arm_timer.c 10.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
/* 
 * ARM PrimeCell Timer modules.
 *
 * Copyright (c) 2005-2006 CodeSourcery.
 * Written by Paul Brook
 *
 * This code is licenced under the GPL.
 */

#include "vl.h"
#include "arm_pic.h"

/* Common timer implementation.  */

#define TIMER_CTRL_ONESHOT      (1 << 0)
#define TIMER_CTRL_32BIT        (1 << 1)
#define TIMER_CTRL_DIV1         (0 << 2)
#define TIMER_CTRL_DIV16        (1 << 2)
#define TIMER_CTRL_DIV256       (2 << 2)
#define TIMER_CTRL_IE           (1 << 5)
#define TIMER_CTRL_PERIODIC     (1 << 6)
#define TIMER_CTRL_ENABLE       (1 << 7)

typedef struct {
    int64_t next_time;
    int64_t expires;
    int64_t loaded;
    QEMUTimer *timer;
    uint32_t control;
    uint32_t count;
    uint32_t limit;
    int raw_freq;
    int freq;
    int int_level;
    void *pic;
    int irq;
} arm_timer_state;

/* Calculate the new expiry time of the given timer.  */

static void arm_timer_reload(arm_timer_state *s)
{
    int64_t delay;

    s->loaded = s->expires;
    delay = muldiv64(s->count, ticks_per_sec, s->freq);
    if (delay == 0)
        delay = 1;
    s->expires += delay;
}

/* Check all active timers, and schedule the next timer interrupt.  */

static void arm_timer_update(arm_timer_state *s, int64_t now)
{
    int64_t next;

    /* Ignore disabled timers.  */
    if ((s->control & TIMER_CTRL_ENABLE) == 0)
        return;
    /* Ignore expired one-shot timers.  */
    if (s->count == 0 && (s->control & TIMER_CTRL_ONESHOT))
        return;
    if (s->expires - now <= 0) {
        /* Timer has expired.  */
        s->int_level = 1;
        if (s->control & TIMER_CTRL_ONESHOT) {
            /* One-shot.  */
            s->count = 0;
        } else {
            if ((s->control & TIMER_CTRL_PERIODIC) == 0) {
                /* Free running.  */
                if (s->control & TIMER_CTRL_32BIT)
                    s->count = 0xffffffff;
                else
                    s->count = 0xffff;
            } else {
                  /* Periodic.  */
                  s->count = s->limit;
            }
        }
    }
    while (s->expires - now <= 0) {
        arm_timer_reload(s);
    }
    /* Update interrupts.  */
    if (s->int_level && (s->control & TIMER_CTRL_IE)) {
        pic_set_irq_new(s->pic, s->irq, 1);
    } else {
        pic_set_irq_new(s->pic, s->irq, 0);
    }

    next = now;
    if (next - s->expires < 0)
        next = s->expires;

    /* Schedule the next timer interrupt.  */
    if (next == now) {
        qemu_del_timer(s->timer);
        s->next_time = 0;
    } else if (next != s->next_time) {
        qemu_mod_timer(s->timer, next);
        s->next_time = next;
    }
}

/* Return the current value of the timer.  */
static uint32_t arm_timer_getcount(arm_timer_state *s, int64_t now)
{
P
pbrook 已提交
110
    int64_t left;
111 112 113 114 115 116
    int64_t period;

    if (s->count == 0)
        return 0;
    if ((s->control & TIMER_CTRL_ENABLE) == 0)
        return s->count;
P
pbrook 已提交
117
    left = s->expires - now;
118 119 120 121 122 123
    period = s->expires - s->loaded;
    /* If the timer should have expired then return 0.  This can happen
       when the host timer signal doesnt occur immediately.  It's better to
       have a timer appear to sit at zero for a while than have it wrap
       around before the guest interrupt is raised.  */
    /* ??? Could we trigger the interrupt here?  */
P
pbrook 已提交
124
    if (left < 0)
125 126 127 128 129
        return 0;
    /* We need to calculate count * elapsed / period without overfowing.
       Scale both elapsed and period so they fit in a 32-bit int.  */
    while (period != (int32_t)period) {
        period >>= 1;
P
pbrook 已提交
130
        left >>= 1;
131
    }
P
pbrook 已提交
132
    return ((uint64_t)s->count * (uint64_t)(int32_t)left)
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
            / (int32_t)period;
}

uint32_t arm_timer_read(void *opaque, target_phys_addr_t offset)
{
    arm_timer_state *s = (arm_timer_state *)opaque;

    switch (offset >> 2) {
    case 0: /* TimerLoad */
    case 6: /* TimerBGLoad */
        return s->limit;
    case 1: /* TimerValue */
        return arm_timer_getcount(s, qemu_get_clock(vm_clock));
    case 2: /* TimerControl */
        return s->control;
    case 4: /* TimerRIS */
        return s->int_level;
    case 5: /* TimerMIS */
        if ((s->control & TIMER_CTRL_IE) == 0)
            return 0;
        return s->int_level;
    default:
        cpu_abort (cpu_single_env, "arm_timer_read: Bad offset %x\n", offset);
        return 0;
    }
}

static void arm_timer_write(void *opaque, target_phys_addr_t offset,
                            uint32_t value)
{
    arm_timer_state *s = (arm_timer_state *)opaque;
    int64_t now;

    now = qemu_get_clock(vm_clock);
    switch (offset >> 2) {
    case 0: /* TimerLoad */
        s->limit = value;
        s->count = value;
        s->expires = now;
        arm_timer_reload(s);
        break;
    case 1: /* TimerValue */
        /* ??? Linux seems to want to write to this readonly register.
           Ignore it.  */
        break;
    case 2: /* TimerControl */
        if (s->control & TIMER_CTRL_ENABLE) {
            /* Pause the timer if it is running.  This may cause some
               inaccuracy dure to rounding, but avoids a whole lot of other
               messyness.  */
            s->count = arm_timer_getcount(s, now);
        }
        s->control = value;
        s->freq = s->raw_freq;
        /* ??? Need to recalculate expiry time after changing divisor.  */
        switch ((value >> 2) & 3) {
        case 1: s->freq >>= 4; break;
        case 2: s->freq >>= 8; break;
        }
        if (s->control & TIMER_CTRL_ENABLE) {
            /* Restart the timer if still enabled.  */
            s->expires = now;
            arm_timer_reload(s);
        }
        break;
    case 3: /* TimerIntClr */
        s->int_level = 0;
        break;
    case 6: /* TimerBGLoad */
        s->limit = value;
        break;
    default:
        cpu_abort (cpu_single_env, "arm_timer_write: Bad offset %x\n", offset);
    }
    arm_timer_update(s, now);
}

static void arm_timer_tick(void *opaque)
{
    int64_t now;

    now = qemu_get_clock(vm_clock);
    arm_timer_update((arm_timer_state *)opaque, now);
}

static void *arm_timer_init(uint32_t freq, void *pic, int irq)
{
    arm_timer_state *s;

    s = (arm_timer_state *)qemu_mallocz(sizeof(arm_timer_state));
    s->pic = pic;
    s->irq = irq;
    s->raw_freq = s->freq = 1000000;
    s->control = TIMER_CTRL_IE;
    s->count = 0xffffffff;

    s->timer = qemu_new_timer(vm_clock, arm_timer_tick, s);
    /* ??? Save/restore.  */
    return s;
}

/* ARM PrimeCell SP804 dual timer module.
   Docs for this device don't seem to be publicly available.  This
   implementation is based on gueswork, the linux kernel sources and the
   Integrator/CP timer modules.  */

typedef struct {
    /* Include a pseudo-PIC device to merge the two interrupt sources.  */
    arm_pic_handler handler;
    void *timer[2];
    int level[2];
    uint32_t base;
    /* The output PIC device.  */
    void *pic;
    int irq;
} sp804_state;

static void sp804_set_irq(void *opaque, int irq, int level)
{
    sp804_state *s = (sp804_state *)opaque;

    s->level[irq] = level;
    pic_set_irq_new(s->pic, s->irq, s->level[0] || s->level[1]);
}

static uint32_t sp804_read(void *opaque, target_phys_addr_t offset)
{
    sp804_state *s = (sp804_state *)opaque;

    /* ??? Don't know the PrimeCell ID for this device.  */
    offset -= s->base;
    if (offset < 0x20) {
        return arm_timer_read(s->timer[0], offset);
    } else {
        return arm_timer_read(s->timer[1], offset - 0x20);
    }
}

static void sp804_write(void *opaque, target_phys_addr_t offset,
                        uint32_t value)
{
    sp804_state *s = (sp804_state *)opaque;

    offset -= s->base;
    if (offset < 0x20) {
        arm_timer_write(s->timer[0], offset, value);
    } else {
        arm_timer_write(s->timer[1], offset - 0x20, value);
    }
}

static CPUReadMemoryFunc *sp804_readfn[] = {
   sp804_read,
   sp804_read,
   sp804_read
};

static CPUWriteMemoryFunc *sp804_writefn[] = {
   sp804_write,
   sp804_write,
   sp804_write
};

void sp804_init(uint32_t base, void *pic, int irq)
{
    int iomemtype;
    sp804_state *s;

    s = (sp804_state *)qemu_mallocz(sizeof(sp804_state));
    s->handler = sp804_set_irq;
    s->base = base;
    s->pic = pic;
    s->irq = irq;
    /* ??? The timers are actually configurable between 32kHz and 1MHz, but
       we don't implement that.  */
    s->timer[0] = arm_timer_init(1000000, s, 0);
    s->timer[1] = arm_timer_init(1000000, s, 1);
    iomemtype = cpu_register_io_memory(0, sp804_readfn,
                                       sp804_writefn, s);
    cpu_register_physical_memory(base, 0x00000fff, iomemtype);
    /* ??? Save/restore.  */
}


/* Integrator/CP timer module.  */

typedef struct {
    void *timer[3];
    uint32_t base;
} icp_pit_state;

static uint32_t icp_pit_read(void *opaque, target_phys_addr_t offset)
{
    icp_pit_state *s = (icp_pit_state *)opaque;
    int n;

    /* ??? Don't know the PrimeCell ID for this device.  */
    offset -= s->base;
    n = offset >> 8;
    if (n > 3)
        cpu_abort(cpu_single_env, "sp804_read: Bad timer %d\n", n);

    return arm_timer_read(s->timer[n], offset & 0xff);
}

static void icp_pit_write(void *opaque, target_phys_addr_t offset,
                          uint32_t value)
{
    icp_pit_state *s = (icp_pit_state *)opaque;
    int n;

    offset -= s->base;
    n = offset >> 8;
    if (n > 3)
        cpu_abort(cpu_single_env, "sp804_write: Bad timer %d\n", n);

    arm_timer_write(s->timer[n], offset & 0xff, value);
}


static CPUReadMemoryFunc *icp_pit_readfn[] = {
   icp_pit_read,
   icp_pit_read,
   icp_pit_read
};

static CPUWriteMemoryFunc *icp_pit_writefn[] = {
   icp_pit_write,
   icp_pit_write,
   icp_pit_write
};

void icp_pit_init(uint32_t base, void *pic, int irq)
{
    int iomemtype;
    icp_pit_state *s;

    s = (icp_pit_state *)qemu_mallocz(sizeof(icp_pit_state));
    s->base = base;
    /* Timer 0 runs at the system clock speed (40MHz).  */
    s->timer[0] = arm_timer_init(40000000, pic, irq);
    /* The other two timers run at 1MHz.  */
    s->timer[1] = arm_timer_init(1000000, pic, irq + 1);
    s->timer[2] = arm_timer_init(1000000, pic, irq + 2);

    iomemtype = cpu_register_io_memory(0, icp_pit_readfn,
                                       icp_pit_writefn, s);
    cpu_register_physical_memory(base, 0x00000fff, iomemtype);
    /* ??? Save/restore.  */
}