- 29 1月, 2018 6 次提交
-
-
由 Darrick J. Wong 提交于
There's a really bad bug in xfs_reflink_allocate_cow -- if bmapi_write can return a zero error code but no mappings. This happens if there's an extent size hint (which causes allocation requests to be rounded to extsz granularity internally), but there wasn't a big enough chunk of free space to start filling at the extsz granularity and fill even one block of the range that we actually requested. In any case, if we got no mappings we can't possibly do anything useful with the contents of imap, so we must bail out with ENOSPC here. Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com> Reviewed-by: NChristoph Hellwig <hch@lst.de>
-
由 Darrick J. Wong 提交于
Since the CoW fork only exists in memory, it is incorrect to update the on-disk quota block counts when we modify the CoW fork. Unlike the data fork, even real extents in the CoW fork are only delalloc-style reservations (on-disk they're owned by the refcountbt) so they must not be tracked in the on disk quota info. Ensure the i_delayed_blks accounting reflects this too. Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com> Reviewed-by: NChristoph Hellwig <hch@lst.de>
-
由 Darrick J. Wong 提交于
Reflink and dedupe operations remap blocks from a source file into a destination file. The destination file needs exclusive locks on all levels because we're updating its block map, but the source file isn't undergoing any block map changes so we can use a shared lock. Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com> Reviewed-by: NChristoph Hellwig <hch@lst.de>
-
由 Darrick J. Wong 提交于
Refactor xfs_lock_two_inodes to take separate locking modes for each inode. Specifically, this enables us to take a SHARED lock on one inode and an EXCL lock on the other. The lock class (MMAPLOCK/ILOCK) must be the same for each inode. Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com> Reviewed-by: NChristoph Hellwig <hch@lst.de>
-
由 Darrick J. Wong 提交于
Before we share blocks between files, we need to break the pnfs leases on the layout before we start slicing and dicing the block map. The structure of this function sets us up for the lock contention reduction in the next patch. Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com> Reviewed-by: NBrian Foster <bfoster@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de>
-
由 Darrick J. Wong 提交于
Ensure that we've attached all the necessary dquots before performing reflink operations so that quota accounting is accurate. Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com> Reviewed-by: NBrian Foster <bfoster@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de>
-
- 22 12月, 2017 1 次提交
-
-
由 Darrick J. Wong 提交于
If a user performs a direct CoW write, we end up loading the CoW fork with preallocated extents. Therefore, we must set the cowblocks tag so that they can be cleared out if we run low on space. Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com> Reviewed-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de>
-
- 15 12月, 2017 4 次提交
-
-
由 Darrick J. Wong 提交于
Since we as yet have no way of holding on to the indlen blocks that are reserved as part of CoW fork delalloc reservations, let the CoW remap transaction dip into the reserves so that we avoid failing writes. Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com> Reviewed-by: NChristoph Hellwig <hch@lst.de>
-
由 Darrick J. Wong 提交于
When we're cancelling a cow range, we don't always delete each extent that we iterate, so we have to move icur backwards in the list to avoid an infinite loop. Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com> Reviewed-by: NChristoph Hellwig <hch@lst.de>
-
由 Darrick J. Wong 提交于
We don't hold the ilock through the entire sequence of xfs_writepage_map -> xfs_map_cow -> xfs_reflink_find_cow_mapping. This means that we can race with another thread that is trying to clear the inode reflink flag, with the result that the flag is set for the xfs_map_cow check but cleared before we get to the assert in find_cow_mapping. When this happens, we blow the assert even though everything is fine. Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com> Reviewed-by: NChristoph Hellwig <hch@lst.de>
-
由 Darrick J. Wong 提交于
If we try to reflink into a file with post-eof preallocations at an offset well past the preallocations, we increase i_size as one would expect. However, those allocations do not have page cache backing them, so they won't get cleaned out on their own. This leads to asserts in the collapse/insert range code and xfs_destroy_inode when they encounter delalloc extents they weren't expecting to find. Since there are plenty of other places where we dump those post-eof blocks, do the same to the reflink destination file before we start remapping extents. This was found by adding clonerange support to fsstress and running it in write-only mode. Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com> Reviewed-by: NChristoph Hellwig <hch@lst.de>
-
- 09 12月, 2017 1 次提交
-
-
由 Pravin Shedge 提交于
These duplicate includes have been found with scripts/checkincludes.pl but they have been removed manually to avoid removing false positives. Signed-off-by: NPravin Shedge <pravin.shedge4linux@gmail.com> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
- 07 11月, 2017 3 次提交
-
-
由 Christoph Hellwig 提交于
Instead of looking up extents to convert and calling xfs_bmapi_write on each of them just let xfs_bmapi_write handle the full range. To make this robust add a new XFS_BMAPI_CONVERT_ONLY that only converts ranges and never allocates blocks. [darrick: shorten the stringified CONVERT_ONLY trace flag] Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
由 Christoph Hellwig 提交于
Match the iteration order for extent deletion in the truncate and reflink I/O completion path. This also happens to make implementing the new incore extent list a lot easier. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
由 Christoph Hellwig 提交于
Add a new xfs_iext_cursor structure to hide the direct extent map index manipulations. In addition to the existing lookup/get/insert/ remove and update routines new primitives to get the first and last extent cursor, as well as moving up and down by one extent are provided. Also new are convenience to increment/decrement the cursor and retreive the new extent, as well as to peek into the previous/next extent without updating the cursor and last but not least a macro to iterate over all extents in a fork. [darrick: rename for_each_iext to for_each_xfs_iext] Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NBrian Foster <bfoster@redhat.com> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
- 27 10月, 2017 1 次提交
-
-
由 Christoph Hellwig 提交于
This helper looks up the last extent the covers space before the passed in block number. This is useful for truncate and similar operations that operate backwards over the extent list. For xfs_bunmapi it also is a slight optimization as we can return early if there are not extents at or below the end of the to be truncated range. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
- 04 10月, 2017 1 次提交
-
-
由 Christoph Hellwig 提交于
If we got two AIO writes into a COW area the second one might not have any COW extents left to convert. Handle that case gracefully instead of triggering an assert or accessing beyond the bounds of the extent list. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
- 02 9月, 2017 1 次提交
-
-
由 Christoph Hellwig 提交于
And instead require callers to explicitly join the inode using xfs_defer_ijoin. Also consolidate the defer error handling in a few places using a goto label. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
- 21 7月, 2017 2 次提交
-
-
由 Darrick J. Wong 提交于
In some circumstances, _alloc_read_agf can return an error code of zero but also a null AGF buffer pointer. Check for this and jump out. Fixes-coverity-id: 1415250 Fixes-coverity-id: 1415320 Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com> Reviewed-by: NBrian Foster <bfoster@redhat.com>
-
由 Darrick J. Wong 提交于
We must initialize the firstfsb parameter to _bmapi_write so that it doesn't incorrectly treat stack garbage as a restriction on which AGs it can search for free space. Fixes-coverity-id: 1402025 Fixes-coverity-id: 1415167 Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com> Reviewed-by: NBrian Foster <bfoster@redhat.com>
-
- 20 6月, 2017 2 次提交
-
-
由 Darrick J. Wong 提交于
Separate the "clear reflink flag" function into one function that checks if the flag is needed, and a second function that checks and clears the flag. The inode scrub code will want to check the necessity of the flag without clearing it. Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com> Reviewed-by: NBrian Foster <bfoster@redhat.com>
-
由 Darrick J. Wong 提交于
Adapt _reflink_find_shared to take an optional transaction pointer. The inode scrubber code will need to decide (within transaction context) if a file has shared blocks. To avoid buffer deadlocks, we must pass the tp through to this function's utility calls. Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com> Reviewed-by: NBrian Foster <bfoster@redhat.com>
-
- 04 5月, 2017 1 次提交
-
-
由 Darrick J. Wong 提交于
In xfs_reflink_end_cow, we erroneously reserve only enough blocks to handle adding 1 extent. This is problematic if we fragment free space, have to do CoW, and then have to perform multiple bmap btree expansions. Furthermore, the BUI recovery routine doesn't reserve /any/ blocks to handle btree splits, so log recovery fails after our first error causes the filesystem to go down. Therefore, refactor the transaction block reservation macros until we have a macro that works for our deferred (re)mapping activities, and fix both problems by using that macro. With 1k blocks we can hit this fairly often in g/187 if the scratch fs is big enough. Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com> Reviewed-by: NChristoph Hellwig <hch@lst.de>
-
- 04 4月, 2017 1 次提交
-
-
由 Christoph Hellwig 提交于
This checks for all the non-normal extent types, including handling both encodings of delayed allocations. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
- 08 3月, 2017 1 次提交
-
-
由 Christoph Hellwig 提交于
We only want to reclaim preallocations from our periodic work item. Currently this is archived by looking for a dirty inode, but that check is rather fragile. Instead add a flag to xfs_reflink_cancel_cow_* so that the caller can ask for just cancelling unwritten extents in the COW fork. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> [darrick: fix typos in commit message] Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
- 17 2月, 2017 1 次提交
-
-
由 Darrick J. Wong 提交于
Fix an uninitialize variable. Reported-by: NDan Carpenter <dan.carpenter@oracle.com> Reviewed-by: NBrian Foster <bfoster@redhat.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
- 10 2月, 2017 1 次提交
-
-
由 Christoph Hellwig 提交于
We're changing both metadata and data, so we need to update the timestamps for clone operations. Dedupe on the other hand does not change file data, and only changes invisible metadata so the timestamps should not be updated. This follows existing btrfs behavior. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> [darrick: remove redundant is_dedupe test] Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
- 07 2月, 2017 3 次提交
-
-
由 Christoph Hellwig 提交于
Instead of preallocating all the required COW blocks in the high-level write code do it inside the iomap code, like we do for all other I/O. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
由 Christoph Hellwig 提交于
When we allocate COW fork blocks for direct I/O writes we currently first create a delayed allocation, and then convert it to a real allocation once we've got the delayed one. As there is no good reason for that this patch instead makes use call xfs_bmapi_write from the COW allocation path. The only interesting bits are a few tweaks the low-level allocator to allow for this, most notably the need to remove the call to xfs_bmap_extsize_align for the cowextsize in xfs_bmap_btalloc - for the existing convert case it's a no-op, but for the direct allocation case it would blow up our block reservation way beyond what we reserved for the transaction. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
由 Christoph Hellwig 提交于
We'll need it for the direct I/O code. Also rename the function to xfs_reflink_convert_cow_extent to describe it a bit better. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
- 03 2月, 2017 1 次提交
-
-
由 Darrick J. Wong 提交于
Christoph Hellwig pointed out that there's a potentially nasty race when performing simultaneous nearby directio cow writes: "Thread 1 writes a range from B to c " B --------- C p "a little later thread 2 writes from A to B " A --------- B p [editor's note: the 'p' denote cowextsize boundaries, which I added to make this more clear] "but the code preallocates beyond B into the range where thread "1 has just written, but ->end_io hasn't been called yet. "But once ->end_io is called thread 2 has already allocated "up to the extent size hint into the write range of thread 1, "so the end_io handler will splice the unintialized blocks from "that preallocation back into the file right after B." We can avoid this race by ensuring that thread 1 cannot accidentally remap the blocks that thread 2 allocated (as part of speculative preallocation) as part of t2's write preparation in t1's end_io handler. The way we make this happen is by taking advantage of the unwritten extent flag as an intermediate step. Recall that when we begin the process of writing data to shared blocks, we create a delayed allocation extent in the CoW fork: D: --RRRRRRSSSRRRRRRRR--- C: ------DDDDDDD--------- When a thread prepares to CoW some dirty data out to disk, it will now convert the delalloc reservation into an /unwritten/ allocated extent in the cow fork. The da conversion code tries to opportunistically allocate as much of a (speculatively prealloc'd) extent as possible, so we may end up allocating a larger extent than we're actually writing out: D: --RRRRRRSSSRRRRRRRR--- U: ------UUUUUUU--------- Next, we convert only the part of the extent that we're actively planning to write to normal (i.e. not unwritten) status: D: --RRRRRRSSSRRRRRRRR--- U: ------UURRUUU--------- If the write succeeds, the end_cow function will now scan the relevant range of the CoW fork for real extents and remap only the real extents into the data fork: D: --RRRRRRRRSRRRRRRRR--- U: ------UU--UUU--------- This ensures that we never obliterate valid data fork extents with unwritten blocks from the CoW fork. Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com> Reviewed-by: NChristoph Hellwig <hch@lst.de>
-
- 23 12月, 2016 1 次提交
-
-
由 Darrick J. Wong 提交于
Strengthen the checking of pos/len vs. i_size, clarify the return values for the clone prep function, and remove pointless code. Reviewed-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-
- 10 12月, 2016 1 次提交
-
-
由 Darrick J. Wong 提交于
Hoist both the XFS reflink inode state and preparation code and the XFS file blocks compare functions into the VFS so that ocfs2 can take advantage of it for reflink and dedupe. Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
- 30 11月, 2016 1 次提交
-
-
由 Christoph Hellwig 提交于
This patch drops the XFS-own i_iolock and uses the VFS i_rwsem which recently replaced i_mutex instead. This means we only have to take one lock instead of two in many fast path operations, and we can also shrink the xfs_inode structure. Thanks to the xfs_ilock family there is very little churn, the only thing of note is that we need to switch to use the lock_two_directory helper for taking the i_rwsem on two inodes in a few places to make sure our lock order matches the one used in the VFS. Signed-off-by: NChristoph Hellwig <hch@lst.de> Tested-by: NJens Axboe <axboe@fb.com> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
- 28 11月, 2016 3 次提交
-
-
由 Brian Foster 提交于
COW fork reservation is implemented via delayed allocation. The code is modeled after the traditional delalloc allocation code, but is slightly different in terms of how preallocation occurs. Rather than post-eof speculative preallocation, COW fork preallocation is implemented via a COW extent size hint that is designed to minimize fragmentation as a reflinked file is split over time. xfs_reflink_reserve_cow() still uses logic that is oriented towards dealing with post-eof speculative preallocation, however, and is stale or not necessarily correct. First, the EOF alignment to the COW extent size hint is implemented in xfs_bmapi_reserve_delalloc() (which does so correctly by aligning the start and end offsets) and so is not necessary in xfs_reflink_reserve_cow(). The backoff and retry logic on ENOSPC is also ineffective for the same reason, as xfs_bmapi_reserve_delalloc() will simply perform the same allocation request on the retry. Finally, since the COW extent size hint aligns the start and end offset of the range to allocate, the end_fsb != orig_end_fsb logic is not sufficient. Indeed, if a write request happens to end on an aligned offset, it is possible that we do not tag the inode for COW preallocation even though xfs_bmapi_reserve_delalloc() may have preallocated at the start offset. Kill the unnecessary, duplicate code in xfs_reflink_reserve_cow(). Remove the inode tag logic as well since xfs_bmapi_reserve_delalloc() has been updated to tag the inode correctly. Signed-off-by: NBrian Foster <bfoster@redhat.com> Reviewed-by: NDave Chinner <dchinner@redhat.com> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
由 Brian Foster 提交于
Speculative preallocation is currently processed entirely by the callers of xfs_bmapi_reserve_delalloc(). The caller determines how much preallocation to include, adjusts the extent length and passes down the resulting request. While this works fine for post-eof speculative preallocation, it is not as reliable for COW fork preallocation. COW fork preallocation is implemented via the cowextszhint, which aligns the start offset as well as the length of the extent. Further, it is difficult for the caller to accurately identify when preallocation occurs because the returned extent could have been merged with neighboring extents in the fork. To simplify this situation and facilitate further COW fork preallocation enhancements, update xfs_bmapi_reserve_delalloc() to take a separate preallocation parameter to incorporate into the allocation request. The preallocation blocks value is tacked onto the end of the request and adjusted to accommodate neighboring extents and extent size limits. Since xfs_bmapi_reserve_delalloc() now knows precisely how much preallocation was included in the allocation, it can also tag the inodes appropriately to support preallocation reclaim. Note that xfs_bmapi_reserve_delalloc() callers are not yet updated to use the preallocation mechanism. This patch should not change behavior outside of correctly tagging reflink inodes when start offset preallocation occurs (which the caller does not handle correctly). Signed-off-by: NBrian Foster <bfoster@redhat.com> Reviewed-by: NDave Chinner <dchinner@redhat.com> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
由 Darrick J. Wong 提交于
It turns out that btrfs and xfs had differing interpretations of what to do when the dedupe length is zero. Change xfs to follow btrfs' semantics so that the userland interface is consistent. Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com> Reviewed-by: NDave Chinner <dchinner@redhat.com> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
- 24 11月, 2016 3 次提交
-
-
由 Christoph Hellwig 提交于
Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NBrian Foster <bfoster@redhat.com> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
由 Christoph Hellwig 提交于
Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NBrian Foster <bfoster@redhat.com> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
由 Christoph Hellwig 提交于
And remove the unused return value. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NBrian Foster <bfoster@redhat.com> Signed-off-by: NDave Chinner <david@fromorbit.com>
-