arm_timer.c 7.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/* 
 * ARM PrimeCell Timer modules.
 *
 * Copyright (c) 2005-2006 CodeSourcery.
 * Written by Paul Brook
 *
 * This code is licenced under the GPL.
 */

#include "vl.h"
#include "arm_pic.h"

/* Common timer implementation.  */

#define TIMER_CTRL_ONESHOT      (1 << 0)
#define TIMER_CTRL_32BIT        (1 << 1)
#define TIMER_CTRL_DIV1         (0 << 2)
#define TIMER_CTRL_DIV16        (1 << 2)
#define TIMER_CTRL_DIV256       (2 << 2)
#define TIMER_CTRL_IE           (1 << 5)
#define TIMER_CTRL_PERIODIC     (1 << 6)
#define TIMER_CTRL_ENABLE       (1 << 7)

typedef struct {
P
pbrook 已提交
25
    ptimer_state *timer;
26 27 28 29
    uint32_t control;
    uint32_t limit;
    int freq;
    int int_level;
P
pbrook 已提交
30
    qemu_irq irq;
31 32 33 34
} arm_timer_state;

/* Check all active timers, and schedule the next timer interrupt.  */

P
pbrook 已提交
35
static void arm_timer_update(arm_timer_state *s)
36 37 38
{
    /* Update interrupts.  */
    if (s->int_level && (s->control & TIMER_CTRL_IE)) {
P
pbrook 已提交
39
        qemu_irq_raise(s->irq);
40
    } else {
P
pbrook 已提交
41
        qemu_irq_lower(s->irq);
42 43 44 45 46 47 48 49 50 51 52 53
    }
}

uint32_t arm_timer_read(void *opaque, target_phys_addr_t offset)
{
    arm_timer_state *s = (arm_timer_state *)opaque;

    switch (offset >> 2) {
    case 0: /* TimerLoad */
    case 6: /* TimerBGLoad */
        return s->limit;
    case 1: /* TimerValue */
P
pbrook 已提交
54
        return ptimer_get_count(s->timer);
55 56 57 58 59 60 61 62 63
    case 2: /* TimerControl */
        return s->control;
    case 4: /* TimerRIS */
        return s->int_level;
    case 5: /* TimerMIS */
        if ((s->control & TIMER_CTRL_IE) == 0)
            return 0;
        return s->int_level;
    default:
P
pbrook 已提交
64 65
        cpu_abort (cpu_single_env, "arm_timer_read: Bad offset %x\n",
                   (int)offset);
66 67 68 69
        return 0;
    }
}

P
pbrook 已提交
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
/* Reset the timer limit after settings have changed.  */
static void arm_timer_recalibrate(arm_timer_state *s, int reload)
{
    uint32_t limit;

    if ((s->control & TIMER_CTRL_PERIODIC) == 0) {
        /* Free running.  */
        if (s->control & TIMER_CTRL_32BIT)
            limit = 0xffffffff;
        else
            limit = 0xffff;
    } else {
          /* Periodic.  */
          limit = s->limit;
    }
    ptimer_set_limit(s->timer, limit, reload);
}

88 89 90 91
static void arm_timer_write(void *opaque, target_phys_addr_t offset,
                            uint32_t value)
{
    arm_timer_state *s = (arm_timer_state *)opaque;
P
pbrook 已提交
92
    int freq;
93 94 95 96

    switch (offset >> 2) {
    case 0: /* TimerLoad */
        s->limit = value;
P
pbrook 已提交
97
        arm_timer_recalibrate(s, 1);
98 99 100 101 102 103 104 105 106 107
        break;
    case 1: /* TimerValue */
        /* ??? Linux seems to want to write to this readonly register.
           Ignore it.  */
        break;
    case 2: /* TimerControl */
        if (s->control & TIMER_CTRL_ENABLE) {
            /* Pause the timer if it is running.  This may cause some
               inaccuracy dure to rounding, but avoids a whole lot of other
               messyness.  */
P
pbrook 已提交
108
            ptimer_stop(s->timer);
109 110
        }
        s->control = value;
P
pbrook 已提交
111
        freq = s->freq;
112 113
        /* ??? Need to recalculate expiry time after changing divisor.  */
        switch ((value >> 2) & 3) {
P
pbrook 已提交
114 115
        case 1: freq >>= 4; break;
        case 2: freq >>= 8; break;
116
        }
P
pbrook 已提交
117 118
        arm_timer_recalibrate(s, 0);
        ptimer_set_freq(s->timer, freq);
119 120
        if (s->control & TIMER_CTRL_ENABLE) {
            /* Restart the timer if still enabled.  */
P
pbrook 已提交
121
            ptimer_run(s->timer, (s->control & TIMER_CTRL_ONESHOT) != 0);
122 123 124 125 126 127 128
        }
        break;
    case 3: /* TimerIntClr */
        s->int_level = 0;
        break;
    case 6: /* TimerBGLoad */
        s->limit = value;
P
pbrook 已提交
129
        arm_timer_recalibrate(s, 0);
130 131
        break;
    default:
P
pbrook 已提交
132 133
        cpu_abort (cpu_single_env, "arm_timer_write: Bad offset %x\n",
                   (int)offset);
134
    }
P
pbrook 已提交
135
    arm_timer_update(s);
136 137 138 139
}

static void arm_timer_tick(void *opaque)
{
P
pbrook 已提交
140 141 142
    arm_timer_state *s = (arm_timer_state *)opaque;
    s->int_level = 1;
    arm_timer_update(s);
143 144
}

P
pbrook 已提交
145
static void *arm_timer_init(uint32_t freq, qemu_irq irq)
146 147
{
    arm_timer_state *s;
P
pbrook 已提交
148
    QEMUBH *bh;
149 150 151

    s = (arm_timer_state *)qemu_mallocz(sizeof(arm_timer_state));
    s->irq = irq;
P
pbrook 已提交
152
    s->freq = freq;
153 154
    s->control = TIMER_CTRL_IE;

P
pbrook 已提交
155 156
    bh = qemu_bh_new(arm_timer_tick, s);
    s->timer = ptimer_init(bh);
157 158 159 160 161 162
    /* ??? Save/restore.  */
    return s;
}

/* ARM PrimeCell SP804 dual timer module.
   Docs for this device don't seem to be publicly available.  This
P
pbrook 已提交
163
   implementation is based on guesswork, the linux kernel sources and the
164 165 166 167 168 169
   Integrator/CP timer modules.  */

typedef struct {
    void *timer[2];
    int level[2];
    uint32_t base;
P
pbrook 已提交
170
    qemu_irq irq;
171 172
} sp804_state;

P
pbrook 已提交
173
/* Merge the IRQs from the two component devices.  */
174 175 176 177 178
static void sp804_set_irq(void *opaque, int irq, int level)
{
    sp804_state *s = (sp804_state *)opaque;

    s->level[irq] = level;
P
pbrook 已提交
179
    qemu_set_irq(s->irq, s->level[0] || s->level[1]);
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
}

static uint32_t sp804_read(void *opaque, target_phys_addr_t offset)
{
    sp804_state *s = (sp804_state *)opaque;

    /* ??? Don't know the PrimeCell ID for this device.  */
    offset -= s->base;
    if (offset < 0x20) {
        return arm_timer_read(s->timer[0], offset);
    } else {
        return arm_timer_read(s->timer[1], offset - 0x20);
    }
}

static void sp804_write(void *opaque, target_phys_addr_t offset,
                        uint32_t value)
{
    sp804_state *s = (sp804_state *)opaque;

    offset -= s->base;
    if (offset < 0x20) {
        arm_timer_write(s->timer[0], offset, value);
    } else {
        arm_timer_write(s->timer[1], offset - 0x20, value);
    }
}

static CPUReadMemoryFunc *sp804_readfn[] = {
   sp804_read,
   sp804_read,
   sp804_read
};

static CPUWriteMemoryFunc *sp804_writefn[] = {
   sp804_write,
   sp804_write,
   sp804_write
};

P
pbrook 已提交
220
void sp804_init(uint32_t base, qemu_irq irq)
221 222 223
{
    int iomemtype;
    sp804_state *s;
P
pbrook 已提交
224
    qemu_irq *qi;
225 226

    s = (sp804_state *)qemu_mallocz(sizeof(sp804_state));
P
pbrook 已提交
227
    qi = qemu_allocate_irqs(sp804_set_irq, s, 2);
228 229 230 231
    s->base = base;
    s->irq = irq;
    /* ??? The timers are actually configurable between 32kHz and 1MHz, but
       we don't implement that.  */
P
pbrook 已提交
232 233
    s->timer[0] = arm_timer_init(1000000, qi[0]);
    s->timer[1] = arm_timer_init(1000000, qi[1]);
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
    iomemtype = cpu_register_io_memory(0, sp804_readfn,
                                       sp804_writefn, s);
    cpu_register_physical_memory(base, 0x00000fff, iomemtype);
    /* ??? Save/restore.  */
}


/* Integrator/CP timer module.  */

typedef struct {
    void *timer[3];
    uint32_t base;
} icp_pit_state;

static uint32_t icp_pit_read(void *opaque, target_phys_addr_t offset)
{
    icp_pit_state *s = (icp_pit_state *)opaque;
    int n;

    /* ??? Don't know the PrimeCell ID for this device.  */
    offset -= s->base;
    n = offset >> 8;
    if (n > 3)
        cpu_abort(cpu_single_env, "sp804_read: Bad timer %d\n", n);

    return arm_timer_read(s->timer[n], offset & 0xff);
}

static void icp_pit_write(void *opaque, target_phys_addr_t offset,
                          uint32_t value)
{
    icp_pit_state *s = (icp_pit_state *)opaque;
    int n;

    offset -= s->base;
    n = offset >> 8;
    if (n > 3)
        cpu_abort(cpu_single_env, "sp804_write: Bad timer %d\n", n);

    arm_timer_write(s->timer[n], offset & 0xff, value);
}


static CPUReadMemoryFunc *icp_pit_readfn[] = {
   icp_pit_read,
   icp_pit_read,
   icp_pit_read
};

static CPUWriteMemoryFunc *icp_pit_writefn[] = {
   icp_pit_write,
   icp_pit_write,
   icp_pit_write
};

P
pbrook 已提交
289
void icp_pit_init(uint32_t base, qemu_irq *pic, int irq)
290 291 292 293 294 295 296
{
    int iomemtype;
    icp_pit_state *s;

    s = (icp_pit_state *)qemu_mallocz(sizeof(icp_pit_state));
    s->base = base;
    /* Timer 0 runs at the system clock speed (40MHz).  */
P
pbrook 已提交
297
    s->timer[0] = arm_timer_init(40000000, pic[irq]);
298
    /* The other two timers run at 1MHz.  */
P
pbrook 已提交
299 300
    s->timer[1] = arm_timer_init(1000000, pic[irq + 1]);
    s->timer[2] = arm_timer_init(1000000, pic[irq + 2]);
301 302 303 304 305 306 307

    iomemtype = cpu_register_io_memory(0, icp_pit_readfn,
                                       icp_pit_writefn, s);
    cpu_register_physical_memory(base, 0x00000fff, iomemtype);
    /* ??? Save/restore.  */
}