1. 01 10月, 2018 12 次提交
  2. 07 5月, 2018 3 次提交
  3. 11 4月, 2018 2 次提交
  4. 02 11月, 2017 1 次提交
    • G
      License cleanup: add SPDX GPL-2.0 license identifier to files with no license · b2441318
      Greg Kroah-Hartman 提交于
      Many source files in the tree are missing licensing information, which
      makes it harder for compliance tools to determine the correct license.
      
      By default all files without license information are under the default
      license of the kernel, which is GPL version 2.
      
      Update the files which contain no license information with the 'GPL-2.0'
      SPDX license identifier.  The SPDX identifier is a legally binding
      shorthand, which can be used instead of the full boiler plate text.
      
      This patch is based on work done by Thomas Gleixner and Kate Stewart and
      Philippe Ombredanne.
      
      How this work was done:
      
      Patches were generated and checked against linux-4.14-rc6 for a subset of
      the use cases:
       - file had no licensing information it it.
       - file was a */uapi/* one with no licensing information in it,
       - file was a */uapi/* one with existing licensing information,
      
      Further patches will be generated in subsequent months to fix up cases
      where non-standard license headers were used, and references to license
      had to be inferred by heuristics based on keywords.
      
      The analysis to determine which SPDX License Identifier to be applied to
      a file was done in a spreadsheet of side by side results from of the
      output of two independent scanners (ScanCode & Windriver) producing SPDX
      tag:value files created by Philippe Ombredanne.  Philippe prepared the
      base worksheet, and did an initial spot review of a few 1000 files.
      
      The 4.13 kernel was the starting point of the analysis with 60,537 files
      assessed.  Kate Stewart did a file by file comparison of the scanner
      results in the spreadsheet to determine which SPDX license identifier(s)
      to be applied to the file. She confirmed any determination that was not
      immediately clear with lawyers working with the Linux Foundation.
      
      Criteria used to select files for SPDX license identifier tagging was:
       - Files considered eligible had to be source code files.
       - Make and config files were included as candidates if they contained >5
         lines of source
       - File already had some variant of a license header in it (even if <5
         lines).
      
      All documentation files were explicitly excluded.
      
      The following heuristics were used to determine which SPDX license
      identifiers to apply.
      
       - when both scanners couldn't find any license traces, file was
         considered to have no license information in it, and the top level
         COPYING file license applied.
      
         For non */uapi/* files that summary was:
      
         SPDX license identifier                            # files
         ---------------------------------------------------|-------
         GPL-2.0                                              11139
      
         and resulted in the first patch in this series.
      
         If that file was a */uapi/* path one, it was "GPL-2.0 WITH
         Linux-syscall-note" otherwise it was "GPL-2.0".  Results of that was:
      
         SPDX license identifier                            # files
         ---------------------------------------------------|-------
         GPL-2.0 WITH Linux-syscall-note                        930
      
         and resulted in the second patch in this series.
      
       - if a file had some form of licensing information in it, and was one
         of the */uapi/* ones, it was denoted with the Linux-syscall-note if
         any GPL family license was found in the file or had no licensing in
         it (per prior point).  Results summary:
      
         SPDX license identifier                            # files
         ---------------------------------------------------|------
         GPL-2.0 WITH Linux-syscall-note                       270
         GPL-2.0+ WITH Linux-syscall-note                      169
         ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause)    21
         ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause)    17
         LGPL-2.1+ WITH Linux-syscall-note                      15
         GPL-1.0+ WITH Linux-syscall-note                       14
         ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause)    5
         LGPL-2.0+ WITH Linux-syscall-note                       4
         LGPL-2.1 WITH Linux-syscall-note                        3
         ((GPL-2.0 WITH Linux-syscall-note) OR MIT)              3
         ((GPL-2.0 WITH Linux-syscall-note) AND MIT)             1
      
         and that resulted in the third patch in this series.
      
       - when the two scanners agreed on the detected license(s), that became
         the concluded license(s).
      
       - when there was disagreement between the two scanners (one detected a
         license but the other didn't, or they both detected different
         licenses) a manual inspection of the file occurred.
      
       - In most cases a manual inspection of the information in the file
         resulted in a clear resolution of the license that should apply (and
         which scanner probably needed to revisit its heuristics).
      
       - When it was not immediately clear, the license identifier was
         confirmed with lawyers working with the Linux Foundation.
      
       - If there was any question as to the appropriate license identifier,
         the file was flagged for further research and to be revisited later
         in time.
      
      In total, over 70 hours of logged manual review was done on the
      spreadsheet to determine the SPDX license identifiers to apply to the
      source files by Kate, Philippe, Thomas and, in some cases, confirmation
      by lawyers working with the Linux Foundation.
      
      Kate also obtained a third independent scan of the 4.13 code base from
      FOSSology, and compared selected files where the other two scanners
      disagreed against that SPDX file, to see if there was new insights.  The
      Windriver scanner is based on an older version of FOSSology in part, so
      they are related.
      
      Thomas did random spot checks in about 500 files from the spreadsheets
      for the uapi headers and agreed with SPDX license identifier in the
      files he inspected. For the non-uapi files Thomas did random spot checks
      in about 15000 files.
      
      In initial set of patches against 4.14-rc6, 3 files were found to have
      copy/paste license identifier errors, and have been fixed to reflect the
      correct identifier.
      
      Additionally Philippe spent 10 hours this week doing a detailed manual
      inspection and review of the 12,461 patched files from the initial patch
      version early this week with:
       - a full scancode scan run, collecting the matched texts, detected
         license ids and scores
       - reviewing anything where there was a license detected (about 500+
         files) to ensure that the applied SPDX license was correct
       - reviewing anything where there was no detection but the patch license
         was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
         SPDX license was correct
      
      This produced a worksheet with 20 files needing minor correction.  This
      worksheet was then exported into 3 different .csv files for the
      different types of files to be modified.
      
      These .csv files were then reviewed by Greg.  Thomas wrote a script to
      parse the csv files and add the proper SPDX tag to the file, in the
      format that the file expected.  This script was further refined by Greg
      based on the output to detect more types of files automatically and to
      distinguish between header and source .c files (which need different
      comment types.)  Finally Greg ran the script using the .csv files to
      generate the patches.
      Reviewed-by: NKate Stewart <kstewart@linuxfoundation.org>
      Reviewed-by: NPhilippe Ombredanne <pombredanne@nexb.com>
      Reviewed-by: NThomas Gleixner <tglx@linutronix.de>
      Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
      b2441318
  5. 19 8月, 2017 1 次提交
  6. 17 8月, 2017 1 次提交
  7. 02 8月, 2017 1 次提交
  8. 10 2月, 2017 1 次提交
  9. 20 9月, 2016 5 次提交
    • C
      SUNRPC: Add a transport-specific private field in rpc_rqst · 5a6d1db4
      Chuck Lever 提交于
      Currently there's a hidden and indirect mechanism for finding the
      rpcrdma_req that goes with an rpc_rqst. It depends on getting from
      the rq_buffer pointer in struct rpc_rqst to the struct
      rpcrdma_regbuf that controls that buffer, and then to the struct
      rpcrdma_req it goes with.
      
      This was done back in the day to avoid the need to add a per-rqst
      pointer or to alter the buf_free API when support for RPC-over-RDMA
      was introduced.
      
      I'm about to change the way regbuf's work to support larger inline
      thresholds. Now is a good time to replace this indirect mechanism
      with something that is more straightforward. I guess this should be
      considered a clean up.
      Signed-off-by: NChuck Lever <chuck.lever@oracle.com>
      Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
      5a6d1db4
    • C
      SUNRPC: Separate buffer pointers for RPC Call and Reply messages · 68778945
      Chuck Lever 提交于
      For xprtrdma, the RPC Call and Reply buffers are involved in real
      I/O operations.
      
      To start with, the DMA direction of the I/O for a Call is opposite
      that of a Reply.
      
      In the current arrangement, the Reply buffer address is on a
      four-byte alignment just past the call buffer. Would be friendlier
      on some platforms if that was at a DMA cache alignment instead.
      
      Because the current arrangement allocates a single memory region
      which contains both buffers, the RPC Reply buffer often contains a
      page boundary in it when the Call buffer is large enough (which is
      frequent).
      
      It would be a little nicer for setting up DMA operations (and
      possible registration of the Reply buffer) if the two buffers were
      separated, well-aligned, and contained as few page boundaries as
      possible.
      
      Now, I could just pad out the single memory region used for the pair
      of buffers. But frequently that would mean a lot of unused space to
      ensure the Reply buffer did not have a page boundary.
      
      Add a separate pointer to rpc_rqst that points right to the RPC
      Reply buffer. This makes no difference to xprtsock, but it will help
      xprtrdma in subsequent patches.
      Signed-off-by: NChuck Lever <chuck.lever@oracle.com>
      Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
      68778945
    • C
      SUNRPC: Generalize the RPC buffer release API · 3435c74a
      Chuck Lever 提交于
      xprtrdma needs to allocate the Call and Reply buffers separately.
      TBH, the reliance on using a single buffer for the pair of XDR
      buffers is transport implementation-specific.
      
      Instead of passing just the rq_buffer into the buf_free method, pass
      the task structure and let buf_free take care of freeing both
      XDR buffers at once.
      
      There's a micro-optimization here. In the common case, both
      xprt_release and the transport's buf_free method were checking if
      rq_buffer was NULL. Now the check is done only once per RPC.
      Signed-off-by: NChuck Lever <chuck.lever@oracle.com>
      Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
      3435c74a
    • C
      SUNRPC: Generalize the RPC buffer allocation API · 5fe6eaa1
      Chuck Lever 提交于
      xprtrdma needs to allocate the Call and Reply buffers separately.
      TBH, the reliance on using a single buffer for the pair of XDR
      buffers is transport implementation-specific.
      
      Transports that want to allocate separate Call and Reply buffers
      will ignore the "size" argument anyway.  Don't bother passing it.
      
      The buf_alloc method can't return two pointers. Instead, make the
      method's return value an error code, and set the rq_buffer pointer
      in the method itself.
      
      This gives call_allocate an opportunity to terminate an RPC instead
      of looping forever when a permanent problem occurs. If a request is
      just bogus, or the transport is in a state where it can't allocate
      resources for any request, there needs to be a way to kill the RPC
      right there and not loop.
      
      This immediately fixes a rare problem in the backchannel send path,
      which loops if the server happens to send a CB request whose
      call+reply size is larger than a page (which it shouldn't do yet).
      
      One more issue: looks like xprt_inject_disconnect was incorrectly
      placed in the failure path in call_allocate. It needs to be in the
      success path, as it is for other call-sites.
      Signed-off-by: NChuck Lever <chuck.lever@oracle.com>
      Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
      5fe6eaa1
    • C
      SUNRPC: Refactor rpc_xdr_buf_init() · b9c5bc03
      Chuck Lever 提交于
      Clean up: there is some XDR initialization logic that is common
      to the forward channel and backchannel. Move it to an XDR header
      so it can be shared.
      
      rpc_rqst::rq_buffer points to a buffer containing big-endian data.
      Update its annotation as part of the clean up.
      Signed-off-by: NChuck Lever <chuck.lever@oracle.com>
      Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
      b9c5bc03
  10. 06 8月, 2016 1 次提交
  11. 15 6月, 2016 1 次提交
  12. 18 5月, 2016 1 次提交
  13. 06 2月, 2016 1 次提交
  14. 01 2月, 2016 2 次提交
  15. 03 11月, 2015 3 次提交
  16. 11 6月, 2015 3 次提交
  17. 05 6月, 2015 1 次提交
    • T
      SUNRPC: Fix a backchannel race · 0d2a970d
      Trond Myklebust 提交于
      We need to allow the server to send a new request immediately after we've
      replied to the previous one. Right now, there is a window between the
      send and the release of the old request in rpc_put_task(), where the
      server could send us a new backchannel RPC call, and we have no
      request to service it.
      Signed-off-by: NTrond Myklebust <trond.myklebust@primarydata.com>
      0d2a970d