- 27 6月, 2016 1 次提交
-
-
由 David Carrillo-Cisneros 提交于
The following commit: 338b522c ("perf/x86/intel: Protect LBR and extra_regs against KVM lying") added an additional test to LBR support detection that is performed after printing the LBR support statement to dmesg. Move the LBR support output after the very last test, to make sure we print the true status of LBR support. Signed-off-by: NDavid Carrillo-Cisneros <davidcc@google.com> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: NStephane Eranian <eranian@google.com> Reviewed-by: NAndi Kleen <ak@linux.intel.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Kan Liang <kan.liang@intel.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Link: http://lkml.kernel.org/r/1466533874-52003-2-git-send-email-davidcc@google.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 25 6月, 2016 18 次提交
-
-
由 Michal Hocko 提交于
__GFP_REPEAT has a rather weak semantic but since it has been introduced around 2.6.12 it has been ignored for low order allocations. PGALLOC_GFP uses __GFP_REPEAT but it is only used in pte_alloc_one, pte_alloc_one_kernel which does order-0 request. This means that this flag has never been actually useful here because it has always been used only for PAGE_ALLOC_COSTLY requests. Link: http://lkml.kernel.org/r/1464599699-30131-17-git-send-email-mhocko@kernel.orgSigned-off-by: NMichal Hocko <mhocko@suse.com> Cc: Guan Xuetao <gxt@mprc.pku.edu.cn> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Michal Hocko 提交于
__GFP_REPEAT has a rather weak semantic but since it has been introduced around 2.6.12 it has been ignored for low order allocations. pgtable_alloc_one uses __GFP_REPEAT flag for L2_USER_PGTABLE_ORDER but the order is either 0 or 3 if L2_KERNEL_PGTABLE_SHIFT for HPAGE_SHIFT. This means that this flag has never been actually useful here because it has always been used only for PAGE_ALLOC_COSTLY requests. Link: http://lkml.kernel.org/r/1464599699-30131-16-git-send-email-mhocko@kernel.orgSigned-off-by: NMichal Hocko <mhocko@suse.com> Acked-by: Chris Metcalf <cmetcalf@mellanox.com> [for tile] Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Michal Hocko 提交于
__GFP_REPEAT has a rather weak semantic but since it has been introduced around 2.6.12 it has been ignored for low order allocations. PGALLOC_GFP uses __GFP_REPEAT but {pgd,pmd}_alloc allocate from {pgd,pmd}_cache but both caches are allocating up to PAGE_SIZE objects. This means that this flag has never been actually useful here because it has always been used only for PAGE_ALLOC_COSTLY requests. Link: http://lkml.kernel.org/r/1464599699-30131-15-git-send-email-mhocko@kernel.orgSigned-off-by: NMichal Hocko <mhocko@suse.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Cc: Rich Felker <dalias@libc.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Michal Hocko 提交于
__GFP_REPEAT has a rather weak semantic but since it has been introduced around 2.6.12 it has been ignored for low order allocations. page_table_alloc then uses the flag for a single page allocation. This means that this flag has never been actually useful here because it has always been used only for PAGE_ALLOC_COSTLY requests. Link: http://lkml.kernel.org/r/1464599699-30131-14-git-send-email-mhocko@kernel.orgSigned-off-by: NMichal Hocko <mhocko@suse.com> Acked-by: NHeiko Carstens <heiko.carstens@de.ibm.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Michal Hocko 提交于
__GFP_REPEAT has a rather weak semantic but since it has been introduced around 2.6.12 it has been ignored for low order allocations. {pud,pmd}_alloc_one is using __GFP_REPEAT but it always allocates from pgtable_cache which is initialzed to PAGE_SIZE objects. This means that this flag has never been actually useful here because it has always been used only for PAGE_ALLOC_COSTLY requests. Link: http://lkml.kernel.org/r/1464599699-30131-13-git-send-email-mhocko@kernel.orgSigned-off-by: NMichal Hocko <mhocko@suse.com> Acked-by: NDavid S. Miller <davem@davemloft.net> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Michal Hocko 提交于
__GFP_REPEAT has a rather weak semantic but since it has been introduced around 2.6.12 it has been ignored for low order allocations. {pud,pmd}_alloc_one are allocating from {PGT,PUD}_CACHE initialized in pgtable_cache_init which doesn't have larger than sizeof(void *) << 12 size and that fits into !costly allocation request size. PGALLOC_GFP is used only in radix__pgd_alloc which uses either order-0 or order-4 requests. The first one doesn't need the flag while the second does. Drop __GFP_REPEAT from PGALLOC_GFP and add it for the order-4 one. This means that this flag has never been actually useful here because it has always been used only for PAGE_ALLOC_COSTLY requests. Link: http://lkml.kernel.org/r/1464599699-30131-12-git-send-email-mhocko@kernel.orgSigned-off-by: NMichal Hocko <mhocko@suse.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Michal Hocko 提交于
__GFP_REPEAT has a rather weak semantic but since it has been introduced around 2.6.12 it has been ignored for low order allocations. pte_alloc_one{_kernel} allocate PTE_ORDER which is 0. This means that this flag has never been actually useful here because it has always been used only for PAGE_ALLOC_COSTLY requests. Link: http://lkml.kernel.org/r/1464599699-30131-11-git-send-email-mhocko@kernel.orgSigned-off-by: NMichal Hocko <mhocko@suse.com> Cc: Chen Liqin <liqin.linux@gmail.com> Cc: Lennox Wu <lennox.wu@gmail.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Michal Hocko 提交于
__GFP_REPEAT has a rather weak semantic but since it has been introduced around 2.6.12 it has been ignored for low order allocations. pmd_alloc_one allocate PMD_ORDER which is 1. This means that this flag has never been actually useful here because it has always been used only for PAGE_ALLOC_COSTLY requests. Link: http://lkml.kernel.org/r/1464599699-30131-10-git-send-email-mhocko@kernel.orgSigned-off-by: NMichal Hocko <mhocko@suse.com> Cc: "James E.J. Bottomley" <jejb@parisc-linux.org> Cc: Helge Deller <deller@gmx.de> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Michal Hocko 提交于
__GFP_REPEAT has a rather weak semantic but since it has been introduced around 2.6.12 it has been ignored for low order allocations. pte_alloc_one{_kernel} allocate PTE_ORDER which is 0. This means that this flag has never been actually useful here because it has always been used only for PAGE_ALLOC_COSTLY requests. Link: http://lkml.kernel.org/r/1464599699-30131-9-git-send-email-mhocko@kernel.orgSigned-off-by: NMichal Hocko <mhocko@suse.com> Cc: Ley Foon Tan <lftan@altera.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Michal Hocko 提交于
__GFP_REPEAT has a rather weak semantic but since it has been introduced around 2.6.12 it has been ignored for low order allocations. pte_alloc_one{_kernel}, pmd_alloc_one allocate PTE_ORDER resp. PMD_ORDER but both are not larger than 1. This means that this flag has never been actually useful here because it has always been used only for PAGE_ALLOC_COSTLY requests. Link: http://lkml.kernel.org/r/1464599699-30131-8-git-send-email-mhocko@kernel.orgSigned-off-by: NMichal Hocko <mhocko@suse.com> Cc: John Crispin <blogic@openwrt.org> Cc: Ralf Baechle <ralf@linux-mips.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Michal Hocko 提交于
__GFP_REPEAT has a rather weak semantic but since it has been introduced around 2.6.12 it has been ignored for low order allocations. pte_alloc_one_kernel uses __get_order_pte but this is obviously always zero because BITS_FOR_PTE is not larger than 9 yet the page size is always larger than 4K. This means that this flag has never been actually useful here because it has always been used only for PAGE_ALLOC_COSTLY requests. Link: http://lkml.kernel.org/r/1464599699-30131-7-git-send-email-mhocko@kernel.orgSigned-off-by: NMichal Hocko <mhocko@suse.com> Acked-by: NVineet Gupta <vgupta@synopsys.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Michal Hocko 提交于
__GFP_REPEAT has a rather weak semantic but since it has been introduced around 2.6.12 it has been ignored for low order allocations. {pte,pmd,pud}_alloc_one{_kernel}, late_pgtable_alloc use PGALLOC_GFP for __get_free_page (aka order-0). pgd_alloc is slightly more complex because it allocates from pgd_cache if PGD_SIZE != PAGE_SIZE and PGD_SIZE depends on the configuration (CONFIG_ARM64_VA_BITS, PAGE_SHIFT and CONFIG_PGTABLE_LEVELS). As per config PGTABLE_LEVELS int default 2 if ARM64_16K_PAGES && ARM64_VA_BITS_36 default 2 if ARM64_64K_PAGES && ARM64_VA_BITS_42 default 3 if ARM64_64K_PAGES && ARM64_VA_BITS_48 default 3 if ARM64_4K_PAGES && ARM64_VA_BITS_39 default 3 if ARM64_16K_PAGES && ARM64_VA_BITS_47 default 4 if !ARM64_64K_PAGES && ARM64_VA_BITS_48 we should have the following options CONFIG_ARM64_VA_BITS:48 CONFIG_PGTABLE_LEVELS:4 PAGE_SIZE:4k size:4096 pages:1 CONFIG_ARM64_VA_BITS:48 CONFIG_PGTABLE_LEVELS:4 PAGE_SIZE:16k size:16 pages:1 CONFIG_ARM64_VA_BITS:48 CONFIG_PGTABLE_LEVELS:3 PAGE_SIZE:64k size:512 pages:1 CONFIG_ARM64_VA_BITS:47 CONFIG_PGTABLE_LEVELS:3 PAGE_SIZE:16k size:16384 pages:1 CONFIG_ARM64_VA_BITS:42 CONFIG_PGTABLE_LEVELS:2 PAGE_SIZE:64k size:65536 pages:1 CONFIG_ARM64_VA_BITS:39 CONFIG_PGTABLE_LEVELS:3 PAGE_SIZE:4k size:4096 pages:1 CONFIG_ARM64_VA_BITS:36 CONFIG_PGTABLE_LEVELS:2 PAGE_SIZE:16k size:16384 pages:1 All of them fit into a single page (aka order-0). This means that this flag has never been actually useful here because it has always been used only for PAGE_ALLOC_COSTLY requests. Link: http://lkml.kernel.org/r/1464599699-30131-6-git-send-email-mhocko@kernel.orgSigned-off-by: NMichal Hocko <mhocko@suse.com> Acked-by: NWill Deacon <will.deacon@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Michal Hocko 提交于
__GFP_REPEAT has a rather weak semantic but since it has been introduced around 2.6.12 it has been ignored for low order allocations. efi_alloc_page_tables uses __GFP_REPEAT but it allocates an order-0 page. This means that this flag has never been actually useful here because it has always been used only for PAGE_ALLOC_COSTLY requests. Link: http://lkml.kernel.org/r/1464599699-30131-4-git-send-email-mhocko@kernel.orgSigned-off-by: NMichal Hocko <mhocko@suse.com> Acked-by: NMatt Fleming <matt@codeblueprint.co.uk> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Michal Hocko 提交于
__GFP_REPEAT has a rather weak semantic but since it has been introduced around 2.6.12 it has been ignored for low order allocations. PGALLOC_GFP uses __GFP_REPEAT but none of the allocation which uses this flag is for more than order-0. This means that this flag has never been actually useful here because it has always been used only for PAGE_ALLOC_COSTLY requests. Link: http://lkml.kernel.org/r/1464599699-30131-3-git-send-email-mhocko@kernel.orgSigned-off-by: NMichal Hocko <mhocko@suse.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Andy Lutomirski <luto@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Michal Hocko 提交于
This is the third version of the patchset previously sent [1]. I have basically only rebased it on top of 4.7-rc1 tree and dropped "dm: get rid of superfluous gfp flags" which went through dm tree. I am sending it now because it is tree wide and chances for conflicts are reduced considerably when we want to target rc2. I plan to send the next step and rename the flag and move to a better semantic later during this release cycle so we will have a new semantic ready for 4.8 merge window hopefully. Motivation: While working on something unrelated I've checked the current usage of __GFP_REPEAT in the tree. It seems that a majority of the usage is and always has been bogus because __GFP_REPEAT has always been about costly high order allocations while we are using it for order-0 or very small orders very often. It seems that a big pile of them is just a copy&paste when a code has been adopted from one arch to another. I think it makes some sense to get rid of them because they are just making the semantic more unclear. Please note that GFP_REPEAT is documented as * __GFP_REPEAT: Try hard to allocate the memory, but the allocation attempt * _might_ fail. This depends upon the particular VM implementation. while !costly requests have basically nofail semantic. So one could reasonably expect that order-0 request with __GFP_REPEAT will not loop for ever. This is not implemented right now though. I would like to move on with __GFP_REPEAT and define a better semantic for it. $ git grep __GFP_REPEAT origin/master | wc -l 111 $ git grep __GFP_REPEAT | wc -l 36 So we are down to the third after this patch series. The remaining places really seem to be relying on __GFP_REPEAT due to large allocation requests. This still needs some double checking which I will do later after all the simple ones are sorted out. I am touching a lot of arch specific code here and I hope I got it right but as a matter of fact I even didn't compile test for some archs as I do not have cross compiler for them. Patches should be quite trivial to review for stupid compile mistakes though. The tricky parts are usually hidden by macro definitions and thats where I would appreciate help from arch maintainers. [1] http://lkml.kernel.org/r/1461849846-27209-1-git-send-email-mhocko@kernel.org This patch (of 19): __GFP_REPEAT has a rather weak semantic but since it has been introduced around 2.6.12 it has been ignored for low order allocations. Yet we have the full kernel tree with its usage for apparently order-0 allocations. This is really confusing because __GFP_REPEAT is explicitly documented to allow allocation failures which is a weaker semantic than the current order-0 has (basically nofail). Let's simply drop __GFP_REPEAT from those places. This would allow to identify place which really need allocator to retry harder and formulate a more specific semantic for what the flag is supposed to do actually. Link: http://lkml.kernel.org/r/1464599699-30131-2-git-send-email-mhocko@kernel.orgSigned-off-by: NMichal Hocko <mhocko@suse.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: "James E.J. Bottomley" <jejb@parisc-linux.org> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Andy Lutomirski <luto@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Chen Liqin <liqin.linux@gmail.com> Cc: Chris Metcalf <cmetcalf@mellanox.com> [for tile] Cc: Guan Xuetao <gxt@mprc.pku.edu.cn> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Helge Deller <deller@gmx.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jan Kara <jack@suse.cz> Cc: John Crispin <blogic@openwrt.org> Cc: Lennox Wu <lennox.wu@gmail.com> Cc: Ley Foon Tan <lftan@altera.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Matt Fleming <matt@codeblueprint.co.uk> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Rich Felker <dalias@libc.org> Cc: Russell King <linux@arm.linux.org.uk> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vineet Gupta <vgupta@synopsys.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Linus Torvalds 提交于
The INIT_TASK() initializer was similarly confused about the stack vs thread_info allocation that the allocators had, and that were fixed in commit b235beea ("Clarify naming of thread info/stack allocators"). The task ->stack pointer only incidentally ends up having the same value as the thread_info, and in fact that will change. So fix the initial task struct initializer to point to 'init_stack' instead of 'init_thread_info', and make sure the ia64 definition for that exists. This actually makes the ia64 tsk->stack pointer be sensible for the initial task, but not for any other task. As mentioned in commit b235beea, that whole pointer isn't actually used on ia64, since task_stack_page() there just points to the (single) allocation. All the other architectures seem to have copied the 'init_stack' definition, even if it tended to be generally unusued. Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Linus Torvalds 提交于
As the actual pointer value is the same for the thread stack allocation and the thread_info, code that confused the two worked fine, but will break when the thread info is moved away from the stack allocation. It also looks very confusing. For example, the kprobe code wanted to know the current top of stack. To do that, it used this: (unsigned long)current_thread_info() + THREAD_SIZE which did indeed give the correct value. But it's not only a fairly nonsensical expression, it's also rather complex, especially since we actually have this: static inline unsigned long current_top_of_stack(void) which not only gives us the value we are interested in, but happens to be how "current_thread_info()" is currently defined as: (struct thread_info *)(current_top_of_stack() - THREAD_SIZE); so using current_thread_info() to figure out the top of the stack really is a very round-about thing to do. The other cases are just simpler confusion about task_thread_info() vs task_stack_page(), which currently return the same pointer - but if you want the stack page, you really should be using the latter one. And there was one entirely unused assignment of the current stack to a thread_info pointer. All cleaned up to make more sense today, and make it easier to move the thread_info away from the stack in the future. No semantic changes. Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Linus Torvalds 提交于
We've had the thread info allocated together with the thread stack for most architectures for a long time (since the thread_info was split off from the task struct), but that is about to change. But the patches that move the thread info to be off-stack (and a part of the task struct instead) made it clear how confused the allocator and freeing functions are. Because the common case was that we share an allocation with the thread stack and the thread_info, the two pointers were identical. That identity then meant that we would have things like ti = alloc_thread_info_node(tsk, node); ... tsk->stack = ti; which certainly _worked_ (since stack and thread_info have the same value), but is rather confusing: why are we assigning a thread_info to the stack? And if we move the thread_info away, the "confusing" code just gets to be entirely bogus. So remove all this confusion, and make it clear that we are doing the stack allocation by renaming and clarifying the function names to be about the stack. The fact that the thread_info then shares the allocation is an implementation detail, and not really about the allocation itself. This is a pure renaming and type fix: we pass in the same pointer, it's just that we clarify what the pointer means. The ia64 code that actually only has one single allocation (for all of task_struct, thread_info and kernel thread stack) now looks a bit odd, but since "tsk->stack" is actually not even used there, that oddity doesn't matter. It would be a separate thing to clean that up, I intentionally left the ia64 changes as a pure brute-force renaming and type change. Acked-by: NAndy Lutomirski <luto@amacapital.net> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 24 6月, 2016 1 次提交
-
-
由 Linus Torvalds 提交于
None of the code actually wants a thread_info, it all wants a task_struct, and it's just converting to a thread_info pointer much too early. No semantic change. Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 23 6月, 2016 4 次提交
-
-
由 David Vrabel 提交于
When page tables entries are set using xen_set_pte_init() during early boot there is no page fault handler that could handle a fault when performing an M2P lookup. In 64 bit guests (usually dom0) early_ioremap() would fault in xen_set_pte_init() because an M2P lookup faults because the MFN is in MMIO space and not mapped in the M2P. This lookup is done to see if the PFN in in the range used for the initial page table pages, so that the PTE may be set as read-only. The M2P lookup can be avoided by moving the check (and clear of RW) earlier when the PFN is still available. Reported-by: NKevin Moraga <kmoragas@riseup.net> Signed-off-by: NDavid Vrabel <david.vrabel@citrix.com> Reviewed-by: NBoris Ostrovsky <boris.ostrovsky@oracle.com> Reviewed-by: NJuergen Gross <jgross@suse.com>
-
由 Juergen Gross 提交于
xen_cleanhighmap() is operating on level2_kernel_pgt only. The upper bound of the loop setting non-kernel-image entries to zero should not exceed the size of level2_kernel_pgt. Reported-by: NLinus Torvalds <torvalds@linux-foundation.org> Signed-off-by: NJuergen Gross <jgross@suse.com> Signed-off-by: NDavid Vrabel <david.vrabel@citrix.com>
-
由 Naveen N. Rao 提交于
Classic BPF JIT was never ported completely to work on little endian powerpc. However, it can be enabled and will crash the system when used. As such, disable use of BPF JIT on ppc64le. Fixes: 7c105b63 ("powerpc: Add CONFIG_CPU_LITTLE_ENDIAN kernel config option.") Reported-by: NThadeu Lima de Souza Cascardo <cascardo@redhat.com> Signed-off-by: NNaveen N. Rao <naveen.n.rao@linux.vnet.ibm.com> Acked-by: NThadeu Lima de Souza Cascardo <cascardo@redhat.com> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
由 Michael Ellerman 提交于
As part of the Radix MMU support we added some feature sections in the SLB miss handler. These are intended to catch the case that we incorrectly take an SLB miss when Radix is enabled, and instead of crashing weirdly they bail out to a well defined exit path and trigger an oops. However the way they were written meant the bailout case was enabled by default until we did CPU feature patching. On powermacs the early debug prints in setup_system() can cause an SLB miss, which happens before code patching, and so the SLB miss handler would incorrectly bailout and crash during boot. Fix it by inverting the sense of the feature section, so that the code which is in place at boot is correct for the hash case. Once we determine we are using Radix - which will never happen on a powermac - only then do we patch in the bailout case which unconditionally jumps. Fixes: caca285e ("powerpc/mm/radix: Use STD_MMU_64 to properly isolate hash related code") Reported-by: NDenis Kirjanov <kda@linux-powerpc.org> Tested-by: NDenis Kirjanov <kda@linux-powerpc.org> Reviewed-by: NAneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
- 22 6月, 2016 5 次提交
-
-
由 James Morse 提交于
Hibernate relies on cpu hotplug to prevent secondary cores executing the kernel text while it is being restored. Add a call to cpus_are_stuck_in_kernel() to determine if there are CPUs not counted by 'num_online_cpus()', and prevent hibernate in this case. Fixes: 82869ac5 ("arm64: kernel: Add support for hibernate/suspend-to-disk") Acked-by: NMark Rutland <mark.rutland@arm.com> Signed-off-by: NJames Morse <james.morse@arm.com> Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
由 James Morse 提交于
kernel/smp.c has a fancy counter that keeps track of the number of CPUs it marked as not-present and left in cpu_park_loop(). If there are any CPUs spinning in here, features like kexec or hibernate may release them by overwriting this memory. This problem also occurs on machines using spin-tables to release secondary cores. After commit 44dbcc93 ("arm64: Fix behavior of maxcpus=N") we bring all known cpus into the secondary holding pen, meaning this memory can't be re-used by kexec or hibernate. Add a function cpus_are_stuck_in_kernel() to determine if either of these cases have occurred. Signed-off-by: NJames Morse <james.morse@arm.com> Acked-by: NMark Rutland <mark.rutland@arm.com> Reviewed-by: NSuzuki K Poulose <suzuki.poulose@arm.com> Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
由 Shaokun Zhang 提交于
__sync_icache_dcache unconditionally skips the cache maintenance for anonymous pages, under the assumption that flushing is only required in the presence of D-side aliases [see 7249b79f ("arm64: Do not flush the D-cache for anonymous pages")]. Unfortunately, this breaks migration of anonymous pages holding self-modifying code, where userspace cannot be reasonably expected to reissue maintenance instructions in response to a migration. This patch fixes the problem by removing the broken page_mapping(page) check from the cache syncing code, otherwise we may end up fetching and executing stale instructions from the PoU. Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: <stable@vger.kernel.org> Reviewed-by: NCatalin Marinas <catalin.marinas@arm.com> Signed-off-by: NShaokun Zhang <zhangshaokun@hisilicon.com> Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
由 Masahiro Yamada 提交于
I fixed boot image dependencies for arch/arm in commit 3939f334 ("ARM: 8418/1: add boot image dependencies to not generate invalid images"). I see a similar problem for arch/arm64; "make -jN Image Image.gz" would sometimes end up generating bad images where N > 1. Fix the dependency in arch/arm64/Makefile to avoid the race between "make Image" and "make Image.*". Acked-by: NCatalin Marinas <catalin.marinas@arm.com> Signed-off-by: NMasahiro Yamada <yamada.masahiro@socionext.com> Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
由 Jean-Philippe Brucker 提交于
During a rollover, we mark the active ASID on each CPU as reserved, before allocating a new ID for the task that caused the rollover. This means that with N CPUs, we can only guarantee the new task to obtain a valid ASID if we have at least N+1 ASIDs. Update this limit in the initcall check. Note that this restriction was introduced by commit 8e648066 on the arch/arm side, which disallow re-using the previously active ASID on the local CPU, as it would introduce a TLB race. In addition, we only dispose of NUM_USER_ASIDS-1, since ASID 0 is reserved. Add this restriction as well. Signed-off-by: NJean-Philippe Brucker <jean-philippe.brucker@arm.com> Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
- 19 6月, 2016 1 次提交
-
-
由 Lee Jones 提交于
This patch fixes a non-booting issue in Mainline. When booting with a compressed kernel, we need to be careful how we populate memory close to DDR start. AUTO_ZRELADDR is enabled by default in multi-arch enabled configurations, which place some restrictions on where the kernel is placed and where it will be uncompressed to on boot. AUTO_ZRELADDR takes the decompressor code's start address and masks out the bottom 28 bits to obtain an address to uncompress the kernel to (thus a load address of 0x42000000 means that the kernel will be uncompressed to 0x40000000 i.e. DDR START on this platform). Even changing the load address to after the co-processor's shared memory won't render a booting platform, since the AUTO_ZRELADDR algorithm still ensures the kernel is uncompressed into memory shared with the first co-processor (0x40000000). Another option would be to move loading to 0x4A000000, since this will mean the decompressor will decompress the kernel to 0x48000000. However, this would mean a large chunk (0x44000000 => 0x48000000 (64MB)) of memory would essentially be wasted for no good reason. Until we can work with ST to find a suitable memory location to relocate co-processor shared memory, let's disable the shared memory nodes. This will ensure a working platform in the mean time. NB: The more observant of you will notice that we're leaving the DMU shared memory node enabled; this is because a) it is the only one in active use at the time of this writing and b) it is not affected by the current default behaviour which is causing issues. Fixes: fe135c63 (ARM: dts: STiH407: Move over to using the 'reserved-memory' API for obtaining DMA memory) Signed-off-by: NLee Jones <lee.jones@linaro.org> Reviewed-by Peter Griffin <peter.griffin@linaro.org> Signed-off-by: NMaxime Coquelin <maxime.coquelin@st.com> Signed-off-by: NOlof Johansson <olof@lixom.net>
-
- 18 6月, 2016 1 次提交
-
-
由 William Breathitt Gray 提交于
Several modern devices, such as PC/104 cards, are expected to run on modern systems via an ISA bus interface. Since ISA is a legacy interface for most modern architectures, ISA support should remain disabled in general. Support for ISA-style drivers should be enabled on a per driver basis. To allow ISA-style drivers on modern systems, this patch introduces the ISA_BUS_API and ISA_BUS Kconfig options. The ISA bus driver will now build conditionally on the ISA_BUS_API Kconfig option, which defaults to the legacy ISA Kconfig option. The ISA_BUS Kconfig option allows the ISA_BUS_API Kconfig option to be selected on architectures which do not enable ISA (e.g. X86_64). The ISA_BUS Kconfig option is currently only implemented for X86 architectures. Other architectures may have their own ISA_BUS Kconfig options added as required. Reviewed-by: NGuenter Roeck <linux@roeck-us.net> Signed-off-by: NWilliam Breathitt Gray <vilhelm.gray@gmail.com> Acked-by: NLinus Torvalds <torvalds@linux-foundation.org> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
- 17 6月, 2016 7 次提交
-
-
由 Dave Gerlach 提交于
Based on the latest timing specifications for the TPS65218 from the data sheet, http://www.ti.com/lit/ds/symlink/tps65218.pdf, document SLDS206 from November 2014, we must change the i2c bus speed to better fit within the minimum high SCL time required for proper i2c transfer. When running at 400khz, measurements show that SCL spends 0.8125 uS/1.666 uS high/low which violates the requirement for minimum high period of SCL provided in datasheet Table 7.6 which is 1 uS. Switching to 100khz gives us 5 uS/5 uS high/low which both fall above the minimum given values for 100 khz, 4.0 uS/4.7 uS high/low. Without this patch occasionally a voltage set operation from the kernel will appear to have worked but the actual voltage reflected on the PMIC will not have updated, causing problems especially with cpufreq that may update to a higher OPP without actually raising the voltage on DCDC2, leading to a hang. Signed-off-by: NDave Gerlach <d-gerlach@ti.com> Signed-off-by: NNishanth Menon <nm@ti.com> Signed-off-by: NFranklin S Cooper Jr <fcooper@ti.com> Signed-off-by: NAparna Balasubramanian <aparnab@ti.com> Signed-off-by: NKeerthy <j-keerthy@ti.com> Signed-off-by: NTony Lindgren <tony@atomide.com>
-
由 Gavin Shan 提交于
The PE primary bus cannot be got from its child devices when having full hotplug in error recovery. The PE primary bus is cached, which is done in commit <05ba75f8> ("powerpc/eeh: Fix stale cached primary bus"). In eeh_reset_device(), the flag (EEH_PE_PRI_BUS) is cleared before the PCI hot remove. eeh_pe_bus_get() then returns NULL as the PE primary bus in pnv_eeh_reset() and it crashes the kernel eventually. This fixes the issue by clearing the flag (EEH_PE_PRI_BUS) before the PCI hot add. With it, the PowerNV EEH reset backend (pnv_eeh_reset()) can get valid PE primary bus through eeh_pe_bus_get(). Fixes: 67086e32 ("powerpc/eeh: powerpc/eeh: Support error recovery for VF PE") Reported-by: NPridhiviraj Paidipeddi <ppaiddipe@in.ibm.com> Signed-off-by: NGavin Shan <gwshan@linux.vnet.ibm.com> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
由 Aneesh Kumar K.V 提交于
ISA 3.0 updated it to be encoded as Radix tree size = 2^(RTS + 31). We have it encoded as 2^(RTS + 28). Add a helper with the correct encoding and use it instead of opencoding. Fixes: 2bfd65e4 ("powerpc/mm/radix: Add radix callbacks for early init routines") Reviewed-by: NBalbir Singh <bsingharora@gmail.com> Signed-off-by: NAneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
由 Aneesh Kumar K.V 提交于
H_ENTER hcall handling in qemu had assumptions that a cache inhibited hpte entry won't have memory conference set. Also older kernel mentioned that some version of pHyp required this (the code removed by the below commit says: /* Make pHyp happy */ if ((rflags & _PAGE_NO_CACHE) && !(rflags & _PAGE_WRITETHRU)) hpte_r &= ~HPTE_R_M; But with older kernel we had some inconsistent memory conherence mapping. We always enabled memory conherence in the page fault path and removed memory conherence is _PAGE_NO_CACHE was set when we mapped the page via htab_bolt_mapping. The commit mentioned below tried to consolidate that by always enabling memory conherence. But as mentioned above that breaks Qemu H_ENTER handling. This patch update this such that we enable memory conherence only if cache inhibited is not set and bring fault handling, lpar and bolt mapping in sync. Fixes: commit 30bda41a("powerpc/mm: Drop WIMG in favour of new constant") Reported-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NAneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
由 Tero Kristo 提交于
A few platforms are currently missing clocksource_probe() completely in their time_init functionality. On OMAP3430 for example, this is causing cpuidle to be pretty much dead, as the counter32k is not going to be registered and instead a gptimer is used as a clocksource. This will tick in periodic mode, preventing any deeper idle states. While here, also drop one unnecessary check for populated DT before existing clocksource_probe() call. Signed-off-by: NTero Kristo <t-kristo@ti.com> Signed-off-by: NTony Lindgren <tony@atomide.com>
-
由 Janusz Krzysztofik 提交于
After OMAP1 IRQ definitions have been changed by commit 685e2d08 ("ARM: OMAP1: Change interrupt numbering for sparse IRQ") introduced in v4.2, ams-delta FIQ handler which depends on them no longer works as expected. Fix it. Created and tested on Amstrad Delta against Linux-4.7-rc3 Signed-off-by: NJanusz Krzysztofik <jmkrzyszt@gmail.com> Signed-off-by: NTony Lindgren <tony@atomide.com>
-
由 Daniel Thompson 提交于
Current versions of gdb do not interoperate cleanly with kgdb on arm64 systems because gdb and kgdb do not use the same register description. This patch modifies kgdb to work with recent releases of gdb (>= 7.8.1). Compatibility with gdb (after the patch is applied) is as follows: gdb-7.6 and earlier Ok gdb-7.7 series Works if user provides custom target description gdb-7.8(.0) Works if user provides custom target description gdb-7.8.1 and later Ok When commit 44679a4f ("arm64: KGDB: Add step debugging support") was introduced it was paired with a gdb patch that made an incompatible change to the gdbserver protocol. This patch was eventually merged into the gdb sources: https://sourceware.org/git/gitweb.cgi?p=binutils-gdb.git;a=commit;h=a4d9ba85ec5597a6a556afe26b712e878374b9dd The change to the protocol was mostly made to simplify big-endian support inside the kernel gdb stub. Unfortunately the gdb project released gdb-7.7.x and gdb-7.8.0 before the protocol incompatibility was identified and reversed: https://sourceware.org/git/gitweb.cgi?p=binutils-gdb.git;a=commit;h=bdc144174bcb11e808b4e73089b850cf9620a7ee This leaves us in a position where kgdb still uses the no-longer-used protocol; gdb-7.8.1, which restored the original behaviour, was released on 2014-10-29. I don't believe it is possible to detect/correct the protocol incompatiblity which means the kernel must take a view about which version of the gdb remote protocol is "correct". This patch takes the view that the original/current version of the protocol is correct and that version found in gdb-7.7.x and gdb-7.8.0 is anomalous. Signed-off-by: NDaniel Thompson <daniel.thompson@linaro.org> Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
- 16 6月, 2016 2 次提交
-
-
由 Hendrik Brueckner 提交于
On s390, there are two different hardware PMUs for counting and sampling. Previously, both PMUs have shared the perf_hw_context which is not correct and, recently, results in this warning: ------------[ cut here ]------------ WARNING: CPU: 5 PID: 1 at kernel/events/core.c:8485 perf_pmu_register+0x420/0x428 Modules linked in: CPU: 5 PID: 1 Comm: swapper/0 Not tainted 4.7.0-rc1+ #2 task: 00000009c5240000 ti: 00000009c5234000 task.ti: 00000009c5234000 Krnl PSW : 0704c00180000000 0000000000220c50 (perf_pmu_register+0x420/0x428) R:0 T:1 IO:1 EX:1 Key:0 M:1 W:0 P:0 AS:3 CC:0 PM:0 RI:0 EA:3 Krnl GPRS: ffffffffffffffff 0000000000b15ac6 0000000000000000 00000009cb440000 000000000022087a 0000000000000000 0000000000b78fa0 0000000000000000 0000000000a9aa90 0000000000000084 0000000000000005 000000000088a97a 0000000000000004 0000000000749dd0 000000000022087a 00000009c5237cc0 Krnl Code: 0000000000220c44: a7f4ff54 brc 15,220aec 0000000000220c48: 92011000 mvi 0(%r1),1 #0000000000220c4c: a7f40001 brc 15,220c4e >0000000000220c50: a7f4ff12 brc 15,220a74 0000000000220c54: 0707 bcr 0,%r7 0000000000220c56: 0707 bcr 0,%r7 0000000000220c58: ebdff0800024 stmg %r13,%r15,128(%r15) 0000000000220c5e: a7f13fe0 tmll %r15,16352 Call Trace: ([<000000000022087a>] perf_pmu_register+0x4a/0x428) ([<0000000000b2c25c>] init_cpum_sampling_pmu+0x14c/0x1f8) ([<0000000000100248>] do_one_initcall+0x48/0x140) ([<0000000000b25d26>] kernel_init_freeable+0x1e6/0x2a0) ([<000000000072bda4>] kernel_init+0x24/0x138) ([<000000000073495e>] kernel_thread_starter+0x6/0xc) ([<0000000000734958>] kernel_thread_starter+0x0/0xc) Last Breaking-Event-Address: [<0000000000220c4c>] perf_pmu_register+0x41c/0x428 ---[ end trace 0c6ef9f5b771ad97 ]--- Using the perf_sw_context is an option because the cpum_cf PMU does not use interrupts. To make this more clear, initialize the capabilities in the PMU structure. Signed-off-by: NHendrik Brueckner <brueckner@linux.vnet.ibm.com> Suggested-by: NPeter Zijlstra <peterz@infradead.org> Acked-by: NHeiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: NMartin Schwidefsky <schwidefsky@de.ibm.com>
-
由 Yang Zhang 提交于
VT-d posted interrupt is relying on the CPU side's posted interrupt. Need to check whether VCPU's APICv is active before enabing VT-d posted interrupt. Fixes: d62caabb Cc: stable@vger.kernel.org Signed-off-by: NYang Zhang <yang.zhang.wz@gmail.com> Signed-off-by: NShengge Ding <shengge.dsg@alibaba-inc.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-