- 03 8月, 2021 5 次提交
-
-
由 Christoph Hellwig 提交于
These two helpers are entirely unused now. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NMartin K. Petersen <martin.petersen@oracle.com> Link: https://lore.kernel.org/r/20210727055646.118787-10-hch@lst.deSigned-off-by: NJens Axboe <axboe@kernel.dk>
-
由 Christoph Hellwig 提交于
Add helpers to perform common memory operation on a bvec. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NChaitanya Kulkarni <chaitanya.kulkarni@wdc.com> Reviewed-by: NMartin K. Petersen <martin.petersen@oracle.com> Reviewed-by: NIra Weiny <ira.weiny@intel.com> Link: https://lore.kernel.org/r/20210727055646.118787-5-hch@lst.deSigned-off-by: NJens Axboe <axboe@kernel.dk>
-
由 Christoph Hellwig 提交于
Add a helper to call kmap_local_page on a bvec. There is no need for an unmap helper given that kunmap_local accept any address in the mapped page. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NChaitanya Kulkarni <chaitanya.kulkarni@wdc.com> Reviewed-by: NMartin K. Petersen <martin.petersen@oracle.com> Reviewed-by: NIra Weiny <ira.weiny@intel.com> Link: https://lore.kernel.org/r/20210727055646.118787-4-hch@lst.deSigned-off-by: NJens Axboe <axboe@kernel.dk>
-
由 Christoph Hellwig 提交于
Fix the include guards to match the file naming. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NBart Van Assche <bvanassche@acm.org> Reviewed-by: NChaitanya Kulkarni <chaitanya.kulkarni@wdc.com> Reviewed-by: NMartin K. Petersen <martin.petersen@oracle.com> Reviewed-by: NIra Weiny <ira.weiny@intel.com> Link: https://lore.kernel.org/r/20210727055646.118787-3-hch@lst.deSigned-off-by: NJens Axboe <axboe@kernel.dk>
-
由 Oliver Hartkopp 提交于
systemd added a modified copy of include/linux/ioprio.h into its code to get the relevant content definitions for the exposed ioprio_[get|set] system calls. Move the user space relevant ioprio bits to the UAPI includes to be able to use the ioprio_[get|set] syscalls as intended. Cc: Kay Sievers <kay@vrfy.org> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Jens Axboe <axboe@kernel.dk> Cc: linux-block@vger.kernel.org Signed-off-by: NOliver Hartkopp <socketcan@hartkopp.net> Link: https://lore.kernel.org/r/20210714195655.181943-1-socketcan@hartkopp.netSigned-off-by: NJens Axboe <axboe@kernel.dk>
-
- 29 7月, 2021 2 次提交
-
-
由 Daniel Borkmann 提交于
Spectre v4 gadgets make use of memory disambiguation, which is a set of techniques that execute memory access instructions, that is, loads and stores, out of program order; Intel's optimization manual, section 2.4.4.5: A load instruction micro-op may depend on a preceding store. Many microarchitectures block loads until all preceding store addresses are known. The memory disambiguator predicts which loads will not depend on any previous stores. When the disambiguator predicts that a load does not have such a dependency, the load takes its data from the L1 data cache. Eventually, the prediction is verified. If an actual conflict is detected, the load and all succeeding instructions are re-executed. af86ca4e ("bpf: Prevent memory disambiguation attack") tried to mitigate this attack by sanitizing the memory locations through preemptive "fast" (low latency) stores of zero prior to the actual "slow" (high latency) store of a pointer value such that upon dependency misprediction the CPU then speculatively executes the load of the pointer value and retrieves the zero value instead of the attacker controlled scalar value previously stored at that location, meaning, subsequent access in the speculative domain is then redirected to the "zero page". The sanitized preemptive store of zero prior to the actual "slow" store is done through a simple ST instruction based on r10 (frame pointer) with relative offset to the stack location that the verifier has been tracking on the original used register for STX, which does not have to be r10. Thus, there are no memory dependencies for this store, since it's only using r10 and immediate constant of zero; hence af86ca4e /assumed/ a low latency operation. However, a recent attack demonstrated that this mitigation is not sufficient since the preemptive store of zero could also be turned into a "slow" store and is thus bypassed as well: [...] // r2 = oob address (e.g. scalar) // r7 = pointer to map value 31: (7b) *(u64 *)(r10 -16) = r2 // r9 will remain "fast" register, r10 will become "slow" register below 32: (bf) r9 = r10 // JIT maps BPF reg to x86 reg: // r9 -> r15 (callee saved) // r10 -> rbp // train store forward prediction to break dependency link between both r9 // and r10 by evicting them from the predictor's LRU table. 33: (61) r0 = *(u32 *)(r7 +24576) 34: (63) *(u32 *)(r7 +29696) = r0 35: (61) r0 = *(u32 *)(r7 +24580) 36: (63) *(u32 *)(r7 +29700) = r0 37: (61) r0 = *(u32 *)(r7 +24584) 38: (63) *(u32 *)(r7 +29704) = r0 39: (61) r0 = *(u32 *)(r7 +24588) 40: (63) *(u32 *)(r7 +29708) = r0 [...] 543: (61) r0 = *(u32 *)(r7 +25596) 544: (63) *(u32 *)(r7 +30716) = r0 // prepare call to bpf_ringbuf_output() helper. the latter will cause rbp // to spill to stack memory while r13/r14/r15 (all callee saved regs) remain // in hardware registers. rbp becomes slow due to push/pop latency. below is // disasm of bpf_ringbuf_output() helper for better visual context: // // ffffffff8117ee20: 41 54 push r12 // ffffffff8117ee22: 55 push rbp // ffffffff8117ee23: 53 push rbx // ffffffff8117ee24: 48 f7 c1 fc ff ff ff test rcx,0xfffffffffffffffc // ffffffff8117ee2b: 0f 85 af 00 00 00 jne ffffffff8117eee0 <-- jump taken // [...] // ffffffff8117eee0: 49 c7 c4 ea ff ff ff mov r12,0xffffffffffffffea // ffffffff8117eee7: 5b pop rbx // ffffffff8117eee8: 5d pop rbp // ffffffff8117eee9: 4c 89 e0 mov rax,r12 // ffffffff8117eeec: 41 5c pop r12 // ffffffff8117eeee: c3 ret 545: (18) r1 = map[id:4] 547: (bf) r2 = r7 548: (b7) r3 = 0 549: (b7) r4 = 4 550: (85) call bpf_ringbuf_output#194288 // instruction 551 inserted by verifier \ 551: (7a) *(u64 *)(r10 -16) = 0 | /both/ are now slow stores here // storing map value pointer r7 at fp-16 | since value of r10 is "slow". 552: (7b) *(u64 *)(r10 -16) = r7 / // following "fast" read to the same memory location, but due to dependency // misprediction it will speculatively execute before insn 551/552 completes. 553: (79) r2 = *(u64 *)(r9 -16) // in speculative domain contains attacker controlled r2. in non-speculative // domain this contains r7, and thus accesses r7 +0 below. 554: (71) r3 = *(u8 *)(r2 +0) // leak r3 As can be seen, the current speculative store bypass mitigation which the verifier inserts at line 551 is insufficient since /both/, the write of the zero sanitation as well as the map value pointer are a high latency instruction due to prior memory access via push/pop of r10 (rbp) in contrast to the low latency read in line 553 as r9 (r15) which stays in hardware registers. Thus, architecturally, fp-16 is r7, however, microarchitecturally, fp-16 can still be r2. Initial thoughts to address this issue was to track spilled pointer loads from stack and enforce their load via LDX through r10 as well so that /both/ the preemptive store of zero /as well as/ the load use the /same/ register such that a dependency is created between the store and load. However, this option is not sufficient either since it can be bypassed as well under speculation. An updated attack with pointer spill/fills now _all_ based on r10 would look as follows: [...] // r2 = oob address (e.g. scalar) // r7 = pointer to map value [...] // longer store forward prediction training sequence than before. 2062: (61) r0 = *(u32 *)(r7 +25588) 2063: (63) *(u32 *)(r7 +30708) = r0 2064: (61) r0 = *(u32 *)(r7 +25592) 2065: (63) *(u32 *)(r7 +30712) = r0 2066: (61) r0 = *(u32 *)(r7 +25596) 2067: (63) *(u32 *)(r7 +30716) = r0 // store the speculative load address (scalar) this time after the store // forward prediction training. 2068: (7b) *(u64 *)(r10 -16) = r2 // preoccupy the CPU store port by running sequence of dummy stores. 2069: (63) *(u32 *)(r7 +29696) = r0 2070: (63) *(u32 *)(r7 +29700) = r0 2071: (63) *(u32 *)(r7 +29704) = r0 2072: (63) *(u32 *)(r7 +29708) = r0 2073: (63) *(u32 *)(r7 +29712) = r0 2074: (63) *(u32 *)(r7 +29716) = r0 2075: (63) *(u32 *)(r7 +29720) = r0 2076: (63) *(u32 *)(r7 +29724) = r0 2077: (63) *(u32 *)(r7 +29728) = r0 2078: (63) *(u32 *)(r7 +29732) = r0 2079: (63) *(u32 *)(r7 +29736) = r0 2080: (63) *(u32 *)(r7 +29740) = r0 2081: (63) *(u32 *)(r7 +29744) = r0 2082: (63) *(u32 *)(r7 +29748) = r0 2083: (63) *(u32 *)(r7 +29752) = r0 2084: (63) *(u32 *)(r7 +29756) = r0 2085: (63) *(u32 *)(r7 +29760) = r0 2086: (63) *(u32 *)(r7 +29764) = r0 2087: (63) *(u32 *)(r7 +29768) = r0 2088: (63) *(u32 *)(r7 +29772) = r0 2089: (63) *(u32 *)(r7 +29776) = r0 2090: (63) *(u32 *)(r7 +29780) = r0 2091: (63) *(u32 *)(r7 +29784) = r0 2092: (63) *(u32 *)(r7 +29788) = r0 2093: (63) *(u32 *)(r7 +29792) = r0 2094: (63) *(u32 *)(r7 +29796) = r0 2095: (63) *(u32 *)(r7 +29800) = r0 2096: (63) *(u32 *)(r7 +29804) = r0 2097: (63) *(u32 *)(r7 +29808) = r0 2098: (63) *(u32 *)(r7 +29812) = r0 // overwrite scalar with dummy pointer; same as before, also including the // sanitation store with 0 from the current mitigation by the verifier. 2099: (7a) *(u64 *)(r10 -16) = 0 | /both/ are now slow stores here 2100: (7b) *(u64 *)(r10 -16) = r7 | since store unit is still busy. // load from stack intended to bypass stores. 2101: (79) r2 = *(u64 *)(r10 -16) 2102: (71) r3 = *(u8 *)(r2 +0) // leak r3 [...] Looking at the CPU microarchitecture, the scheduler might issue loads (such as seen in line 2101) before stores (line 2099,2100) because the load execution units become available while the store execution unit is still busy with the sequence of dummy stores (line 2069-2098). And so the load may use the prior stored scalar from r2 at address r10 -16 for speculation. The updated attack may work less reliable on CPU microarchitectures where loads and stores share execution resources. This concludes that the sanitizing with zero stores from af86ca4e ("bpf: Prevent memory disambiguation attack") is insufficient. Moreover, the detection of stack reuse from af86ca4e where previously data (STACK_MISC) has been written to a given stack slot where a pointer value is now to be stored does not have sufficient coverage as precondition for the mitigation either; for several reasons outlined as follows: 1) Stack content from prior program runs could still be preserved and is therefore not "random", best example is to split a speculative store bypass attack between tail calls, program A would prepare and store the oob address at a given stack slot and then tail call into program B which does the "slow" store of a pointer to the stack with subsequent "fast" read. From program B PoV such stack slot type is STACK_INVALID, and therefore also must be subject to mitigation. 2) The STACK_SPILL must not be coupled to register_is_const(&stack->spilled_ptr) condition, for example, the previous content of that memory location could also be a pointer to map or map value. Without the fix, a speculative store bypass is not mitigated in such precondition and can then lead to a type confusion in the speculative domain leaking kernel memory near these pointer types. While brainstorming on various alternative mitigation possibilities, we also stumbled upon a retrospective from Chrome developers [0]: [...] For variant 4, we implemented a mitigation to zero the unused memory of the heap prior to allocation, which cost about 1% when done concurrently and 4% for scavenging. Variant 4 defeats everything we could think of. We explored more mitigations for variant 4 but the threat proved to be more pervasive and dangerous than we anticipated. For example, stack slots used by the register allocator in the optimizing compiler could be subject to type confusion, leading to pointer crafting. Mitigating type confusion for stack slots alone would have required a complete redesign of the backend of the optimizing compiler, perhaps man years of work, without a guarantee of completeness. [...] From BPF side, the problem space is reduced, however, options are rather limited. One idea that has been explored was to xor-obfuscate pointer spills to the BPF stack: [...] // preoccupy the CPU store port by running sequence of dummy stores. [...] 2106: (63) *(u32 *)(r7 +29796) = r0 2107: (63) *(u32 *)(r7 +29800) = r0 2108: (63) *(u32 *)(r7 +29804) = r0 2109: (63) *(u32 *)(r7 +29808) = r0 2110: (63) *(u32 *)(r7 +29812) = r0 // overwrite scalar with dummy pointer; xored with random 'secret' value // of 943576462 before store ... 2111: (b4) w11 = 943576462 2112: (af) r11 ^= r7 2113: (7b) *(u64 *)(r10 -16) = r11 2114: (79) r11 = *(u64 *)(r10 -16) 2115: (b4) w2 = 943576462 2116: (af) r2 ^= r11 // ... and restored with the same 'secret' value with the help of AX reg. 2117: (71) r3 = *(u8 *)(r2 +0) [...] While the above would not prevent speculation, it would make data leakage infeasible by directing it to random locations. In order to be effective and prevent type confusion under speculation, such random secret would have to be regenerated for each store. The additional complexity involved for a tracking mechanism that prevents jumps such that restoring spilled pointers would not get corrupted is not worth the gain for unprivileged. Hence, the fix in here eventually opted for emitting a non-public BPF_ST | BPF_NOSPEC instruction which the x86 JIT translates into a lfence opcode. Inserting the latter in between the store and load instruction is one of the mitigations options [1]. The x86 instruction manual notes: [...] An LFENCE that follows an instruction that stores to memory might complete before the data being stored have become globally visible. [...] The latter meaning that the preceding store instruction finished execution and the store is at minimum guaranteed to be in the CPU's store queue, but it's not guaranteed to be in that CPU's L1 cache at that point (globally visible). The latter would only be guaranteed via sfence. So the load which is guaranteed to execute after the lfence for that local CPU would have to rely on store-to-load forwarding. [2], in section 2.3 on store buffers says: [...] For every store operation that is added to the ROB, an entry is allocated in the store buffer. This entry requires both the virtual and physical address of the target. Only if there is no free entry in the store buffer, the frontend stalls until there is an empty slot available in the store buffer again. Otherwise, the CPU can immediately continue adding subsequent instructions to the ROB and execute them out of order. On Intel CPUs, the store buffer has up to 56 entries. [...] One small upside on the fix is that it lifts constraints from af86ca4e where the sanitize_stack_off relative to r10 must be the same when coming from different paths. The BPF_ST | BPF_NOSPEC gets emitted after a BPF_STX or BPF_ST instruction. This happens either when we store a pointer or data value to the BPF stack for the first time, or upon later pointer spills. The former needs to be enforced since otherwise stale stack data could be leaked under speculation as outlined earlier. For non-x86 JITs the BPF_ST | BPF_NOSPEC mapping is currently optimized away, but others could emit a speculation barrier as well if necessary. For real-world unprivileged programs e.g. generated by LLVM, pointer spill/fill is only generated upon register pressure and LLVM only tries to do that for pointers which are not used often. The program main impact will be the initial BPF_ST | BPF_NOSPEC sanitation for the STACK_INVALID case when the first write to a stack slot occurs e.g. upon map lookup. In future we might refine ways to mitigate the latter cost. [0] https://arxiv.org/pdf/1902.05178.pdf [1] https://msrc-blog.microsoft.com/2018/05/21/analysis-and-mitigation-of-speculative-store-bypass-cve-2018-3639/ [2] https://arxiv.org/pdf/1905.05725.pdf Fixes: af86ca4e ("bpf: Prevent memory disambiguation attack") Fixes: f7cf25b2 ("bpf: track spill/fill of constants") Co-developed-by: NPiotr Krysiuk <piotras@gmail.com> Co-developed-by: NBenedict Schlueter <benedict.schlueter@rub.de> Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net> Signed-off-by: NPiotr Krysiuk <piotras@gmail.com> Signed-off-by: NBenedict Schlueter <benedict.schlueter@rub.de> Acked-by: NAlexei Starovoitov <ast@kernel.org>
-
由 Daniel Borkmann 提交于
In case of JITs, each of the JIT backends compiles the BPF nospec instruction /either/ to a machine instruction which emits a speculation barrier /or/ to /no/ machine instruction in case the underlying architecture is not affected by Speculative Store Bypass or has different mitigations in place already. This covers both x86 and (implicitly) arm64: In case of x86, we use 'lfence' instruction for mitigation. In case of arm64, we rely on the firmware mitigation as controlled via the ssbd kernel parameter. Whenever the mitigation is enabled, it works for all of the kernel code with no need to provide any additional instructions here (hence only comment in arm64 JIT). Other archs can follow as needed. The BPF nospec instruction is specifically targeting Spectre v4 since i) we don't use a serialization barrier for the Spectre v1 case, and ii) mitigation instructions for v1 and v4 might be different on some archs. The BPF nospec is required for a future commit, where the BPF verifier does annotate intermediate BPF programs with speculation barriers. Co-developed-by: NPiotr Krysiuk <piotras@gmail.com> Co-developed-by: NBenedict Schlueter <benedict.schlueter@rub.de> Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net> Signed-off-by: NPiotr Krysiuk <piotras@gmail.com> Signed-off-by: NBenedict Schlueter <benedict.schlueter@rub.de> Acked-by: NAlexei Starovoitov <ast@kernel.org>
-
- 28 7月, 2021 1 次提交
-
-
由 John Fastabend 提交于
If backlog handler is running during a tear down operation we may enqueue data on the ingress msg queue while tear down is trying to free it. sk_psock_backlog() sk_psock_handle_skb() skb_psock_skb_ingress() sk_psock_skb_ingress_enqueue() sk_psock_queue_msg(psock,msg) spin_lock(ingress_lock) sk_psock_zap_ingress() _sk_psock_purge_ingerss_msg() _sk_psock_purge_ingress_msg() -- free ingress_msg list -- spin_unlock(ingress_lock) spin_lock(ingress_lock) list_add_tail(msg,ingress_msg) <- entry on list with no one left to free it. spin_unlock(ingress_lock) To fix we only enqueue from backlog if the ENABLED bit is set. The tear down logic clears the bit with ingress_lock set so we wont enqueue the msg in the last step. Fixes: 799aa7f9 ("skmsg: Avoid lock_sock() in sk_psock_backlog()") Signed-off-by: NJohn Fastabend <john.fastabend@gmail.com> Signed-off-by: NAndrii Nakryiko <andrii@kernel.org> Acked-by: NJakub Sitnicki <jakub@cloudflare.com> Acked-by: NMartin KaFai Lau <kafai@fb.com> Link: https://lore.kernel.org/bpf/20210727160500.1713554-4-john.fastabend@gmail.com
-
- 24 7月, 2021 3 次提交
-
-
由 Mike Rapoport 提交于
Commit b10d6bca ("arch, drivers: replace for_each_membock() with for_each_mem_range()") didn't take into account that when there is movable_node parameter in the kernel command line, for_each_mem_range() would skip ranges marked with MEMBLOCK_HOTPLUG. The page table setup code in POWER uses for_each_mem_range() to create the linear mapping of the physical memory and since the regions marked as MEMORY_HOTPLUG are skipped, they never make it to the linear map. A later access to the memory in those ranges will fail: BUG: Unable to handle kernel data access on write at 0xc000000400000000 Faulting instruction address: 0xc00000000008a3c0 Oops: Kernel access of bad area, sig: 11 [#1] LE PAGE_SIZE=64K MMU=Radix SMP NR_CPUS=2048 NUMA pSeries Modules linked in: CPU: 0 PID: 53 Comm: kworker/u2:0 Not tainted 5.13.0 #7 NIP: c00000000008a3c0 LR: c0000000003c1ed8 CTR: 0000000000000040 REGS: c000000008a57770 TRAP: 0300 Not tainted (5.13.0) MSR: 8000000002009033 <SF,VEC,EE,ME,IR,DR,RI,LE> CR: 84222202 XER: 20040000 CFAR: c0000000003c1ed4 DAR: c000000400000000 DSISR: 42000000 IRQMASK: 0 GPR00: c0000000003c1ed8 c000000008a57a10 c0000000019da700 c000000400000000 GPR04: 0000000000000280 0000000000000180 0000000000000400 0000000000000200 GPR08: 0000000000000100 0000000000000080 0000000000000040 0000000000000300 GPR12: 0000000000000380 c000000001bc0000 c0000000001660c8 c000000006337e00 GPR16: 0000000000000000 0000000000000000 0000000000000000 0000000000000000 GPR20: 0000000040000000 0000000020000000 c000000001a81990 c000000008c30000 GPR24: c000000008c20000 c000000001a81998 000fffffffff0000 c000000001a819a0 GPR28: c000000001a81908 c00c000001000000 c000000008c40000 c000000008a64680 NIP clear_user_page+0x50/0x80 LR __handle_mm_fault+0xc88/0x1910 Call Trace: __handle_mm_fault+0xc44/0x1910 (unreliable) handle_mm_fault+0x130/0x2a0 __get_user_pages+0x248/0x610 __get_user_pages_remote+0x12c/0x3e0 get_arg_page+0x54/0xf0 copy_string_kernel+0x11c/0x210 kernel_execve+0x16c/0x220 call_usermodehelper_exec_async+0x1b0/0x2f0 ret_from_kernel_thread+0x5c/0x70 Instruction dump: 79280fa4 79271764 79261f24 794ae8e2 7ca94214 7d683a14 7c893a14 7d893050 7d4903a6 60000000 60000000 60000000 <7c001fec> 7c091fec 7c081fec 7c051fec ---[ end trace 490b8c67e6075e09 ]--- Making for_each_mem_range() include MEMBLOCK_HOTPLUG regions in the traversal fixes this issue. Link: https://bugzilla.redhat.com/show_bug.cgi?id=1976100 Link: https://lkml.kernel.org/r/20210712071132.20902-1-rppt@kernel.org Fixes: b10d6bca ("arch, drivers: replace for_each_membock() with for_each_mem_range()") Signed-off-by: NMike Rapoport <rppt@linux.ibm.com> Tested-by: NGreg Kurz <groug@kaod.org> Reviewed-by: NDavid Hildenbrand <david@redhat.com> Cc: <stable@vger.kernel.org> [5.10+] Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Christoph Hellwig 提交于
The commit message introducing the global memzero_page explicitly mentions switching to kmap_local_page in the commit log but doesn't actually do that. Link: https://lkml.kernel.org/r/20210713055231.137602-3-hch@lst.de Fixes: 28961998 ("iov_iter: lift memzero_page() to highmem.h") Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NChaitanya Kulkarni <chaitanya.kulkarni@wdc.com> Reviewed-by: NIra Weiny <ira.weiny@intel.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Christoph Hellwig 提交于
memcpy_to_page and memzero_page can write to arbitrary pages, which could be in the page cache or in high memory, so call flush_kernel_dcache_pages to flush the dcache. This is a problem when using these helpers on dcache challeneged architectures. Right now there are just a few users, chances are no one used the PC floppy driver, the aha1542 driver for an ISA SCSI HBA, and a few advanced and optional btrfs and ext4 features on those platforms yet since the conversion. Link: https://lkml.kernel.org/r/20210713055231.137602-2-hch@lst.de Fixes: bb90d4bc ("mm/highmem: Lift memcpy_[to|from]_page to core") Fixes: 28961998 ("iov_iter: lift memzero_page() to highmem.h") Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NIra Weiny <ira.weiny@intel.com> Cc: Chaitanya Kulkarni <chaitanya.kulkarni@wdc.com> Cc: <stable@vger.kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 22 7月, 2021 1 次提交
-
-
由 Paul Gortmaker 提交于
Richard reported sporadic (roughly one in 10 or so) null dereferences and other strange behaviour for a set of automated LTP tests. Things like: BUG: kernel NULL pointer dereference, address: 0000000000000008 #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not-present page PGD 0 P4D 0 Oops: 0000 [#1] PREEMPT SMP PTI CPU: 0 PID: 1516 Comm: umount Not tainted 5.10.0-yocto-standard #1 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-48-gd9c812dda519-prebuilt.qemu.org 04/01/2014 RIP: 0010:kernfs_sop_show_path+0x1b/0x60 ...or these others: RIP: 0010:do_mkdirat+0x6a/0xf0 RIP: 0010:d_alloc_parallel+0x98/0x510 RIP: 0010:do_readlinkat+0x86/0x120 There were other less common instances of some kind of a general scribble but the common theme was mount and cgroup and a dubious dentry triggering the NULL dereference. I was only able to reproduce it under qemu by replicating Richard's setup as closely as possible - I never did get it to happen on bare metal, even while keeping everything else the same. In commit 71d883c3 ("cgroup_do_mount(): massage calling conventions") we see this as a part of the overall change: -------------- struct cgroup_subsys *ss; - struct dentry *dentry; [...] - dentry = cgroup_do_mount(&cgroup_fs_type, fc->sb_flags, root, - CGROUP_SUPER_MAGIC, ns); [...] - if (percpu_ref_is_dying(&root->cgrp.self.refcnt)) { - struct super_block *sb = dentry->d_sb; - dput(dentry); + ret = cgroup_do_mount(fc, CGROUP_SUPER_MAGIC, ns); + if (!ret && percpu_ref_is_dying(&root->cgrp.self.refcnt)) { + struct super_block *sb = fc->root->d_sb; + dput(fc->root); deactivate_locked_super(sb); msleep(10); return restart_syscall(); } -------------- In changing from the local "*dentry" variable to using fc->root, we now export/leave that dentry pointer in the file context after doing the dput() in the unlikely "is_dying" case. With LTP doing a crazy amount of back to back mount/unmount [testcases/bin/cgroup_regression_5_1.sh] the unlikely becomes slightly likely and then bad things happen. A fix would be to not leave the stale reference in fc->root as follows: -------------- dput(fc->root); + fc->root = NULL; deactivate_locked_super(sb); -------------- ...but then we are just open-coding a duplicate of fc_drop_locked() so we simply use that instead. Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Tejun Heo <tj@kernel.org> Cc: Zefan Li <lizefan.x@bytedance.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: stable@vger.kernel.org # v5.1+ Reported-by: NRichard Purdie <richard.purdie@linuxfoundation.org> Fixes: 71d883c3 ("cgroup_do_mount(): massage calling conventions") Signed-off-by: NPaul Gortmaker <paul.gortmaker@windriver.com> Signed-off-by: NTejun Heo <tj@kernel.org>
-
- 21 7月, 2021 1 次提交
-
-
由 Jonathan Marek 提交于
This reverts commit c742199a. c742199a ("mm/pgtable: add stubs for {pmd/pub}_{set/clear}_huge") breaks arm64 in at least two ways for configurations where PUD or PMD folding occur: 1. We no longer install huge-vmap mappings and silently fall back to page-granular entries, despite being able to install block entries at what is effectively the PGD level. 2. If the linear map is backed with block mappings, these will now silently fail to be created in alloc_init_pud(), causing a panic early during boot. The pgtable selftests caught this, although a fix has not been forthcoming and Christophe is AWOL at the moment, so just revert the change for now to get a working -rc3 on which we can queue patches for 5.15. A simple revert breaks the build for 32-bit PowerPC 8xx machines, which rely on the default function definitions when the corresponding page-table levels are folded, since commit a6a8f7c4 ("powerpc/8xx: add support for huge pages on VMAP and VMALLOC"), eg: powerpc64-linux-ld: mm/vmalloc.o: in function `vunmap_pud_range': linux/mm/vmalloc.c:362: undefined reference to `pud_clear_huge' To avoid that, add stubs for pud_clear_huge() and pmd_clear_huge() in arch/powerpc/mm/nohash/8xx.c as suggested by Christophe. Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Mike Rapoport <rppt@kernel.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Fixes: c742199a ("mm/pgtable: add stubs for {pmd/pub}_{set/clear}_huge") Signed-off-by: NJonathan Marek <jonathan@marek.ca> Reviewed-by: NArd Biesheuvel <ardb@kernel.org> Acked-by: NMarc Zyngier <maz@kernel.org> [mpe: Fold in 8xx.c changes from Christophe and mention in change log] Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/linux-arm-kernel/CAMuHMdXShORDox-xxaeUfDW3wx2PeggFSqhVSHVZNKCGK-y_vQ@mail.gmail.com/ Link: https://lore.kernel.org/r/20210717160118.9855-1-jonathan@marek.ca Link: https://lore.kernel.org/r/87r1fs1762.fsf@mpe.ellerman.id.auSigned-off-by: NWill Deacon <will@kernel.org>
-
- 20 7月, 2021 1 次提交
-
-
由 Lorenz Bauer 提交于
We got the following UBSAN report on one of our testing machines: ================================================================================ UBSAN: array-index-out-of-bounds in kernel/bpf/syscall.c:2389:24 index 6 is out of range for type 'char *[6]' CPU: 43 PID: 930921 Comm: systemd-coredum Tainted: G O 5.10.48-cloudflare-kasan-2021.7.0 #1 Hardware name: <snip> Call Trace: dump_stack+0x7d/0xa3 ubsan_epilogue+0x5/0x40 __ubsan_handle_out_of_bounds.cold+0x43/0x48 ? seq_printf+0x17d/0x250 bpf_link_show_fdinfo+0x329/0x380 ? bpf_map_value_size+0xe0/0xe0 ? put_files_struct+0x20/0x2d0 ? __kasan_kmalloc.constprop.0+0xc2/0xd0 seq_show+0x3f7/0x540 seq_read_iter+0x3f8/0x1040 seq_read+0x329/0x500 ? seq_read_iter+0x1040/0x1040 ? __fsnotify_parent+0x80/0x820 ? __fsnotify_update_child_dentry_flags+0x380/0x380 vfs_read+0x123/0x460 ksys_read+0xed/0x1c0 ? __x64_sys_pwrite64+0x1f0/0x1f0 do_syscall_64+0x33/0x40 entry_SYSCALL_64_after_hwframe+0x44/0xa9 <snip> ================================================================================ ================================================================================ UBSAN: object-size-mismatch in kernel/bpf/syscall.c:2384:2 From the report, we can infer that some array access in bpf_link_show_fdinfo at index 6 is out of bounds. The obvious candidate is bpf_link_type_strs[BPF_LINK_TYPE_XDP] with BPF_LINK_TYPE_XDP == 6. It turns out that BPF_LINK_TYPE_XDP is missing from bpf_types.h and therefore doesn't have an entry in bpf_link_type_strs: pos: 0 flags: 02000000 mnt_id: 13 link_type: (null) link_id: 4 prog_tag: bcf7977d3b93787c prog_id: 4 ifindex: 1 Fixes: aa8d3a71 ("bpf, xdp: Add bpf_link-based XDP attachment API") Signed-off-by: NLorenz Bauer <lmb@cloudflare.com> Signed-off-by: NAndrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/bpf/20210719085134.43325-2-lmb@cloudflare.com
-
- 18 7月, 2021 1 次提交
-
-
由 Oleksandr Natalenko 提交于
After mq-deadline learned to deal with cgroups, the BLKCG_MAX_POLS value became too small for all the elevators to be registered properly. The following issue is seen: ``` calling bfq_init+0x0/0x8b @ 1 blkcg_policy_register: BLKCG_MAX_POLS too small initcall bfq_init+0x0/0x8b returned -28 after 507 usecs ``` which renders BFQ non-functional. Increase BLKCG_MAX_POLS to allow enough space for everyone. Fixes: 08a9ad8b ("block/mq-deadline: Add cgroup support") Link: https://lore.kernel.org/lkml/8988303.mDXGIdCtx8@natalenko.name/Signed-off-by: NOleksandr Natalenko <oleksandr@natalenko.name> Link: https://lore.kernel.org/r/20210717123328.945810-1-oleksandr@natalenko.nameSigned-off-by: NJens Axboe <axboe@kernel.dk>
-
- 16 7月, 2021 4 次提交
-
-
由 Daniel Borkmann 提交于
In 7fedb63a ("bpf: Tighten speculative pointer arithmetic mask") we narrowed the offset mask for unprivileged pointer arithmetic in order to mitigate a corner case where in the speculative domain it is possible to advance, for example, the map value pointer by up to value_size-1 out-of- bounds in order to leak kernel memory via side-channel to user space. The verifier's state pruning for scalars leaves one corner case open where in the first verification path R_x holds an unknown scalar with an aux->alu_limit of e.g. 7, and in a second verification path that same register R_x, here denoted as R_x', holds an unknown scalar which has tighter bounds and would thus satisfy range_within(R_x, R_x') as well as tnum_in(R_x, R_x') for state pruning, yielding an aux->alu_limit of 3: Given the second path fits the register constraints for pruning, the final generated mask from aux->alu_limit will remain at 7. While technically not wrong for the non-speculative domain, it would however be possible to craft similar cases where the mask would be too wide as in 7fedb63a. One way to fix it is to detect the presence of unknown scalar map pointer arithmetic and force a deeper search on unknown scalars to ensure that we do not run into a masking mismatch. Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net> Acked-by: NAlexei Starovoitov <ast@kernel.org>
-
由 Ye Xiang 提交于
ISH IPC driver uses asynchronous workqueue to do resume now, but there is a potential timing issue: when child devices resume before bus driver, it will cause child devices resume failed and cannot be recovered until reboot. The current implementation in this case do wait for IPC to resume but fail to accommodate for a case when there is no ISH reboot and soft resume is taking time. This issue is apparent on Tiger Lake platform with 5.11.13 kernel when doing suspend to idle then resume(s0ix) test. To resolve this issue, we change ISHTP HID client to use asynchronous resume callback too. In the asynchronous resume callback, it waits for the ISHTP resume done event, and then notify ISHTP HID client link ready. Signed-off-by: NYe Xiang <xiang.ye@intel.com> Acked-by: NSrinivas Pandruvada <srinivas.pandruvada@linux.intel.com> Signed-off-by: NJiri Kosina <jkosina@suse.cz>
-
由 Christoph Hellwig 提交于
Adjust the nommu stub of try_to_unmap to match the changed protype for the full version. Turn it into an inline instead of a macro to generally improve the type checking. Link: https://lkml.kernel.org/r/20210705053944.885828-1-hch@lst.de Fixes: 1fb08ac6 ("mm: rmap: make try_to_unmap() void function") Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NYang Shi <shy828301@gmail.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Marco Elver 提交于
The <linux/kasan.h> header relies on _RET_IP_ being defined, and had been receiving that definition via inclusion of bug.h which includes kernel.h. However, since f39650de ("kernel.h: split out panic and oops helpers") that is no longer the case and get the following build error when building CONFIG_KASAN_HW_TAGS on arm64: In file included from arch/arm64/mm/kasan_init.c:10: include/linux/kasan.h: In function 'kasan_slab_free': include/linux/kasan.h:230:39: error: '_RET_IP_' undeclared (first use in this function) 230 | return __kasan_slab_free(s, object, _RET_IP_, init); Fix it by including kernel.h from kasan.h. Link: https://lkml.kernel.org/r/20210705072716.2125074-1-elver@google.com Fixes: f39650de ("kernel.h: split out panic and oops helpers") Signed-off-by: NMarco Elver <elver@google.com> Reviewed-by: NAndy Shevchenko <andy.shevchenko@gmail.com> Reviewed-by: NAndrey Konovalov <andreyknvl@gmail.com> Cc: Alexander Potapenko <glider@google.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Peter Collingbourne <pcc@google.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Vincenzo Frascino <vincenzo.frascino@arm.com> Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 15 7月, 2021 1 次提交
-
-
由 Christian Brauner 提交于
Add a simple helper that filesystems can use in their parameter parser to parse the "source" parameter. A few places open-coded this function and that already caused a bug in the cgroup v1 parser that we fixed. Let's make it harder to get this wrong by introducing a helper which performs all necessary checks. Link: https://syzkaller.appspot.com/bug?id=6312526aba5beae046fdae8f00399f87aab48b12 Cc: Christoph Hellwig <hch@lst.de> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Dmitry Vyukov <dvyukov@google.com> Signed-off-by: NChristian Brauner <christian.brauner@ubuntu.com> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 13 7月, 2021 3 次提交
-
-
由 Sudeep Holla 提交于
Kernel doc validation script is unhappy and complains with the below set of warnings. | Function parameter or member 'device_domain_id' not described in 'scpi_ops' | Function parameter or member 'get_transition_latency' not described in 'scpi_ops' | Function parameter or member 'add_opps_to_device' not described in 'scpi_ops' | Function parameter or member 'sensor_get_capability' not described in 'scpi_ops' | Function parameter or member 'sensor_get_info' not described in 'scpi_ops' | Function parameter or member 'sensor_get_value' not described in 'scpi_ops' | Function parameter or member 'device_get_power_state' not described in 'scpi_ops' | Function parameter or member 'device_set_power_state' not described in 'scpi_ops' Fix them adding appropriate documents or missing keywords. Link: https://lore.kernel.org/r/20210712130801.2436492-1-sudeep.holla@arm.comReviewed-by: NCristian Marussi <cristian.marussi@arm.com> Signed-off-by: NSudeep Holla <sudeep.holla@arm.com>
-
由 Sudeep Holla 提交于
Kernel doc validation script is unhappy and complains with the below set of warnings. | Function parameter or member 'fast_switch_possible' not described in 'scmi_perf_proto_ops' | Function parameter or member 'power_scale_mw_get' not described in 'scmi_perf_proto_ops' | cannot understand function prototype: 'struct scmi_sensor_reading ' | cannot understand function prototype: 'struct scmi_range_attrs ' | cannot understand function prototype: 'struct scmi_sensor_axis_info ' | cannot understand function prototype: 'struct scmi_sensor_intervals_info ' Fix them adding appropriate documents or missing keywords. Link: https://lore.kernel.org/r/20210712130801.2436492-2-sudeep.holla@arm.comReviewed-by: NCristian Marussi <cristian.marussi@arm.com> Signed-off-by: NSudeep Holla <sudeep.holla@arm.com>
-
由 Matthew Wilcox (Oracle) 提交于
Rewrite copy_huge_page() and move it into mm/util.c so it's always available. Fixes an exposure of uninitialised memory on configurations with HUGETLB and UFFD enabled and MIGRATION disabled. Fixes: 8cc5fcbb ("mm, hugetlb: fix racy resv_huge_pages underflow on UFFDIO_COPY") Signed-off-by: NMatthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: NMike Kravetz <mike.kravetz@oracle.com> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 12 7月, 2021 1 次提交
-
-
由 Marek Behún 提交于
It seems that we cannot differentiate 88X3310 from 88X3340 by simply looking at bit 3 of revision ID. This only works on revisions A0 and A1. On revision B0, this bit is always 1. Instead use the 3.d00d register for differentiation, since this register contains information about number of ports on the device. Fixes: 9885d016 ("net: phy: marvell10g: add separate structure for 88X3340") Signed-off-by: NMarek Behún <kabel@kernel.org> Reported-by: NMatteo Croce <mcroce@linux.microsoft.com> Tested-by: NMatteo Croce <mcroce@microsoft.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 09 7月, 2021 16 次提交
-
-
由 John Fastabend 提交于
Subprograms are calling map_poke_track(), but on program release there is no hook to call map_poke_untrack(). However, on program release, the aux memory (and poke descriptor table) is freed even though we still have a reference to it in the element list of the map aux data. When we run map_poke_run(), we then end up accessing free'd memory, triggering KASAN in prog_array_map_poke_run(): [...] [ 402.824689] BUG: KASAN: use-after-free in prog_array_map_poke_run+0xc2/0x34e [ 402.824698] Read of size 4 at addr ffff8881905a7940 by task hubble-fgs/4337 [ 402.824705] CPU: 1 PID: 4337 Comm: hubble-fgs Tainted: G I 5.12.0+ #399 [ 402.824715] Call Trace: [ 402.824719] dump_stack+0x93/0xc2 [ 402.824727] print_address_description.constprop.0+0x1a/0x140 [ 402.824736] ? prog_array_map_poke_run+0xc2/0x34e [ 402.824740] ? prog_array_map_poke_run+0xc2/0x34e [ 402.824744] kasan_report.cold+0x7c/0xd8 [ 402.824752] ? prog_array_map_poke_run+0xc2/0x34e [ 402.824757] prog_array_map_poke_run+0xc2/0x34e [ 402.824765] bpf_fd_array_map_update_elem+0x124/0x1a0 [...] The elements concerned are walked as follows: for (i = 0; i < elem->aux->size_poke_tab; i++) { poke = &elem->aux->poke_tab[i]; [...] The access to size_poke_tab is a 4 byte read, verified by checking offsets in the KASAN dump: [ 402.825004] The buggy address belongs to the object at ffff8881905a7800 which belongs to the cache kmalloc-1k of size 1024 [ 402.825008] The buggy address is located 320 bytes inside of 1024-byte region [ffff8881905a7800, ffff8881905a7c00) The pahole output of bpf_prog_aux: struct bpf_prog_aux { [...] /* --- cacheline 5 boundary (320 bytes) --- */ u32 size_poke_tab; /* 320 4 */ [...] In general, subprograms do not necessarily manage their own data structures. For example, BTF func_info and linfo are just pointers to the main program structure. This allows reference counting and cleanup to be done on the latter which simplifies their management a bit. The aux->poke_tab struct, however, did not follow this logic. The initial proposed fix for this use-after-free bug further embedded poke data tracking into the subprogram with proper reference counting. However, Daniel and Alexei questioned why we were treating these objects special; I agree, its unnecessary. The fix here removes the per subprogram poke table allocation and map tracking and instead simply points the aux->poke_tab pointer at the main programs poke table. This way, map tracking is simplified to the main program and we do not need to manage them per subprogram. This also means, bpf_prog_free_deferred(), which unwinds the program reference counting and kfrees objects, needs to ensure that we don't try to double free the poke_tab when free'ing the subprog structures. This is easily solved by NULL'ing the poke_tab pointer. The second detail is to ensure that per subprogram JIT logic only does fixups on poke_tab[] entries it owns. To do this, we add a pointer in the poke structure to point at the subprogram value so JITs can easily check while walking the poke_tab structure if the current entry belongs to the current program. The aux pointer is stable and therefore suitable for such comparison. On the jit_subprogs() error path, we omit cleaning up the poke->aux field because these are only ever referenced from the JIT side, but on error we will never make it to the JIT, so its fine to leave them dangling. Removing these pointers would complicate the error path for no reason. However, we do need to untrack all poke descriptors from the main program as otherwise they could race with the freeing of JIT memory from the subprograms. Lastly, a748c697 ("bpf: propagate poke descriptors to subprograms") had an off-by-one on the subprogram instruction index range check as it was testing 'insn_idx >= subprog_start && insn_idx <= subprog_end'. However, subprog_end is the next subprogram's start instruction. Fixes: a748c697 ("bpf: propagate poke descriptors to subprograms") Signed-off-by: NJohn Fastabend <john.fastabend@gmail.com> Signed-off-by: NAlexei Starovoitov <ast@kernel.org> Co-developed-by: NDaniel Borkmann <daniel@iogearbox.net> Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net> Link: https://lore.kernel.org/bpf/20210707223848.14580-2-john.fastabend@gmail.com
-
由 Aneesh Kumar K.V 提交于
No functional change in this patch. [aneesh.kumar@linux.ibm.com: m68k build error reported by kernel robot] Link: https://lkml.kernel.org/r/87tulxnb2v.fsf@linux.ibm.com Link: https://lkml.kernel.org/r/20210615110859.320299-2-aneesh.kumar@linux.ibm.com Link: https://lore.kernel.org/linuxppc-dev/CAHk-=wi+J+iodze9FtjM3Zi4j4OeS+qqbKxME9QN4roxPEXH9Q@mail.gmail.com/Signed-off-by: NAneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Hugh Dickins <hughd@google.com> Cc: Joel Fernandes <joel@joelfernandes.org> Cc: Kalesh Singh <kaleshsingh@google.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Aneesh Kumar K.V 提交于
No functional change in this patch. [aneesh.kumar@linux.ibm.com: fix] Link: https://lkml.kernel.org/r/87wnqtnb60.fsf@linux.ibm.com [sfr@canb.auug.org.au: another fix] Link: https://lkml.kernel.org/r/20210619134410.89559-1-aneesh.kumar@linux.ibm.com Link: https://lkml.kernel.org/r/20210615110859.320299-1-aneesh.kumar@linux.ibm.com Link: https://lore.kernel.org/linuxppc-dev/CAHk-=wi+J+iodze9FtjM3Zi4j4OeS+qqbKxME9QN4roxPEXH9Q@mail.gmail.com/Signed-off-by: NAneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Signed-off-by: NStephen Rothwell <sfr@canb.auug.org.au> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Hugh Dickins <hughd@google.com> Cc: Joel Fernandes <joel@joelfernandes.org> Cc: Kalesh Singh <kaleshsingh@google.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Stephen Boyd 提交于
We can use the vmlinux_build_id array here now instead of open coding it. This mostly consolidates code. Link: https://lkml.kernel.org/r/20210511003845.2429846-14-swboyd@chromium.orgSigned-off-by: NStephen Boyd <swboyd@chromium.org> Cc: Jiri Olsa <jolsa@kernel.org> Cc: Alexei Starovoitov <ast@kernel.org> Cc: Jessica Yu <jeyu@kernel.org> Cc: Evan Green <evgreen@chromium.org> Cc: Hsin-Yi Wang <hsinyi@chromium.org> Cc: Dave Young <dyoung@redhat.com> Cc: Baoquan He <bhe@redhat.com> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Konstantin Khlebnikov <khlebnikov@yandex-team.ru> Cc: Matthew Wilcox <willy@infradead.org> Cc: Petr Mladek <pmladek@suse.com> Cc: Rasmus Villemoes <linux@rasmusvillemoes.dk> Cc: Sasha Levin <sashal@kernel.org> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Will Deacon <will@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Stephen Boyd 提交于
Let's make kernel stacktraces easier to identify by including the build ID[1] of a module if the stacktrace is printing a symbol from a module. This makes it simpler for developers to locate a kernel module's full debuginfo for a particular stacktrace. Combined with scripts/decode_stracktrace.sh, a developer can download the matching debuginfo from a debuginfod[2] server and find the exact file and line number for the functions plus offsets in a stacktrace that match the module. This is especially useful for pstore crash debugging where the kernel crashes are recorded in something like console-ramoops and the recovery kernel/modules are different or the debuginfo doesn't exist on the device due to space concerns (the debuginfo can be too large for space limited devices). Originally, I put this on the %pS format, but that was quickly rejected given that %pS is used in other places such as ftrace where build IDs aren't meaningful. There was some discussions on the list to put every module build ID into the "Modules linked in:" section of the stacktrace message but that quickly becomes very hard to read once you have more than three or four modules linked in. It also provides too much information when we don't expect each module to be traversed in a stacktrace. Having the build ID for modules that aren't important just makes things messy. Splitting it to multiple lines for each module quickly explodes the number of lines printed in an oops too, possibly wrapping the warning off the console. And finally, trying to stash away each module used in a callstack to provide the ID of each symbol printed is cumbersome and would require changes to each architecture to stash away modules and return their build IDs once unwinding has completed. Instead, we opt for the simpler approach of introducing new printk formats '%pS[R]b' for "pointer symbolic backtrace with module build ID" and '%pBb' for "pointer backtrace with module build ID" and then updating the few places in the architecture layer where the stacktrace is printed to use this new format. Before: Call trace: lkdtm_WARNING+0x28/0x30 [lkdtm] direct_entry+0x16c/0x1b4 [lkdtm] full_proxy_write+0x74/0xa4 vfs_write+0xec/0x2e8 After: Call trace: lkdtm_WARNING+0x28/0x30 [lkdtm 6c2215028606bda50de823490723dc4bc5bf46f9] direct_entry+0x16c/0x1b4 [lkdtm 6c2215028606bda50de823490723dc4bc5bf46f9] full_proxy_write+0x74/0xa4 vfs_write+0xec/0x2e8 [akpm@linux-foundation.org: fix build with CONFIG_MODULES=n, tweak code layout] [rdunlap@infradead.org: fix build when CONFIG_MODULES is not set] Link: https://lkml.kernel.org/r/20210513171510.20328-1-rdunlap@infradead.org [akpm@linux-foundation.org: make kallsyms_lookup_buildid() static] [cuibixuan@huawei.com: fix build error when CONFIG_SYSFS is disabled] Link: https://lkml.kernel.org/r/20210525105049.34804-1-cuibixuan@huawei.com Link: https://lkml.kernel.org/r/20210511003845.2429846-6-swboyd@chromium.org Link: https://fedoraproject.org/wiki/Releases/FeatureBuildId [1] Link: https://sourceware.org/elfutils/Debuginfod.html [2] Signed-off-by: NStephen Boyd <swboyd@chromium.org> Signed-off-by: NBixuan Cui <cuibixuan@huawei.com> Signed-off-by: NRandy Dunlap <rdunlap@infradead.org> Cc: Jiri Olsa <jolsa@kernel.org> Cc: Alexei Starovoitov <ast@kernel.org> Cc: Jessica Yu <jeyu@kernel.org> Cc: Evan Green <evgreen@chromium.org> Cc: Hsin-Yi Wang <hsinyi@chromium.org> Cc: Petr Mladek <pmladek@suse.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Cc: Rasmus Villemoes <linux@rasmusvillemoes.dk> Cc: Matthew Wilcox <willy@infradead.org> Cc: Baoquan He <bhe@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Dave Young <dyoung@redhat.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Konstantin Khlebnikov <khlebnikov@yandex-team.ru> Cc: Sasha Levin <sashal@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: Will Deacon <will@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Stephen Boyd 提交于
Add the running kernel's build ID[1] to the stacktrace information header. This makes it simpler for developers to locate the vmlinux with full debuginfo for a particular kernel stacktrace. Combined with scripts/decode_stracktrace.sh, a developer can download the correct vmlinux from a debuginfod[2] server and find the exact file and line number for the functions plus offsets in a stacktrace. This is especially useful for pstore crash debugging where the kernel crashes are recorded in the pstore logs and the recovery kernel is different or the debuginfo doesn't exist on the device due to space concerns (the data can be large and a security concern). The stacktrace can be analyzed after the crash by using the build ID to find the matching vmlinux and understand where in the function something went wrong. Example stacktrace from lkdtm: WARNING: CPU: 4 PID: 3255 at drivers/misc/lkdtm/bugs.c:83 lkdtm_WARNING+0x28/0x30 [lkdtm] Modules linked in: lkdtm rfcomm algif_hash algif_skcipher af_alg xt_cgroup uinput xt_MASQUERADE CPU: 4 PID: 3255 Comm: bash Not tainted 5.11 #3 aa23f7a1231c229de205662d5a9e0d4c580f19a1 Hardware name: Google Lazor (rev3+) with KB Backlight (DT) pstate: 00400009 (nzcv daif +PAN -UAO -TCO BTYPE=--) pc : lkdtm_WARNING+0x28/0x30 [lkdtm] The hex string aa23f7a1231c229de205662d5a9e0d4c580f19a1 is the build ID, following the kernel version number. Put it all behind a config option, STACKTRACE_BUILD_ID, so that kernel developers can remove this information if they decide it is too much. Link: https://lkml.kernel.org/r/20210511003845.2429846-5-swboyd@chromium.org Link: https://fedoraproject.org/wiki/Releases/FeatureBuildId [1] Link: https://sourceware.org/elfutils/Debuginfod.html [2] Signed-off-by: NStephen Boyd <swboyd@chromium.org> Cc: Jiri Olsa <jolsa@kernel.org> Cc: Alexei Starovoitov <ast@kernel.org> Cc: Jessica Yu <jeyu@kernel.org> Cc: Evan Green <evgreen@chromium.org> Cc: Hsin-Yi Wang <hsinyi@chromium.org> Cc: Petr Mladek <pmladek@suse.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Baoquan He <bhe@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Dave Young <dyoung@redhat.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Konstantin Khlebnikov <khlebnikov@yandex-team.ru> Cc: Rasmus Villemoes <linux@rasmusvillemoes.dk> Cc: Sasha Levin <sashal@kernel.org> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: Will Deacon <will@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Stephen Boyd 提交于
Parse the kernel's build ID at initialization so that other code can print a hex format string representation of the running kernel's build ID. This will be used in the kdump and dump_stack code so that developers can easily locate the vmlinux debug symbols for a crash/stacktrace. [swboyd@chromium.org: fix implicit declaration of init_vmlinux_build_id()] Link: https://lkml.kernel.org/r/CAE-0n51UjTbay8N9FXAyE7_aR2+ePrQnKSRJ0gbmRsXtcLBVaw@mail.gmail.com Link: https://lkml.kernel.org/r/20210511003845.2429846-4-swboyd@chromium.orgSigned-off-by: NStephen Boyd <swboyd@chromium.org> Acked-by: NBaoquan He <bhe@redhat.com> Cc: Jiri Olsa <jolsa@kernel.org> Cc: Alexei Starovoitov <ast@kernel.org> Cc: Jessica Yu <jeyu@kernel.org> Cc: Evan Green <evgreen@chromium.org> Cc: Hsin-Yi Wang <hsinyi@chromium.org> Cc: Dave Young <dyoung@redhat.com> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Konstantin Khlebnikov <khlebnikov@yandex-team.ru> Cc: Matthew Wilcox <willy@infradead.org> Cc: Petr Mladek <pmladek@suse.com> Cc: Rasmus Villemoes <linux@rasmusvillemoes.dk> Cc: Sasha Levin <sashal@kernel.org> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Will Deacon <will@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Stephen Boyd 提交于
Add an API that can parse the build ID out of a buffer, instead of a vma, to support printing a kernel module's build ID for stack traces. Link: https://lkml.kernel.org/r/20210511003845.2429846-3-swboyd@chromium.orgSigned-off-by: NStephen Boyd <swboyd@chromium.org> Cc: Jiri Olsa <jolsa@kernel.org> Cc: Alexei Starovoitov <ast@kernel.org> Cc: Jessica Yu <jeyu@kernel.org> Cc: Evan Green <evgreen@chromium.org> Cc: Hsin-Yi Wang <hsinyi@chromium.org> Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Cc: Baoquan He <bhe@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Dave Young <dyoung@redhat.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Konstantin Khlebnikov <khlebnikov@yandex-team.ru> Cc: Matthew Wilcox <willy@infradead.org> Cc: Petr Mladek <pmladek@suse.com> Cc: Rasmus Villemoes <linux@rasmusvillemoes.dk> Cc: Sasha Levin <sashal@kernel.org> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: Will Deacon <will@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Kefeng Wang 提交于
Patch series "init_mm: cleanup ARCH's text/data/brk setup code", v3. Add setup_initial_init_mm() helper, then use it to cleanup the text, data and brk setup code. This patch (of 15): Add setup_initial_init_mm() helper to setup kernel text, data and brk. Link: https://lkml.kernel.org/r/20210608083418.137226-1-wangkefeng.wang@huawei.com Link: https://lkml.kernel.org/r/20210608083418.137226-2-wangkefeng.wang@huawei.comSigned-off-by: NKefeng Wang <wangkefeng.wang@huawei.com> Cc: Souptick Joarder <jrdr.linux@gmail.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Christian Borntraeger <borntraeger@de.ibm.com> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Greentime Hu <green.hu@gmail.com> Cc: Greg Ungerer <gerg@linux-m68k.org> Cc: Guo Ren <guoren@kernel.org> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jonas Bonn <jonas@southpole.se> Cc: Ley Foon Tan <ley.foon.tan@intel.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Nick Hu <nickhu@andestech.com> Cc: Palmer Dabbelt <palmer@dabbelt.com> Cc: Paul Walmsley <paul.walmsley@sifive.com> Cc: Rich Felker <dalias@libc.org> Cc: Russell King (Oracle) <rmk+kernel@armlinux.org.uk> Cc: Stafford Horne <shorne@gmail.com> Cc: Stefan Kristiansson <stefan.kristiansson@saunalahti.fi> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Vineet Gupta <vgupta@synopsys.com> Cc: Will Deacon <will@kernel.org> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Zhen Lei 提交于
Fix some spelling mistakes in comments: successfull ==> successful potentialy ==> potentially alloced ==> allocated indicies ==> indices wont ==> won't resposible ==> responsible dirtyness ==> dirtiness droppped ==> dropped alread ==> already occured ==> occurred interupts ==> interrupts extention ==> extension slighly ==> slightly Dont't ==> Don't Link: https://lkml.kernel.org/r/20210531034849.9549-2-thunder.leizhen@huawei.comSigned-off-by: NZhen Lei <thunder.leizhen@huawei.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Dennis Zhou <dennis@kernel.org> Cc: Tejun Heo <tj@kernel.org> Cc: Christoph Lameter <cl@linux.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Mike Rapoport 提交于
Wire up memfd_secret system call on architectures that define ARCH_HAS_SET_DIRECT_MAP, namely arm64, risc-v and x86. Link: https://lkml.kernel.org/r/20210518072034.31572-7-rppt@kernel.orgSigned-off-by: NMike Rapoport <rppt@linux.ibm.com> Acked-by: NPalmer Dabbelt <palmerdabbelt@google.com> Acked-by: NArnd Bergmann <arnd@arndb.de> Acked-by: NCatalin Marinas <catalin.marinas@arm.com> Acked-by: NDavid Hildenbrand <david@redhat.com> Acked-by: NJames Bottomley <James.Bottomley@HansenPartnership.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Christopher Lameter <cl@linux.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: Elena Reshetova <elena.reshetova@intel.com> Cc: Hagen Paul Pfeifer <hagen@jauu.net> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: James Bottomley <jejb@linux.ibm.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: Palmer Dabbelt <palmer@dabbelt.com> Cc: Paul Walmsley <paul.walmsley@sifive.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rick Edgecombe <rick.p.edgecombe@intel.com> Cc: Roman Gushchin <guro@fb.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tycho Andersen <tycho@tycho.ws> Cc: Will Deacon <will@kernel.org> Cc: kernel test robot <lkp@intel.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Mike Rapoport 提交于
It is unsafe to allow saving of secretmem areas to the hibernation snapshot as they would be visible after the resume and this essentially will defeat the purpose of secret memory mappings. Prevent hibernation whenever there are active secret memory users. Link: https://lkml.kernel.org/r/20210518072034.31572-6-rppt@kernel.orgSigned-off-by: NMike Rapoport <rppt@linux.ibm.com> Acked-by: NDavid Hildenbrand <david@redhat.com> Acked-by: NJames Bottomley <James.Bottomley@HansenPartnership.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Andy Lutomirski <luto@kernel.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Borislav Petkov <bp@alien8.de> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Christopher Lameter <cl@linux.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: Elena Reshetova <elena.reshetova@intel.com> Cc: Hagen Paul Pfeifer <hagen@jauu.net> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: James Bottomley <jejb@linux.ibm.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: Palmer Dabbelt <palmer@dabbelt.com> Cc: Palmer Dabbelt <palmerdabbelt@google.com> Cc: Paul Walmsley <paul.walmsley@sifive.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rick Edgecombe <rick.p.edgecombe@intel.com> Cc: Roman Gushchin <guro@fb.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tycho Andersen <tycho@tycho.ws> Cc: Will Deacon <will@kernel.org> Cc: kernel test robot <lkp@intel.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Mike Rapoport 提交于
Introduce "memfd_secret" system call with the ability to create memory areas visible only in the context of the owning process and not mapped not only to other processes but in the kernel page tables as well. The secretmem feature is off by default and the user must explicitly enable it at the boot time. Once secretmem is enabled, the user will be able to create a file descriptor using the memfd_secret() system call. The memory areas created by mmap() calls from this file descriptor will be unmapped from the kernel direct map and they will be only mapped in the page table of the processes that have access to the file descriptor. Secretmem is designed to provide the following protections: * Enhanced protection (in conjunction with all the other in-kernel attack prevention systems) against ROP attacks. Seceretmem makes "simple" ROP insufficient to perform exfiltration, which increases the required complexity of the attack. Along with other protections like the kernel stack size limit and address space layout randomization which make finding gadgets is really hard, absence of any in-kernel primitive for accessing secret memory means the one gadget ROP attack can't work. Since the only way to access secret memory is to reconstruct the missing mapping entry, the attacker has to recover the physical page and insert a PTE pointing to it in the kernel and then retrieve the contents. That takes at least three gadgets which is a level of difficulty beyond most standard attacks. * Prevent cross-process secret userspace memory exposures. Once the secret memory is allocated, the user can't accidentally pass it into the kernel to be transmitted somewhere. The secreremem pages cannot be accessed via the direct map and they are disallowed in GUP. * Harden against exploited kernel flaws. In order to access secretmem, a kernel-side attack would need to either walk the page tables and create new ones, or spawn a new privileged uiserspace process to perform secrets exfiltration using ptrace. The file descriptor based memory has several advantages over the "traditional" mm interfaces, such as mlock(), mprotect(), madvise(). File descriptor approach allows explicit and controlled sharing of the memory areas, it allows to seal the operations. Besides, file descriptor based memory paves the way for VMMs to remove the secret memory range from the userspace hipervisor process, for instance QEMU. Andy Lutomirski says: "Getting fd-backed memory into a guest will take some possibly major work in the kernel, but getting vma-backed memory into a guest without mapping it in the host user address space seems much, much worse." memfd_secret() is made a dedicated system call rather than an extension to memfd_create() because it's purpose is to allow the user to create more secure memory mappings rather than to simply allow file based access to the memory. Nowadays a new system call cost is negligible while it is way simpler for userspace to deal with a clear-cut system calls than with a multiplexer or an overloaded syscall. Moreover, the initial implementation of memfd_secret() is completely distinct from memfd_create() so there is no much sense in overloading memfd_create() to begin with. If there will be a need for code sharing between these implementation it can be easily achieved without a need to adjust user visible APIs. The secret memory remains accessible in the process context using uaccess primitives, but it is not exposed to the kernel otherwise; secret memory areas are removed from the direct map and functions in the follow_page()/get_user_page() family will refuse to return a page that belongs to the secret memory area. Once there will be a use case that will require exposing secretmem to the kernel it will be an opt-in request in the system call flags so that user would have to decide what data can be exposed to the kernel. Removing of the pages from the direct map may cause its fragmentation on architectures that use large pages to map the physical memory which affects the system performance. However, the original Kconfig text for CONFIG_DIRECT_GBPAGES said that gigabyte pages in the direct map "... can improve the kernel's performance a tiny bit ..." (commit 00d1c5e0 ("x86: add gbpages switches")) and the recent report [1] showed that "... although 1G mappings are a good default choice, there is no compelling evidence that it must be the only choice". Hence, it is sufficient to have secretmem disabled by default with the ability of a system administrator to enable it at boot time. Pages in the secretmem regions are unevictable and unmovable to avoid accidental exposure of the sensitive data via swap or during page migration. Since the secretmem mappings are locked in memory they cannot exceed RLIMIT_MEMLOCK. Since these mappings are already locked independently from mlock(), an attempt to mlock()/munlock() secretmem range would fail and mlockall()/munlockall() will ignore secretmem mappings. However, unlike mlock()ed memory, secretmem currently behaves more like long-term GUP: secretmem mappings are unmovable mappings directly consumed by user space. With default limits, there is no excessive use of secretmem and it poses no real problem in combination with ZONE_MOVABLE/CMA, but in the future this should be addressed to allow balanced use of large amounts of secretmem along with ZONE_MOVABLE/CMA. A page that was a part of the secret memory area is cleared when it is freed to ensure the data is not exposed to the next user of that page. The following example demonstrates creation of a secret mapping (error handling is omitted): fd = memfd_secret(0); ftruncate(fd, MAP_SIZE); ptr = mmap(NULL, MAP_SIZE, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0); [1] https://lore.kernel.org/linux-mm/213b4567-46ce-f116-9cdf-bbd0c884eb3c@linux.intel.com/ [akpm@linux-foundation.org: suppress Kconfig whine] Link: https://lkml.kernel.org/r/20210518072034.31572-5-rppt@kernel.orgSigned-off-by: NMike Rapoport <rppt@linux.ibm.com> Acked-by: NHagen Paul Pfeifer <hagen@jauu.net> Acked-by: NJames Bottomley <James.Bottomley@HansenPartnership.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Andy Lutomirski <luto@kernel.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Borislav Petkov <bp@alien8.de> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Christopher Lameter <cl@linux.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Elena Reshetova <elena.reshetova@intel.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: James Bottomley <jejb@linux.ibm.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: Palmer Dabbelt <palmer@dabbelt.com> Cc: Palmer Dabbelt <palmerdabbelt@google.com> Cc: Paul Walmsley <paul.walmsley@sifive.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rick Edgecombe <rick.p.edgecombe@intel.com> Cc: Roman Gushchin <guro@fb.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tycho Andersen <tycho@tycho.ws> Cc: Will Deacon <will@kernel.org> Cc: David Hildenbrand <david@redhat.com> Cc: kernel test robot <lkp@intel.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Mike Rapoport 提交于
On arm64, set_direct_map_*() functions may return 0 without actually changing the linear map. This behaviour can be controlled using kernel parameters, so we need a way to determine at runtime whether calls to set_direct_map_invalid_noflush() and set_direct_map_default_noflush() have any effect. Extend set_memory API with can_set_direct_map() function that allows checking if calling set_direct_map_*() will actually change the page table, replace several occurrences of open coded checks in arm64 with the new function and provide a generic stub for architectures that always modify page tables upon calls to set_direct_map APIs. [arnd@arndb.de: arm64: kfence: fix header inclusion ] Link: https://lkml.kernel.org/r/20210518072034.31572-4-rppt@kernel.orgSigned-off-by: NMike Rapoport <rppt@linux.ibm.com> Reviewed-by: NCatalin Marinas <catalin.marinas@arm.com> Reviewed-by: NDavid Hildenbrand <david@redhat.com> Acked-by: NJames Bottomley <James.Bottomley@HansenPartnership.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Andy Lutomirski <luto@kernel.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Borislav Petkov <bp@alien8.de> Cc: Christopher Lameter <cl@linux.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Elena Reshetova <elena.reshetova@intel.com> Cc: Hagen Paul Pfeifer <hagen@jauu.net> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: James Bottomley <jejb@linux.ibm.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: Palmer Dabbelt <palmer@dabbelt.com> Cc: Palmer Dabbelt <palmerdabbelt@google.com> Cc: Paul Walmsley <paul.walmsley@sifive.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rick Edgecombe <rick.p.edgecombe@intel.com> Cc: Roman Gushchin <guro@fb.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tycho Andersen <tycho@tycho.ws> Cc: Will Deacon <will@kernel.org> Cc: kernel test robot <lkp@intel.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Zhen Lei 提交于
Fix some spelling mistakes in comments found by "codespell": Hoever ==> However poiter ==> pointer representaion ==> representation uppon ==> upon independend ==> independent aquired ==> acquired mis-match ==> mismatch scrach ==> scratch struture ==> structure Analagous ==> Analogous interation ==> iteration And some were discovered manually by Joe Perches and Christoph Lameter: stroed ==> stored arch independent ==> an architecture independent A example structure for ==> Example structure for Link: https://lkml.kernel.org/r/20210609150027.14805-2-thunder.leizhen@huawei.comSigned-off-by: NZhen Lei <thunder.leizhen@huawei.com> Cc: Christoph Lameter <cl@gentwo.de> Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Dennis Zhou <dennis@kernel.org> Cc: Tejun Heo <tj@kernel.org> Cc: Joe Perches <joe@perches.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Trond Myklebust 提交于
Cache the layout in the arguments so we don't have to keep looking it up from the inode. Signed-off-by: NTrond Myklebust <trond.myklebust@hammerspace.com>
-