- 15 5月, 2010 2 次提交
-
-
由 Trond Myklebust 提交于
Signed-off-by: NTrond Myklebust <Trond.Myklebust@netapp.com>
-
由 Trond Myklebust 提交于
Signed-off-by: NTrond Myklebust <Trond.Myklebust@netapp.com>
-
- 30 3月, 2010 1 次提交
-
-
由 Tejun Heo 提交于
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: NTejun Heo <tj@kernel.org> Guess-its-ok-by: NChristoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
-
- 07 10月, 2009 1 次提交
-
-
由 Trond Myklebust 提交于
Fix a typo which causes try_location() to use the wrong length argument when calling nfs_parse_server_name(). This again, causes the initialisation of the mount's sockaddr structure to fail. Also ensure that if nfs4_pathname_string() returns an error, then we pass that error back up the stack instead of ENOENT. Signed-off-by: NTrond Myklebust <Trond.Myklebust@netapp.com>
-
- 20 8月, 2009 1 次提交
-
-
由 Trond Myklebust 提交于
In the referral code, use it to look up the new server's ip address if the fs_locations attribute contains a hostname. Signed-off-by: NTrond Myklebust <Trond.Myklebust@netapp.com>
-
- 10 8月, 2009 2 次提交
-
-
由 Chuck Lever 提交于
Clean up. Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Signed-off-by: NTrond Myklebust <Trond.Myklebust@netapp.com>
-
由 Chuck Lever 提交于
Clean up: Use the common routine now provided in sunrpc.ko for parsing mount addresses. Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Signed-off-by: NTrond Myklebust <Trond.Myklebust@netapp.com>
-
- 11 3月, 2009 1 次提交
-
-
由 Trond Myklebust 提交于
The changeset ea31a443 (nfs: Fix misparsing of nfsv4 fs_locations attribute) causes the mountpath that is calculated at the beginning of try_location() to be clobbered when we later strncpy a non-nul terminated hostname using an incorrect buffer length. Signed-off-by: NTrond Myklebust <Trond.Myklebust@netapp.com>
-
- 08 10月, 2008 3 次提交
-
-
由 J. Bruce Fields 提交于
The code incorrectly assumes here that the server name (or ip address) is null-terminated. This can cause referrals to fail in some cases. Also support ipv6 addresses. Signed-off-by: NJ. Bruce Fields <bfields@citi.umich.edu> Signed-off-by: NTrond Myklebust <Trond.Myklebust@netapp.com>
-
由 J. Bruce Fields 提交于
Whoever wrote this had a bizarre allergy to for loops. Signed-off-by: NJ. Bruce Fields <bfields@citi.umich.edu> Signed-off-by: NTrond Myklebust <Trond.Myklebust@netapp.com>
-
由 J. Bruce Fields 提交于
This function is a little longer and more deeply nested than necessary. Signed-off-by: NJ. Bruce Fields <bfields@citi.umich.edu> Signed-off-by: NTrond Myklebust <Trond.Myklebust@netapp.com>
-
- 17 5月, 2008 1 次提交
-
-
由 Harvey Harrison 提交于
__FUNCTION__ is gcc-specific, use __func__ Signed-off-by: NHarvey Harrison <harvey.harrison@gmail.com> Cc: Trond Myklebust <trond.myklebust@fys.uio.no> Cc: "J. Bruce Fields" <bfields@fieldses.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NTrond Myklebust <Trond.Myklebust@netapp.com>
-
- 30 1月, 2008 2 次提交
-
-
由 Chuck Lever 提交于
Change the addr field in the nfs_clone_mount structure to store a "struct sockaddr *" to support non-IPv4 addresses in the NFS client. Note this is mostly a cosmetic change, and does not actually allow referrals using IPv6 addresses. The existing referral code assumes that the server returns a string that represents an IPv4 address. This code needs to support hostnames and IPv6 addresses as well as IPv4 addresses, thus it will need to be reorganized completely (to handle DNS resolution in user space). Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Cc: Aurelien Charbon <aurelien.charbon@ext.bull.net> Signed-off-by: NTrond Myklebust <Trond.Myklebust@netapp.com>
-
由 Chuck Lever 提交于
Clean up: fix an outdated block comment, and address a comparison between a signed and unsigned integer. Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Signed-off-by: NTrond Myklebust <Trond.Myklebust@netapp.com>
-
- 04 2月, 2007 2 次提交
-
-
由 Trond Myklebust 提交于
Signed-off-by: NTrond Myklebust <Trond.Myklebust@netapp.com>
-
由 Trond Myklebust 提交于
Start long arduous project... What the hell is struct dentry = {}; all about? Signed-off-by: NTrond Myklebust <Trond.Myklebust@netapp.com>
-
- 04 10月, 2006 1 次提交
-
-
由 Dave Jones 提交于
kbuild explicitly includes this at build time. Signed-off-by: NDave Jones <davej@redhat.com>
-
- 23 9月, 2006 2 次提交
-
-
由 David Howells 提交于
The attached patch makes NFS share superblocks between mounts from the same server and FSID over the same protocol. It does this by creating each superblock with a false root and returning the real root dentry in the vfsmount presented by get_sb(). The root dentry set starts off as an anonymous dentry if we don't already have the dentry for its inode, otherwise it simply returns the dentry we already have. We may thus end up with several trees of dentries in the superblock, and if at some later point one of anonymous tree roots is discovered by normal filesystem activity to be located in another tree within the superblock, the anonymous root is named and materialises attached to the second tree at the appropriate point. Why do it this way? Why not pass an extra argument to the mount() syscall to indicate the subpath and then pathwalk from the server root to the desired directory? You can't guarantee this will work for two reasons: (1) The root and intervening nodes may not be accessible to the client. With NFS2 and NFS3, for instance, mountd is called on the server to get the filehandle for the tip of a path. mountd won't give us handles for anything we don't have permission to access, and so we can't set up NFS inodes for such nodes, and so can't easily set up dentries (we'd have to have ghost inodes or something). With this patch we don't actually create dentries until we get handles from the server that we can use to set up their inodes, and we don't actually bind them into the tree until we know for sure where they go. (2) Inaccessible symbolic links. If we're asked to mount two exports from the server, eg: mount warthog:/warthog/aaa/xxx /mmm mount warthog:/warthog/bbb/yyy /nnn We may not be able to access anything nearer the root than xxx and yyy, but we may find out later that /mmm/www/yyy, say, is actually the same directory as the one mounted on /nnn. What we might then find out, for example, is that /warthog/bbb was actually a symbolic link to /warthog/aaa/xxx/www, but we can't actually determine that by talking to the server until /warthog is made available by NFS. This would lead to having constructed an errneous dentry tree which we can't easily fix. We can end up with a dentry marked as a directory when it should actually be a symlink, or we could end up with an apparently hardlinked directory. With this patch we need not make assumptions about the type of a dentry for which we can't retrieve information, nor need we assume we know its place in the grand scheme of things until we actually see that place. This patch reduces the possibility of aliasing in the inode and page caches for inodes that may be accessed by more than one NFS export. It also reduces the number of superblocks required for NFS where there are many NFS exports being used from a server (home directory server + autofs for example). This in turn makes it simpler to do local caching of network filesystems, as it can then be guaranteed that there won't be links from multiple inodes in separate superblocks to the same cache file. Obviously, cache aliasing between different levels of NFS protocol could still be a problem, but at least that gives us another key to use when indexing the cache. This patch makes the following changes: (1) The server record construction/destruction has been abstracted out into its own set of functions to make things easier to get right. These have been moved into fs/nfs/client.c. All the code in fs/nfs/client.c has to do with the management of connections to servers, and doesn't touch superblocks in any way; the remaining code in fs/nfs/super.c has to do with VFS superblock management. (2) The sequence of events undertaken by NFS mount is now reordered: (a) A volume representation (struct nfs_server) is allocated. (b) A server representation (struct nfs_client) is acquired. This may be allocated or shared, and is keyed on server address, port and NFS version. (c) If allocated, the client representation is initialised. The state member variable of nfs_client is used to prevent a race during initialisation from two mounts. (d) For NFS4 a simple pathwalk is performed, walking from FH to FH to find the root filehandle for the mount (fs/nfs/getroot.c). For NFS2/3 we are given the root FH in advance. (e) The volume FSID is probed for on the root FH. (f) The volume representation is initialised from the FSINFO record retrieved on the root FH. (g) sget() is called to acquire a superblock. This may be allocated or shared, keyed on client pointer and FSID. (h) If allocated, the superblock is initialised. (i) If the superblock is shared, then the new nfs_server record is discarded. (j) The root dentry for this mount is looked up from the root FH. (k) The root dentry for this mount is assigned to the vfsmount. (3) nfs_readdir_lookup() creates dentries for each of the entries readdir() returns; this function now attaches disconnected trees from alternate roots that happen to be discovered attached to a directory being read (in the same way nfs_lookup() is made to do for lookup ops). The new d_materialise_unique() function is now used to do this, thus permitting the whole thing to be done under one set of locks, and thus avoiding any race between mount and lookup operations on the same directory. (4) The client management code uses a new debug facility: NFSDBG_CLIENT which is set by echoing 1024 to /proc/net/sunrpc/nfs_debug. (5) Clone mounts are now called xdev mounts. (6) Use the dentry passed to the statfs() op as the handle for retrieving fs statistics rather than the root dentry of the superblock (which is now a dummy). Signed-Off-By: NDavid Howells <dhowells@redhat.com> Signed-off-by: NTrond Myklebust <Trond.Myklebust@netapp.com>
-
由 David Howells 提交于
Add some extra const qualifiers into NFS. Signed-Off-By: NDavid Howells <dhowells@redhat.com> Signed-off-by: NTrond Myklebust <Trond.Myklebust@netapp.com>
-
- 09 6月, 2006 1 次提交
-
-
由 David Howells 提交于
As fs/nfs/inode.c is rather large, heterogenous and unwieldy, the attached patch splits it up into a number of files: (*) fs/nfs/inode.c Strictly inode specific functions. (*) fs/nfs/super.c Superblock management functions for NFS and NFS4, normal access, clones and referrals. The NFS4 superblock functions _could_ move out into a separate conditionally compiled file, but it's probably not worth it as there're so many common bits. (*) fs/nfs/namespace.c Some namespace-specific functions have been moved here. (*) fs/nfs/nfs4namespace.c NFS4-specific namespace functions (this could be merged into the previous file). This file is conditionally compiled. (*) fs/nfs/internal.h Inter-file declarations, plus a few simple utility functions moved from fs/nfs/inode.c. Additionally, all the in-.c-file externs have been moved here, and those files they were moved from now includes this file. For the most part, the functions have not been changed, only some multiplexor functions have changed significantly. I've also: (*) Added some extra banner comments above some functions. (*) Rearranged the function order within the files to be more logical and better grouped (IMO), though someone may prefer a different order. (*) Reduced the number of #ifdefs in .c files. (*) Added missing __init and __exit directives. Signed-Off-By: NDavid Howells <dhowells@redhat.com>
-