- 09 10月, 2018 15 次提交
-
-
由 Suraj Jitindar Singh 提交于
Consider a normal (L1) guest running under the main hypervisor (L0), and then a nested guest (L2) running under the L1 guest which is acting as a nested hypervisor. L0 has page tables to map the address space for L1 providing the translation from L1 real address -> L0 real address; L1 | | (L1 -> L0) | ----> L0 There are also page tables in L1 used to map the address space for L2 providing the translation from L2 real address -> L1 read address. Since the hardware can only walk a single level of page table, we need to maintain in L0 a "shadow_pgtable" for L2 which provides the translation from L2 real address -> L0 real address. Which looks like; L2 L2 | | | (L2 -> L1) | | | ----> L1 | (L2 -> L0) | | | (L1 -> L0) | | | ----> L0 --------> L0 When a page fault occurs while running a nested (L2) guest we need to insert a pte into this "shadow_pgtable" for the L2 -> L0 mapping. To do this we need to: 1. Walk the pgtable in L1 memory to find the L2 -> L1 mapping, and provide a page fault to L1 if this mapping doesn't exist. 2. Use our L1 -> L0 pgtable to convert this L1 address to an L0 address, or try to insert a pte for that mapping if it doesn't exist. 3. Now we have a L2 -> L0 mapping, insert this into our shadow_pgtable Once this mapping exists we can take rc faults when hardware is unable to automatically set the reference and change bits in the pte. On these we need to: 1. Check the rc bits on the L2 -> L1 pte match, and otherwise reflect the fault down to L1. 2. Set the rc bits in the L1 -> L0 pte which corresponds to the same host page. 3. Set the rc bits in the L2 -> L0 pte. As we reuse a large number of functions in book3s_64_mmu_radix.c for this we also needed to refactor a number of these functions to take an lpid parameter so that the correct lpid is used for tlb invalidations. The functionality however has remained the same. Reviewed-by: NDavid Gibson <david@gibson.dropbear.id.au> Signed-off-by: NSuraj Jitindar Singh <sjitindarsingh@gmail.com> Signed-off-by: NPaul Mackerras <paulus@ozlabs.org> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
由 Paul Mackerras 提交于
When we are running as a nested hypervisor, we use a hypercall to enter the guest rather than code in book3s_hv_rmhandlers.S. This means that the hypercall handlers listed in hcall_real_table never get called. There are some hypercalls that are handled there and not in kvmppc_pseries_do_hcall(), which therefore won't get processed for a nested guest. To fix this, we add cases to kvmppc_pseries_do_hcall() to handle those hypercalls, with the following exceptions: - The HPT hypercalls (H_ENTER, H_REMOVE, etc.) are not handled because we only support radix mode for nested guests. - H_CEDE has to be handled specially because the cede logic in kvmhv_run_single_vcpu assumes that it has been processed by the time that kvmhv_p9_guest_entry() returns. Therefore we put a special case for H_CEDE in kvmhv_p9_guest_entry(). For the XICS hypercalls, if real-mode processing is enabled, then the virtual-mode handlers assume that they are being called only to finish up the operation. Therefore we turn off the real-mode flag in the XICS code when running as a nested hypervisor. Reviewed-by: NDavid Gibson <david@gibson.dropbear.id.au> Signed-off-by: NPaul Mackerras <paulus@ozlabs.org> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
由 Paul Mackerras 提交于
This adds a new hypercall, H_ENTER_NESTED, which is used by a nested hypervisor to enter one of its nested guests. The hypercall supplies register values in two structs. Those values are copied by the level 0 (L0) hypervisor (the one which is running in hypervisor mode) into the vcpu struct of the L1 guest, and then the guest is run until an interrupt or error occurs which needs to be reported to L1 via the hypercall return value. Currently this assumes that the L0 and L1 hypervisors are the same endianness, and the structs passed as arguments are in native endianness. If they are of different endianness, the version number check will fail and the hcall will be rejected. Nested hypervisors do not support indep_threads_mode=N, so this adds code to print a warning message if the administrator has set indep_threads_mode=N, and treat it as Y. Reviewed-by: NDavid Gibson <david@gibson.dropbear.id.au> Signed-off-by: NPaul Mackerras <paulus@ozlabs.org> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
由 Paul Mackerras 提交于
This starts the process of adding the code to support nested HV-style virtualization. It defines a new H_SET_PARTITION_TABLE hypercall which a nested hypervisor can use to set the base address and size of a partition table in its memory (analogous to the PTCR register). On the host (level 0 hypervisor) side, the H_SET_PARTITION_TABLE hypercall from the guest is handled by code that saves the virtual PTCR value for the guest. This also adds code for creating and destroying nested guests and for reading the partition table entry for a nested guest from L1 memory. Each nested guest has its own shadow LPID value, different in general from the LPID value used by the nested hypervisor to refer to it. The shadow LPID value is allocated at nested guest creation time. Nested hypervisor functionality is only available for a radix guest, which therefore means a radix host on a POWER9 (or later) processor. Signed-off-by: NPaul Mackerras <paulus@ozlabs.org> Reviewed-by: NDavid Gibson <david@gibson.dropbear.id.au> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
由 Suraj Jitindar Singh 提交于
kvmppc_mmu_radix_xlate() is used to translate an effective address through the process tables. The process table and partition tables have identical layout. Exploit this fact to make the kvmppc_mmu_radix_xlate() function able to translate either an effective address through the process tables or a guest real address through the partition tables. [paulus@ozlabs.org - reduced diffs from previous code] Reviewed-by: NDavid Gibson <david@gibson.dropbear.id.au> Signed-off-by: NSuraj Jitindar Singh <sjitindarsingh@gmail.com> Signed-off-by: NPaul Mackerras <paulus@ozlabs.org> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
由 Paul Mackerras 提交于
When the 'regs' field was added to struct kvm_vcpu_arch, the code was changed to use several of the fields inside regs (e.g., gpr, lr, etc.) but not the ccr field, because the ccr field in struct pt_regs is 64 bits on 64-bit platforms, but the cr field in kvm_vcpu_arch is only 32 bits. This changes the code to use the regs.ccr field instead of cr, and changes the assembly code on 64-bit platforms to use 64-bit loads and stores instead of 32-bit ones. Reviewed-by: NDavid Gibson <david@gibson.dropbear.id.au> Signed-off-by: NPaul Mackerras <paulus@ozlabs.org> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
由 Paul Mackerras 提交于
This adds a file called 'radix' in the debugfs directory for the guest, which when read gives all of the valid leaf PTEs in the partition-scoped radix tree for a radix guest, in human-readable format. It is analogous to the existing 'htab' file which dumps the HPT entries for a HPT guest. Reviewed-by: NDavid Gibson <david@gibson.dropbear.id.au> Signed-off-by: NPaul Mackerras <paulus@ozlabs.org> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
由 Paul Mackerras 提交于
Currently the code for handling hypervisor instruction page faults passes 0 for the flags indicating the type of fault, which is OK in the usual case that the page is not mapped in the partition-scoped page tables. However, there are other causes for hypervisor instruction page faults, such as not being to update a reference (R) or change (C) bit. The cause is indicated in bits in HSRR1, including a bit which indicates that the fault is due to not being able to write to a page (for example to update an R or C bit). Not handling these other kinds of faults correctly can lead to a loop of continual faults without forward progress in the guest. In order to handle these faults better, this patch constructs a "DSISR-like" value from the bits which DSISR and SRR1 (for a HISI) have in common, and passes it to kvmppc_book3s_hv_page_fault() so that it knows what caused the fault. Reviewed-by: NDavid Gibson <david@gibson.dropbear.id.au> Signed-off-by: NPaul Mackerras <paulus@ozlabs.org> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
由 Paul Mackerras 提交于
This creates an alternative guest entry/exit path which is used for radix guests on POWER9 systems when we have indep_threads_mode=Y. In these circumstances there is exactly one vcpu per vcore and there is no coordination required between vcpus or vcores; the vcpu can enter the guest without needing to synchronize with anything else. The new fast path is implemented almost entirely in C in book3s_hv.c and runs with the MMU on until the guest is entered. On guest exit we use the existing path until the point where we are committed to exiting the guest (as distinct from handling an interrupt in the low-level code and returning to the guest) and we have pulled the guest context from the XIVE. At that point we check a flag in the stack frame to see whether we came in via the old path and the new path; if we came in via the new path then we go back to C code to do the rest of the process of saving the guest context and restoring the host context. The C code is split into separate functions for handling the OS-accessible state and the hypervisor state, with the idea that the latter can be replaced by a hypercall when we implement nested virtualization. Signed-off-by: NPaul Mackerras <paulus@ozlabs.org> Reviewed-by: NDavid Gibson <david@gibson.dropbear.id.au> [mpe: Fix CONFIG_ALTIVEC=n build] Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
由 Paul Mackerras 提交于
This adds a parameter to __kvmppc_save_tm and __kvmppc_restore_tm which allows the caller to indicate whether it wants the nonvolatile register state to be preserved across the call, as required by the C calling conventions. This parameter being non-zero also causes the MSR bits that enable TM, FP, VMX and VSX to be preserved. The condition register and DSCR are now always preserved. With this, kvmppc_save_tm_hv and kvmppc_restore_tm_hv can be called from C code provided the 3rd parameter is non-zero. So that these functions can be called from modules, they now include code to set the TOC pointer (r2) on entry, as they can call other built-in C functions which will assume the TOC to have been set. Also, the fake suspend code in kvmppc_save_tm_hv is modified here to assume that treclaim in fake-suspend state does not modify any registers, which is the case on POWER9. This enables the code to be simplified quite a bit. _kvmppc_save_tm_pr and _kvmppc_restore_tm_pr become much simpler with this change, since they now only need to save and restore TAR and pass 1 for the 3rd argument to __kvmppc_{save,restore}_tm. Reviewed-by: NDavid Gibson <david@gibson.dropbear.id.au> Signed-off-by: NPaul Mackerras <paulus@ozlabs.org> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
由 Paul Mackerras 提交于
This pulls out the assembler code that is responsible for saving and restoring the PMU state for the host and guest into separate functions so they can be used from an alternate entry path. The calling convention is made compatible with C. Reviewed-by: NDavid Gibson <david@gibson.dropbear.id.au> Signed-off-by: NPaul Mackerras <paulus@ozlabs.org> Reviewed-by: NMadhavan Srinivasan <maddy@linux.vnet.ibm.com> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
由 Paul Mackerras 提交于
This is based on a patch by Suraj Jitindar Singh. This moves the code in book3s_hv_rmhandlers.S that generates an external, decrementer or privileged doorbell interrupt just before entering the guest to C code in book3s_hv_builtin.c. This is to make future maintenance and modification easier. The algorithm expressed in the C code is almost identical to the previous algorithm. Reviewed-by: NDavid Gibson <david@gibson.dropbear.id.au> Signed-off-by: NPaul Mackerras <paulus@ozlabs.org> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
由 Paul Mackerras 提交于
Currently we use two bits in the vcpu pending_exceptions bitmap to indicate that an external interrupt is pending for the guest, one for "one-shot" interrupts that are cleared when delivered, and one for interrupts that persist until cleared by an explicit action of the OS (e.g. an acknowledge to an interrupt controller). The BOOK3S_IRQPRIO_EXTERNAL bit is used for one-shot interrupt requests and BOOK3S_IRQPRIO_EXTERNAL_LEVEL is used for persisting interrupts. In practice BOOK3S_IRQPRIO_EXTERNAL never gets used, because our Book3S platforms generally, and pseries in particular, expect external interrupt requests to persist until they are acknowledged at the interrupt controller. That combined with the confusion introduced by having two bits for what is essentially the same thing makes it attractive to simplify things by only using one bit. This patch does that. With this patch there is only BOOK3S_IRQPRIO_EXTERNAL, and by default it has the semantics of a persisting interrupt. In order to avoid breaking the ABI, we introduce a new "external_oneshot" flag which preserves the behaviour of the KVM_INTERRUPT ioctl with the KVM_INTERRUPT_SET argument. Reviewed-by: NDavid Gibson <david@gibson.dropbear.id.au> Signed-off-by: NPaul Mackerras <paulus@ozlabs.org> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
由 Alexey Kardashevskiy 提交于
The kvmppc_gpa_to_ua() helper itself takes care of the permission bits in the TCE and yet every single caller removes them. This changes semantics of kvmppc_gpa_to_ua() so it takes TCEs (which are GPAs + TCE permission bits) to make the callers simpler. This should cause no behavioural change. Signed-off-by: NAlexey Kardashevskiy <aik@ozlabs.ru> Reviewed-by: NDavid Gibson <david@gibson.dropbear.id.au> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
由 Alexey Kardashevskiy 提交于
The userspace can request an arbitrary supported page size for a DMA window and this works fine as long as the mapped memory is backed with the pages of the same or bigger size; if this is not the case, mm_iommu_ua_to_hpa{_rm}() fail and tables do not populated with dangerously incorrect TCEs. However since it is quite easy to misconfigure the KVM and we do not do reverts to all changes made to TCE tables if an error happens in a middle, we better do the acceptable page size validation before we even touch the tables. This enhances kvmppc_tce_validate() to check the hardware IOMMU page sizes against the preregistered memory page sizes. Since the new check uses real/virtual mode helpers, this renames kvmppc_tce_validate() to kvmppc_rm_tce_validate() to handle the real mode case and mirrors it for the virtual mode under the old name. The real mode handler is not used for the virtual mode as: 1. it uses _lockless() list traversing primitives instead of RCU; 2. realmode's mm_iommu_ua_to_hpa_rm() uses vmalloc_to_phys() which virtual mode does not have to use and since on POWER9+radix only virtual mode handlers actually work, we do not want to slow down that path even a bit. This removes EXPORT_SYMBOL_GPL(kvmppc_tce_validate) as the validators are static now. From now on the attempts on mapping IOMMU pages bigger than allowed will result in KVM exit. Signed-off-by: NAlexey Kardashevskiy <aik@ozlabs.ru> Reviewed-by: NDavid Gibson <david@gibson.dropbear.id.au> [mpe: Fix KVM_HV=n build] Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
- 12 9月, 2018 1 次提交
-
-
由 Alexey Kardashevskiy 提交于
At the moment the real mode handler of H_PUT_TCE calls iommu_tce_xchg_rm() which in turn reads the old TCE and if it was a valid entry, marks the physical page dirty if it was mapped for writing. Since it is in real mode, realmode_pfn_to_page() is used instead of pfn_to_page() to get the page struct. However SetPageDirty() itself reads the compound page head and returns a virtual address for the head page struct and setting dirty bit for that kills the system. This adds additional dirty bit tracking into the MM/IOMMU API for use in the real mode. Note that this does not change how VFIO and KVM (in virtual mode) set this bit. The KVM (real mode) changes include: - use the lowest bit of the cached host phys address to carry the dirty bit; - mark pages dirty when they are unpinned which happens when the preregistered memory is released which always happens in virtual mode; - add mm_iommu_ua_mark_dirty_rm() helper to set delayed dirty bit; - change iommu_tce_xchg_rm() to take the kvm struct for the mm to use in the new mm_iommu_ua_mark_dirty_rm() helper; - move iommu_tce_xchg_rm() to book3s_64_vio_hv.c (which is the only caller anyway) to reduce the real mode KVM and IOMMU knowledge across different subsystems. This removes realmode_pfn_to_page() as it is not used anymore. While we at it, remove some EXPORT_SYMBOL_GPL() as that code is for the real mode only and modules cannot call it anyway. Signed-off-by: NAlexey Kardashevskiy <aik@ozlabs.ru> Reviewed-by: NDavid Gibson <david@gibson.dropbear.id.au> Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
-
- 23 8月, 2018 2 次提交
-
-
由 Aneesh Kumar K.V 提交于
When splitting a huge pmd pte, we need to mark the pmd entry invalid. We can do that by clearing _PAGE_PRESENT bit. But then that will be taken as a swap pte. In order to differentiate between the two use a software pte bit when invalidating. For regular pte, due to bd5050e3 ("powerpc/mm/radix: Change pte relax sequence to handle nest MMU hang") we need to mark the pte entry invalid when relaxing access permission. Instead of marking pte_none which can result in different page table walk routines possibly skipping this pte entry, invalidate it but still keep it marked present. Signed-off-by: NAneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
由 Christophe Leroy 提交于
Commit 5769beaf ("powerpc/mm: Add proper pte access check helper for other platforms") replaced generic pte_access_permitted() by an arch specific one. The generic one is defined as (pte_present(pte) && (!(write) || pte_write(pte))) The arch specific one is open coded checking that _PAGE_USER and _PAGE_WRITE (_PAGE_RW) flags are set, but lacking to check that _PAGE_RO and _PAGE_PRIVILEGED are unset, leading to a useless test on targets like the 8xx which defines _PAGE_RW and _PAGE_USER as 0. Commit 5fa5b16b ("powerpc/mm/hugetlb: Use pte_access_permitted for hugetlb access check") replaced some tests performed with pte helpers by a call to pte_access_permitted(), leading to the same issue. This patch rewrites powerpc/nohash pte_access_permitted() using pte helpers. Fixes: 5769beaf ("powerpc/mm: Add proper pte access check helper for other platforms") Fixes: 5fa5b16b ("powerpc/mm/hugetlb: Use pte_access_permitted for hugetlb access check") Cc: stable@vger.kernel.org # v4.15+ Signed-off-by: NChristophe Leroy <christophe.leroy@c-s.fr> Reviewed-by: NAneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
- 21 8月, 2018 1 次提交
-
-
由 Srikar Dronamraju 提交于
On a shared LPAR, Phyp will not update the CPU associativity at boot time. Just after the boot system does recognize itself as a shared LPAR and trigger a request for correct CPU associativity. But by then the scheduler would have already created/destroyed its sched domains. This causes - Broken load balance across Nodes causing islands of cores. - Performance degradation esp if the system is lightly loaded - dmesg to wrongly report all CPUs to be in Node 0. - Messages in dmesg saying borken topology. - With commit 051f3ca0 ("sched/topology: Introduce NUMA identity node sched domain"), can cause rcu stalls at boot up. The sched_domains_numa_masks table which is used to generate cpumasks is only created at boot time just before creating sched domains and never updated. Hence, its better to get the topology correct before the sched domains are created. For example on 64 core Power 8 shared LPAR, dmesg reports Brought up 512 CPUs Node 0 CPUs: 0-511 Node 1 CPUs: Node 2 CPUs: Node 3 CPUs: Node 4 CPUs: Node 5 CPUs: Node 6 CPUs: Node 7 CPUs: Node 8 CPUs: Node 9 CPUs: Node 10 CPUs: Node 11 CPUs: ... BUG: arch topology borken the DIE domain not a subset of the NUMA domain BUG: arch topology borken the DIE domain not a subset of the NUMA domain numactl/lscpu output will still be correct with cores spreading across all nodes: Socket(s): 64 NUMA node(s): 12 Model: 2.0 (pvr 004d 0200) Model name: POWER8 (architected), altivec supported Hypervisor vendor: pHyp Virtualization type: para L1d cache: 64K L1i cache: 32K NUMA node0 CPU(s): 0-7,32-39,64-71,96-103,176-183,272-279,368-375,464-471 NUMA node1 CPU(s): 8-15,40-47,72-79,104-111,184-191,280-287,376-383,472-479 NUMA node2 CPU(s): 16-23,48-55,80-87,112-119,192-199,288-295,384-391,480-487 NUMA node3 CPU(s): 24-31,56-63,88-95,120-127,200-207,296-303,392-399,488-495 NUMA node4 CPU(s): 208-215,304-311,400-407,496-503 NUMA node5 CPU(s): 168-175,264-271,360-367,456-463 NUMA node6 CPU(s): 128-135,224-231,320-327,416-423 NUMA node7 CPU(s): 136-143,232-239,328-335,424-431 NUMA node8 CPU(s): 216-223,312-319,408-415,504-511 NUMA node9 CPU(s): 144-151,240-247,336-343,432-439 NUMA node10 CPU(s): 152-159,248-255,344-351,440-447 NUMA node11 CPU(s): 160-167,256-263,352-359,448-455 Currently on this LPAR, the scheduler detects 2 levels of Numa and created numa sched domains for all CPUs, but it finds a single DIE domain consisting of all CPUs. Hence it deletes all numa sched domains. To address this, detect the shared processor and update topology soon after CPUs are setup so that correct topology is updated just before scheduler creates sched domain. With the fix, dmesg reports: numa: Node 0 CPUs: 0-7 32-39 64-71 96-103 176-183 272-279 368-375 464-471 numa: Node 1 CPUs: 8-15 40-47 72-79 104-111 184-191 280-287 376-383 472-479 numa: Node 2 CPUs: 16-23 48-55 80-87 112-119 192-199 288-295 384-391 480-487 numa: Node 3 CPUs: 24-31 56-63 88-95 120-127 200-207 296-303 392-399 488-495 numa: Node 4 CPUs: 208-215 304-311 400-407 496-503 numa: Node 5 CPUs: 168-175 264-271 360-367 456-463 numa: Node 6 CPUs: 128-135 224-231 320-327 416-423 numa: Node 7 CPUs: 136-143 232-239 328-335 424-431 numa: Node 8 CPUs: 216-223 312-319 408-415 504-511 numa: Node 9 CPUs: 144-151 240-247 336-343 432-439 numa: Node 10 CPUs: 152-159 248-255 344-351 440-447 numa: Node 11 CPUs: 160-167 256-263 352-359 448-455 and lscpu also reports: Socket(s): 64 NUMA node(s): 12 Model: 2.0 (pvr 004d 0200) Model name: POWER8 (architected), altivec supported Hypervisor vendor: pHyp Virtualization type: para L1d cache: 64K L1i cache: 32K NUMA node0 CPU(s): 0-7,32-39,64-71,96-103,176-183,272-279,368-375,464-471 NUMA node1 CPU(s): 8-15,40-47,72-79,104-111,184-191,280-287,376-383,472-479 NUMA node2 CPU(s): 16-23,48-55,80-87,112-119,192-199,288-295,384-391,480-487 NUMA node3 CPU(s): 24-31,56-63,88-95,120-127,200-207,296-303,392-399,488-495 NUMA node4 CPU(s): 208-215,304-311,400-407,496-503 NUMA node5 CPU(s): 168-175,264-271,360-367,456-463 NUMA node6 CPU(s): 128-135,224-231,320-327,416-423 NUMA node7 CPU(s): 136-143,232-239,328-335,424-431 NUMA node8 CPU(s): 216-223,312-319,408-415,504-511 NUMA node9 CPU(s): 144-151,240-247,336-343,432-439 NUMA node10 CPU(s): 152-159,248-255,344-351,440-447 NUMA node11 CPU(s): 160-167,256-263,352-359,448-455 Reported-by: NManjunatha H R <manjuhr1@in.ibm.com> Signed-off-by: NSrikar Dronamraju <srikar@linux.vnet.ibm.com> [mpe: Trim / format change log] Tested-by: NMichael Ellerman <mpe@ellerman.id.au> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
- 20 8月, 2018 1 次提交
-
-
由 Nicholas Piggin 提交于
Provide the flush hv_op for the opal hvc driver. This will flush the firmware console buffers without spinning with interrupts disabled. Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: linuxppc-dev@lists.ozlabs.org Signed-off-by: NNicholas Piggin <npiggin@gmail.com> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
- 18 8月, 2018 1 次提交
-
-
由 Souptick Joarder 提交于
Use new return type vm_fault_t for fault handler. For now, this is just documenting that the function returns a VM_FAULT value rather than an errno. Once all instances are converted, vm_fault_t will become a distinct type. Ref-> commit 1c8f4220 ("mm: change return type to vm_fault_t") In this patch all the caller of handle_mm_fault() are changed to return vm_fault_t type. Link: http://lkml.kernel.org/r/20180617084810.GA6730@jordon-HP-15-Notebook-PCSigned-off-by: NSouptick Joarder <jrdr.linux@gmail.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Richard Henderson <rth@twiddle.net> Cc: Tony Luck <tony.luck@intel.com> Cc: Matt Turner <mattst88@gmail.com> Cc: Vineet Gupta <vgupta@synopsys.com> Cc: Russell King <linux@armlinux.org.uk> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Richard Kuo <rkuo@codeaurora.org> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Michal Simek <monstr@monstr.eu> Cc: James Hogan <jhogan@kernel.org> Cc: Ley Foon Tan <lftan@altera.com> Cc: Jonas Bonn <jonas@southpole.se> Cc: James E.J. Bottomley <jejb@parisc-linux.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Palmer Dabbelt <palmer@sifive.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Cc: David S. Miller <davem@davemloft.net> Cc: Richard Weinberger <richard@nod.at> Cc: Guan Xuetao <gxt@pku.edu.cn> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: "Levin, Alexander (Sasha Levin)" <alexander.levin@verizon.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 13 8月, 2018 1 次提交
-
-
由 Aneesh Kumar K.V 提交于
Add statistics that show how memory is mapped within the kernel linear mapping. This is similar to commit 37cd944c ("s390/pgtable: add mapping statistics") We don't do this with Hash translation mode. Hash uses one size (mmu_linear_psize) to map the kernel linear mapping and we print the linear psize during boot as below. "Page orders: linear mapping = 24, virtual = 16, io = 16, vmemmap = 24" A sample output looks like: DirectMap4k: 0 kB DirectMap64k: 18432 kB DirectMap2M: 1030144 kB DirectMap1G: 11534336 kB Signed-off-by: NAneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
- 10 8月, 2018 8 次提交
-
-
由 Michael Ellerman 提交于
Currently if you build a 32-bit powerpc kernel and use get_user() to load a u64 value it will fail to build with eg: kernel/rseq.o: In function `rseq_get_rseq_cs': kernel/rseq.c:123: undefined reference to `__get_user_bad' This is hitting the check in __get_user_size() that makes sure the size we're copying doesn't exceed the size of the destination: #define __get_user_size(x, ptr, size, retval) do { retval = 0; __chk_user_ptr(ptr); if (size > sizeof(x)) (x) = __get_user_bad(); Which doesn't immediately make sense because the size of the destination is u64, but it's not really, because __get_user_check() etc. internally create an unsigned long and copy into that: #define __get_user_check(x, ptr, size) ({ long __gu_err = -EFAULT; unsigned long __gu_val = 0; The problem being that on 32-bit unsigned long is not big enough to hold a u64. We can fix this with a trick from hpa in the x86 code, we statically check the type of x and set the type of __gu_val to either unsigned long or unsigned long long. Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
由 Aneesh Kumar K.V 提交于
Avoid coverity false warnings like: *** CID 187347: Control flow issues (UNREACHABLE) /arch/powerpc/mm/hash_native_64.c: 819 in native_flush_hash_range() 813 slot += hidx & _PTEIDX_GROUP_IX; 814 hptep = htab_address + slot; 815 want_v = hpte_encode_avpn(vpn, psize, ssize); 816 hpte_v = hpte_get_old_v(hptep); 817 818 if (!HPTE_V_COMPARE(hpte_v, want_v) || !(hpte_v & HPTE_V_VALID)) >>> CID 187347: Control flow issues (UNREACHABLE) Signed-off-by: NAneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
由 Nicholas Piggin 提交于
The machine check code that flushes and restores bolted segments in real mode belongs in mm/slb.c. This will also be used by pseries machine check and idle code in future changes. Signed-off-by: NNicholas Piggin <npiggin@gmail.com> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
由 Aneesh Kumar K.V 提交于
This patch makes sure we update the mmu_gather page size even if we are requesting for a fullmm flush. This avoids triggering VM_WARN_ON in code paths like __tlb_remove_page_size that explicitly check for removing range page size to be same as mmu gather page size. Fixes: 5a609934 ("powerpc/64s/radix: tlb do not flush on page size when fullmm") Signed-off-by: NAneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Acked-by: NNicholas Piggin <npiggin@gmail.com> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
由 Christophe Leroy 提交于
huge_pte_offset_and_shift() has never existed Signed-off-by: NChristophe Leroy <christophe.leroy@c-s.fr> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
由 Christophe Leroy 提交于
The symbol memcpy_nocache_branch defined in order to allow patching of memset function once cache is enabled leads to confusing reports by perf tool. Using the new patch_site functionality solves this issue. Signed-off-by: NChristophe Leroy <christophe.leroy@c-s.fr> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
由 Hari Bathini 提交于
Crash memory ranges is an array of memory ranges of the crashing kernel to be exported as a dump via /proc/vmcore file. The size of the array is set based on INIT_MEMBLOCK_REGIONS, which works alright in most cases where memblock memory regions count is less than INIT_MEMBLOCK_REGIONS value. But this count can grow beyond INIT_MEMBLOCK_REGIONS value since commit 142b45a7 ("memblock: Add array resizing support"). On large memory systems with a few DLPAR operations, the memblock memory regions count could be larger than INIT_MEMBLOCK_REGIONS value. On such systems, registering fadump results in crash or other system failures like below: task: c00007f39a290010 ti: c00000000b738000 task.ti: c00000000b738000 NIP: c000000000047df4 LR: c0000000000f9e58 CTR: c00000000010f180 REGS: c00000000b73b570 TRAP: 0300 Tainted: G L X (4.4.140+) MSR: 8000000000009033 <SF,EE,ME,IR,DR,RI,LE> CR: 22004484 XER: 20000000 CFAR: c000000000008500 DAR: 000007a450000000 DSISR: 40000000 SOFTE: 0 ... NIP [c000000000047df4] smp_send_reschedule+0x24/0x80 LR [c0000000000f9e58] resched_curr+0x138/0x160 Call Trace: resched_curr+0x138/0x160 (unreliable) check_preempt_curr+0xc8/0xf0 ttwu_do_wakeup+0x38/0x150 try_to_wake_up+0x224/0x4d0 __wake_up_common+0x94/0x100 ep_poll_callback+0xac/0x1c0 __wake_up_common+0x94/0x100 __wake_up_sync_key+0x70/0xa0 sock_def_readable+0x58/0xa0 unix_stream_sendmsg+0x2dc/0x4c0 sock_sendmsg+0x68/0xa0 ___sys_sendmsg+0x2cc/0x2e0 __sys_sendmsg+0x5c/0xc0 SyS_socketcall+0x36c/0x3f0 system_call+0x3c/0x100 as array index overflow is not checked for while setting up crash memory ranges causing memory corruption. To resolve this issue, dynamically allocate memory for crash memory ranges and resize it incrementally, in units of pagesize, on hitting array size limit. Fixes: 2df173d9 ("fadump: Initialize elfcore header and add PT_LOAD program headers.") Cc: stable@vger.kernel.org # v3.4+ Signed-off-by: NHari Bathini <hbathini@linux.ibm.com> Reviewed-by: NMahesh Salgaonkar <mahesh@linux.vnet.ibm.com> [mpe: Just use PAGE_SIZE directly, fixup variable placement] Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
由 Christophe Leroy 提交于
commit e8cb7a55 ("powerpc: remove superflous inclusions of asm/fixmap.h") removed inclusion of asm/fixmap.h from files not including objects from that file. However, asm/mmu-8xx.h includes call to __fix_to_virt(). The proper way would be to include asm/fixmap.h in asm/mmu-8xx.h but it creates an inclusion loop. So we have to leave asm/fixmap.h in sysdep/cpm_common.c for CONFIG_PPC_EARLY_DEBUG_CPM CC arch/powerpc/sysdev/cpm_common.o In file included from ./arch/powerpc/include/asm/mmu.h:340:0, from ./arch/powerpc/include/asm/reg_8xx.h:8, from ./arch/powerpc/include/asm/reg.h:29, from ./arch/powerpc/include/asm/processor.h:13, from ./arch/powerpc/include/asm/thread_info.h:28, from ./include/linux/thread_info.h:38, from ./arch/powerpc/include/asm/ptrace.h:159, from ./arch/powerpc/include/asm/hw_irq.h:12, from ./arch/powerpc/include/asm/irqflags.h:12, from ./include/linux/irqflags.h:16, from ./include/asm-generic/cmpxchg-local.h:6, from ./arch/powerpc/include/asm/cmpxchg.h:537, from ./arch/powerpc/include/asm/atomic.h:11, from ./include/linux/atomic.h:5, from ./include/linux/mutex.h:18, from ./include/linux/kernfs.h:13, from ./include/linux/sysfs.h:16, from ./include/linux/kobject.h:20, from ./include/linux/device.h:16, from ./include/linux/node.h:18, from ./include/linux/cpu.h:17, from ./include/linux/of_device.h:5, from arch/powerpc/sysdev/cpm_common.c:21: arch/powerpc/sysdev/cpm_common.c: In function ‘udbg_init_cpm’: ./arch/powerpc/include/asm/mmu-8xx.h:218:25: error: implicit declaration of function ‘__fix_to_virt’ [-Werror=implicit-function-declaration] #define VIRT_IMMR_BASE (__fix_to_virt(FIX_IMMR_BASE)) ^ arch/powerpc/sysdev/cpm_common.c:75:7: note: in expansion of macro ‘VIRT_IMMR_BASE’ VIRT_IMMR_BASE); ^ ./arch/powerpc/include/asm/mmu-8xx.h:218:39: error: ‘FIX_IMMR_BASE’ undeclared (first use in this function) #define VIRT_IMMR_BASE (__fix_to_virt(FIX_IMMR_BASE)) ^ arch/powerpc/sysdev/cpm_common.c:75:7: note: in expansion of macro ‘VIRT_IMMR_BASE’ VIRT_IMMR_BASE); ^ ./arch/powerpc/include/asm/mmu-8xx.h:218:39: note: each undeclared identifier is reported only once for each function it appears in #define VIRT_IMMR_BASE (__fix_to_virt(FIX_IMMR_BASE)) ^ arch/powerpc/sysdev/cpm_common.c:75:7: note: in expansion of macro ‘VIRT_IMMR_BASE’ VIRT_IMMR_BASE); ^ cc1: all warnings being treated as errors make[1]: *** [arch/powerpc/sysdev/cpm_common.o] Error 1 Fixes: e8cb7a55 ("powerpc: remove superflous inclusions of asm/fixmap.h") Signed-off-by: NChristophe Leroy <christophe.leroy@c-s.fr> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
- 09 8月, 2018 1 次提交
-
-
由 Christophe Leroy 提交于
commit e8cb7a55 ("powerpc: remove superflous inclusions of asm/fixmap.h") removed inclusion of asm/fixmap.h from files not including objects from that file. However, asm/mmu-8xx.h includes call to __fix_to_virt(). The proper way would be to include asm/fixmap.h in asm/mmu-8xx.h but it creates an inclusion loop. So we have to leave asm/fixmap.h in sysdep/cpm_common.c for CONFIG_PPC_EARLY_DEBUG_CPM CC arch/powerpc/sysdev/cpm_common.o In file included from ./arch/powerpc/include/asm/mmu.h:340:0, from ./arch/powerpc/include/asm/reg_8xx.h:8, from ./arch/powerpc/include/asm/reg.h:29, from ./arch/powerpc/include/asm/processor.h:13, from ./arch/powerpc/include/asm/thread_info.h:28, from ./include/linux/thread_info.h:38, from ./arch/powerpc/include/asm/ptrace.h:159, from ./arch/powerpc/include/asm/hw_irq.h:12, from ./arch/powerpc/include/asm/irqflags.h:12, from ./include/linux/irqflags.h:16, from ./include/asm-generic/cmpxchg-local.h:6, from ./arch/powerpc/include/asm/cmpxchg.h:537, from ./arch/powerpc/include/asm/atomic.h:11, from ./include/linux/atomic.h:5, from ./include/linux/mutex.h:18, from ./include/linux/kernfs.h:13, from ./include/linux/sysfs.h:16, from ./include/linux/kobject.h:20, from ./include/linux/device.h:16, from ./include/linux/node.h:18, from ./include/linux/cpu.h:17, from ./include/linux/of_device.h:5, from arch/powerpc/sysdev/cpm_common.c:21: arch/powerpc/sysdev/cpm_common.c: In function ‘udbg_init_cpm’: ./arch/powerpc/include/asm/mmu-8xx.h:218:25: error: implicit declaration of function ‘__fix_to_virt’ [-Werror=implicit-function-declaration] #define VIRT_IMMR_BASE (__fix_to_virt(FIX_IMMR_BASE)) ^ arch/powerpc/sysdev/cpm_common.c:75:7: note: in expansion of macro ‘VIRT_IMMR_BASE’ VIRT_IMMR_BASE); ^ ./arch/powerpc/include/asm/mmu-8xx.h:218:39: error: ‘FIX_IMMR_BASE’ undeclared (first use in this function) #define VIRT_IMMR_BASE (__fix_to_virt(FIX_IMMR_BASE)) ^ arch/powerpc/sysdev/cpm_common.c:75:7: note: in expansion of macro ‘VIRT_IMMR_BASE’ VIRT_IMMR_BASE); ^ ./arch/powerpc/include/asm/mmu-8xx.h:218:39: note: each undeclared identifier is reported only once for each function it appears in #define VIRT_IMMR_BASE (__fix_to_virt(FIX_IMMR_BASE)) ^ arch/powerpc/sysdev/cpm_common.c:75:7: note: in expansion of macro ‘VIRT_IMMR_BASE’ VIRT_IMMR_BASE); ^ cc1: all warnings being treated as errors make[1]: *** [arch/powerpc/sysdev/cpm_common.o] Error 1 Fixes: e8cb7a55 ("powerpc: remove superflous inclusions of asm/fixmap.h") Signed-off-by: NChristophe Leroy <christophe.leroy@c-s.fr> Signed-off-by: NScott Wood <oss@buserror.net>
-
- 07 8月, 2018 9 次提交
-
-
由 Haren Myneni 提交于
NX increments readOffset by FIFO size in receive FIFO control register when CRB is read. But the index in RxFIFO has to match with the corresponding entry in FIFO maintained by VAS in kernel. Otherwise NX may be processing incorrect CRBs and can cause CRB timeout. VAS FIFO offset is 0 when the receive window is opened during initialization. When the module is reloaded or in kexec boot, readOffset in FIFO control register may not match with VAS entry. This patch adds nx_coproc_init OPAL call to reset readOffset and queued entries in FIFO control register for both high and normal FIFOs. Signed-off-by: NHaren Myneni <haren@us.ibm.com> [mpe: Fixup uninitialized variable warning] Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
由 Murilo Opsfelder Araujo 提交于
show_user_instructions() is a slightly modified version of show_instructions() that allows userspace instruction dump. This will be useful within show_signal_msg() to dump userspace instructions of the faulty location. Here is a sample of what show_user_instructions() outputs: pandafault[10850]: code: 4bfffeec 4bfffee8 3c401002 38427f00 fbe1fff8 f821ffc1 7c3f0b78 3d22fffe pandafault[10850]: code: 392988d0 f93f0020 e93f0020 39400048 <99490000> 39200000 7d234b78 383f0040 The current->comm and current->pid printed can serve as a glue that links the instructions dump to its originator, allowing messages to be interleaved in the logs. Signed-off-by: NMurilo Opsfelder Araujo <muriloo@linux.ibm.com> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
由 Michael Ellerman 提交于
Use the existing hypercall to determine the appropriate settings for the count cache flush, and then call the generic powerpc code to set it up based on the security feature flags. Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
由 Michael Ellerman 提交于
Some CPU revisions support a mode where the count cache needs to be flushed by software on context switch. Additionally some revisions may have a hardware accelerated flush, in which case the software flush sequence can be shortened. If we detect the appropriate flag from firmware we patch a branch into _switch() which takes us to a count cache flush sequence. That sequence in turn may be patched to return early if we detect that the CPU supports accelerating the flush sequence in hardware. Add debugfs support for reporting the state of the flush, as well as runtime disabling it. And modify the spectre_v2 sysfs file to report the state of the software flush. Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
由 Michael Ellerman 提交于
Add security feature flags to indicate the need for software to flush the count cache on context switch, and for the presence of a hardware assisted count cache flush. Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
由 Michael Ellerman 提交于
Add a macro and some helper C functions for patching single asm instructions. The gas macro means we can do something like: 1: nop patch_site 1b, patch__foo Which is less visually distracting than defining a GLOBAL symbol at 1, and also doesn't pollute the symbol table which can confuse eg. perf. These are obviously similar to our existing feature sections, but are not automatically patched based on CPU/MMU features, rather they are designed to be manually patched by C code at some arbitrary point. Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
由 Diana Craciun 提交于
Implement the barrier_nospec as a isync;sync instruction sequence. The implementation uses the infrastructure built for BOOK3S 64. Signed-off-by: NDiana Craciun <diana.craciun@nxp.com> [mpe: Split out of larger patch] Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
由 Michael Ellerman 提交于
Currently we require platform code to call setup_barrier_nospec(). But if we add an empty definition for the !CONFIG_PPC_BARRIER_NOSPEC case then we can call it in setup_arch(). Signed-off-by: NDiana Craciun <diana.craciun@nxp.com> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
由 Michael Ellerman 提交于
Add a config symbol to encode which platforms support the barrier_nospec speculation barrier. Currently this is just Book3S 64 but we will add Book3E in a future patch. Signed-off-by: NDiana Craciun <diana.craciun@nxp.com> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-