) /* Network Control reg */
#define GEM_NWCFG         (0x00000004/4) /* Network Config reg */
#define GEM_NWSTATUS      (0x00000008/4) /* Network Status reg */
#define GEM_USERIO        (0x0000000C/4) /* User IO reg */
#define GEM_DMACFG        (0x00000010/4) /* DMA Control reg */
#define GEM_TXSTATUS      (0x00000014/4) /* TX Status reg */
#define GEM_RXQBASE       (0x00000018/4) /* RX Q Base address reg */
#define GEM_TXQBASE       (0x0000001C/4) /* TX Q Base address reg */
#define GEM_RXSTATUS      (0x00000020/4) /* RX Status reg */
#define GEM_ISR           (0x00000024/4) /* Interrupt Status reg */
#define GEM_IER           (0x00000028/4) /* Interrupt Enable reg */
#define GEM_IDR           (0x0000002C/4) /* Interrupt Disable reg */
#define GEM_IMR           (0x00000030/4) /* Interrupt Mask reg */
55
#define GEM_PHYMNTNC      (0x00000034/4) /* Phy Maintenance reg */
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
#define GEM_RXPAUSE       (0x00000038/4) /* RX Pause Time reg */
#define GEM_TXPAUSE       (0x0000003C/4) /* TX Pause Time reg */
#define GEM_TXPARTIALSF   (0x00000040/4) /* TX Partial Store and Forward */
#define GEM_RXPARTIALSF   (0x00000044/4) /* RX Partial Store and Forward */
#define GEM_HASHLO        (0x00000080/4) /* Hash Low address reg */
#define GEM_HASHHI        (0x00000084/4) /* Hash High address reg */
#define GEM_SPADDR1LO     (0x00000088/4) /* Specific addr 1 low reg */
#define GEM_SPADDR1HI     (0x0000008C/4) /* Specific addr 1 high reg */
#define GEM_SPADDR2LO     (0x00000090/4) /* Specific addr 2 low reg */
#define GEM_SPADDR2HI     (0x00000094/4) /* Specific addr 2 high reg */
#define GEM_SPADDR3LO     (0x00000098/4) /* Specific addr 3 low reg */
#define GEM_SPADDR3HI     (0x0000009C/4) /* Specific addr 3 high reg */
#define GEM_SPADDR4LO     (0x000000A0/4) /* Specific addr 4 low reg */
#define GEM_SPADDR4HI     (0x000000A4/4) /* Specific addr 4 high reg */
#define GEM_TIDMATCH1     (0x000000A8/4) /* Type ID1 Match reg */
#define GEM_TIDMATCH2     (0x000000AC/4) /* Type ID2 Match reg */
#define GEM_TIDMATCH3     (0x000000B0/4) /* Type ID3 Match reg */
#define GEM_TIDMATCH4     (0x000000B4/4) /* Type ID4 Match reg */
#define GEM_WOLAN         (0x000000B8/4) /* Wake on LAN reg */
#define GEM_IPGSTRETCH    (0x000000BC/4) /* IPG Stretch reg */
#define GEM_SVLAN         (0x000000C0/4) /* Stacked VLAN reg */
#define GEM_MODID         (0x000000FC/4) /* Module ID reg */
#define GEM_OCTTXLO       (0x00000100/4) /* Octects transmitted Low reg */
#define GEM_OCTTXHI       (0x00000104/4) /* Octects transmitted High reg */
#define GEM_TXCNT         (0x00000108/4) /* Error-free Frames transmitted */
#define GEM_TXBCNT        (0x0000010C/4) /* Error-free Broadcast Frames */
#define GEM_TXMCNT        (0x00000110/4) /* Error-free Multicast Frame */
#define GEM_TXPAUSECNT    (0x00000114/4) /* Pause Frames Transmitted */
#define GEM_TX64CNT       (0x00000118/4) /* Error-free 64 TX */
#define GEM_TX65CNT       (0x0000011C/4) /* Error-free 65-127 TX */
#define GEM_TX128CNT      (0x00000120/4) /* Error-free 128-255 TX */
#define GEM_TX256CNT      (0x00000124/4) /* Error-free 256-511 */
#define GEM_TX512CNT      (0x00000128/4) /* Error-free 512-1023 TX */
#define GEM_TX1024CNT     (0x0000012C/4) /* Error-free 1024-1518 TX */
#define GEM_TX1519CNT     (0x00000130/4) /* Error-free larger than 1519 TX */
#define GEM_TXURUNCNT     (0x00000134/4) /* TX under run error counter */
#define GEM_SINGLECOLLCNT (0x00000138/4) /* Single Collision Frames */
#define GEM_MULTCOLLCNT   (0x0000013C/4) /* Multiple Collision Frames */
#define GEM_EXCESSCOLLCNT (0x00000140/4) /* Excessive Collision Frames */
#define GEM_LATECOLLCNT   (0x00000144/4) /* Late Collision Frames */
#define GEM_DEFERTXCNT    (0x00000148/4) /* Deferred Transmission Frames */
#define GEM_CSENSECNT     (0x0000014C/4) /* Carrier Sense Error Counter */
#define GEM_OCTRXLO       (0x00000150/4) /* Octects Received register Low */
#define GEM_OCTRXHI       (0x00000154/4) /* Octects Received register High */
#define GEM_RXCNT         (0x00000158/4) /* Error-free Frames Received */
#define GEM_RXBROADCNT    (0x0000015C/4) /* Error-free Broadcast Frames RX */
#define GEM_RXMULTICNT    (0x00000160/4) /* Error-free Multicast Frames RX */
#define GEM_RXPAUSECNT    (0x00000164/4) /* Pause Frames Received Counter */
#define GEM_RX64CNT       (0x00000168/4) /* Error-free 64 byte Frames RX */
#define GEM_RX65CNT       (0x0000016C/4) /* Error-free 65-127B Frames RX */
#define GEM_RX128CNT      (0x00000170/4) /* Error-free 128-255B Frames RX */
#define GEM_RX256CNT      (0x00000174/4) /* Error-free 256-512B Frames RX */
#define GEM_RX512CNT      (0x00000178/4) /* Error-free 512-1023B Frames RX */
#define GEM_RX1024CNT     (0x0000017C/4) /* Error-free 1024-1518B Frames RX */
#define GEM_RX1519CNT     (0x00000180/4) /* Error-free 1519-max Frames RX */
#define GEM_RXUNDERCNT    (0x00000184/4) /* Undersize Frames Received */
#define GEM_RXOVERCNT     (0x00000188/4) /* Oversize Frames Received */
#define GEM_RXJABCNT      (0x0000018C/4) /* Jabbers Received Counter */
#define GEM_RXFCSCNT      (0x00000190/4) /* Frame Check seq. Error Counter */
#define GEM_RXLENERRCNT   (0x00000194/4) /* Length Field Error Counter */
#define GEM_RXSYMERRCNT   (0x00000198/4) /* Symbol Error Counter */
#define GEM_RXALIGNERRCNT (0x0000019C/4) /* Alignment Error Counter */
#define GEM_RXRSCERRCNT   (0x000001A0/4) /* Receive Resource Error Counter */
#define GEM_RXORUNCNT     (0x000001A4/4) /* Receive Overrun Counter */
#define GEM_RXIPCSERRCNT  (0x000001A8/4) /* IP header Checksum Error Counter */
#define GEM_RXTCPCCNT     (0x000001AC/4) /* TCP Checksum Error Counter */
#define GEM_RXUDPCCNT     (0x000001B0/4) /* UDP Checksum Error Counter */

#define GEM_1588S         (0x000001D0/4) /* 1588 Timer Seconds */
#define GEM_1588NS        (0x000001D4/4) /* 1588 Timer Nanoseconds */
#define GEM_1588ADJ       (0x000001D8/4) /* 1588 Timer Adjust */
#define GEM_1588INC       (0x000001DC/4) /* 1588 Timer Increment */
#define GEM_PTPETXS       (0x000001E0/4) /* PTP Event Frame Transmitted (s) */
#define GEM_PTPETXNS      (0x000001E4/4) /* PTP Event Frame Transmitted (ns) */
#define GEM_PTPERXS       (0x000001E8/4) /* PTP Event Frame Received (s) */
#define GEM_PTPERXNS      (0x000001EC/4) /* PTP Event Frame Received (ns) */
#define GEM_PTPPTXS       (0x000001E0/4) /* PTP Peer Frame Transmitted (s) */
#define GEM_PTPPTXNS      (0x000001E4/4) /* PTP Peer Frame Transmitted (ns) */
#define GEM_PTPPRXS       (0x000001E8/4) /* PTP Peer Frame Received (s) */
#define GEM_PTPPRXNS      (0x000001EC/4) /* PTP Peer Frame Received (ns) */

/* Design Configuration Registers */
#define GEM_DESCONF       (0x00000280/4)
#define GEM_DESCONF2      (0x00000284/4)
#define GEM_DESCONF3      (0x00000288/4)
#define GEM_DESCONF4      (0x0000028C/4)
#define GEM_DESCONF5      (0x00000290/4)
#define GEM_DESCONF6      (0x00000294/4)
#define GEM_DESCONF7      (0x00000298/4)

146 147 148 149
#define GEM_INT_Q1_STATUS               (0x00000400 / 4)
#define GEM_INT_Q1_MASK                 (0x00000640 / 4)

#define GEM_TRANSMIT_Q1_PTR             (0x00000440 / 4)
150
#define GEM_TRANSMIT_Q7_PTR             (GEM_TRANSMIT_Q1_PTR + 6)
151 152

#define GEM_RECEIVE_Q1_PTR              (0x00000480 / 4)
153
#define GEM_RECEIVE_Q7_PTR              (GEM_RECEIVE_Q1_PTR + 6)
154 155 156 157 158 159 160 161 162 163

#define GEM_INT_Q1_ENABLE               (0x00000600 / 4)
#define GEM_INT_Q7_ENABLE               (GEM_INT_Q1_ENABLE + 6)

#define GEM_INT_Q1_DISABLE              (0x00000620 / 4)
#define GEM_INT_Q7_DISABLE              (GEM_INT_Q1_DISABLE + 6)

#define GEM_INT_Q1_MASK                 (0x00000640 / 4)
#define GEM_INT_Q7_MASK                 (GEM_INT_Q1_MASK + 6)

164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
#define GEM_SCREENING_TYPE1_REGISTER_0  (0x00000500 / 4)

#define GEM_ST1R_UDP_PORT_MATCH_ENABLE  (1 << 29)
#define GEM_ST1R_DSTC_ENABLE            (1 << 28)
#define GEM_ST1R_UDP_PORT_MATCH_SHIFT   (12)
#define GEM_ST1R_UDP_PORT_MATCH_WIDTH   (27 - GEM_ST1R_UDP_PORT_MATCH_SHIFT + 1)
#define GEM_ST1R_DSTC_MATCH_SHIFT       (4)
#define GEM_ST1R_DSTC_MATCH_WIDTH       (11 - GEM_ST1R_DSTC_MATCH_SHIFT + 1)
#define GEM_ST1R_QUEUE_SHIFT            (0)
#define GEM_ST1R_QUEUE_WIDTH            (3 - GEM_ST1R_QUEUE_SHIFT + 1)

#define GEM_SCREENING_TYPE2_REGISTER_0  (0x00000540 / 4)

#define GEM_ST2R_COMPARE_A_ENABLE       (1 << 18)
#define GEM_ST2R_COMPARE_A_SHIFT        (13)
#define GEM_ST2R_COMPARE_WIDTH          (17 - GEM_ST2R_COMPARE_A_SHIFT + 1)
#define GEM_ST2R_ETHERTYPE_ENABLE       (1 << 12)
#define GEM_ST2R_ETHERTYPE_INDEX_SHIFT  (9)
#define GEM_ST2R_ETHERTYPE_INDEX_WIDTH  (11 - GEM_ST2R_ETHERTYPE_INDEX_SHIFT \
                                            + 1)
#define GEM_ST2R_QUEUE_SHIFT            (0)
#define GEM_ST2R_QUEUE_WIDTH            (3 - GEM_ST2R_QUEUE_SHIFT + 1)

#define GEM_SCREENING_TYPE2_ETHERTYPE_REG_0     (0x000006e0 / 4)
#define GEM_TYPE2_COMPARE_0_WORD_0              (0x00000700 / 4)

#define GEM_T2CW1_COMPARE_OFFSET_SHIFT  (7)
#define GEM_T2CW1_COMPARE_OFFSET_WIDTH  (8 - GEM_T2CW1_COMPARE_OFFSET_SHIFT + 1)
#define GEM_T2CW1_OFFSET_VALUE_SHIFT    (0)
#define GEM_T2CW1_OFFSET_VALUE_WIDTH    (6 - GEM_T2CW1_OFFSET_VALUE_SHIFT + 1)

195 196 197 198 199 200 201
/*****************************************/
#define GEM_NWCTRL_TXSTART     0x00000200 /* Transmit Enable */
#define GEM_NWCTRL_TXENA       0x00000008 /* Transmit Enable */
#define GEM_NWCTRL_RXENA       0x00000004 /* Receive Enable */
#define GEM_NWCTRL_LOCALLOOP   0x00000002 /* Local Loopback */

#define GEM_NWCFG_STRIP_FCS    0x00020000 /* Strip FCS field */
202
#define GEM_NWCFG_LERR_DISC    0x00010000 /* Discard RX frames with len err */
203 204 205 206 207 208 209
#define GEM_NWCFG_BUFF_OFST_M  0x0000C000 /* Receive buffer offset mask */
#define GEM_NWCFG_BUFF_OFST_S  14         /* Receive buffer offset shift */
#define GEM_NWCFG_UCAST_HASH   0x00000080 /* accept unicast if hash match */
#define GEM_NWCFG_MCAST_HASH   0x00000040 /* accept multicast if hash match */
#define GEM_NWCFG_BCAST_REJ    0x00000020 /* Reject broadcast packets */
#define GEM_NWCFG_PROMISC      0x00000010 /* Accept all packets */

210
#define GEM_DMACFG_RBUFSZ_M    0x00FF0000 /* DMA RX Buffer Size mask */
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
#define GEM_DMACFG_RBUFSZ_S    16         /* DMA RX Buffer Size shift */
#define GEM_DMACFG_RBUFSZ_MUL  64         /* DMA RX Buffer Size multiplier */
#define GEM_DMACFG_TXCSUM_OFFL 0x00000800 /* Transmit checksum offload */

#define GEM_TXSTATUS_TXCMPL    0x00000020 /* Transmit Complete */
#define GEM_TXSTATUS_USED      0x00000001 /* sw owned descriptor encountered */

#define GEM_RXSTATUS_FRMRCVD   0x00000002 /* Frame received */
#define GEM_RXSTATUS_NOBUF     0x00000001 /* Buffer unavailable */

/* GEM_ISR GEM_IER GEM_IDR GEM_IMR */
#define GEM_INT_TXCMPL        0x00000080 /* Transmit Complete */
#define GEM_INT_TXUSED         0x00000008
#define GEM_INT_RXUSED         0x00000004
#define GEM_INT_RXCMPL        0x00000002

#define GEM_PHYMNTNC_OP_R      0x20000000 /* read operation */
#define GEM_PHYMNTNC_OP_W      0x10000000 /* write operation */
#define GEM_PHYMNTNC_ADDR      0x0F800000 /* Address bits */
#define GEM_PHYMNTNC_ADDR_SHFT 23
#define GEM_PHYMNTNC_REG       0x007C0000 /* register bits */
#define GEM_PHYMNTNC_REG_SHIFT 18

/* Marvell PHY definitions */
#define BOARD_PHY_ADDRESS    23 /* PHY address we will emulate a device at */

#define PHY_REG_CONTROL      0
#define PHY_REG_STATUS       1
#define PHY_REG_PHYID1       2
#define PHY_REG_PHYID2       3
#define PHY_REG_ANEGADV      4
#define PHY_REG_LINKPABIL    5
#define PHY_REG_ANEGEXP      6
#define PHY_REG_NEXTP        7
#define PHY_REG_LINKPNEXTP   8
#define PHY_REG_100BTCTRL    9
#define PHY_REG_1000BTSTAT   10
#define PHY_REG_EXTSTAT      15
#define PHY_REG_PHYSPCFC_CTL 16
#define PHY_REG_PHYSPCFC_ST  17
#define PHY_REG_INT_EN       18
#define PHY_REG_INT_ST       19
#define PHY_REG_EXT_PHYSPCFC_CTL  20
#define PHY_REG_RXERR        21
#define PHY_REG_EACD         22
#define PHY_REG_LED          24
#define PHY_REG_LED_OVRD     25
#define PHY_REG_EXT_PHYSPCFC_CTL2 26
#define PHY_REG_EXT_PHYSPCFC_ST   27
#define PHY_REG_CABLE_DIAG   28

#define PHY_REG_CONTROL_RST  0x8000
#define PHY_REG_CONTROL_LOOP 0x4000
#define PHY_REG_CONTROL_ANEG 0x1000

#define PHY_REG_STATUS_LINK     0x0004
#define PHY_REG_STATUS_ANEGCMPL 0x0020

#define PHY_REG_INT_ST_ANEGCMPL 0x0800
#define PHY_REG_INT_ST_LINKC    0x0400
#define PHY_REG_INT_ST_ENERGY   0x0010

/***********************************************************************/
274 275 276 277 278 279 280
#define GEM_RX_REJECT                   (-1)
#define GEM_RX_PROMISCUOUS_ACCEPT       (-2)
#define GEM_RX_BROADCAST_ACCEPT         (-3)
#define GEM_RX_MULTICAST_HASH_ACCEPT    (-4)
#define GEM_RX_UNICAST_HASH_ACCEPT      (-5)

#define GEM_RX_SAR_ACCEPT               0
281 282 283 284 285 286 287 288 289 290 291 292

/***********************************************************************/

#define DESC_1_USED 0x80000000
#define DESC_1_LENGTH 0x00001FFF

#define DESC_1_TX_WRAP 0x40000000
#define DESC_1_TX_LAST 0x00008000

#define DESC_0_RX_WRAP 0x00000002
#define DESC_0_RX_OWNERSHIP 0x00000001

293 294
#define R_DESC_1_RX_SAR_SHIFT           25
#define R_DESC_1_RX_SAR_LENGTH          2
295
#define R_DESC_1_RX_SAR_MATCH           (1 << 27)
296 297 298 299
#define R_DESC_1_RX_UNICAST_HASH        (1 << 29)
#define R_DESC_1_RX_MULTICAST_HASH      (1 << 30)
#define R_DESC_1_RX_BROADCAST           (1 << 31)

300 301 302
#define DESC_1_RX_SOF 0x00004000
#define DESC_1_RX_EOF 0x00008000

303 304
#define GEM_MODID_VALUE 0x00020118

305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
static inline unsigned tx_desc_get_buffer(unsigned *desc)
{
    return desc[0];
}

static inline unsigned tx_desc_get_used(unsigned *desc)
{
    return (desc[1] & DESC_1_USED) ? 1 : 0;
}

static inline void tx_desc_set_used(unsigned *desc)
{
    desc[1] |= DESC_1_USED;
}

static inline unsigned tx_desc_get_wrap(unsigned *desc)
{
    return (desc[1] & DESC_1_TX_WRAP) ? 1 : 0;
}

static inline unsigned tx_desc_get_last(unsigned *desc)
{
    return (desc[1] & DESC_1_TX_LAST) ? 1 : 0;
}

330 331 332 333 334
static inline void tx_desc_set_last(unsigned *desc)
{
    desc[1] |= DESC_1_TX_LAST;
}

335 336 337 338 339
static inline unsigned tx_desc_get_length(unsigned *desc)
{
    return desc[1] & DESC_1_LENGTH;
}

340
static inline void print_gem_tx_desc(unsigned *desc, uint8_t queue)
341
{
342
    DB_PRINT("TXDESC (queue %" PRId8 "):\n", queue);
343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
    DB_PRINT("bufaddr: 0x%08x\n", *desc);
    DB_PRINT("used_hw: %d\n", tx_desc_get_used(desc));
    DB_PRINT("wrap:    %d\n", tx_desc_get_wrap(desc));
    DB_PRINT("last:    %d\n", tx_desc_get_last(desc));
    DB_PRINT("length:  %d\n", tx_desc_get_length(desc));
}

static inline unsigned rx_desc_get_buffer(unsigned *desc)
{
    return desc[0] & ~0x3UL;
}

static inline unsigned rx_desc_get_wrap(unsigned *desc)
{
    return desc[0] & DESC_0_RX_WRAP ? 1 : 0;
}

static inline unsigned rx_desc_get_ownership(unsigned *desc)
{
    return desc[0] & DESC_0_RX_OWNERSHIP ? 1 : 0;
}

static inline void rx_desc_set_ownership(unsigned *desc)
{
    desc[0] |= DESC_0_RX_OWNERSHIP;
}

static inline void rx_desc_set_sof(unsigned *desc)
{
    desc[1] |= DESC_1_RX_SOF;
}

static inline void rx_desc_set_eof(unsigned *desc)
{
    desc[1] |= DESC_1_RX_EOF;
}

static inline void rx_desc_set_length(unsigned *desc, unsigned len)
{
    desc[1] &= ~DESC_1_LENGTH;
    desc[1] |= len;
}

386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
static inline void rx_desc_set_broadcast(unsigned *desc)
{
    desc[1] |= R_DESC_1_RX_BROADCAST;
}

static inline void rx_desc_set_unicast_hash(unsigned *desc)
{
    desc[1] |= R_DESC_1_RX_UNICAST_HASH;
}

static inline void rx_desc_set_multicast_hash(unsigned *desc)
{
    desc[1] |= R_DESC_1_RX_MULTICAST_HASH;
}

static inline void rx_desc_set_sar(unsigned *desc, int sar_idx)
{
    desc[1] = deposit32(desc[1], R_DESC_1_RX_SAR_SHIFT, R_DESC_1_RX_SAR_LENGTH,
                        sar_idx);
405
    desc[1] |= R_DESC_1_RX_SAR_MATCH;
406 407
}

408
/* The broadcast MAC address: 0xFFFFFFFFFFFF */
409
static const uint8_t broadcast_addr[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
410 411 412 413 414 415

/*
 * gem_init_register_masks:
 * One time initialization.
 * Set masks to identify which register bits have magical clear properties
 */
416
static void gem_init_register_masks(CadenceGEMState *s)
417
{
418
    /* Mask of register bits which are read only */
419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
    memset(&s->regs_ro[0], 0, sizeof(s->regs_ro));
    s->regs_ro[GEM_NWCTRL]   = 0xFFF80000;
    s->regs_ro[GEM_NWSTATUS] = 0xFFFFFFFF;
    s->regs_ro[GEM_DMACFG]   = 0xFE00F000;
    s->regs_ro[GEM_TXSTATUS] = 0xFFFFFE08;
    s->regs_ro[GEM_RXQBASE]  = 0x00000003;
    s->regs_ro[GEM_TXQBASE]  = 0x00000003;
    s->regs_ro[GEM_RXSTATUS] = 0xFFFFFFF0;
    s->regs_ro[GEM_ISR]      = 0xFFFFFFFF;
    s->regs_ro[GEM_IMR]      = 0xFFFFFFFF;
    s->regs_ro[GEM_MODID]    = 0xFFFFFFFF;

    /* Mask of register bits which are clear on read */
    memset(&s->regs_rtc[0], 0, sizeof(s->regs_rtc));
    s->regs_rtc[GEM_ISR]      = 0xFFFFFFFF;

    /* Mask of register bits which are write 1 to clear */
    memset(&s->regs_w1c[0], 0, sizeof(s->regs_w1c));
    s->regs_w1c[GEM_TXSTATUS] = 0x000001F7;
    s->regs_w1c[GEM_RXSTATUS] = 0x0000000F;

    /* Mask of register bits which are write only */
    memset(&s->regs_wo[0], 0, sizeof(s->regs_wo));
    s->regs_wo[GEM_NWCTRL]   = 0x00073E60;
    s->regs_wo[GEM_IER]      = 0x07FFFFFF;
    s->regs_wo[GEM_IDR]      = 0x07FFFFFF;
}

/*
 * phy_update_link:
 * Make the emulated PHY link state match the QEMU "interface" state.
 */
451
static void phy_update_link(CadenceGEMState *s)
452
{
J
Jason Wang 已提交
453
    DB_PRINT("down %d\n", qemu_get_queue(s->nic)->link_down);
454 455

    /* Autonegotiation status mirrors link status.  */
J
Jason Wang 已提交
456
    if (qemu_get_queue(s->nic)->link_down) {
457 458 459 460 461 462 463 464 465 466 467 468
        s->phy_regs[PHY_REG_STATUS] &= ~(PHY_REG_STATUS_ANEGCMPL |
                                         PHY_REG_STATUS_LINK);
        s->phy_regs[PHY_REG_INT_ST] |= PHY_REG_INT_ST_LINKC;
    } else {
        s->phy_regs[PHY_REG_STATUS] |= (PHY_REG_STATUS_ANEGCMPL |
                                         PHY_REG_STATUS_LINK);
        s->phy_regs[PHY_REG_INT_ST] |= (PHY_REG_INT_ST_LINKC |
                                        PHY_REG_INT_ST_ANEGCMPL |
                                        PHY_REG_INT_ST_ENERGY);
    }
}

469
static int gem_can_receive(NetClientState *nc)
470
{
471
    CadenceGEMState *s;
472
    int i;
473

J
Jason Wang 已提交
474
    s = qemu_get_nic_opaque(nc);
475 476 477

    /* Do nothing if receive is not enabled. */
    if (!(s->regs[GEM_NWCTRL] & GEM_NWCTRL_RXENA)) {
478 479 480 481
        if (s->can_rx_state != 1) {
            s->can_rx_state = 1;
            DB_PRINT("can't receive - no enable\n");
        }
482 483 484
        return 0;
    }

485
    for (i = 0; i < s->num_priority_queues; i++) {
486 487
        if (rx_desc_get_ownership(s->rx_desc[i]) != 1) {
            break;
488
        }
489 490 491 492 493 494 495 496
    };

    if (i == s->num_priority_queues) {
        if (s->can_rx_state != 2) {
            s->can_rx_state = 2;
            DB_PRINT("can't receive - all the buffer descriptors are busy\n");
        }
        return 0;
497 498
    }

499 500
    if (s->can_rx_state != 0) {
        s->can_rx_state = 0;
501
        DB_PRINT("can receive\n");
502
    }
503 504 505 506 507 508 509
    return 1;
}

/*
 * gem_update_int_status:
 * Raise or lower interrupt based on current status.
 */
510
static void gem_update_int_status(CadenceGEMState *s)
511
{
512 513
    int i;

514 515 516 517 518 519 520 521 522 523 524 525
    if (!s->regs[GEM_ISR]) {
        /* ISR isn't set, clear all the interrupts */
        for (i = 0; i < s->num_priority_queues; ++i) {
            qemu_set_irq(s->irq[i], 0);
        }
        return;
    }

    /* If we get here we know s->regs[GEM_ISR] is set, so we don't need to
     * check it again.
     */
    if (s->num_priority_queues == 1) {
526
        /* No priority queues, just trigger the interrupt */
527
        DB_PRINT("asserting int.\n");
528
        qemu_set_irq(s->irq[0], 1);
529 530 531 532 533 534 535 536
        return;
    }

    for (i = 0; i < s->num_priority_queues; ++i) {
        if (s->regs[GEM_INT_Q1_STATUS + i]) {
            DB_PRINT("asserting int. (q=%d)\n", i);
            qemu_set_irq(s->irq[i], 1);
        }
537 538 539 540 541 542 543
    }
}

/*
 * gem_receive_updatestats:
 * Increment receive statistics.
 */
544
static void gem_receive_updatestats(CadenceGEMState *s, const uint8_t *packet,
545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629
                                    unsigned bytes)
{
    uint64_t octets;

    /* Total octets (bytes) received */
    octets = ((uint64_t)(s->regs[GEM_OCTRXLO]) << 32) |
             s->regs[GEM_OCTRXHI];
    octets += bytes;
    s->regs[GEM_OCTRXLO] = octets >> 32;
    s->regs[GEM_OCTRXHI] = octets;

    /* Error-free Frames received */
    s->regs[GEM_RXCNT]++;

    /* Error-free Broadcast Frames counter */
    if (!memcmp(packet, broadcast_addr, 6)) {
        s->regs[GEM_RXBROADCNT]++;
    }

    /* Error-free Multicast Frames counter */
    if (packet[0] == 0x01) {
        s->regs[GEM_RXMULTICNT]++;
    }

    if (bytes <= 64) {
        s->regs[GEM_RX64CNT]++;
    } else if (bytes <= 127) {
        s->regs[GEM_RX65CNT]++;
    } else if (bytes <= 255) {
        s->regs[GEM_RX128CNT]++;
    } else if (bytes <= 511) {
        s->regs[GEM_RX256CNT]++;
    } else if (bytes <= 1023) {
        s->regs[GEM_RX512CNT]++;
    } else if (bytes <= 1518) {
        s->regs[GEM_RX1024CNT]++;
    } else {
        s->regs[GEM_RX1519CNT]++;
    }
}

/*
 * Get the MAC Address bit from the specified position
 */
static unsigned get_bit(const uint8_t *mac, unsigned bit)
{
    unsigned byte;

    byte = mac[bit / 8];
    byte >>= (bit & 0x7);
    byte &= 1;

    return byte;
}

/*
 * Calculate a GEM MAC Address hash index
 */
static unsigned calc_mac_hash(const uint8_t *mac)
{
    int index_bit, mac_bit;
    unsigned hash_index;

    hash_index = 0;
    mac_bit = 5;
    for (index_bit = 5; index_bit >= 0; index_bit--) {
        hash_index |= (get_bit(mac,  mac_bit) ^
                               get_bit(mac, mac_bit + 6) ^
                               get_bit(mac, mac_bit + 12) ^
                               get_bit(mac, mac_bit + 18) ^
                               get_bit(mac, mac_bit + 24) ^
                               get_bit(mac, mac_bit + 30) ^
                               get_bit(mac, mac_bit + 36) ^
                               get_bit(mac, mac_bit + 42)) << index_bit;
        mac_bit--;
    }

    return hash_index;
}

/*
 * gem_mac_address_filter:
 * Accept or reject this destination address?
 * Returns:
 * GEM_RX_REJECT: reject
630 631 632 633
 * >= 0: Specific address accept (which matched SAR is returned)
 * others for various other modes of accept:
 * GEM_RM_PROMISCUOUS_ACCEPT, GEM_RX_BROADCAST_ACCEPT,
 * GEM_RX_MULTICAST_HASH_ACCEPT or GEM_RX_UNICAST_HASH_ACCEPT
634
 */
635
static int gem_mac_address_filter(CadenceGEMState *s, const uint8_t *packet)
636 637 638 639 640 641
{
    uint8_t *gem_spaddr;
    int i;

    /* Promiscuous mode? */
    if (s->regs[GEM_NWCFG] & GEM_NWCFG_PROMISC) {
642
        return GEM_RX_PROMISCUOUS_ACCEPT;
643 644 645 646 647 648 649
    }

    if (!memcmp(packet, broadcast_addr, 6)) {
        /* Reject broadcast packets? */
        if (s->regs[GEM_NWCFG] & GEM_NWCFG_BCAST_REJ) {
            return GEM_RX_REJECT;
        }
650
        return GEM_RX_BROADCAST_ACCEPT;
651 652 653 654 655 656 657 658 659 660
    }

    /* Accept packets -w- hash match? */
    if ((packet[0] == 0x01 && (s->regs[GEM_NWCFG] & GEM_NWCFG_MCAST_HASH)) ||
        (packet[0] != 0x01 && (s->regs[GEM_NWCFG] & GEM_NWCFG_UCAST_HASH))) {
        unsigned hash_index;

        hash_index = calc_mac_hash(packet);
        if (hash_index < 32) {
            if (s->regs[GEM_HASHLO] & (1<<hash_index)) {
661 662
                return packet[0] == 0x01 ? GEM_RX_MULTICAST_HASH_ACCEPT :
                                           GEM_RX_UNICAST_HASH_ACCEPT;
663 664 665 666
            }
        } else {
            hash_index -= 32;
            if (s->regs[GEM_HASHHI] & (1<<hash_index)) {
667 668
                return packet[0] == 0x01 ? GEM_RX_MULTICAST_HASH_ACCEPT :
                                           GEM_RX_UNICAST_HASH_ACCEPT;
669 670 671 672 673 674
            }
        }
    }

    /* Check all 4 specific addresses */
    gem_spaddr = (uint8_t *)&(s->regs[GEM_SPADDR1LO]);
675
    for (i = 3; i >= 0; i--) {
676
        if (s->sar_active[i] && !memcmp(packet, gem_spaddr + 8 * i, 6)) {
677
            return GEM_RX_SAR_ACCEPT + i;
678 679 680 681 682 683 684
        }
    }

    /* No address match; reject the packet */
    return GEM_RX_REJECT;
}

685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804
/* Figure out which queue the received data should be sent to */
static int get_queue_from_screen(CadenceGEMState *s, uint8_t *rxbuf_ptr,
                                 unsigned rxbufsize)
{
    uint32_t reg;
    bool matched, mismatched;
    int i, j;

    for (i = 0; i < s->num_type1_screeners; i++) {
        reg = s->regs[GEM_SCREENING_TYPE1_REGISTER_0 + i];
        matched = false;
        mismatched = false;

        /* Screening is based on UDP Port */
        if (reg & GEM_ST1R_UDP_PORT_MATCH_ENABLE) {
            uint16_t udp_port = rxbuf_ptr[14 + 22] << 8 | rxbuf_ptr[14 + 23];
            if (udp_port == extract32(reg, GEM_ST1R_UDP_PORT_MATCH_SHIFT,
                                           GEM_ST1R_UDP_PORT_MATCH_WIDTH)) {
                matched = true;
            } else {
                mismatched = true;
            }
        }

        /* Screening is based on DS/TC */
        if (reg & GEM_ST1R_DSTC_ENABLE) {
            uint8_t dscp = rxbuf_ptr[14 + 1];
            if (dscp == extract32(reg, GEM_ST1R_DSTC_MATCH_SHIFT,
                                       GEM_ST1R_DSTC_MATCH_WIDTH)) {
                matched = true;
            } else {
                mismatched = true;
            }
        }

        if (matched && !mismatched) {
            return extract32(reg, GEM_ST1R_QUEUE_SHIFT, GEM_ST1R_QUEUE_WIDTH);
        }
    }

    for (i = 0; i < s->num_type2_screeners; i++) {
        reg = s->regs[GEM_SCREENING_TYPE2_REGISTER_0 + i];
        matched = false;
        mismatched = false;

        if (reg & GEM_ST2R_ETHERTYPE_ENABLE) {
            uint16_t type = rxbuf_ptr[12] << 8 | rxbuf_ptr[13];
            int et_idx = extract32(reg, GEM_ST2R_ETHERTYPE_INDEX_SHIFT,
                                        GEM_ST2R_ETHERTYPE_INDEX_WIDTH);

            if (et_idx > s->num_type2_screeners) {
                qemu_log_mask(LOG_GUEST_ERROR, "Out of range ethertype "
                              "register index: %d\n", et_idx);
            }
            if (type == s->regs[GEM_SCREENING_TYPE2_ETHERTYPE_REG_0 +
                                et_idx]) {
                matched = true;
            } else {
                mismatched = true;
            }
        }

        /* Compare A, B, C */
        for (j = 0; j < 3; j++) {
            uint32_t cr0, cr1, mask;
            uint16_t rx_cmp;
            int offset;
            int cr_idx = extract32(reg, GEM_ST2R_COMPARE_A_SHIFT + j * 6,
                                        GEM_ST2R_COMPARE_WIDTH);

            if (!(reg & (GEM_ST2R_COMPARE_A_ENABLE << (j * 6)))) {
                continue;
            }
            if (cr_idx > s->num_type2_screeners) {
                qemu_log_mask(LOG_GUEST_ERROR, "Out of range compare "
                              "register index: %d\n", cr_idx);
            }

            cr0 = s->regs[GEM_TYPE2_COMPARE_0_WORD_0 + cr_idx * 2];
            cr1 = s->regs[GEM_TYPE2_COMPARE_0_WORD_0 + cr_idx * 2 + 1];
            offset = extract32(cr1, GEM_T2CW1_OFFSET_VALUE_SHIFT,
                                    GEM_T2CW1_OFFSET_VALUE_WIDTH);

            switch (extract32(cr1, GEM_T2CW1_COMPARE_OFFSET_SHIFT,
                                   GEM_T2CW1_COMPARE_OFFSET_WIDTH)) {
            case 3: /* Skip UDP header */
                qemu_log_mask(LOG_UNIMP, "TCP compare offsets"
                              "unimplemented - assuming UDP\n");
                offset += 8;
                /* Fallthrough */
            case 2: /* skip the IP header */
                offset += 20;
                /* Fallthrough */
            case 1: /* Count from after the ethertype */
                offset += 14;
                break;
            case 0:
                /* Offset from start of frame */
                break;
            }

            rx_cmp = rxbuf_ptr[offset] << 8 | rxbuf_ptr[offset];
            mask = extract32(cr0, 0, 16);

            if ((rx_cmp & mask) == (extract32(cr0, 16, 16) & mask)) {
                matched = true;
            } else {
                mismatched = true;
            }
        }

        if (matched && !mismatched) {
            return extract32(reg, GEM_ST2R_QUEUE_SHIFT, GEM_ST2R_QUEUE_WIDTH);
        }
    }

    /* We made it here, assume it's queue 0 */
    return 0;
}

805
static void gem_get_rx_desc(CadenceGEMState *s, int q)
806
{
807
    DB_PRINT("read descriptor 0x%x\n", (unsigned)s->rx_desc_addr[q]);
808
    /* read current descriptor */
809 810
    cpu_physical_memory_read(s->rx_desc_addr[q],
                             (uint8_t *)s->rx_desc[q], sizeof(s->rx_desc[q]));
811 812

    /* Descriptor owned by software ? */
813
    if (rx_desc_get_ownership(s->rx_desc[q]) == 1) {
814
        DB_PRINT("descriptor 0x%x owned by sw.\n",
815
                 (unsigned)s->rx_desc_addr[q]);
816 817 818 819 820 821 822
        s->regs[GEM_RXSTATUS] |= GEM_RXSTATUS_NOBUF;
        s->regs[GEM_ISR] |= GEM_INT_RXUSED & ~(s->regs[GEM_IMR]);
        /* Handle interrupt consequences */
        gem_update_int_status(s);
    }
}

823 824 825 826
/*
 * gem_receive:
 * Fit a packet handed to us by QEMU into the receive descriptor ring.
 */
827
static ssize_t gem_receive(NetClientState *nc, const uint8_t *buf, size_t size)
828
{
829
    CadenceGEMState *s;
830 831 832 833
    unsigned   rxbufsize, bytes_to_copy;
    unsigned   rxbuf_offset;
    uint8_t    rxbuf[2048];
    uint8_t   *rxbuf_ptr;
834
    bool first_desc = true;
835
    int maf;
836
    int q = 0;
837

J
Jason Wang 已提交
838
    s = qemu_get_nic_opaque(nc);
839 840

    /* Is this destination MAC address "for us" ? */
841 842
    maf = gem_mac_address_filter(s, buf);
    if (maf == GEM_RX_REJECT) {
843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873
        return -1;
    }

    /* Discard packets with receive length error enabled ? */
    if (s->regs[GEM_NWCFG] & GEM_NWCFG_LERR_DISC) {
        unsigned type_len;

        /* Fish the ethertype / length field out of the RX packet */
        type_len = buf[12] << 8 | buf[13];
        /* It is a length field, not an ethertype */
        if (type_len < 0x600) {
            if (size < type_len) {
                /* discard */
                return -1;
            }
        }
    }

    /*
     * Determine configured receive buffer offset (probably 0)
     */
    rxbuf_offset = (s->regs[GEM_NWCFG] & GEM_NWCFG_BUFF_OFST_M) >>
                   GEM_NWCFG_BUFF_OFST_S;

    /* The configure size of each receive buffer.  Determines how many
     * buffers needed to hold this packet.
     */
    rxbufsize = ((s->regs[GEM_DMACFG] & GEM_DMACFG_RBUFSZ_M) >>
                 GEM_DMACFG_RBUFSZ_S) * GEM_DMACFG_RBUFSZ_MUL;
    bytes_to_copy = size;

874 875 876 877 878 879 880
    /* Hardware allows a zero value here but warns against it. To avoid QEMU
     * indefinite loops we enforce a minimum value here
     */
    if (rxbufsize < GEM_DMACFG_RBUFSZ_MUL) {
        rxbufsize = GEM_DMACFG_RBUFSZ_MUL;
    }

881 882 883 884 885 886 887 888
    /* Pad to minimum length. Assume FCS field is stripped, logic
     * below will increment it to the real minimum of 64 when
     * not FCS stripping
     */
    if (size < 60) {
        size = 60;
    }

889 890 891 892 893 894
    /* Strip of FCS field ? (usually yes) */
    if (s->regs[GEM_NWCFG] & GEM_NWCFG_STRIP_FCS) {
        rxbuf_ptr = (void *)buf;
    } else {
        unsigned crc_val;

895 896 897 898
        if (size > sizeof(rxbuf) - sizeof(crc_val)) {
            size = sizeof(rxbuf) - sizeof(crc_val);
        }
        bytes_to_copy = size;
899
        /* The application wants the FCS field, which QEMU does not provide.
900
         * We must try and calculate one.
901 902 903
         */

        memcpy(rxbuf, buf, size);
904
        memset(rxbuf + size, 0, sizeof(rxbuf) - size);
905 906
        rxbuf_ptr = rxbuf;
        crc_val = cpu_to_le32(crc32(0, rxbuf, MAX(size, 60)));
907
        memcpy(rxbuf + size, &crc_val, sizeof(crc_val));
908 909 910 911 912 913 914

        bytes_to_copy += 4;
        size += 4;
    }

    DB_PRINT("config bufsize: %d packet size: %ld\n", rxbufsize, size);

S
Stefan Weil 已提交
915
    /* Find which queue we are targeting */
916 917
    q = get_queue_from_screen(s, rxbuf_ptr, rxbufsize);

918
    while (bytes_to_copy) {
919 920 921
        /* Do nothing if receive is not enabled. */
        if (!gem_can_receive(nc)) {
            assert(!first_desc);
922 923 924 925
            return -1;
        }

        DB_PRINT("copy %d bytes to 0x%x\n", MIN(bytes_to_copy, rxbufsize),
926
                rx_desc_get_buffer(s->rx_desc[q]));
927 928

        /* Copy packet data to emulated DMA buffer */
929 930
        cpu_physical_memory_write(rx_desc_get_buffer(s->rx_desc[q]) +
                                                                 rxbuf_offset,
931 932
                                  rxbuf_ptr, MIN(bytes_to_copy, rxbufsize));
        rxbuf_ptr += MIN(bytes_to_copy, rxbufsize);
933
        bytes_to_copy -= MIN(bytes_to_copy, rxbufsize);
934 935 936

        /* Update the descriptor.  */
        if (first_desc) {
937
            rx_desc_set_sof(s->rx_desc[q]);
938 939 940
            first_desc = false;
        }
        if (bytes_to_copy == 0) {
941 942
            rx_desc_set_eof(s->rx_desc[q]);
            rx_desc_set_length(s->rx_desc[q], size);
943
        }
944
        rx_desc_set_ownership(s->rx_desc[q]);
945 946 947 948 949

        switch (maf) {
        case GEM_RX_PROMISCUOUS_ACCEPT:
            break;
        case GEM_RX_BROADCAST_ACCEPT:
950
            rx_desc_set_broadcast(s->rx_desc[q]);
951 952
            break;
        case GEM_RX_UNICAST_HASH_ACCEPT:
953
            rx_desc_set_unicast_hash(s->rx_desc[q]);
954 955
            break;
        case GEM_RX_MULTICAST_HASH_ACCEPT:
956
            rx_desc_set_multicast_hash(s->rx_desc[q]);
957 958 959 960
            break;
        case GEM_RX_REJECT:
            abort();
        default: /* SAR */
961
            rx_desc_set_sar(s->rx_desc[q], maf);
962 963
        }

964
        /* Descriptor write-back.  */
965 966 967
        cpu_physical_memory_write(s->rx_desc_addr[q],
                                  (uint8_t *)s->rx_desc[q],
                                  sizeof(s->rx_desc[q]));
968

969
        /* Next descriptor */
970
        if (rx_desc_get_wrap(s->rx_desc[q])) {
971
            DB_PRINT("wrapping RX descriptor list\n");
972
            s->rx_desc_addr[q] = s->regs[GEM_RXQBASE];
973
        } else {
974
            DB_PRINT("incrementing RX descriptor list\n");
975
            s->rx_desc_addr[q] += 8;
976
        }
977 978

        gem_get_rx_desc(s, q);
979 980 981 982 983 984
    }

    /* Count it */
    gem_receive_updatestats(s, buf, size);

    s->regs[GEM_RXSTATUS] |= GEM_RXSTATUS_FRMRCVD;
985
    s->regs[GEM_ISR] |= GEM_INT_RXCMPL & ~(s->regs[GEM_IMR]);
986 987 988 989 990 991 992 993 994 995 996

    /* Handle interrupt consequences */
    gem_update_int_status(s);

    return size;
}

/*
 * gem_transmit_updatestats:
 * Increment transmit statistics.
 */
997
static void gem_transmit_updatestats(CadenceGEMState *s, const uint8_t *packet,
998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
                                     unsigned bytes)
{
    uint64_t octets;

    /* Total octets (bytes) transmitted */
    octets = ((uint64_t)(s->regs[GEM_OCTTXLO]) << 32) |
             s->regs[GEM_OCTTXHI];
    octets += bytes;
    s->regs[GEM_OCTTXLO] = octets >> 32;
    s->regs[GEM_OCTTXHI] = octets;

    /* Error-free Frames transmitted */
    s->regs[GEM_TXCNT]++;

    /* Error-free Broadcast Frames counter */
    if (!memcmp(packet, broadcast_addr, 6)) {
        s->regs[GEM_TXBCNT]++;
    }

    /* Error-free Multicast Frames counter */
    if (packet[0] == 0x01) {
        s->regs[GEM_TXMCNT]++;
    }

    if (bytes <= 64) {
        s->regs[GEM_TX64CNT]++;
    } else if (bytes <= 127) {
        s->regs[GEM_TX65CNT]++;
    } else if (bytes <= 255) {
        s->regs[GEM_TX128CNT]++;
    } else if (bytes <= 511) {
        s->regs[GEM_TX256CNT]++;
    } else if (bytes <= 1023) {
        s->regs[GEM_TX512CNT]++;
    } else if (bytes <= 1518) {
        s->regs[GEM_TX1024CNT]++;
    } else {
        s->regs[GEM_TX1519CNT]++;
    }
}

/*
 * gem_transmit:
 * Fish packets out of the descriptor ring and feed them to QEMU
 */
1043
static void gem_transmit(CadenceGEMState *s)
1044 1045
{
    unsigned    desc[2];
A
Avi Kivity 已提交
1046
    hwaddr packet_desc_addr;
1047 1048 1049
    uint8_t     tx_packet[2048];
    uint8_t     *p;
    unsigned    total_bytes;
1050
    int q = 0;
1051 1052 1053 1054 1055 1056 1057 1058

    /* Do nothing if transmit is not enabled. */
    if (!(s->regs[GEM_NWCTRL] & GEM_NWCTRL_TXENA)) {
        return;
    }

    DB_PRINT("\n");

1059
    /* The packet we will hand off to QEMU.
1060 1061 1062 1063 1064 1065
     * Packets scattered across multiple descriptors are gathered to this
     * one contiguous buffer first.
     */
    p = tx_packet;
    total_bytes = 0;

1066
    for (q = s->num_priority_queues - 1; q >= 0; q--) {
1067 1068
        /* read current descriptor */
        packet_desc_addr = s->tx_desc_addr[q];
1069

1070 1071 1072 1073 1074
        DB_PRINT("read descriptor 0x%" HWADDR_PRIx "\n", packet_desc_addr);
        cpu_physical_memory_read(packet_desc_addr,
                                 (uint8_t *)desc, sizeof(desc));
        /* Handle all descriptors owned by hardware */
        while (tx_desc_get_used(desc) == 0) {
1075

1076 1077 1078 1079 1080
            /* Do nothing if transmit is not enabled. */
            if (!(s->regs[GEM_NWCTRL] & GEM_NWCTRL_TXENA)) {
                return;
            }
            print_gem_tx_desc(desc, q);
1081

1082 1083
            /* The real hardware would eat this (and possibly crash).
             * For QEMU let's lend a helping hand.
1084
             */
1085 1086 1087 1088 1089
            if ((tx_desc_get_buffer(desc) == 0) ||
                (tx_desc_get_length(desc) == 0)) {
                DB_PRINT("Invalid TX descriptor @ 0x%x\n",
                         (unsigned)packet_desc_addr);
                break;
1090 1091
            }

1092 1093 1094 1095 1096 1097 1098
            if (tx_desc_get_length(desc) > sizeof(tx_packet) -
                                               (p - tx_packet)) {
                DB_PRINT("TX descriptor @ 0x%x too large: size 0x%x space " \
                         "0x%x\n", (unsigned)packet_desc_addr,
                         (unsigned)tx_desc_get_length(desc),
                         sizeof(tx_packet) - (p - tx_packet));
                break;
1099 1100
            }

1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
            /* Gather this fragment of the packet from "dma memory" to our
             * contig buffer.
             */
            cpu_physical_memory_read(tx_desc_get_buffer(desc), p,
                                     tx_desc_get_length(desc));
            p += tx_desc_get_length(desc);
            total_bytes += tx_desc_get_length(desc);

            /* Last descriptor for this packet; hand the whole thing off */
            if (tx_desc_get_last(desc)) {
                unsigned    desc_first[2];

                /* Modify the 1st descriptor of this packet to be owned by
                 * the processor.
                 */
                cpu_physical_memory_read(s->tx_desc_addr[q],
                                         (uint8_t *)desc_first,
                                         sizeof(desc_first));
                tx_desc_set_used(desc_first);
                cpu_physical_memory_write(s->tx_desc_addr[q],
                                          (uint8_t *)desc_first,
                                          sizeof(desc_first));
                /* Advance the hardware current descriptor past this packet */
                if (tx_desc_get_wrap(desc)) {
                    s->tx_desc_addr[q] = s->regs[GEM_TXQBASE];
                } else {
                    s->tx_desc_addr[q] = packet_desc_addr + 8;
                }
                DB_PRINT("TX descriptor next: 0x%08x\n", s->tx_desc_addr[q]);

                s->regs[GEM_TXSTATUS] |= GEM_TXSTATUS_TXCMPL;
                s->regs[GEM_ISR] |= GEM_INT_TXCMPL & ~(s->regs[GEM_IMR]);

                /* Update queue interrupt status */
                if (s->num_priority_queues > 1) {
                    s->regs[GEM_INT_Q1_STATUS + q] |=
                            GEM_INT_TXCMPL & ~(s->regs[GEM_INT_Q1_MASK + q]);
                }

                /* Handle interrupt consequences */
                gem_update_int_status(s);

                /* Is checksum offload enabled? */
                if (s->regs[GEM_DMACFG] & GEM_DMACFG_TXCSUM_OFFL) {
                    net_checksum_calculate(tx_packet, total_bytes);
                }

                /* Update MAC statistics */
                gem_transmit_updatestats(s, tx_packet, total_bytes);

                /* Send the packet somewhere */
                if (s->phy_loop || (s->regs[GEM_NWCTRL] &
                                    GEM_NWCTRL_LOCALLOOP)) {
                    gem_receive(qemu_get_queue(s->nic), tx_packet,
                                total_bytes);
                } else {
                    qemu_send_packet(qemu_get_queue(s->nic), tx_packet,
                                     total_bytes);
                }

                /* Prepare for next packet */
                p = tx_packet;
                total_bytes = 0;
1164 1165
            }

1166 1167 1168 1169
            /* read next descriptor */
            if (tx_desc_get_wrap(desc)) {
                tx_desc_set_last(desc);
                packet_desc_addr = s->regs[GEM_TXQBASE];
1170
            } else {
1171
                packet_desc_addr += 8;
1172
            }
1173 1174 1175
            DB_PRINT("read descriptor 0x%" HWADDR_PRIx "\n", packet_desc_addr);
            cpu_physical_memory_read(packet_desc_addr,
                                     (uint8_t *)desc, sizeof(desc));
1176 1177
        }

1178 1179 1180 1181
        if (tx_desc_get_used(desc)) {
            s->regs[GEM_TXSTATUS] |= GEM_TXSTATUS_USED;
            s->regs[GEM_ISR] |= GEM_INT_TXUSED & ~(s->regs[GEM_IMR]);
            gem_update_int_status(s);
1182
        }
1183
    }
1184 1185
}

1186
static void gem_phy_reset(CadenceGEMState *s)
1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
{
    memset(&s->phy_regs[0], 0, sizeof(s->phy_regs));
    s->phy_regs[PHY_REG_CONTROL] = 0x1140;
    s->phy_regs[PHY_REG_STATUS] = 0x7969;
    s->phy_regs[PHY_REG_PHYID1] = 0x0141;
    s->phy_regs[PHY_REG_PHYID2] = 0x0CC2;
    s->phy_regs[PHY_REG_ANEGADV] = 0x01E1;
    s->phy_regs[PHY_REG_LINKPABIL] = 0xCDE1;
    s->phy_regs[PHY_REG_ANEGEXP] = 0x000F;
    s->phy_regs[PHY_REG_NEXTP] = 0x2001;
    s->phy_regs[PHY_REG_LINKPNEXTP] = 0x40E6;
    s->phy_regs[PHY_REG_100BTCTRL] = 0x0300;
    s->phy_regs[PHY_REG_1000BTSTAT] = 0x7C00;
    s->phy_regs[PHY_REG_EXTSTAT] = 0x3000;
    s->phy_regs[PHY_REG_PHYSPCFC_CTL] = 0x0078;
1202
    s->phy_regs[PHY_REG_PHYSPCFC_ST] = 0x7C00;
1203 1204 1205 1206 1207 1208 1209 1210 1211 1212
    s->phy_regs[PHY_REG_EXT_PHYSPCFC_CTL] = 0x0C60;
    s->phy_regs[PHY_REG_LED] = 0x4100;
    s->phy_regs[PHY_REG_EXT_PHYSPCFC_CTL2] = 0x000A;
    s->phy_regs[PHY_REG_EXT_PHYSPCFC_ST] = 0x848B;

    phy_update_link(s);
}

static void gem_reset(DeviceState *d)
{
1213
    int i;
1214
    CadenceGEMState *s = CADENCE_GEM(d);
1215
    const uint8_t *a;
1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227

    DB_PRINT("\n");

    /* Set post reset register values */
    memset(&s->regs[0], 0, sizeof(s->regs));
    s->regs[GEM_NWCFG] = 0x00080000;
    s->regs[GEM_NWSTATUS] = 0x00000006;
    s->regs[GEM_DMACFG] = 0x00020784;
    s->regs[GEM_IMR] = 0x07ffffff;
    s->regs[GEM_TXPAUSE] = 0x0000ffff;
    s->regs[GEM_TXPARTIALSF] = 0x000003ff;
    s->regs[GEM_RXPARTIALSF] = 0x000003ff;
1228
    s->regs[GEM_MODID] = s->revision;
1229 1230 1231 1232 1233
    s->regs[GEM_DESCONF] = 0x02500111;
    s->regs[GEM_DESCONF2] = 0x2ab13fff;
    s->regs[GEM_DESCONF5] = 0x002f2145;
    s->regs[GEM_DESCONF6] = 0x00000200;

1234 1235 1236 1237 1238
    /* Set MAC address */
    a = &s->conf.macaddr.a[0];
    s->regs[GEM_SPADDR1LO] = a[0] | (a[1] << 8) | (a[2] << 16) | (a[3] << 24);
    s->regs[GEM_SPADDR1HI] = a[4] | (a[5] << 8);

1239 1240 1241 1242
    for (i = 0; i < 4; i++) {
        s->sar_active[i] = false;
    }

1243 1244 1245 1246 1247
    gem_phy_reset(s);

    gem_update_int_status(s);
}

1248
static uint16_t gem_phy_read(CadenceGEMState *s, unsigned reg_num)
1249 1250 1251 1252 1253
{
    DB_PRINT("reg: %d value: 0x%04x\n", reg_num, s->phy_regs[reg_num]);
    return s->phy_regs[reg_num];
}

1254
static void gem_phy_write(CadenceGEMState *s, unsigned reg_num, uint16_t val)
1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
{
    DB_PRINT("reg: %d value: 0x%04x\n", reg_num, val);

    switch (reg_num) {
    case PHY_REG_CONTROL:
        if (val & PHY_REG_CONTROL_RST) {
            /* Phy reset */
            gem_phy_reset(s);
            val &= ~(PHY_REG_CONTROL_RST | PHY_REG_CONTROL_LOOP);
            s->phy_loop = 0;
        }
        if (val & PHY_REG_CONTROL_ANEG) {
            /* Complete autonegotiation immediately */
            val &= ~PHY_REG_CONTROL_ANEG;
            s->phy_regs[PHY_REG_STATUS] |= PHY_REG_STATUS_ANEGCMPL;
        }
        if (val & PHY_REG_CONTROL_LOOP) {
            DB_PRINT("PHY placed in loopback\n");
            s->phy_loop = 1;
        } else {
            s->phy_loop = 0;
        }
        break;
    }
    s->phy_regs[reg_num] = val;
}

/*
 * gem_read32:
 * Read a GEM register.
 */
A
Avi Kivity 已提交
1286
static uint64_t gem_read(void *opaque, hwaddr offset, unsigned size)
1287
{
1288
    CadenceGEMState *s;
1289
    uint32_t retval;
1290
    s = (CadenceGEMState *)opaque;
1291 1292 1293 1294

    offset >>= 2;
    retval = s->regs[offset];

1295
    DB_PRINT("offset: 0x%04x read: 0x%08x\n", (unsigned)offset*4, retval);
1296 1297 1298

    switch (offset) {
    case GEM_ISR:
1299
        DB_PRINT("lowering irqs on ISR read\n");
1300
        /* The interrupts get updated at the end of the function. */
1301 1302 1303 1304 1305 1306
        break;
    case GEM_PHYMNTNC:
        if (retval & GEM_PHYMNTNC_OP_R) {
            uint32_t phy_addr, reg_num;

            phy_addr = (retval & GEM_PHYMNTNC_ADDR) >> GEM_PHYMNTNC_ADDR_SHFT;
1307
            if (phy_addr == BOARD_PHY_ADDRESS || phy_addr == 0) {
1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
                reg_num = (retval & GEM_PHYMNTNC_REG) >> GEM_PHYMNTNC_REG_SHIFT;
                retval &= 0xFFFF0000;
                retval |= gem_phy_read(s, reg_num);
            } else {
                retval |= 0xFFFF; /* No device at this address */
            }
        }
        break;
    }

    /* Squash read to clear bits */
    s->regs[offset] &= ~(s->regs_rtc[offset]);

    /* Do not provide write only bits */
    retval &= ~(s->regs_wo[offset]);

    DB_PRINT("0x%08x\n", retval);
1325
    gem_update_int_status(s);
1326 1327 1328 1329 1330 1331 1332
    return retval;
}

/*
 * gem_write32:
 * Write a GEM register.
 */
A
Avi Kivity 已提交
1333
static void gem_write(void *opaque, hwaddr offset, uint64_t val,
1334 1335
        unsigned size)
{
1336
    CadenceGEMState *s = (CadenceGEMState *)opaque;
1337
    uint32_t readonly;
1338
    int i;
1339

1340
    DB_PRINT("offset: 0x%04x write: 0x%08x ", (unsigned)offset, (unsigned)val);
1341 1342 1343 1344
    offset >>= 2;

    /* Squash bits which are read only in write value */
    val &= ~(s->regs_ro[offset]);
1345 1346
    /* Preserve (only) bits which are read only and wtc in register */
    readonly = s->regs[offset] & (s->regs_ro[offset] | s->regs_w1c[offset]);
1347 1348

    /* Copy register write to backing store */
1349 1350 1351 1352
    s->regs[offset] = (val & ~s->regs_w1c[offset]) | readonly;

    /* do w1c */
    s->regs[offset] &= ~(s->regs_w1c[offset] & val);
1353 1354 1355 1356

    /* Handle register write side effects */
    switch (offset) {
    case GEM_NWCTRL:
1357
        if (val & GEM_NWCTRL_RXENA) {
1358 1359 1360
            for (i = 0; i < s->num_priority_queues; ++i) {
                gem_get_rx_desc(s, i);
            }
1361
        }
1362 1363 1364 1365 1366
        if (val & GEM_NWCTRL_TXSTART) {
            gem_transmit(s);
        }
        if (!(val & GEM_NWCTRL_TXENA)) {
            /* Reset to start of Q when transmit disabled. */
1367 1368 1369
            for (i = 0; i < s->num_priority_queues; i++) {
                s->tx_desc_addr[i] = s->regs[GEM_TXQBASE];
            }
1370
        }
1371
        if (gem_can_receive(qemu_get_queue(s->nic))) {
1372 1373
            qemu_flush_queued_packets(qemu_get_queue(s->nic));
        }
1374 1375 1376 1377 1378 1379
        break;

    case GEM_TXSTATUS:
        gem_update_int_status(s);
        break;
    case GEM_RXQBASE:
1380
        s->rx_desc_addr[0] = val;
1381
        break;
1382
    case GEM_RECEIVE_Q1_PTR ... GEM_RECEIVE_Q7_PTR:
1383 1384
        s->rx_desc_addr[offset - GEM_RECEIVE_Q1_PTR + 1] = val;
        break;
1385
    case GEM_TXQBASE:
1386
        s->tx_desc_addr[0] = val;
1387
        break;
1388
    case GEM_TRANSMIT_Q1_PTR ... GEM_TRANSMIT_Q7_PTR:
1389 1390
        s->tx_desc_addr[offset - GEM_TRANSMIT_Q1_PTR + 1] = val;
        break;
1391 1392 1393 1394 1395 1396 1397
    case GEM_RXSTATUS:
        gem_update_int_status(s);
        break;
    case GEM_IER:
        s->regs[GEM_IMR] &= ~val;
        gem_update_int_status(s);
        break;
1398 1399 1400 1401
    case GEM_INT_Q1_ENABLE ... GEM_INT_Q7_ENABLE:
        s->regs[GEM_INT_Q1_MASK + offset - GEM_INT_Q1_ENABLE] &= ~val;
        gem_update_int_status(s);
        break;
1402 1403 1404 1405
    case GEM_IDR:
        s->regs[GEM_IMR] |= val;
        gem_update_int_status(s);
        break;
1406 1407 1408 1409
    case GEM_INT_Q1_DISABLE ... GEM_INT_Q7_DISABLE:
        s->regs[GEM_INT_Q1_MASK + offset - GEM_INT_Q1_DISABLE] |= val;
        gem_update_int_status(s);
        break;
1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421
    case GEM_SPADDR1LO:
    case GEM_SPADDR2LO:
    case GEM_SPADDR3LO:
    case GEM_SPADDR4LO:
        s->sar_active[(offset - GEM_SPADDR1LO) / 2] = false;
        break;
    case GEM_SPADDR1HI:
    case GEM_SPADDR2HI:
    case GEM_SPADDR3HI:
    case GEM_SPADDR4HI:
        s->sar_active[(offset - GEM_SPADDR1HI) / 2] = true;
        break;
1422 1423 1424 1425 1426
    case GEM_PHYMNTNC:
        if (val & GEM_PHYMNTNC_OP_W) {
            uint32_t phy_addr, reg_num;

            phy_addr = (val & GEM_PHYMNTNC_ADDR) >> GEM_PHYMNTNC_ADDR_SHFT;
1427
            if (phy_addr == BOARD_PHY_ADDRESS || phy_addr == 0) {
1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443
                reg_num = (val & GEM_PHYMNTNC_REG) >> GEM_PHYMNTNC_REG_SHIFT;
                gem_phy_write(s, reg_num, val);
            }
        }
        break;
    }

    DB_PRINT("newval: 0x%08x\n", s->regs[offset]);
}

static const MemoryRegionOps gem_ops = {
    .read = gem_read,
    .write = gem_write,
    .endianness = DEVICE_LITTLE_ENDIAN,
};

1444
static void gem_set_link(NetClientState *nc)
1445
{
1446 1447
    CadenceGEMState *s = qemu_get_nic_opaque(nc);

1448
    DB_PRINT("\n");
1449 1450
    phy_update_link(s);
    gem_update_int_status(s);
1451 1452 1453
}

static NetClientInfo net_gem_info = {
1454
    .type = NET_CLIENT_DRIVER_NIC,
1455 1456 1457 1458 1459 1460
    .size = sizeof(NICState),
    .can_receive = gem_can_receive,
    .receive = gem_receive,
    .link_status_changed = gem_set_link,
};

1461
static void gem_realize(DeviceState *dev, Error **errp)
1462
{
1463
    CadenceGEMState *s = CADENCE_GEM(dev);
1464
    int i;
1465

1466 1467 1468 1469 1470
    if (s->num_priority_queues == 0 ||
        s->num_priority_queues > MAX_PRIORITY_QUEUES) {
        error_setg(errp, "Invalid num-priority-queues value: %" PRIx8,
                   s->num_priority_queues);
        return;
1471 1472 1473 1474 1475 1476 1477 1478
    } else if (s->num_type1_screeners > MAX_TYPE1_SCREENERS) {
        error_setg(errp, "Invalid num-type1-screeners value: %" PRIx8,
                   s->num_type1_screeners);
        return;
    } else if (s->num_type2_screeners > MAX_TYPE2_SCREENERS) {
        error_setg(errp, "Invalid num-type2-screeners value: %" PRIx8,
                   s->num_type2_screeners);
        return;
1479 1480
    }

1481 1482 1483
    for (i = 0; i < s->num_priority_queues; ++i) {
        sysbus_init_irq(SYS_BUS_DEVICE(dev), &s->irq[i]);
    }
1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495

    qemu_macaddr_default_if_unset(&s->conf.macaddr);

    s->nic = qemu_new_nic(&net_gem_info, &s->conf,
                          object_get_typename(OBJECT(dev)), dev->id, s);
}

static void gem_init(Object *obj)
{
    CadenceGEMState *s = CADENCE_GEM(obj);
    DeviceState *dev = DEVICE(obj);

1496 1497 1498
    DB_PRINT("\n");

    gem_init_register_masks(s);
1499 1500
    memory_region_init_io(&s->iomem, OBJECT(s), &gem_ops, s,
                          "enet", sizeof(s->regs));
1501

1502
    sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->iomem);
1503 1504 1505 1506
}

static const VMStateDescription vmstate_cadence_gem = {
    .name = "cadence_gem",
1507 1508
    .version_id = 4,
    .minimum_version_id = 4,
1509
    .fields = (VMStateField[]) {
1510 1511 1512
        VMSTATE_UINT32_ARRAY(regs, CadenceGEMState, CADENCE_GEM_MAXREG),
        VMSTATE_UINT16_ARRAY(phy_regs, CadenceGEMState, 32),
        VMSTATE_UINT8(phy_loop, CadenceGEMState),
1513 1514 1515 1516
        VMSTATE_UINT32_ARRAY(rx_desc_addr, CadenceGEMState,
                             MAX_PRIORITY_QUEUES),
        VMSTATE_UINT32_ARRAY(tx_desc_addr, CadenceGEMState,
                             MAX_PRIORITY_QUEUES),
1517
        VMSTATE_BOOL_ARRAY(sar_active, CadenceGEMState, 4),
1518
        VMSTATE_END_OF_LIST(),
1519 1520 1521 1522
    }
};

static Property gem_properties[] = {
1523
    DEFINE_NIC_PROPERTIES(CadenceGEMState, conf),
1524 1525
    DEFINE_PROP_UINT32("revision", CadenceGEMState, revision,
                       GEM_MODID_VALUE),
1526 1527
    DEFINE_PROP_UINT8("num-priority-queues", CadenceGEMState,
                      num_priority_queues, 1),
1528 1529 1530 1531
    DEFINE_PROP_UINT8("num-type1-screeners", CadenceGEMState,
                      num_type1_screeners, 4),
    DEFINE_PROP_UINT8("num-type2-screeners", CadenceGEMState,
                      num_type2_screeners, 4),
1532 1533 1534 1535 1536 1537 1538
    DEFINE_PROP_END_OF_LIST(),
};

static void gem_class_init(ObjectClass *klass, void *data)
{
    DeviceClass *dc = DEVICE_CLASS(klass);

1539
    dc->realize = gem_realize;
1540 1541 1542 1543 1544
    dc->props = gem_properties;
    dc->vmsd = &vmstate_cadence_gem;
    dc->reset = gem_reset;
}

1545
static const TypeInfo gem_info = {
A
Andreas Färber 已提交
1546
    .name  = TYPE_CADENCE_GEM,
1547
    .parent = TYPE_SYS_BUS_DEVICE,
1548
    .instance_size  = sizeof(CadenceGEMState),
1549
    .instance_init = gem_init,
A
Andreas Färber 已提交
1550
    .class_init = gem_class_init,
1551 1552 1553 1554 1555 1556 1557 1558
};

static void gem_register_types(void)
{
    type_register_static(&gem_info);
}

type_init(gem_register_types)