- 05 2月, 2022 1 次提交
-
-
由 Eric Dumazet 提交于
syzbot found that mixing sendpage() and sendmsg(MSG_ZEROCOPY) calls over the same TCP socket would again trigger the infamous warning in inet_sock_destruct() WARN_ON(sk_forward_alloc_get(sk)); While Talal took into account a mix of regular copied data and MSG_ZEROCOPY one in the same skb, the sendpage() path has been forgotten. We want the charging to happen for sendpage(), because pages could be coming from a pipe. What is missing is the downgrading of pure zerocopy status to make sure sk_forward_alloc will stay synced. Add tcp_downgrade_zcopy_pure() helper so that we can use it from the two callers. Fixes: 9b65b17d ("net: avoid double accounting for pure zerocopy skbs") Signed-off-by: NEric Dumazet <edumazet@google.com> Reported-by: Nsyzbot <syzkaller@googlegroups.com> Cc: Talal Ahmad <talalahmad@google.com> Cc: Arjun Roy <arjunroy@google.com> Cc: Willem de Bruijn <willemb@google.com> Acked-by: NSoheil Hassas Yeganeh <soheil@google.com> Link: https://lore.kernel.org/r/20220203225547.665114-1-eric.dumazet@gmail.comSigned-off-by: NJakub Kicinski <kuba@kernel.org>
-
- 02 2月, 2022 1 次提交
-
-
由 Eric Dumazet 提交于
We got reports of following warning in inet_sock_destruct() WARN_ON(sk_forward_alloc_get(sk)); Whenever we add a non zero-copy fragment to a pure zerocopy skb, we have to anticipate that whole skb->truesize will be uncharged when skb is finally freed. skb->data_len is the payload length. But the memory truesize estimated by __zerocopy_sg_from_iter() is page aligned. Fixes: 9b65b17d ("net: avoid double accounting for pure zerocopy skbs") Signed-off-by: NEric Dumazet <edumazet@google.com> Cc: Talal Ahmad <talalahmad@google.com> Cc: Arjun Roy <arjunroy@google.com> Cc: Willem de Bruijn <willemb@google.com> Acked-by: NSoheil Hassas Yeganeh <soheil@google.com> Link: https://lore.kernel.org/r/20220201065254.680532-1-eric.dumazet@gmail.comSigned-off-by: NJakub Kicinski <kuba@kernel.org>
-
- 21 1月, 2022 1 次提交
-
-
由 Eric Dumazet 提交于
Without it, splice users can hit the warning added in commit 79074a72 ("net: Flush deferred skb free on socket destroy") Fixes: f35f8219 ("tcp: defer skb freeing after socket lock is released") Fixes: 79074a72 ("net: Flush deferred skb free on socket destroy") Suggested-by: NJakub Kicinski <kuba@kernel.org> Signed-off-by: NEric Dumazet <edumazet@google.com> Cc: Gal Pressman <gal@nvidia.com> Link: https://lore.kernel.org/r/20220120124530.925607-1-eric.dumazet@gmail.comSigned-off-by: NJakub Kicinski <kuba@kernel.org>
-
- 21 12月, 2021 1 次提交
-
-
由 Eric Dumazet 提交于
syzbot reported various issues around early demux, one being included in this changelog [1] sk->sk_rx_dst is using RCU protection without clearly documenting it. And following sequences in tcp_v4_do_rcv()/tcp_v6_do_rcv() are not following standard RCU rules. [a] dst_release(dst); [b] sk->sk_rx_dst = NULL; They look wrong because a delete operation of RCU protected pointer is supposed to clear the pointer before the call_rcu()/synchronize_rcu() guarding actual memory freeing. In some cases indeed, dst could be freed before [b] is done. We could cheat by clearing sk_rx_dst before calling dst_release(), but this seems the right time to stick to standard RCU annotations and debugging facilities. [1] BUG: KASAN: use-after-free in dst_check include/net/dst.h:470 [inline] BUG: KASAN: use-after-free in tcp_v4_early_demux+0x95b/0x960 net/ipv4/tcp_ipv4.c:1792 Read of size 2 at addr ffff88807f1cb73a by task syz-executor.5/9204 CPU: 0 PID: 9204 Comm: syz-executor.5 Not tainted 5.16.0-rc5-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Call Trace: <TASK> __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0xcd/0x134 lib/dump_stack.c:106 print_address_description.constprop.0.cold+0x8d/0x320 mm/kasan/report.c:247 __kasan_report mm/kasan/report.c:433 [inline] kasan_report.cold+0x83/0xdf mm/kasan/report.c:450 dst_check include/net/dst.h:470 [inline] tcp_v4_early_demux+0x95b/0x960 net/ipv4/tcp_ipv4.c:1792 ip_rcv_finish_core.constprop.0+0x15de/0x1e80 net/ipv4/ip_input.c:340 ip_list_rcv_finish.constprop.0+0x1b2/0x6e0 net/ipv4/ip_input.c:583 ip_sublist_rcv net/ipv4/ip_input.c:609 [inline] ip_list_rcv+0x34e/0x490 net/ipv4/ip_input.c:644 __netif_receive_skb_list_ptype net/core/dev.c:5508 [inline] __netif_receive_skb_list_core+0x549/0x8e0 net/core/dev.c:5556 __netif_receive_skb_list net/core/dev.c:5608 [inline] netif_receive_skb_list_internal+0x75e/0xd80 net/core/dev.c:5699 gro_normal_list net/core/dev.c:5853 [inline] gro_normal_list net/core/dev.c:5849 [inline] napi_complete_done+0x1f1/0x880 net/core/dev.c:6590 virtqueue_napi_complete drivers/net/virtio_net.c:339 [inline] virtnet_poll+0xca2/0x11b0 drivers/net/virtio_net.c:1557 __napi_poll+0xaf/0x440 net/core/dev.c:7023 napi_poll net/core/dev.c:7090 [inline] net_rx_action+0x801/0xb40 net/core/dev.c:7177 __do_softirq+0x29b/0x9c2 kernel/softirq.c:558 invoke_softirq kernel/softirq.c:432 [inline] __irq_exit_rcu+0x123/0x180 kernel/softirq.c:637 irq_exit_rcu+0x5/0x20 kernel/softirq.c:649 common_interrupt+0x52/0xc0 arch/x86/kernel/irq.c:240 asm_common_interrupt+0x1e/0x40 arch/x86/include/asm/idtentry.h:629 RIP: 0033:0x7f5e972bfd57 Code: 39 d1 73 14 0f 1f 80 00 00 00 00 48 8b 50 f8 48 83 e8 08 48 39 ca 77 f3 48 39 c3 73 3e 48 89 13 48 8b 50 f8 48 89 38 49 8b 0e <48> 8b 3e 48 83 c3 08 48 83 c6 08 eb bc 48 39 d1 72 9e 48 39 d0 73 RSP: 002b:00007fff8a413210 EFLAGS: 00000283 RAX: 00007f5e97108990 RBX: 00007f5e97108338 RCX: ffffffff81d3aa45 RDX: ffffffff81d3aa45 RSI: 00007f5e97108340 RDI: ffffffff81d3aa45 RBP: 00007f5e97107eb8 R08: 00007f5e97108d88 R09: 0000000093c2e8d9 R10: 0000000000000000 R11: 0000000000000000 R12: 00007f5e97107eb0 R13: 00007f5e97108338 R14: 00007f5e97107ea8 R15: 0000000000000019 </TASK> Allocated by task 13: kasan_save_stack+0x1e/0x50 mm/kasan/common.c:38 kasan_set_track mm/kasan/common.c:46 [inline] set_alloc_info mm/kasan/common.c:434 [inline] __kasan_slab_alloc+0x90/0xc0 mm/kasan/common.c:467 kasan_slab_alloc include/linux/kasan.h:259 [inline] slab_post_alloc_hook mm/slab.h:519 [inline] slab_alloc_node mm/slub.c:3234 [inline] slab_alloc mm/slub.c:3242 [inline] kmem_cache_alloc+0x202/0x3a0 mm/slub.c:3247 dst_alloc+0x146/0x1f0 net/core/dst.c:92 rt_dst_alloc+0x73/0x430 net/ipv4/route.c:1613 ip_route_input_slow+0x1817/0x3a20 net/ipv4/route.c:2340 ip_route_input_rcu net/ipv4/route.c:2470 [inline] ip_route_input_noref+0x116/0x2a0 net/ipv4/route.c:2415 ip_rcv_finish_core.constprop.0+0x288/0x1e80 net/ipv4/ip_input.c:354 ip_list_rcv_finish.constprop.0+0x1b2/0x6e0 net/ipv4/ip_input.c:583 ip_sublist_rcv net/ipv4/ip_input.c:609 [inline] ip_list_rcv+0x34e/0x490 net/ipv4/ip_input.c:644 __netif_receive_skb_list_ptype net/core/dev.c:5508 [inline] __netif_receive_skb_list_core+0x549/0x8e0 net/core/dev.c:5556 __netif_receive_skb_list net/core/dev.c:5608 [inline] netif_receive_skb_list_internal+0x75e/0xd80 net/core/dev.c:5699 gro_normal_list net/core/dev.c:5853 [inline] gro_normal_list net/core/dev.c:5849 [inline] napi_complete_done+0x1f1/0x880 net/core/dev.c:6590 virtqueue_napi_complete drivers/net/virtio_net.c:339 [inline] virtnet_poll+0xca2/0x11b0 drivers/net/virtio_net.c:1557 __napi_poll+0xaf/0x440 net/core/dev.c:7023 napi_poll net/core/dev.c:7090 [inline] net_rx_action+0x801/0xb40 net/core/dev.c:7177 __do_softirq+0x29b/0x9c2 kernel/softirq.c:558 Freed by task 13: kasan_save_stack+0x1e/0x50 mm/kasan/common.c:38 kasan_set_track+0x21/0x30 mm/kasan/common.c:46 kasan_set_free_info+0x20/0x30 mm/kasan/generic.c:370 ____kasan_slab_free mm/kasan/common.c:366 [inline] ____kasan_slab_free mm/kasan/common.c:328 [inline] __kasan_slab_free+0xff/0x130 mm/kasan/common.c:374 kasan_slab_free include/linux/kasan.h:235 [inline] slab_free_hook mm/slub.c:1723 [inline] slab_free_freelist_hook+0x8b/0x1c0 mm/slub.c:1749 slab_free mm/slub.c:3513 [inline] kmem_cache_free+0xbd/0x5d0 mm/slub.c:3530 dst_destroy+0x2d6/0x3f0 net/core/dst.c:127 rcu_do_batch kernel/rcu/tree.c:2506 [inline] rcu_core+0x7ab/0x1470 kernel/rcu/tree.c:2741 __do_softirq+0x29b/0x9c2 kernel/softirq.c:558 Last potentially related work creation: kasan_save_stack+0x1e/0x50 mm/kasan/common.c:38 __kasan_record_aux_stack+0xf5/0x120 mm/kasan/generic.c:348 __call_rcu kernel/rcu/tree.c:2985 [inline] call_rcu+0xb1/0x740 kernel/rcu/tree.c:3065 dst_release net/core/dst.c:177 [inline] dst_release+0x79/0xe0 net/core/dst.c:167 tcp_v4_do_rcv+0x612/0x8d0 net/ipv4/tcp_ipv4.c:1712 sk_backlog_rcv include/net/sock.h:1030 [inline] __release_sock+0x134/0x3b0 net/core/sock.c:2768 release_sock+0x54/0x1b0 net/core/sock.c:3300 tcp_sendmsg+0x36/0x40 net/ipv4/tcp.c:1441 inet_sendmsg+0x99/0xe0 net/ipv4/af_inet.c:819 sock_sendmsg_nosec net/socket.c:704 [inline] sock_sendmsg+0xcf/0x120 net/socket.c:724 sock_write_iter+0x289/0x3c0 net/socket.c:1057 call_write_iter include/linux/fs.h:2162 [inline] new_sync_write+0x429/0x660 fs/read_write.c:503 vfs_write+0x7cd/0xae0 fs/read_write.c:590 ksys_write+0x1ee/0x250 fs/read_write.c:643 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x44/0xae The buggy address belongs to the object at ffff88807f1cb700 which belongs to the cache ip_dst_cache of size 176 The buggy address is located 58 bytes inside of 176-byte region [ffff88807f1cb700, ffff88807f1cb7b0) The buggy address belongs to the page: page:ffffea0001fc72c0 refcount:1 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x7f1cb flags: 0xfff00000000200(slab|node=0|zone=1|lastcpupid=0x7ff) raw: 00fff00000000200 dead000000000100 dead000000000122 ffff8881413bb780 raw: 0000000000000000 0000000000100010 00000001ffffffff 0000000000000000 page dumped because: kasan: bad access detected page_owner tracks the page as allocated page last allocated via order 0, migratetype Unmovable, gfp_mask 0x112a20(GFP_ATOMIC|__GFP_NOWARN|__GFP_NORETRY|__GFP_HARDWALL), pid 5, ts 108466983062, free_ts 108048976062 prep_new_page mm/page_alloc.c:2418 [inline] get_page_from_freelist+0xa72/0x2f50 mm/page_alloc.c:4149 __alloc_pages+0x1b2/0x500 mm/page_alloc.c:5369 alloc_pages+0x1a7/0x300 mm/mempolicy.c:2191 alloc_slab_page mm/slub.c:1793 [inline] allocate_slab mm/slub.c:1930 [inline] new_slab+0x32d/0x4a0 mm/slub.c:1993 ___slab_alloc+0x918/0xfe0 mm/slub.c:3022 __slab_alloc.constprop.0+0x4d/0xa0 mm/slub.c:3109 slab_alloc_node mm/slub.c:3200 [inline] slab_alloc mm/slub.c:3242 [inline] kmem_cache_alloc+0x35c/0x3a0 mm/slub.c:3247 dst_alloc+0x146/0x1f0 net/core/dst.c:92 rt_dst_alloc+0x73/0x430 net/ipv4/route.c:1613 __mkroute_output net/ipv4/route.c:2564 [inline] ip_route_output_key_hash_rcu+0x921/0x2d00 net/ipv4/route.c:2791 ip_route_output_key_hash+0x18b/0x300 net/ipv4/route.c:2619 __ip_route_output_key include/net/route.h:126 [inline] ip_route_output_flow+0x23/0x150 net/ipv4/route.c:2850 ip_route_output_key include/net/route.h:142 [inline] geneve_get_v4_rt+0x3a6/0x830 drivers/net/geneve.c:809 geneve_xmit_skb drivers/net/geneve.c:899 [inline] geneve_xmit+0xc4a/0x3540 drivers/net/geneve.c:1082 __netdev_start_xmit include/linux/netdevice.h:4994 [inline] netdev_start_xmit include/linux/netdevice.h:5008 [inline] xmit_one net/core/dev.c:3590 [inline] dev_hard_start_xmit+0x1eb/0x920 net/core/dev.c:3606 __dev_queue_xmit+0x299a/0x3650 net/core/dev.c:4229 page last free stack trace: reset_page_owner include/linux/page_owner.h:24 [inline] free_pages_prepare mm/page_alloc.c:1338 [inline] free_pcp_prepare+0x374/0x870 mm/page_alloc.c:1389 free_unref_page_prepare mm/page_alloc.c:3309 [inline] free_unref_page+0x19/0x690 mm/page_alloc.c:3388 qlink_free mm/kasan/quarantine.c:146 [inline] qlist_free_all+0x5a/0xc0 mm/kasan/quarantine.c:165 kasan_quarantine_reduce+0x180/0x200 mm/kasan/quarantine.c:272 __kasan_slab_alloc+0xa2/0xc0 mm/kasan/common.c:444 kasan_slab_alloc include/linux/kasan.h:259 [inline] slab_post_alloc_hook mm/slab.h:519 [inline] slab_alloc_node mm/slub.c:3234 [inline] kmem_cache_alloc_node+0x255/0x3f0 mm/slub.c:3270 __alloc_skb+0x215/0x340 net/core/skbuff.c:414 alloc_skb include/linux/skbuff.h:1126 [inline] alloc_skb_with_frags+0x93/0x620 net/core/skbuff.c:6078 sock_alloc_send_pskb+0x783/0x910 net/core/sock.c:2575 mld_newpack+0x1df/0x770 net/ipv6/mcast.c:1754 add_grhead+0x265/0x330 net/ipv6/mcast.c:1857 add_grec+0x1053/0x14e0 net/ipv6/mcast.c:1995 mld_send_initial_cr.part.0+0xf6/0x230 net/ipv6/mcast.c:2242 mld_send_initial_cr net/ipv6/mcast.c:1232 [inline] mld_dad_work+0x1d3/0x690 net/ipv6/mcast.c:2268 process_one_work+0x9b2/0x1690 kernel/workqueue.c:2298 worker_thread+0x658/0x11f0 kernel/workqueue.c:2445 Memory state around the buggy address: ffff88807f1cb600: fa fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ffff88807f1cb680: fb fb fb fb fb fb fc fc fc fc fc fc fc fc fc fc >ffff88807f1cb700: fa fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ^ ffff88807f1cb780: fb fb fb fb fb fb fc fc fc fc fc fc fc fc fc fc ffff88807f1cb800: fa fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb Fixes: 41063e9d ("ipv4: Early TCP socket demux.") Signed-off-by: NEric Dumazet <edumazet@google.com> Link: https://lore.kernel.org/r/20211220143330.680945-1-eric.dumazet@gmail.comSigned-off-by: NJakub Kicinski <kuba@kernel.org>
-
- 08 12月, 2021 1 次提交
-
-
由 Maxim Galaganov 提交于
Expose __tcp_sock_set_cork() and __tcp_sock_set_nodelay() for use in MPTCP setsockopt code -- namely for syncing MPTCP socket options with subflows inside sync_socket_options() while already holding the subflow socket lock. Acked-by: NPaolo Abeni <pabeni@redhat.com> Acked-by: NMatthieu Baerts <matthieu.baerts@tessares.net> Signed-off-by: NMaxim Galaganov <max@internet.ru> Signed-off-by: NMat Martineau <mathew.j.martineau@linux.intel.com> Signed-off-by: NJakub Kicinski <kuba@kernel.org>
-
- 16 11月, 2021 10 次提交
-
-
由 Eric Dumazet 提交于
Under pressure, tcp recvmsg() has logic to process the socket backlog, but calls tcp_cleanup_rbuf() right before. Avoiding sending ACK right before processing new segments makes a lot of sense, as this decrease the number of ACK packets, with no impact on effective ACK clocking. Signed-off-by: NEric Dumazet <edumazet@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Eric Dumazet 提交于
Testing timeo before sk_err/sk_state/sk_shutdown makes more sense. Modern applications use non-blocking IO, while a socket is terminated only once during its life time. Signed-off-by: NEric Dumazet <edumazet@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Eric Dumazet 提交于
tcp recvmsg() (or rx zerocopy) spends a fair amount of time freeing skbs after their payload has been consumed. A typical ~64KB GRO packet has to release ~45 page references, eventually going to page allocator for each of them. Currently, this freeing is performed while socket lock is held, meaning that there is a high chance that BH handler has to queue incoming packets to tcp socket backlog. This can cause additional latencies, because the user thread has to process the backlog at release_sock() time, and while doing so, additional frames can be added by BH handler. This patch adds logic to defer these frees after socket lock is released, or directly from BH handler if possible. Being able to free these skbs from BH handler helps a lot, because this avoids the usual alloc/free assymetry, when BH handler and user thread do not run on same cpu or NUMA node. One cpu can now be fully utilized for the kernel->user copy, and another cpu is handling BH processing and skb/page allocs/frees (assuming RFS is not forcing use of a single CPU) Tested: 100Gbit NIC Max throughput for one TCP_STREAM flow, over 10 runs MTU : 1500 Before: 55 Gbit After: 66 Gbit MTU : 4096+(headers) Before: 82 Gbit After: 95 Gbit Signed-off-by: NEric Dumazet <edumazet@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Eric Dumazet 提交于
TCP uses sk_eat_skb() when skbs can be removed from receive queue. However, the call to skb_orphan() from __kfree_skb() incurs an indirect call so sock_rfee(), which is more expensive than a direct call, especially for CONFIG_RETPOLINE=y. Add tcp_eat_recv_skb() function to make the call before __kfree_skb(). Signed-off-by: NEric Dumazet <edumazet@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Eric Dumazet 提交于
Use some unlikely() hints in the fast path. Signed-off-by: NEric Dumazet <edumazet@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Eric Dumazet 提交于
tcp_poll() and tcp_ioctl() are reading tp->urg_data without socket lock owned. Also, it is faster to first check tp->urg_data in tcp_poll(), then tp->urg_seq == tp->copied_seq, because tp->urg_seq is located in a different/cold cache line. Signed-off-by: NEric Dumazet <edumazet@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Eric Dumazet 提交于
tcp_segs_in() can be called from BH, while socket spinlock is held but socket owned by user, eventually reading these fields from tcp_get_info() Found by code inspection, no need to backport this patch to older kernels. Signed-off-by: NEric Dumazet <edumazet@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Eric Dumazet 提交于
When reading large chunks of data, incoming packets might be added to the backlog from BH. tcp recvmsg() detects the backlog queue is not empty, and uses a release_sock()/lock_sock() pair to process this backlog. We now have __sk_flush_backlog() to perform this a bit faster. Signed-off-by: NEric Dumazet <edumazet@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Eric Dumazet 提交于
tcp_memory_allocated and tcp_sockets_allocated often share a common cache line, source of false sharing. Also take care of udp_memory_allocated and mptcp_sockets_allocated. Signed-off-by: NEric Dumazet <edumazet@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Eric Dumazet 提交于
We were only using one bit, and we can replace it by sk_is_tcp() Signed-off-by: NEric Dumazet <edumazet@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 13 11月, 2021 1 次提交
-
-
由 Arjun Roy 提交于
TCP Receive zerocopy iterates through the SKB queue via tcp_recv_skb(), acquiring a pointer to an SKB and an offset within that SKB to read from. From there, it iterates the SKB frags array to determine which offset to start remapping pages from. However, this is built on the assumption that the offset read so far within the SKB is smaller than the SKB length. If this assumption is violated, we can attempt to read an invalid frags array element, which would cause a fault. tcp_recv_skb() can cause such an SKB to be returned when the TCP FIN flag is set. Therefore, we must guard against this occurrence inside skb_advance_frag(). One way that we can reproduce this error follows: 1) In a receiver program, call getsockopt(TCP_ZEROCOPY_RECEIVE) with: char some_array[32 * 1024]; struct tcp_zerocopy_receive zc = { .copybuf_address = (__u64) &some_array[0], .copybuf_len = 32 * 1024, }; 2) In a sender program, after a TCP handshake, send the following sequence of packets: i) Seq = [X, X+4000] ii) Seq = [X+4000, X+5000] iii) Seq = [X+4000, X+5000], Flags = FIN | URG, urgptr=1000 (This can happen without URG, if we have a signal pending, but URG is a convenient way to reproduce the behaviour). In this case, the following event sequence will occur on the receiver: tcp_zerocopy_receive(): -> receive_fallback_to_copy() // copybuf_len >= inq -> tcp_recvmsg_locked() // reads 5000 bytes, then breaks due to URG -> tcp_recv_skb() // yields skb with skb->len == offset -> tcp_zerocopy_set_hint_for_skb() -> skb_advance_to_frag() // will returns a frags ptr. >= nr_frags -> find_next_mappable_frag() // will dereference this bad frags ptr. With this patch, skb_advance_to_frag() will no longer return an invalid frags pointer, and will return NULL instead, fixing the issue. Signed-off-by: NArjun Roy <arjunroy@google.com> Signed-off-by: NEric Dumazet <edumazet@google.com> Fixes: 05255b82 ("tcp: add TCP_ZEROCOPY_RECEIVE support for zerocopy receive") Link: https://lore.kernel.org/r/20211111235215.2605384-1-arjunroy.kdev@gmail.comSigned-off-by: NJakub Kicinski <kuba@kernel.org>
-
- 07 11月, 2021 1 次提交
-
-
由 Mianhan Liu 提交于
nr_free_buffer_pages could be exposed through mm.h instead of swap.h. The advantage of this change is that it can reduce the obsolete includes. For example, net/ipv4/tcp.c wouldn't need swap.h any more since it has already included mm.h. Similarly, after checking all the other files, it comes that tcp.c, udp.c meter.c ,... follow the same rule, so these files can have swap.h removed too. Moreover, after preprocessing all the files that use nr_free_buffer_pages, it turns out that those files have already included mm.h.Thus, we can move nr_free_buffer_pages from swap.h to mm.h safely. This change will not affect the compilation of other files. Link: https://lkml.kernel.org/r/20210912133640.1624-1-liumh1@shanghaitech.edu.cnSigned-off-by: NMianhan Liu <liumh1@shanghaitech.edu.cn> Cc: Jakub Kicinski <kuba@kernel.org> CC: Ulf Hansson <ulf.hansson@linaro.org> Cc: "David S . Miller" <davem@davemloft.net> Cc: Simon Horman <horms@verge.net.au> Cc: Pravin B Shelar <pshelar@ovn.org> Cc: Vlad Yasevich <vyasevich@gmail.com> Cc: Marcelo Ricardo Leitner <marcelo.leitner@gmail.com> Cc: Matthew Wilcox <willy@infradead.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 03 11月, 2021 1 次提交
-
-
由 Talal Ahmad 提交于
Track skbs containing only zerocopy data and avoid charging them to kernel memory to correctly account the memory utilization for msg_zerocopy. All of the data in such skbs is held in user pages which are already accounted to user. Before this change, they are charged again in kernel in __zerocopy_sg_from_iter. The charging in kernel is excessive because data is not being copied into skb frags. This excessive charging can lead to kernel going into memory pressure state which impacts all sockets in the system adversely. Mark pure zerocopy skbs with a SKBFL_PURE_ZEROCOPY flag and remove charge/uncharge for data in such skbs. Initially, an skb is marked pure zerocopy when it is empty and in zerocopy path. skb can then change from a pure zerocopy skb to mixed data skb (zerocopy and copy data) if it is at tail of write queue and there is room available in it and non-zerocopy data is being sent in the next sendmsg call. At this time sk_mem_charge is done for the pure zerocopied data and the pure zerocopy flag is unmarked. We found that this happens very rarely on workloads that pass MSG_ZEROCOPY. A pure zerocopy skb can later be coalesced into normal skb if they are next to each other in queue but this patch prevents coalescing from happening. This avoids complexity of charging when skb downgrades from pure zerocopy to mixed. This is also rare. In sk_wmem_free_skb, if it is a pure zerocopy skb, an sk_mem_uncharge for SKB_TRUESIZE(skb_end_offset(skb)) is done for sk_mem_charge in tcp_skb_entail for an skb without data. Testing with the msg_zerocopy.c benchmark between two hosts(100G nics) with zerocopy showed that before this patch the 'sock' variable in memory.stat for cgroup2 that tracks sum of sk_forward_alloc, sk_rmem_alloc and sk_wmem_queued is around 1822720 and with this change it is 0. This is due to no charge to sk_forward_alloc for zerocopy data and shows memory utilization for kernel is lowered. With this commit we don't see the warning we saw in previous commit which resulted in commit 84882cf7. Signed-off-by: NTalal Ahmad <talalahmad@google.com> Acked-by: NArjun Roy <arjunroy@google.com> Acked-by: NSoheil Hassas Yeganeh <soheil@google.com> Signed-off-by: NWillem de Bruijn <willemb@google.com> Signed-off-by: NEric Dumazet <edumazet@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 02 11月, 2021 3 次提交
-
-
由 Jakub Kicinski 提交于
This reverts commit f1a456f8. WARNING: CPU: 1 PID: 6819 at net/core/skbuff.c:5429 skb_try_coalesce+0x78b/0x7e0 CPU: 1 PID: 6819 Comm: xxxxxxx Kdump: loaded Tainted: G S 5.15.0-04194-gd852503f7711 #16 RIP: 0010:skb_try_coalesce+0x78b/0x7e0 Code: e8 2a bf 41 ff 44 8b b3 bc 00 00 00 48 8b 7c 24 30 e8 19 c0 41 ff 44 89 f0 48 03 83 c0 00 00 00 48 89 44 24 40 e9 47 fb ff ff <0f> 0b e9 ca fc ff ff 4c 8d 70 ff 48 83 c0 07 48 89 44 24 38 e9 61 RSP: 0018:ffff88881f449688 EFLAGS: 00010282 RAX: 00000000fffffe96 RBX: ffff8881566e4460 RCX: ffffffff82079f7e RDX: 0000000000000003 RSI: dffffc0000000000 RDI: ffff8881566e47b0 RBP: ffff8881566e46e0 R08: ffffed102619235d R09: ffffed102619235d R10: ffff888130c91ae3 R11: ffffed102619235c R12: ffff88881f4498a0 R13: 0000000000000056 R14: 0000000000000009 R15: ffff888130c91ac0 FS: 00007fec2cbb9700(0000) GS:ffff88881f440000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007fec1b060d80 CR3: 00000003acf94005 CR4: 00000000003706e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <IRQ> tcp_try_coalesce+0xeb/0x290 ? tcp_parse_options+0x610/0x610 ? mark_held_locks+0x79/0xa0 tcp_queue_rcv+0x69/0x2f0 tcp_rcv_established+0xa49/0xd40 ? tcp_data_queue+0x18a0/0x18a0 tcp_v6_do_rcv+0x1c9/0x880 ? rt6_mtu_change_route+0x100/0x100 tcp_v6_rcv+0x1624/0x1830 Signed-off-by: NJakub Kicinski <kuba@kernel.org>
-
由 Talal Ahmad 提交于
Track skbs with only zerocopy data and avoid charging them to kernel memory to correctly account the memory utilization for msg_zerocopy. All of the data in such skbs is held in user pages which are already accounted to user. Before this change, they are charged again in kernel in __zerocopy_sg_from_iter. The charging in kernel is excessive because data is not being copied into skb frags. This excessive charging can lead to kernel going into memory pressure state which impacts all sockets in the system adversely. Mark pure zerocopy skbs with a SKBFL_PURE_ZEROCOPY flag and remove charge/uncharge for data in such skbs. Initially, an skb is marked pure zerocopy when it is empty and in zerocopy path. skb can then change from a pure zerocopy skb to mixed data skb (zerocopy and copy data) if it is at tail of write queue and there is room available in it and non-zerocopy data is being sent in the next sendmsg call. At this time sk_mem_charge is done for the pure zerocopied data and the pure zerocopy flag is unmarked. We found that this happens very rarely on workloads that pass MSG_ZEROCOPY. A pure zerocopy skb can later be coalesced into normal skb if they are next to each other in queue but this patch prevents coalescing from happening. This avoids complexity of charging when skb downgrades from pure zerocopy to mixed. This is also rare. In sk_wmem_free_skb, if it is a pure zerocopy skb, an sk_mem_uncharge for SKB_TRUESIZE(MAX_TCP_HEADER) is done for sk_mem_charge in tcp_skb_entail for an skb without data. Testing with the msg_zerocopy.c benchmark between two hosts(100G nics) with zerocopy showed that before this patch the 'sock' variable in memory.stat for cgroup2 that tracks sum of sk_forward_alloc, sk_rmem_alloc and sk_wmem_queued is around 1822720 and with this change it is 0. This is due to no charge to sk_forward_alloc for zerocopy data and shows memory utilization for kernel is lowered. Signed-off-by: NTalal Ahmad <talalahmad@google.com> Acked-by: NArjun Roy <arjunroy@google.com> Acked-by: NSoheil Hassas Yeganeh <soheil@google.com> Signed-off-by: NWillem de Bruijn <willemb@google.com> Signed-off-by: NEric Dumazet <edumazet@google.com> Signed-off-by: NJakub Kicinski <kuba@kernel.org>
-
由 Talal Ahmad 提交于
sk_wmem_free_skb() is only used by TCP. Rename it to make this clear, and move its declaration to include/net/tcp.h Signed-off-by: NTalal Ahmad <talalahmad@google.com> Acked-by: NSoheil Hassas Yeganeh <soheil@google.com> Acked-by: NArjun Roy <arjunroy@google.com> Signed-off-by: NEric Dumazet <edumazet@google.com> Signed-off-by: NJakub Kicinski <kuba@kernel.org>
-
- 28 10月, 2021 6 次提交
-
-
由 Eric Dumazet 提交于
Freshly allocated skbs have zero in skb->cb[] already. Signed-off-by: NEric Dumazet <edumazet@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Eric Dumazet 提交于
Freshly allocated skbs have their csum field cleared already. Signed-off-by: NEric Dumazet <edumazet@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Eric Dumazet 提交于
Setting skb->ip_summed to CHECKSUM_PARTIAL can be centralized in tcp_stream_alloc_skb() and __mptcp_do_alloc_tx_skb() instead of being done multiple times. Signed-off-by: NEric Dumazet <edumazet@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Eric Dumazet 提交于
TCP/MPTCP sendmsg() no longer puts payload in skb->head, we can remove not needed code. Signed-off-by: NEric Dumazet <edumazet@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Eric Dumazet 提交于
All tcp_remove_empty_skb() callers now use tcp_write_queue_tail() for the skb argument, we can therefore factorize code. Signed-off-by: NEric Dumazet <edumazet@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Eric Dumazet 提交于
TCP sendmsg() no longer puts payload in skb head, we can remove dead code. Signed-off-by: NEric Dumazet <edumazet@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 27 10月, 2021 1 次提交
-
-
由 Cong Wang 提交于
The proto ops ->stream_memory_read() is currently only used by TCP to check whether psock queue is empty or not. We need to rename it before reusing it for non-TCP protocols, and adjust the exsiting users accordingly. Signed-off-by: NCong Wang <cong.wang@bytedance.com> Signed-off-by: NAlexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/20211008203306.37525-2-xiyou.wangcong@gmail.com
-
- 26 10月, 2021 4 次提交
-
-
由 Eric Dumazet 提交于
Aligning @size argument to 4 bytes is not needed. The header alignment has nothing to do with @size. It really depends on skb->head alignment and MAX_TCP_HEADER. Signed-off-by: NEric Dumazet <edumazet@google.com> Acked-by: NSoheil Hassas Yeganeh <soheil@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Eric Dumazet 提交于
Both IPv4 and IPv6 uses same reserve, no need risking cache line misses to fetch its value. Signed-off-by: NEric Dumazet <edumazet@google.com> Acked-by: NSoheil Hassas Yeganeh <soheil@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Eric Dumazet 提交于
sk_stream_alloc_skb() is only used by TCP. Rename it to make this clear, and move its declaration to include/net/tcp.h Signed-off-by: NEric Dumazet <edumazet@google.com> Acked-by: NSoheil Hassas Yeganeh <soheil@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Jon Maxwell 提交于
v1: Implement a more general statement as recommended by Eric Dumazet. The sequence number will be advanced, so this check will fix the FIN case and other cases. A customer reported sockets stuck in the CLOSING state. A Vmcore revealed that the write_queue was not empty as determined by tcp_write_queue_empty() but the sk_buff containing the FIN flag had been freed and the socket was zombied in that state. Corresponding pcaps show no FIN from the Linux kernel on the wire. Some instrumentation was added to the kernel and it was found that there is a timing window where tcp_sendmsg() can run after tcp_send_fin(). tcp_sendmsg() will hit an error, for example: 1269 ▹ if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
↩ 1270 ▹ ▹ goto do_error;↩ tcp_remove_empty_skb() will then free the FIN sk_buff as "skb->len == 0". The TCP socket is now wedged in the FIN-WAIT-1 state because the FIN is never sent. If the other side sends a FIN packet the socket will transition to CLOSING and remain that way until the system is rebooted. Fix this by checking for the FIN flag in the sk_buff and don't free it if that is the case. Testing confirmed that fixed the issue. Fixes: fdfc5c85 ("tcp: remove empty skb from write queue in error cases") Signed-off-by: NJon Maxwell <jmaxwell37@gmail.com> Reported-by: NMonir Zouaoui <Monir.Zouaoui@mail.schwarz> Reported-by: NSimon Stier <simon.stier@mail.schwarz> Reviewed-by: NEric Dumazet <edumazet@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 15 10月, 2021 1 次提交
-
-
由 Eric Dumazet 提交于
Use of percpu_counter structure to track count of orphaned sockets is causing problems on modern hosts with 256 cpus or more. Stefan Bach reported a serious spinlock contention in real workloads, that I was able to reproduce with a netfilter rule dropping incoming FIN packets. 53.56% server [kernel.kallsyms] [k] queued_spin_lock_slowpath | ---queued_spin_lock_slowpath | --53.51%--_raw_spin_lock_irqsave | --53.51%--__percpu_counter_sum tcp_check_oom | |--39.03%--__tcp_close | tcp_close | inet_release | inet6_release | sock_close | __fput | ____fput | task_work_run | exit_to_usermode_loop | do_syscall_64 | entry_SYSCALL_64_after_hwframe | __GI___libc_close | --14.48%--tcp_out_of_resources tcp_write_timeout tcp_retransmit_timer tcp_write_timer_handler tcp_write_timer call_timer_fn expire_timers __run_timers run_timer_softirq __softirqentry_text_start As explained in commit cf86a086 ("net/dst: use a smaller percpu_counter batch for dst entries accounting"), default batch size is too big for the default value of tcp_max_orphans (262144). But even if we reduce batch sizes, there would still be cases where the estimated count of orphans is beyond the limit, and where tcp_too_many_orphans() has to call the expensive percpu_counter_sum_positive(). One solution is to use plain per-cpu counters, and have a timer to periodically refresh this cache. Updating this cache every 100ms seems about right, tcp pressure state is not radically changing over shorter periods. percpu_counter was nice 15 years ago while hosts had less than 16 cpus, not anymore by current standards. v2: Fix the build issue for CONFIG_CRYPTO_DEV_CHELSIO_TLS=m, reported by kernel test robot <lkp@intel.com> Remove unused socket argument from tcp_too_many_orphans() Fixes: dd24c001 ("net: Use a percpu_counter for orphan_count") Signed-off-by: NEric Dumazet <edumazet@google.com> Reported-by: NStefan Bach <sfb@google.com> Cc: Neal Cardwell <ncardwell@google.com> Acked-by: NNeal Cardwell <ncardwell@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 23 9月, 2021 3 次提交
-
-
由 Eric Dumazet 提交于
This reverts the following patches : - commit 2e05fcae ("tcp: fix compile error if !CONFIG_SYSCTL") - commit 4f661542 ("tcp: fix zerocopy and notsent_lowat issues") - commit 472c2e07 ("tcp: add one skb cache for tx") - commit 8b27dae5 ("tcp: add one skb cache for rx") Having a cache of one skb (in each direction) per TCP socket is fragile, since it can cause a significant increase of memory needs, and not good enough for high speed flows anyway where more than one skb is needed. We want instead to add a generic infrastructure, with more flexible per-cpu caches, for alien NUMA nodes. Acked-by: NPaolo Abeni <pabeni@redhat.com> Acked-by: NMat Martineau <mathew.j.martineau@linux.intel.com> Signed-off-by: NEric Dumazet <edumazet@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Paolo Abeni 提交于
After the previous patch the mentioned helper is used only inside its compilation unit: let's make it static. RFC -> v1: - preserve the tcp_build_frag() helper (Eric) Signed-off-by: NPaolo Abeni <pabeni@redhat.com> Reviewed-by: NEric Dumazet <edumazet@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Paolo Abeni 提交于
the tcp_skb_entail() helper is actually skb_entail(), renamed to provide proper scope. The two helper will be used by the next patch. RFC -> v1: - rename skb_entail to tcp_skb_entail (Eric) Acked-by: NMat Martineau <mathew.j.martineau@linux.intel.com> Signed-off-by: NPaolo Abeni <pabeni@redhat.com> Reviewed-by: NEric Dumazet <edumazet@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 27 8月, 2021 1 次提交
-
-
由 Neil Spring 提交于
The TCP_WINDOW_CLAMP socket option is defined in tcp(7) to "Bound the size of the advertised window to this value." Window clamping is distributed across two variables, window_clamp ("Maximal window to advertise" in tcp.h) and rcv_ssthresh ("Current window clamp"). This patch updates the function where the window clamp is set to also reduce the current window clamp, rcv_sshthresh, if needed. With this, setting the TCP_WINDOW_CLAMP option has the documented effect of limiting the window. Signed-off-by: NNeil Spring <ntspring@fb.com> Signed-off-by: NEric Dumazet <edumazet@google.com> Link: https://lore.kernel.org/r/20210825210117.1668371-1-ntspring@fb.comSigned-off-by: NJakub Kicinski <kuba@kernel.org>
-
- 20 7月, 2021 1 次提交
-
-
由 Vasily Averin 提交于
net namespace can create up to 64K tcp and dccp ports and force kernel to allocate up to several megabytes of memory per netns for inet_bind_bucket objects. It makes sense to account for them to restrict the host's memory consumption from inside the memcg-limited container. Signed-off-by: NVasily Averin <vvs@virtuozzo.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 10 7月, 2021 1 次提交
-
-
由 Talal Ahmad 提交于
sk_wmem_schedule makes sure that sk_forward_alloc has enough bytes for charging that is going to be done by sk_mem_charge. In the transmit zerocopy path, there is sk_mem_charge but there was no call to sk_wmem_schedule. This change adds that call. Without this call to sk_wmem_schedule, sk_forward_alloc can go negetive which is a bug because sk_forward_alloc is a per-socket space that has been forward charged so this can't be negative. Fixes: f214f915 ("tcp: enable MSG_ZEROCOPY") Signed-off-by: NTalal Ahmad <talalahmad@google.com> Reviewed-by: NWillem de Bruijn <willemb@google.com> Reviewed-by: NWei Wang <weiwan@google.com> Reviewed-by: NSoheil Hassas Yeganeh <soheil@google.com> Signed-off-by: NEric Dumazet <edumazet@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 30 6月, 2021 1 次提交
-
-
由 Alexander Aring 提交于
This patch introduces a function wrapper to call the sk_error_report callback. That will prepare to add additional handling whenever sk_error_report is called, for example to trace socket errors. Signed-off-by: NAlexander Aring <aahringo@redhat.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-