cadence_gem.c 42.1 KB
Newer Older
1
/*
2
 * QEMU Cadence GEM emulation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
 *
 * Copyright (c) 2011 Xilinx, Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */

P
Peter Maydell 已提交
25
#include "qemu/osdep.h"
26 27
#include <zlib.h> /* For crc32 */

28
#include "hw/net/cadence_gem.h"
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
#include "net/checksum.h"

#ifdef CADENCE_GEM_ERR_DEBUG
#define DB_PRINT(...) do { \
    fprintf(stderr,  ": %s: ", __func__); \
    fprintf(stderr, ## __VA_ARGS__); \
    } while (0);
#else
    #define DB_PRINT(...)
#endif

#define GEM_NWCTRL        (0x00000000/4) /* Network Control reg */
#define GEM_NWCFG         (0x00000004/4) /* Network Config reg */
#define GEM_NWSTATUS      (0x00000008/4) /* Network Status reg */
#define GEM_USERIO        (0x0000000C/4) /* User IO reg */
#define GEM_DMACFG        (0x00000010/4) /* DMA Control reg */
#define GEM_TXSTATUS      (0x00000014/4) /* TX Status reg */
#define GEM_RXQBASE       (0x00000018/4) /* RX Q Base address reg */
#define GEM_TXQBASE       (0x0000001C/4) /* TX Q Base address reg */
#define GEM_RXSTATUS      (0x00000020/4) /* RX Status reg */
#define GEM_ISR           (0x00000024/4) /* Interrupt Status reg */
#define GEM_IER           (0x00000028/4) /* Interrupt Enable reg */
#define GEM_IDR           (0x0000002C/4) /* Interrupt Disable reg */
#define GEM_IMR           (0x00000030/4) /* Interrupt Mask reg */
53
#define GEM_PHYMNTNC      (0x00000034/4) /* Phy Maintenance reg */
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
#define GEM_RXPAUSE       (0x00000038/4) /* RX Pause Time reg */
#define GEM_TXPAUSE       (0x0000003C/4) /* TX Pause Time reg */
#define GEM_TXPARTIALSF   (0x00000040/4) /* TX Partial Store and Forward */
#define GEM_RXPARTIALSF   (0x00000044/4) /* RX Partial Store and Forward */
#define GEM_HASHLO        (0x00000080/4) /* Hash Low address reg */
#define GEM_HASHHI        (0x00000084/4) /* Hash High address reg */
#define GEM_SPADDR1LO     (0x00000088/4) /* Specific addr 1 low reg */
#define GEM_SPADDR1HI     (0x0000008C/4) /* Specific addr 1 high reg */
#define GEM_SPADDR2LO     (0x00000090/4) /* Specific addr 2 low reg */
#define GEM_SPADDR2HI     (0x00000094/4) /* Specific addr 2 high reg */
#define GEM_SPADDR3LO     (0x00000098/4) /* Specific addr 3 low reg */
#define GEM_SPADDR3HI     (0x0000009C/4) /* Specific addr 3 high reg */
#define GEM_SPADDR4LO     (0x000000A0/4) /* Specific addr 4 low reg */
#define GEM_SPADDR4HI     (0x000000A4/4) /* Specific addr 4 high reg */
#define GEM_TIDMATCH1     (0x000000A8/4) /* Type ID1 Match reg */
#define GEM_TIDMATCH2     (0x000000AC/4) /* Type ID2 Match reg */
#define GEM_TIDMATCH3     (0x000000B0/4) /* Type ID3 Match reg */
#define GEM_TIDMATCH4     (0x000000B4/4) /* Type ID4 Match reg */
#define GEM_WOLAN         (0x000000B8/4) /* Wake on LAN reg */
#define GEM_IPGSTRETCH    (0x000000BC/4) /* IPG Stretch reg */
#define GEM_SVLAN         (0x000000C0/4) /* Stacked VLAN reg */
#define GEM_MODID         (0x000000FC/4) /* Module ID reg */
#define GEM_OCTTXLO       (0x00000100/4) /* Octects transmitted Low reg */
#define GEM_OCTTXHI       (0x00000104/4) /* Octects transmitted High reg */
#define GEM_TXCNT         (0x00000108/4) /* Error-free Frames transmitted */
#define GEM_TXBCNT        (0x0000010C/4) /* Error-free Broadcast Frames */
#define GEM_TXMCNT        (0x00000110/4) /* Error-free Multicast Frame */
#define GEM_TXPAUSECNT    (0x00000114/4) /* Pause Frames Transmitted */
#define GEM_TX64CNT       (0x00000118/4) /* Error-free 64 TX */
#define GEM_TX65CNT       (0x0000011C/4) /* Error-free 65-127 TX */
#define GEM_TX128CNT      (0x00000120/4) /* Error-free 128-255 TX */
#define GEM_TX256CNT      (0x00000124/4) /* Error-free 256-511 */
#define GEM_TX512CNT      (0x00000128/4) /* Error-free 512-1023 TX */
#define GEM_TX1024CNT     (0x0000012C/4) /* Error-free 1024-1518 TX */
#define GEM_TX1519CNT     (0x00000130/4) /* Error-free larger than 1519 TX */
#define GEM_TXURUNCNT     (0x00000134/4) /* TX under run error counter */
#define GEM_SINGLECOLLCNT (0x00000138/4) /* Single Collision Frames */
#define GEM_MULTCOLLCNT   (0x0000013C/4) /* Multiple Collision Frames */
#define GEM_EXCESSCOLLCNT (0x00000140/4) /* Excessive Collision Frames */
#define GEM_LATECOLLCNT   (0x00000144/4) /* Late Collision Frames */
#define GEM_DEFERTXCNT    (0x00000148/4) /* Deferred Transmission Frames */
#define GEM_CSENSECNT     (0x0000014C/4) /* Carrier Sense Error Counter */
#define GEM_OCTRXLO       (0x00000150/4) /* Octects Received register Low */
#define GEM_OCTRXHI       (0x00000154/4) /* Octects Received register High */
#define GEM_RXCNT         (0x00000158/4) /* Error-free Frames Received */
#define GEM_RXBROADCNT    (0x0000015C/4) /* Error-free Broadcast Frames RX */
#define GEM_RXMULTICNT    (0x00000160/4) /* Error-free Multicast Frames RX */
#define GEM_RXPAUSECNT    (0x00000164/4) /* Pause Frames Received Counter */
#define GEM_RX64CNT       (0x00000168/4) /* Error-free 64 byte Frames RX */
#define GEM_RX65CNT       (0x0000016C/4) /* Error-free 65-127B Frames RX */
#define GEM_RX128CNT      (0x00000170/4) /* Error-free 128-255B Frames RX */
#define GEM_RX256CNT      (0x00000174/4) /* Error-free 256-512B Frames RX */
#define GEM_RX512CNT      (0x00000178/4) /* Error-free 512-1023B Frames RX */
#define GEM_RX1024CNT     (0x0000017C/4) /* Error-free 1024-1518B Frames RX */
#define GEM_RX1519CNT     (0x00000180/4) /* Error-free 1519-max Frames RX */
#define GEM_RXUNDERCNT    (0x00000184/4) /* Undersize Frames Received */
#define GEM_RXOVERCNT     (0x00000188/4) /* Oversize Frames Received */
#define GEM_RXJABCNT      (0x0000018C/4) /* Jabbers Received Counter */
#define GEM_RXFCSCNT      (0x00000190/4) /* Frame Check seq. Error Counter */
#define GEM_RXLENERRCNT   (0x00000194/4) /* Length Field Error Counter */
#define GEM_RXSYMERRCNT   (0x00000198/4) /* Symbol Error Counter */
#define GEM_RXALIGNERRCNT (0x0000019C/4) /* Alignment Error Counter */
#define GEM_RXRSCERRCNT   (0x000001A0/4) /* Receive Resource Error Counter */
#define GEM_RXORUNCNT     (0x000001A4/4) /* Receive Overrun Counter */
#define GEM_RXIPCSERRCNT  (0x000001A8/4) /* IP header Checksum Error Counter */
#define GEM_RXTCPCCNT     (0x000001AC/4) /* TCP Checksum Error Counter */
#define GEM_RXUDPCCNT     (0x000001B0/4) /* UDP Checksum Error Counter */

#define GEM_1588S         (0x000001D0/4) /* 1588 Timer Seconds */
#define GEM_1588NS        (0x000001D4/4) /* 1588 Timer Nanoseconds */
#define GEM_1588ADJ       (0x000001D8/4) /* 1588 Timer Adjust */
#define GEM_1588INC       (0x000001DC/4) /* 1588 Timer Increment */
#define GEM_PTPETXS       (0x000001E0/4) /* PTP Event Frame Transmitted (s) */
#define GEM_PTPETXNS      (0x000001E4/4) /* PTP Event Frame Transmitted (ns) */
#define GEM_PTPERXS       (0x000001E8/4) /* PTP Event Frame Received (s) */
#define GEM_PTPERXNS      (0x000001EC/4) /* PTP Event Frame Received (ns) */
#define GEM_PTPPTXS       (0x000001E0/4) /* PTP Peer Frame Transmitted (s) */
#define GEM_PTPPTXNS      (0x000001E4/4) /* PTP Peer Frame Transmitted (ns) */
#define GEM_PTPPRXS       (0x000001E8/4) /* PTP Peer Frame Received (s) */
#define GEM_PTPPRXNS      (0x000001EC/4) /* PTP Peer Frame Received (ns) */

/* Design Configuration Registers */
#define GEM_DESCONF       (0x00000280/4)
#define GEM_DESCONF2      (0x00000284/4)
#define GEM_DESCONF3      (0x00000288/4)
#define GEM_DESCONF4      (0x0000028C/4)
#define GEM_DESCONF5      (0x00000290/4)
#define GEM_DESCONF6      (0x00000294/4)
#define GEM_DESCONF7      (0x00000298/4)

/*****************************************/
#define GEM_NWCTRL_TXSTART     0x00000200 /* Transmit Enable */
#define GEM_NWCTRL_TXENA       0x00000008 /* Transmit Enable */
#define GEM_NWCTRL_RXENA       0x00000004 /* Receive Enable */
#define GEM_NWCTRL_LOCALLOOP   0x00000002 /* Local Loopback */

#define GEM_NWCFG_STRIP_FCS    0x00020000 /* Strip FCS field */
151
#define GEM_NWCFG_LERR_DISC    0x00010000 /* Discard RX frames with len err */
152 153 154 155 156 157 158
#define GEM_NWCFG_BUFF_OFST_M  0x0000C000 /* Receive buffer offset mask */
#define GEM_NWCFG_BUFF_OFST_S  14         /* Receive buffer offset shift */
#define GEM_NWCFG_UCAST_HASH   0x00000080 /* accept unicast if hash match */
#define GEM_NWCFG_MCAST_HASH   0x00000040 /* accept multicast if hash match */
#define GEM_NWCFG_BCAST_REJ    0x00000020 /* Reject broadcast packets */
#define GEM_NWCFG_PROMISC      0x00000010 /* Accept all packets */

159
#define GEM_DMACFG_RBUFSZ_M    0x00FF0000 /* DMA RX Buffer Size mask */
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
#define GEM_DMACFG_RBUFSZ_S    16         /* DMA RX Buffer Size shift */
#define GEM_DMACFG_RBUFSZ_MUL  64         /* DMA RX Buffer Size multiplier */
#define GEM_DMACFG_TXCSUM_OFFL 0x00000800 /* Transmit checksum offload */

#define GEM_TXSTATUS_TXCMPL    0x00000020 /* Transmit Complete */
#define GEM_TXSTATUS_USED      0x00000001 /* sw owned descriptor encountered */

#define GEM_RXSTATUS_FRMRCVD   0x00000002 /* Frame received */
#define GEM_RXSTATUS_NOBUF     0x00000001 /* Buffer unavailable */

/* GEM_ISR GEM_IER GEM_IDR GEM_IMR */
#define GEM_INT_TXCMPL        0x00000080 /* Transmit Complete */
#define GEM_INT_TXUSED         0x00000008
#define GEM_INT_RXUSED         0x00000004
#define GEM_INT_RXCMPL        0x00000002

#define GEM_PHYMNTNC_OP_R      0x20000000 /* read operation */
#define GEM_PHYMNTNC_OP_W      0x10000000 /* write operation */
#define GEM_PHYMNTNC_ADDR      0x0F800000 /* Address bits */
#define GEM_PHYMNTNC_ADDR_SHFT 23
#define GEM_PHYMNTNC_REG       0x007C0000 /* register bits */
#define GEM_PHYMNTNC_REG_SHIFT 18

/* Marvell PHY definitions */
#define BOARD_PHY_ADDRESS    23 /* PHY address we will emulate a device at */

#define PHY_REG_CONTROL      0
#define PHY_REG_STATUS       1
#define PHY_REG_PHYID1       2
#define PHY_REG_PHYID2       3
#define PHY_REG_ANEGADV      4
#define PHY_REG_LINKPABIL    5
#define PHY_REG_ANEGEXP      6
#define PHY_REG_NEXTP        7
#define PHY_REG_LINKPNEXTP   8
#define PHY_REG_100BTCTRL    9
#define PHY_REG_1000BTSTAT   10
#define PHY_REG_EXTSTAT      15
#define PHY_REG_PHYSPCFC_CTL 16
#define PHY_REG_PHYSPCFC_ST  17
#define PHY_REG_INT_EN       18
#define PHY_REG_INT_ST       19
#define PHY_REG_EXT_PHYSPCFC_CTL  20
#define PHY_REG_RXERR        21
#define PHY_REG_EACD         22
#define PHY_REG_LED          24
#define PHY_REG_LED_OVRD     25
#define PHY_REG_EXT_PHYSPCFC_CTL2 26
#define PHY_REG_EXT_PHYSPCFC_ST   27
#define PHY_REG_CABLE_DIAG   28

#define PHY_REG_CONTROL_RST  0x8000
#define PHY_REG_CONTROL_LOOP 0x4000
#define PHY_REG_CONTROL_ANEG 0x1000

#define PHY_REG_STATUS_LINK     0x0004
#define PHY_REG_STATUS_ANEGCMPL 0x0020

#define PHY_REG_INT_ST_ANEGCMPL 0x0800
#define PHY_REG_INT_ST_LINKC    0x0400
#define PHY_REG_INT_ST_ENERGY   0x0010

/***********************************************************************/
223 224 225 226 227 228 229
#define GEM_RX_REJECT                   (-1)
#define GEM_RX_PROMISCUOUS_ACCEPT       (-2)
#define GEM_RX_BROADCAST_ACCEPT         (-3)
#define GEM_RX_MULTICAST_HASH_ACCEPT    (-4)
#define GEM_RX_UNICAST_HASH_ACCEPT      (-5)

#define GEM_RX_SAR_ACCEPT               0
230 231 232 233 234 235 236 237 238 239 240 241

/***********************************************************************/

#define DESC_1_USED 0x80000000
#define DESC_1_LENGTH 0x00001FFF

#define DESC_1_TX_WRAP 0x40000000
#define DESC_1_TX_LAST 0x00008000

#define DESC_0_RX_WRAP 0x00000002
#define DESC_0_RX_OWNERSHIP 0x00000001

242 243
#define R_DESC_1_RX_SAR_SHIFT           25
#define R_DESC_1_RX_SAR_LENGTH          2
244
#define R_DESC_1_RX_SAR_MATCH           (1 << 27)
245 246 247 248
#define R_DESC_1_RX_UNICAST_HASH        (1 << 29)
#define R_DESC_1_RX_MULTICAST_HASH      (1 << 30)
#define R_DESC_1_RX_BROADCAST           (1 << 31)

249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
#define DESC_1_RX_SOF 0x00004000
#define DESC_1_RX_EOF 0x00008000

static inline unsigned tx_desc_get_buffer(unsigned *desc)
{
    return desc[0];
}

static inline unsigned tx_desc_get_used(unsigned *desc)
{
    return (desc[1] & DESC_1_USED) ? 1 : 0;
}

static inline void tx_desc_set_used(unsigned *desc)
{
    desc[1] |= DESC_1_USED;
}

static inline unsigned tx_desc_get_wrap(unsigned *desc)
{
    return (desc[1] & DESC_1_TX_WRAP) ? 1 : 0;
}

static inline unsigned tx_desc_get_last(unsigned *desc)
{
    return (desc[1] & DESC_1_TX_LAST) ? 1 : 0;
}

277 278 279 280 281
static inline void tx_desc_set_last(unsigned *desc)
{
    desc[1] |= DESC_1_TX_LAST;
}

282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
static inline unsigned tx_desc_get_length(unsigned *desc)
{
    return desc[1] & DESC_1_LENGTH;
}

static inline void print_gem_tx_desc(unsigned *desc)
{
    DB_PRINT("TXDESC:\n");
    DB_PRINT("bufaddr: 0x%08x\n", *desc);
    DB_PRINT("used_hw: %d\n", tx_desc_get_used(desc));
    DB_PRINT("wrap:    %d\n", tx_desc_get_wrap(desc));
    DB_PRINT("last:    %d\n", tx_desc_get_last(desc));
    DB_PRINT("length:  %d\n", tx_desc_get_length(desc));
}

static inline unsigned rx_desc_get_buffer(unsigned *desc)
{
    return desc[0] & ~0x3UL;
}

static inline unsigned rx_desc_get_wrap(unsigned *desc)
{
    return desc[0] & DESC_0_RX_WRAP ? 1 : 0;
}

static inline unsigned rx_desc_get_ownership(unsigned *desc)
{
    return desc[0] & DESC_0_RX_OWNERSHIP ? 1 : 0;
}

static inline void rx_desc_set_ownership(unsigned *desc)
{
    desc[0] |= DESC_0_RX_OWNERSHIP;
}

static inline void rx_desc_set_sof(unsigned *desc)
{
    desc[1] |= DESC_1_RX_SOF;
}

static inline void rx_desc_set_eof(unsigned *desc)
{
    desc[1] |= DESC_1_RX_EOF;
}

static inline void rx_desc_set_length(unsigned *desc, unsigned len)
{
    desc[1] &= ~DESC_1_LENGTH;
    desc[1] |= len;
}

333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
static inline void rx_desc_set_broadcast(unsigned *desc)
{
    desc[1] |= R_DESC_1_RX_BROADCAST;
}

static inline void rx_desc_set_unicast_hash(unsigned *desc)
{
    desc[1] |= R_DESC_1_RX_UNICAST_HASH;
}

static inline void rx_desc_set_multicast_hash(unsigned *desc)
{
    desc[1] |= R_DESC_1_RX_MULTICAST_HASH;
}

static inline void rx_desc_set_sar(unsigned *desc, int sar_idx)
{
    desc[1] = deposit32(desc[1], R_DESC_1_RX_SAR_SHIFT, R_DESC_1_RX_SAR_LENGTH,
                        sar_idx);
352
    desc[1] |= R_DESC_1_RX_SAR_MATCH;
353 354
}

355
/* The broadcast MAC address: 0xFFFFFFFFFFFF */
356
static const uint8_t broadcast_addr[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
357 358 359 360 361 362

/*
 * gem_init_register_masks:
 * One time initialization.
 * Set masks to identify which register bits have magical clear properties
 */
363
static void gem_init_register_masks(CadenceGEMState *s)
364
{
365
    /* Mask of register bits which are read only */
366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
    memset(&s->regs_ro[0], 0, sizeof(s->regs_ro));
    s->regs_ro[GEM_NWCTRL]   = 0xFFF80000;
    s->regs_ro[GEM_NWSTATUS] = 0xFFFFFFFF;
    s->regs_ro[GEM_DMACFG]   = 0xFE00F000;
    s->regs_ro[GEM_TXSTATUS] = 0xFFFFFE08;
    s->regs_ro[GEM_RXQBASE]  = 0x00000003;
    s->regs_ro[GEM_TXQBASE]  = 0x00000003;
    s->regs_ro[GEM_RXSTATUS] = 0xFFFFFFF0;
    s->regs_ro[GEM_ISR]      = 0xFFFFFFFF;
    s->regs_ro[GEM_IMR]      = 0xFFFFFFFF;
    s->regs_ro[GEM_MODID]    = 0xFFFFFFFF;

    /* Mask of register bits which are clear on read */
    memset(&s->regs_rtc[0], 0, sizeof(s->regs_rtc));
    s->regs_rtc[GEM_ISR]      = 0xFFFFFFFF;

    /* Mask of register bits which are write 1 to clear */
    memset(&s->regs_w1c[0], 0, sizeof(s->regs_w1c));
    s->regs_w1c[GEM_TXSTATUS] = 0x000001F7;
    s->regs_w1c[GEM_RXSTATUS] = 0x0000000F;

    /* Mask of register bits which are write only */
    memset(&s->regs_wo[0], 0, sizeof(s->regs_wo));
    s->regs_wo[GEM_NWCTRL]   = 0x00073E60;
    s->regs_wo[GEM_IER]      = 0x07FFFFFF;
    s->regs_wo[GEM_IDR]      = 0x07FFFFFF;
}

/*
 * phy_update_link:
 * Make the emulated PHY link state match the QEMU "interface" state.
 */
398
static void phy_update_link(CadenceGEMState *s)
399
{
J
Jason Wang 已提交
400
    DB_PRINT("down %d\n", qemu_get_queue(s->nic)->link_down);
401 402

    /* Autonegotiation status mirrors link status.  */
J
Jason Wang 已提交
403
    if (qemu_get_queue(s->nic)->link_down) {
404 405 406 407 408 409 410 411 412 413 414 415
        s->phy_regs[PHY_REG_STATUS] &= ~(PHY_REG_STATUS_ANEGCMPL |
                                         PHY_REG_STATUS_LINK);
        s->phy_regs[PHY_REG_INT_ST] |= PHY_REG_INT_ST_LINKC;
    } else {
        s->phy_regs[PHY_REG_STATUS] |= (PHY_REG_STATUS_ANEGCMPL |
                                         PHY_REG_STATUS_LINK);
        s->phy_regs[PHY_REG_INT_ST] |= (PHY_REG_INT_ST_LINKC |
                                        PHY_REG_INT_ST_ANEGCMPL |
                                        PHY_REG_INT_ST_ENERGY);
    }
}

416
static int gem_can_receive(NetClientState *nc)
417
{
418
    CadenceGEMState *s;
419

J
Jason Wang 已提交
420
    s = qemu_get_nic_opaque(nc);
421 422 423

    /* Do nothing if receive is not enabled. */
    if (!(s->regs[GEM_NWCTRL] & GEM_NWCTRL_RXENA)) {
424 425 426 427
        if (s->can_rx_state != 1) {
            s->can_rx_state = 1;
            DB_PRINT("can't receive - no enable\n");
        }
428 429 430
        return 0;
    }

431 432 433 434 435 436 437 438 439
    if (rx_desc_get_ownership(s->rx_desc) == 1) {
        if (s->can_rx_state != 2) {
            s->can_rx_state = 2;
            DB_PRINT("can't receive - busy buffer descriptor 0x%x\n",
                     s->rx_desc_addr);
        }
        return 0;
    }

440 441 442 443
    if (s->can_rx_state != 0) {
        s->can_rx_state = 0;
        DB_PRINT("can receive 0x%x\n", s->rx_desc_addr);
    }
444 445 446 447 448 449 450
    return 1;
}

/*
 * gem_update_int_status:
 * Raise or lower interrupt based on current status.
 */
451
static void gem_update_int_status(CadenceGEMState *s)
452 453 454 455 456 457 458 459 460 461 462
{
    if (s->regs[GEM_ISR]) {
        DB_PRINT("asserting int. (0x%08x)\n", s->regs[GEM_ISR]);
        qemu_set_irq(s->irq, 1);
    }
}

/*
 * gem_receive_updatestats:
 * Increment receive statistics.
 */
463
static void gem_receive_updatestats(CadenceGEMState *s, const uint8_t *packet,
464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
                                    unsigned bytes)
{
    uint64_t octets;

    /* Total octets (bytes) received */
    octets = ((uint64_t)(s->regs[GEM_OCTRXLO]) << 32) |
             s->regs[GEM_OCTRXHI];
    octets += bytes;
    s->regs[GEM_OCTRXLO] = octets >> 32;
    s->regs[GEM_OCTRXHI] = octets;

    /* Error-free Frames received */
    s->regs[GEM_RXCNT]++;

    /* Error-free Broadcast Frames counter */
    if (!memcmp(packet, broadcast_addr, 6)) {
        s->regs[GEM_RXBROADCNT]++;
    }

    /* Error-free Multicast Frames counter */
    if (packet[0] == 0x01) {
        s->regs[GEM_RXMULTICNT]++;
    }

    if (bytes <= 64) {
        s->regs[GEM_RX64CNT]++;
    } else if (bytes <= 127) {
        s->regs[GEM_RX65CNT]++;
    } else if (bytes <= 255) {
        s->regs[GEM_RX128CNT]++;
    } else if (bytes <= 511) {
        s->regs[GEM_RX256CNT]++;
    } else if (bytes <= 1023) {
        s->regs[GEM_RX512CNT]++;
    } else if (bytes <= 1518) {
        s->regs[GEM_RX1024CNT]++;
    } else {
        s->regs[GEM_RX1519CNT]++;
    }
}

/*
 * Get the MAC Address bit from the specified position
 */
static unsigned get_bit(const uint8_t *mac, unsigned bit)
{
    unsigned byte;

    byte = mac[bit / 8];
    byte >>= (bit & 0x7);
    byte &= 1;

    return byte;
}

/*
 * Calculate a GEM MAC Address hash index
 */
static unsigned calc_mac_hash(const uint8_t *mac)
{
    int index_bit, mac_bit;
    unsigned hash_index;

    hash_index = 0;
    mac_bit = 5;
    for (index_bit = 5; index_bit >= 0; index_bit--) {
        hash_index |= (get_bit(mac,  mac_bit) ^
                               get_bit(mac, mac_bit + 6) ^
                               get_bit(mac, mac_bit + 12) ^
                               get_bit(mac, mac_bit + 18) ^
                               get_bit(mac, mac_bit + 24) ^
                               get_bit(mac, mac_bit + 30) ^
                               get_bit(mac, mac_bit + 36) ^
                               get_bit(mac, mac_bit + 42)) << index_bit;
        mac_bit--;
    }

    return hash_index;
}

/*
 * gem_mac_address_filter:
 * Accept or reject this destination address?
 * Returns:
 * GEM_RX_REJECT: reject
549 550 551 552
 * >= 0: Specific address accept (which matched SAR is returned)
 * others for various other modes of accept:
 * GEM_RM_PROMISCUOUS_ACCEPT, GEM_RX_BROADCAST_ACCEPT,
 * GEM_RX_MULTICAST_HASH_ACCEPT or GEM_RX_UNICAST_HASH_ACCEPT
553
 */
554
static int gem_mac_address_filter(CadenceGEMState *s, const uint8_t *packet)
555 556 557 558 559 560
{
    uint8_t *gem_spaddr;
    int i;

    /* Promiscuous mode? */
    if (s->regs[GEM_NWCFG] & GEM_NWCFG_PROMISC) {
561
        return GEM_RX_PROMISCUOUS_ACCEPT;
562 563 564 565 566 567 568
    }

    if (!memcmp(packet, broadcast_addr, 6)) {
        /* Reject broadcast packets? */
        if (s->regs[GEM_NWCFG] & GEM_NWCFG_BCAST_REJ) {
            return GEM_RX_REJECT;
        }
569
        return GEM_RX_BROADCAST_ACCEPT;
570 571 572 573 574 575 576 577 578 579
    }

    /* Accept packets -w- hash match? */
    if ((packet[0] == 0x01 && (s->regs[GEM_NWCFG] & GEM_NWCFG_MCAST_HASH)) ||
        (packet[0] != 0x01 && (s->regs[GEM_NWCFG] & GEM_NWCFG_UCAST_HASH))) {
        unsigned hash_index;

        hash_index = calc_mac_hash(packet);
        if (hash_index < 32) {
            if (s->regs[GEM_HASHLO] & (1<<hash_index)) {
580 581
                return packet[0] == 0x01 ? GEM_RX_MULTICAST_HASH_ACCEPT :
                                           GEM_RX_UNICAST_HASH_ACCEPT;
582 583 584 585
            }
        } else {
            hash_index -= 32;
            if (s->regs[GEM_HASHHI] & (1<<hash_index)) {
586 587
                return packet[0] == 0x01 ? GEM_RX_MULTICAST_HASH_ACCEPT :
                                           GEM_RX_UNICAST_HASH_ACCEPT;
588 589 590 591 592 593
            }
        }
    }

    /* Check all 4 specific addresses */
    gem_spaddr = (uint8_t *)&(s->regs[GEM_SPADDR1LO]);
594
    for (i = 3; i >= 0; i--) {
595
        if (s->sar_active[i] && !memcmp(packet, gem_spaddr + 8 * i, 6)) {
596
            return GEM_RX_SAR_ACCEPT + i;
597 598 599 600 601 602 603
        }
    }

    /* No address match; reject the packet */
    return GEM_RX_REJECT;
}

604
static void gem_get_rx_desc(CadenceGEMState *s)
605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621
{
    DB_PRINT("read descriptor 0x%x\n", (unsigned)s->rx_desc_addr);
    /* read current descriptor */
    cpu_physical_memory_read(s->rx_desc_addr,
                             (uint8_t *)s->rx_desc, sizeof(s->rx_desc));

    /* Descriptor owned by software ? */
    if (rx_desc_get_ownership(s->rx_desc) == 1) {
        DB_PRINT("descriptor 0x%x owned by sw.\n",
                 (unsigned)s->rx_desc_addr);
        s->regs[GEM_RXSTATUS] |= GEM_RXSTATUS_NOBUF;
        s->regs[GEM_ISR] |= GEM_INT_RXUSED & ~(s->regs[GEM_IMR]);
        /* Handle interrupt consequences */
        gem_update_int_status(s);
    }
}

622 623 624 625
/*
 * gem_receive:
 * Fit a packet handed to us by QEMU into the receive descriptor ring.
 */
626
static ssize_t gem_receive(NetClientState *nc, const uint8_t *buf, size_t size)
627
{
628
    CadenceGEMState *s;
629 630 631 632
    unsigned   rxbufsize, bytes_to_copy;
    unsigned   rxbuf_offset;
    uint8_t    rxbuf[2048];
    uint8_t   *rxbuf_ptr;
633
    bool first_desc = true;
634
    int maf;
635

J
Jason Wang 已提交
636
    s = qemu_get_nic_opaque(nc);
637 638

    /* Is this destination MAC address "for us" ? */
639 640
    maf = gem_mac_address_filter(s, buf);
    if (maf == GEM_RX_REJECT) {
641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671
        return -1;
    }

    /* Discard packets with receive length error enabled ? */
    if (s->regs[GEM_NWCFG] & GEM_NWCFG_LERR_DISC) {
        unsigned type_len;

        /* Fish the ethertype / length field out of the RX packet */
        type_len = buf[12] << 8 | buf[13];
        /* It is a length field, not an ethertype */
        if (type_len < 0x600) {
            if (size < type_len) {
                /* discard */
                return -1;
            }
        }
    }

    /*
     * Determine configured receive buffer offset (probably 0)
     */
    rxbuf_offset = (s->regs[GEM_NWCFG] & GEM_NWCFG_BUFF_OFST_M) >>
                   GEM_NWCFG_BUFF_OFST_S;

    /* The configure size of each receive buffer.  Determines how many
     * buffers needed to hold this packet.
     */
    rxbufsize = ((s->regs[GEM_DMACFG] & GEM_DMACFG_RBUFSZ_M) >>
                 GEM_DMACFG_RBUFSZ_S) * GEM_DMACFG_RBUFSZ_MUL;
    bytes_to_copy = size;

672 673 674 675 676 677 678
    /* Hardware allows a zero value here but warns against it. To avoid QEMU
     * indefinite loops we enforce a minimum value here
     */
    if (rxbufsize < GEM_DMACFG_RBUFSZ_MUL) {
        rxbufsize = GEM_DMACFG_RBUFSZ_MUL;
    }

679 680 681 682 683 684 685 686
    /* Pad to minimum length. Assume FCS field is stripped, logic
     * below will increment it to the real minimum of 64 when
     * not FCS stripping
     */
    if (size < 60) {
        size = 60;
    }

687 688 689 690 691 692
    /* Strip of FCS field ? (usually yes) */
    if (s->regs[GEM_NWCFG] & GEM_NWCFG_STRIP_FCS) {
        rxbuf_ptr = (void *)buf;
    } else {
        unsigned crc_val;

693 694 695 696
        if (size > sizeof(rxbuf) - sizeof(crc_val)) {
            size = sizeof(rxbuf) - sizeof(crc_val);
        }
        bytes_to_copy = size;
697
        /* The application wants the FCS field, which QEMU does not provide.
698
         * We must try and calculate one.
699 700 701
         */

        memcpy(rxbuf, buf, size);
702
        memset(rxbuf + size, 0, sizeof(rxbuf) - size);
703 704
        rxbuf_ptr = rxbuf;
        crc_val = cpu_to_le32(crc32(0, rxbuf, MAX(size, 60)));
705
        memcpy(rxbuf + size, &crc_val, sizeof(crc_val));
706 707 708 709 710 711 712

        bytes_to_copy += 4;
        size += 4;
    }

    DB_PRINT("config bufsize: %d packet size: %ld\n", rxbufsize, size);

713
    while (bytes_to_copy) {
714 715 716
        /* Do nothing if receive is not enabled. */
        if (!gem_can_receive(nc)) {
            assert(!first_desc);
717 718 719 720
            return -1;
        }

        DB_PRINT("copy %d bytes to 0x%x\n", MIN(bytes_to_copy, rxbufsize),
721
                rx_desc_get_buffer(s->rx_desc));
722 723

        /* Copy packet data to emulated DMA buffer */
724
        cpu_physical_memory_write(rx_desc_get_buffer(s->rx_desc) + rxbuf_offset,
725 726
                                  rxbuf_ptr, MIN(bytes_to_copy, rxbufsize));
        rxbuf_ptr += MIN(bytes_to_copy, rxbufsize);
727
        bytes_to_copy -= MIN(bytes_to_copy, rxbufsize);
728 729 730

        /* Update the descriptor.  */
        if (first_desc) {
731
            rx_desc_set_sof(s->rx_desc);
732 733 734
            first_desc = false;
        }
        if (bytes_to_copy == 0) {
735 736
            rx_desc_set_eof(s->rx_desc);
            rx_desc_set_length(s->rx_desc, size);
737
        }
738
        rx_desc_set_ownership(s->rx_desc);
739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757

        switch (maf) {
        case GEM_RX_PROMISCUOUS_ACCEPT:
            break;
        case GEM_RX_BROADCAST_ACCEPT:
            rx_desc_set_broadcast(s->rx_desc);
            break;
        case GEM_RX_UNICAST_HASH_ACCEPT:
            rx_desc_set_unicast_hash(s->rx_desc);
            break;
        case GEM_RX_MULTICAST_HASH_ACCEPT:
            rx_desc_set_multicast_hash(s->rx_desc);
            break;
        case GEM_RX_REJECT:
            abort();
        default: /* SAR */
            rx_desc_set_sar(s->rx_desc, maf);
        }

758
        /* Descriptor write-back.  */
759
        cpu_physical_memory_write(s->rx_desc_addr,
760
                                  (uint8_t *)s->rx_desc, sizeof(s->rx_desc));
761

762
        /* Next descriptor */
763
        if (rx_desc_get_wrap(s->rx_desc)) {
764 765
            DB_PRINT("wrapping RX descriptor list\n");
            s->rx_desc_addr = s->regs[GEM_RXQBASE];
766
        } else {
767 768
            DB_PRINT("incrementing RX descriptor list\n");
            s->rx_desc_addr += 8;
769
        }
770
        gem_get_rx_desc(s);
771 772 773 774 775 776
    }

    /* Count it */
    gem_receive_updatestats(s, buf, size);

    s->regs[GEM_RXSTATUS] |= GEM_RXSTATUS_FRMRCVD;
777
    s->regs[GEM_ISR] |= GEM_INT_RXCMPL & ~(s->regs[GEM_IMR]);
778 779 780 781 782 783 784 785 786 787 788

    /* Handle interrupt consequences */
    gem_update_int_status(s);

    return size;
}

/*
 * gem_transmit_updatestats:
 * Increment transmit statistics.
 */
789
static void gem_transmit_updatestats(CadenceGEMState *s, const uint8_t *packet,
790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834
                                     unsigned bytes)
{
    uint64_t octets;

    /* Total octets (bytes) transmitted */
    octets = ((uint64_t)(s->regs[GEM_OCTTXLO]) << 32) |
             s->regs[GEM_OCTTXHI];
    octets += bytes;
    s->regs[GEM_OCTTXLO] = octets >> 32;
    s->regs[GEM_OCTTXHI] = octets;

    /* Error-free Frames transmitted */
    s->regs[GEM_TXCNT]++;

    /* Error-free Broadcast Frames counter */
    if (!memcmp(packet, broadcast_addr, 6)) {
        s->regs[GEM_TXBCNT]++;
    }

    /* Error-free Multicast Frames counter */
    if (packet[0] == 0x01) {
        s->regs[GEM_TXMCNT]++;
    }

    if (bytes <= 64) {
        s->regs[GEM_TX64CNT]++;
    } else if (bytes <= 127) {
        s->regs[GEM_TX65CNT]++;
    } else if (bytes <= 255) {
        s->regs[GEM_TX128CNT]++;
    } else if (bytes <= 511) {
        s->regs[GEM_TX256CNT]++;
    } else if (bytes <= 1023) {
        s->regs[GEM_TX512CNT]++;
    } else if (bytes <= 1518) {
        s->regs[GEM_TX1024CNT]++;
    } else {
        s->regs[GEM_TX1519CNT]++;
    }
}

/*
 * gem_transmit:
 * Fish packets out of the descriptor ring and feed them to QEMU
 */
835
static void gem_transmit(CadenceGEMState *s)
836 837
{
    unsigned    desc[2];
A
Avi Kivity 已提交
838
    hwaddr packet_desc_addr;
839 840 841 842 843 844 845 846 847 848 849
    uint8_t     tx_packet[2048];
    uint8_t     *p;
    unsigned    total_bytes;

    /* Do nothing if transmit is not enabled. */
    if (!(s->regs[GEM_NWCTRL] & GEM_NWCTRL_TXENA)) {
        return;
    }

    DB_PRINT("\n");

850
    /* The packet we will hand off to QEMU.
851 852 853 854 855 856 857 858
     * Packets scattered across multiple descriptors are gathered to this
     * one contiguous buffer first.
     */
    p = tx_packet;
    total_bytes = 0;

    /* read current descriptor */
    packet_desc_addr = s->tx_desc_addr;
859 860

    DB_PRINT("read descriptor 0x%" HWADDR_PRIx "\n", packet_desc_addr);
861
    cpu_physical_memory_read(packet_desc_addr,
862
                             (uint8_t *)desc, sizeof(desc));
863 864 865 866 867 868 869 870 871 872 873 874 875 876
    /* Handle all descriptors owned by hardware */
    while (tx_desc_get_used(desc) == 0) {

        /* Do nothing if transmit is not enabled. */
        if (!(s->regs[GEM_NWCTRL] & GEM_NWCTRL_TXENA)) {
            return;
        }
        print_gem_tx_desc(desc);

        /* The real hardware would eat this (and possibly crash).
         * For QEMU let's lend a helping hand.
         */
        if ((tx_desc_get_buffer(desc) == 0) ||
            (tx_desc_get_length(desc) == 0)) {
877 878
            DB_PRINT("Invalid TX descriptor @ 0x%x\n",
                     (unsigned)packet_desc_addr);
879 880 881
            break;
        }

882 883 884 885 886 887 888 889
        if (tx_desc_get_length(desc) > sizeof(tx_packet) - (p - tx_packet)) {
            DB_PRINT("TX descriptor @ 0x%x too large: size 0x%x space 0x%x\n",
                     (unsigned)packet_desc_addr,
                     (unsigned)tx_desc_get_length(desc),
                     sizeof(tx_packet) - (p - tx_packet));
            break;
        }

890 891 892 893 894 895 896 897 898 899
        /* Gather this fragment of the packet from "dma memory" to our contig.
         * buffer.
         */
        cpu_physical_memory_read(tx_desc_get_buffer(desc), p,
                                 tx_desc_get_length(desc));
        p += tx_desc_get_length(desc);
        total_bytes += tx_desc_get_length(desc);

        /* Last descriptor for this packet; hand the whole thing off */
        if (tx_desc_get_last(desc)) {
900 901
            unsigned    desc_first[2];

902 903 904
            /* Modify the 1st descriptor of this packet to be owned by
             * the processor.
             */
905 906 907 908 909
            cpu_physical_memory_read(s->tx_desc_addr, (uint8_t *)desc_first,
                                     sizeof(desc_first));
            tx_desc_set_used(desc_first);
            cpu_physical_memory_write(s->tx_desc_addr, (uint8_t *)desc_first,
                                      sizeof(desc_first));
910
            /* Advance the hardware current descriptor past this packet */
911 912 913 914 915 916 917 918
            if (tx_desc_get_wrap(desc)) {
                s->tx_desc_addr = s->regs[GEM_TXQBASE];
            } else {
                s->tx_desc_addr = packet_desc_addr + 8;
            }
            DB_PRINT("TX descriptor next: 0x%08x\n", s->tx_desc_addr);

            s->regs[GEM_TXSTATUS] |= GEM_TXSTATUS_TXCMPL;
919
            s->regs[GEM_ISR] |= GEM_INT_TXCMPL & ~(s->regs[GEM_IMR]);
920 921 922 923 924 925 926 927 928 929 930 931 932

            /* Handle interrupt consequences */
            gem_update_int_status(s);

            /* Is checksum offload enabled? */
            if (s->regs[GEM_DMACFG] & GEM_DMACFG_TXCSUM_OFFL) {
                net_checksum_calculate(tx_packet, total_bytes);
            }

            /* Update MAC statistics */
            gem_transmit_updatestats(s, tx_packet, total_bytes);

            /* Send the packet somewhere */
933
            if (s->phy_loop || (s->regs[GEM_NWCTRL] & GEM_NWCTRL_LOCALLOOP)) {
J
Jason Wang 已提交
934
                gem_receive(qemu_get_queue(s->nic), tx_packet, total_bytes);
935
            } else {
J
Jason Wang 已提交
936 937
                qemu_send_packet(qemu_get_queue(s->nic), tx_packet,
                                 total_bytes);
938 939 940 941 942 943 944 945 946
            }

            /* Prepare for next packet */
            p = tx_packet;
            total_bytes = 0;
        }

        /* read next descriptor */
        if (tx_desc_get_wrap(desc)) {
947
            tx_desc_set_last(desc);
948 949 950 951
            packet_desc_addr = s->regs[GEM_TXQBASE];
        } else {
            packet_desc_addr += 8;
        }
952
        DB_PRINT("read descriptor 0x%" HWADDR_PRIx "\n", packet_desc_addr);
953
        cpu_physical_memory_read(packet_desc_addr,
954
                                 (uint8_t *)desc, sizeof(desc));
955 956 957 958
    }

    if (tx_desc_get_used(desc)) {
        s->regs[GEM_TXSTATUS] |= GEM_TXSTATUS_USED;
959
        s->regs[GEM_ISR] |= GEM_INT_TXUSED & ~(s->regs[GEM_IMR]);
960 961 962 963
        gem_update_int_status(s);
    }
}

964
static void gem_phy_reset(CadenceGEMState *s)
965 966 967 968 969 970 971 972 973 974 975 976 977 978 979
{
    memset(&s->phy_regs[0], 0, sizeof(s->phy_regs));
    s->phy_regs[PHY_REG_CONTROL] = 0x1140;
    s->phy_regs[PHY_REG_STATUS] = 0x7969;
    s->phy_regs[PHY_REG_PHYID1] = 0x0141;
    s->phy_regs[PHY_REG_PHYID2] = 0x0CC2;
    s->phy_regs[PHY_REG_ANEGADV] = 0x01E1;
    s->phy_regs[PHY_REG_LINKPABIL] = 0xCDE1;
    s->phy_regs[PHY_REG_ANEGEXP] = 0x000F;
    s->phy_regs[PHY_REG_NEXTP] = 0x2001;
    s->phy_regs[PHY_REG_LINKPNEXTP] = 0x40E6;
    s->phy_regs[PHY_REG_100BTCTRL] = 0x0300;
    s->phy_regs[PHY_REG_1000BTSTAT] = 0x7C00;
    s->phy_regs[PHY_REG_EXTSTAT] = 0x3000;
    s->phy_regs[PHY_REG_PHYSPCFC_CTL] = 0x0078;
980
    s->phy_regs[PHY_REG_PHYSPCFC_ST] = 0x7C00;
981 982 983 984 985 986 987 988 989 990
    s->phy_regs[PHY_REG_EXT_PHYSPCFC_CTL] = 0x0C60;
    s->phy_regs[PHY_REG_LED] = 0x4100;
    s->phy_regs[PHY_REG_EXT_PHYSPCFC_CTL2] = 0x000A;
    s->phy_regs[PHY_REG_EXT_PHYSPCFC_ST] = 0x848B;

    phy_update_link(s);
}

static void gem_reset(DeviceState *d)
{
991
    int i;
992
    CadenceGEMState *s = CADENCE_GEM(d);
993
    const uint8_t *a;
994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011

    DB_PRINT("\n");

    /* Set post reset register values */
    memset(&s->regs[0], 0, sizeof(s->regs));
    s->regs[GEM_NWCFG] = 0x00080000;
    s->regs[GEM_NWSTATUS] = 0x00000006;
    s->regs[GEM_DMACFG] = 0x00020784;
    s->regs[GEM_IMR] = 0x07ffffff;
    s->regs[GEM_TXPAUSE] = 0x0000ffff;
    s->regs[GEM_TXPARTIALSF] = 0x000003ff;
    s->regs[GEM_RXPARTIALSF] = 0x000003ff;
    s->regs[GEM_MODID] = 0x00020118;
    s->regs[GEM_DESCONF] = 0x02500111;
    s->regs[GEM_DESCONF2] = 0x2ab13fff;
    s->regs[GEM_DESCONF5] = 0x002f2145;
    s->regs[GEM_DESCONF6] = 0x00000200;

1012 1013 1014 1015 1016
    /* Set MAC address */
    a = &s->conf.macaddr.a[0];
    s->regs[GEM_SPADDR1LO] = a[0] | (a[1] << 8) | (a[2] << 16) | (a[3] << 24);
    s->regs[GEM_SPADDR1HI] = a[4] | (a[5] << 8);

1017 1018 1019 1020
    for (i = 0; i < 4; i++) {
        s->sar_active[i] = false;
    }

1021 1022 1023 1024 1025
    gem_phy_reset(s);

    gem_update_int_status(s);
}

1026
static uint16_t gem_phy_read(CadenceGEMState *s, unsigned reg_num)
1027 1028 1029 1030 1031
{
    DB_PRINT("reg: %d value: 0x%04x\n", reg_num, s->phy_regs[reg_num]);
    return s->phy_regs[reg_num];
}

1032
static void gem_phy_write(CadenceGEMState *s, unsigned reg_num, uint16_t val)
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
{
    DB_PRINT("reg: %d value: 0x%04x\n", reg_num, val);

    switch (reg_num) {
    case PHY_REG_CONTROL:
        if (val & PHY_REG_CONTROL_RST) {
            /* Phy reset */
            gem_phy_reset(s);
            val &= ~(PHY_REG_CONTROL_RST | PHY_REG_CONTROL_LOOP);
            s->phy_loop = 0;
        }
        if (val & PHY_REG_CONTROL_ANEG) {
            /* Complete autonegotiation immediately */
            val &= ~PHY_REG_CONTROL_ANEG;
            s->phy_regs[PHY_REG_STATUS] |= PHY_REG_STATUS_ANEGCMPL;
        }
        if (val & PHY_REG_CONTROL_LOOP) {
            DB_PRINT("PHY placed in loopback\n");
            s->phy_loop = 1;
        } else {
            s->phy_loop = 0;
        }
        break;
    }
    s->phy_regs[reg_num] = val;
}

/*
 * gem_read32:
 * Read a GEM register.
 */
A
Avi Kivity 已提交
1064
static uint64_t gem_read(void *opaque, hwaddr offset, unsigned size)
1065
{
1066
    CadenceGEMState *s;
1067 1068
    uint32_t retval;

1069
    s = (CadenceGEMState *)opaque;
1070 1071 1072 1073

    offset >>= 2;
    retval = s->regs[offset];

1074
    DB_PRINT("offset: 0x%04x read: 0x%08x\n", (unsigned)offset*4, retval);
1075 1076 1077

    switch (offset) {
    case GEM_ISR:
1078
        DB_PRINT("lowering irq on ISR read\n");
1079 1080 1081 1082 1083 1084 1085
        qemu_set_irq(s->irq, 0);
        break;
    case GEM_PHYMNTNC:
        if (retval & GEM_PHYMNTNC_OP_R) {
            uint32_t phy_addr, reg_num;

            phy_addr = (retval & GEM_PHYMNTNC_ADDR) >> GEM_PHYMNTNC_ADDR_SHFT;
1086
            if (phy_addr == BOARD_PHY_ADDRESS || phy_addr == 0) {
1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
                reg_num = (retval & GEM_PHYMNTNC_REG) >> GEM_PHYMNTNC_REG_SHIFT;
                retval &= 0xFFFF0000;
                retval |= gem_phy_read(s, reg_num);
            } else {
                retval |= 0xFFFF; /* No device at this address */
            }
        }
        break;
    }

    /* Squash read to clear bits */
    s->regs[offset] &= ~(s->regs_rtc[offset]);

    /* Do not provide write only bits */
    retval &= ~(s->regs_wo[offset]);

    DB_PRINT("0x%08x\n", retval);
    return retval;
}

/*
 * gem_write32:
 * Write a GEM register.
 */
A
Avi Kivity 已提交
1111
static void gem_write(void *opaque, hwaddr offset, uint64_t val,
1112 1113
        unsigned size)
{
1114
    CadenceGEMState *s = (CadenceGEMState *)opaque;
1115 1116
    uint32_t readonly;

1117
    DB_PRINT("offset: 0x%04x write: 0x%08x ", (unsigned)offset, (unsigned)val);
1118 1119 1120 1121
    offset >>= 2;

    /* Squash bits which are read only in write value */
    val &= ~(s->regs_ro[offset]);
1122 1123
    /* Preserve (only) bits which are read only and wtc in register */
    readonly = s->regs[offset] & (s->regs_ro[offset] | s->regs_w1c[offset]);
1124 1125

    /* Copy register write to backing store */
1126 1127 1128 1129
    s->regs[offset] = (val & ~s->regs_w1c[offset]) | readonly;

    /* do w1c */
    s->regs[offset] &= ~(s->regs_w1c[offset] & val);
1130 1131 1132 1133

    /* Handle register write side effects */
    switch (offset) {
    case GEM_NWCTRL:
1134 1135 1136
        if (val & GEM_NWCTRL_RXENA) {
            gem_get_rx_desc(s);
        }
1137 1138 1139 1140 1141 1142 1143
        if (val & GEM_NWCTRL_TXSTART) {
            gem_transmit(s);
        }
        if (!(val & GEM_NWCTRL_TXENA)) {
            /* Reset to start of Q when transmit disabled. */
            s->tx_desc_addr = s->regs[GEM_TXQBASE];
        }
1144
        if (gem_can_receive(qemu_get_queue(s->nic))) {
1145 1146
            qemu_flush_queued_packets(qemu_get_queue(s->nic));
        }
1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
        break;

    case GEM_TXSTATUS:
        gem_update_int_status(s);
        break;
    case GEM_RXQBASE:
        s->rx_desc_addr = val;
        break;
    case GEM_TXQBASE:
        s->tx_desc_addr = val;
        break;
    case GEM_RXSTATUS:
        gem_update_int_status(s);
        break;
    case GEM_IER:
        s->regs[GEM_IMR] &= ~val;
        gem_update_int_status(s);
        break;
    case GEM_IDR:
        s->regs[GEM_IMR] |= val;
        gem_update_int_status(s);
        break;
1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
    case GEM_SPADDR1LO:
    case GEM_SPADDR2LO:
    case GEM_SPADDR3LO:
    case GEM_SPADDR4LO:
        s->sar_active[(offset - GEM_SPADDR1LO) / 2] = false;
        break;
    case GEM_SPADDR1HI:
    case GEM_SPADDR2HI:
    case GEM_SPADDR3HI:
    case GEM_SPADDR4HI:
        s->sar_active[(offset - GEM_SPADDR1HI) / 2] = true;
        break;
1181 1182 1183 1184 1185
    case GEM_PHYMNTNC:
        if (val & GEM_PHYMNTNC_OP_W) {
            uint32_t phy_addr, reg_num;

            phy_addr = (val & GEM_PHYMNTNC_ADDR) >> GEM_PHYMNTNC_ADDR_SHFT;
1186
            if (phy_addr == BOARD_PHY_ADDRESS || phy_addr == 0) {
1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202
                reg_num = (val & GEM_PHYMNTNC_REG) >> GEM_PHYMNTNC_REG_SHIFT;
                gem_phy_write(s, reg_num, val);
            }
        }
        break;
    }

    DB_PRINT("newval: 0x%08x\n", s->regs[offset]);
}

static const MemoryRegionOps gem_ops = {
    .read = gem_read,
    .write = gem_write,
    .endianness = DEVICE_LITTLE_ENDIAN,
};

1203
static void gem_set_link(NetClientState *nc)
1204 1205
{
    DB_PRINT("\n");
J
Jason Wang 已提交
1206
    phy_update_link(qemu_get_nic_opaque(nc));
1207 1208 1209
}

static NetClientInfo net_gem_info = {
1210
    .type = NET_CLIENT_DRIVER_NIC,
1211 1212 1213 1214 1215 1216
    .size = sizeof(NICState),
    .can_receive = gem_can_receive,
    .receive = gem_receive,
    .link_status_changed = gem_set_link,
};

1217
static void gem_realize(DeviceState *dev, Error **errp)
1218
{
1219
    CadenceGEMState *s = CADENCE_GEM(dev);
1220

1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233
    sysbus_init_irq(SYS_BUS_DEVICE(dev), &s->irq);

    qemu_macaddr_default_if_unset(&s->conf.macaddr);

    s->nic = qemu_new_nic(&net_gem_info, &s->conf,
                          object_get_typename(OBJECT(dev)), dev->id, s);
}

static void gem_init(Object *obj)
{
    CadenceGEMState *s = CADENCE_GEM(obj);
    DeviceState *dev = DEVICE(obj);

1234 1235 1236
    DB_PRINT("\n");

    gem_init_register_masks(s);
1237 1238
    memory_region_init_io(&s->iomem, OBJECT(s), &gem_ops, s,
                          "enet", sizeof(s->regs));
1239

1240
    sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->iomem);
1241 1242 1243 1244
}

static const VMStateDescription vmstate_cadence_gem = {
    .name = "cadence_gem",
1245 1246
    .version_id = 2,
    .minimum_version_id = 2,
1247
    .fields = (VMStateField[]) {
1248 1249 1250 1251 1252 1253
        VMSTATE_UINT32_ARRAY(regs, CadenceGEMState, CADENCE_GEM_MAXREG),
        VMSTATE_UINT16_ARRAY(phy_regs, CadenceGEMState, 32),
        VMSTATE_UINT8(phy_loop, CadenceGEMState),
        VMSTATE_UINT32(rx_desc_addr, CadenceGEMState),
        VMSTATE_UINT32(tx_desc_addr, CadenceGEMState),
        VMSTATE_BOOL_ARRAY(sar_active, CadenceGEMState, 4),
1254
        VMSTATE_END_OF_LIST(),
1255 1256 1257 1258
    }
};

static Property gem_properties[] = {
1259
    DEFINE_NIC_PROPERTIES(CadenceGEMState, conf),
1260 1261 1262 1263 1264 1265 1266
    DEFINE_PROP_END_OF_LIST(),
};

static void gem_class_init(ObjectClass *klass, void *data)
{
    DeviceClass *dc = DEVICE_CLASS(klass);

1267
    dc->realize = gem_realize;
1268 1269 1270 1271 1272
    dc->props = gem_properties;
    dc->vmsd = &vmstate_cadence_gem;
    dc->reset = gem_reset;
}

1273
static const TypeInfo gem_info = {
A
Andreas Färber 已提交
1274
    .name  = TYPE_CADENCE_GEM,
1275
    .parent = TYPE_SYS_BUS_DEVICE,
1276
    .instance_size  = sizeof(CadenceGEMState),
1277
    .instance_init = gem_init,
A
Andreas Färber 已提交
1278
    .class_init = gem_class_init,
1279 1280 1281 1282 1283 1284 1285 1286
};

static void gem_register_types(void)
{
    type_register_static(&gem_info);
}

type_init(gem_register_types)