- 24 10月, 2019 2 次提交
-
-
由 Tao Ren 提交于
The BCM54616S PHY cannot work properly in RGMII->1000Base-X mode, mainly because genphy functions are designed for copper links, and 1000Base-X (clause 37) auto negotiation needs to be handled differently. This patch enables 1000Base-X support for BCM54616S by customizing 3 driver callbacks, and it's verified to be working on Facebook CMM BMC platform (RGMII->1000Base-KX): - probe: probe callback detects PHY's operation mode based on INTERF_SEL[1:0] pins and 1000X/100FX selection bit in SerDES 100-FX Control register. - config_aneg: calls genphy_c37_config_aneg when the PHY is running in 1000Base-X mode; otherwise, genphy_config_aneg will be called. - read_status: calls genphy_c37_read_status when the PHY is running in 1000Base-X mode; otherwise, genphy_read_status will be called. Note: BCM54616S PHY can also be configured in RGMII->100Base-FX mode, and 100Base-FX support is not available as of now. Signed-off-by: NTao Ren <taoren@fb.com> Acked-by: NVladimir Oltean <olteanv@gmail.com> Reviewed-by: NFlorian Fainelli <f.fainelli@gmail.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Heiner Kallweit 提交于
This patch adds support for clause 37 1000Base-X auto-negotiation. Signed-off-by: NHeiner Kallweit <hkallweit1@gmail.com> Signed-off-by: NTao Ren <taoren@fb.com> Tested-by: NRené van Dorst <opensource@vdorst.com> Reviewed-by: NAndrew Lunn <andrew@lunn.ch> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 18 10月, 2019 1 次提交
-
-
由 Marek Vasut 提交于
The KSZ8795 PHY ID is in fact used by KSZ8794/KSZ8795/KSZ8765 switches. Update the PHY ID and name to reflect that, as this family of switches is commonly refered to as KSZ87xx Signed-off-by: NMarek Vasut <marex@denx.de> Cc: Andrew Lunn <andrew@lunn.ch> Cc: David S. Miller <davem@davemloft.net> Cc: Florian Fainelli <f.fainelli@gmail.com> Cc: George McCollister <george.mccollister@gmail.com> Cc: Heiner Kallweit <hkallweit1@gmail.com> Cc: Sean Nyekjaer <sean.nyekjaer@prevas.dk> Cc: Tristram Ha <Tristram.Ha@microchip.com> Cc: Woojung Huh <woojung.huh@microchip.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 17 10月, 2019 2 次提交
-
-
由 Russell King 提交于
Rather than parsing the sfp firmware node in phylink, parse it in the sfp-bus code, so we can re-use this code for PHYs without having to duplicate the parsing. Signed-off-by: NRussell King <rmk+kernel@armlinux.org.uk> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Julien Thierry 提交于
Preempting from IRQ-return means that the task has its PSTATE saved on the stack, which will get restored when the task is resumed and does the actual IRQ return. However, enabling some CPU features requires modifying the PSTATE. This means that, if a task was scheduled out during an IRQ-return before all CPU features are enabled, the task might restore a PSTATE that does not include the feature enablement changes once scheduled back in. * Task 1: PAN == 0 ---| |--------------- | |<- return from IRQ, PSTATE.PAN = 0 | <- IRQ | +--------+ <- preempt() +-- ^ | reschedule Task 1, PSTATE.PAN == 1 * Init: --------------------+------------------------ ^ | enable_cpu_features set PSTATE.PAN on all CPUs Worse than this, since PSTATE is untouched when task switching is done, a task missing the new bits in PSTATE might affect another task, if both do direct calls to schedule() (outside of IRQ/exception contexts). Fix this by preventing preemption on IRQ-return until features are enabled on all CPUs. This way the only PSTATE values that are saved on the stack are from synchronous exceptions. These are expected to be fatal this early, the exception is BRK for WARN_ON(), but as this uses do_debug_exception() which keeps IRQs masked, it shouldn't call schedule(). Signed-off-by: NJulien Thierry <julien.thierry@arm.com> [james: Replaced a really cool hack, with an even simpler static key in C. expanded commit message with Julien's cover-letter ascii art] Signed-off-by: NJames Morse <james.morse@arm.com> Signed-off-by: NWill Deacon <will@kernel.org>
-
- 16 10月, 2019 2 次提交
-
-
由 Russell King 提交于
Use more linkmode_* helpers rather than open-coding the bitmap operations. Signed-off-by: NRussell King <rmk+kernel@armlinux.org.uk> Reviewed-by: NAndrew Lunn <andrew@lunn.ch> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Davide Caratti 提交于
the following script: # tc qdisc add dev eth0 clsact # tc filter add dev eth0 egress protocol ip matchall \ > action mpls push protocol mpls_uc label 0x355aa bos 1 causes corruption of all IP packets transmitted by eth0. On TC egress, we can't rely on the value of skb->mac_len, because it's 0 and a MPLS 'push' operation will result in an overwrite of the first 4 octets in the packet L2 header (e.g. the Destination Address if eth0 is an Ethernet); the same error pattern is present also in the MPLS 'pop' operation. Fix this error in act_mpls data plane, computing 'mac_len' as the difference between the network header and the mac header (when not at TC ingress), and use it in MPLS 'push'/'pop' core functions. v2: unbreak 'make htmldocs' because of missing documentation of 'mac_len' in skb_mpls_pop(), reported by kbuild test robot CC: Lorenzo Bianconi <lorenzo@kernel.org> Fixes: 2a2ea508 ("net: sched: add mpls manipulation actions to TC") Reviewed-by: NSimon Horman <simon.horman@netronome.com> Acked-by: NJohn Hurley <john.hurley@netronome.com> Signed-off-by: NDavide Caratti <dcaratti@redhat.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 15 10月, 2019 5 次提交
-
-
由 Andy Shevchenko 提交于
After changing the drivers to use GPIO core to add an IRQ chip it appears that some of them requires a hardware initialization before adding the IRQ chip. Add an optional callback ->init_hw() to allow that drivers to initialize hardware if needed. This change is a part of the fix NULL pointer dereference brought to the several drivers recently. Cc: Hans de Goede <hdegoede@redhat.com> Signed-off-by: NAndy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: NLinus Walleij <linus.walleij@linaro.org>
-
由 Randy Dunlap 提交于
Fix (Sphinx) kernel-doc warning in <linux/xarray.h>: include/linux/xarray.h:232: WARNING: Unexpected indentation. Link: http://lkml.kernel.org/r/89ba2134-ce23-7c10-5ee1-ef83b35aa984@infradead.org Fixes: a3e4d3f9 ("XArray: Redesign xa_alloc API") Signed-off-by: NRandy Dunlap <rdunlap@infradead.org> Cc: Matthew Wilcox <willy@infradead.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Randy Dunlap 提交于
Fix kernel-doc warning in <linux/bitmap.h>: include/linux/bitmap.h:341: warning: Function parameter or member 'nbits' not described in 'bitmap_or_equal' Also fix small typo (bitnaps). Link: http://lkml.kernel.org/r/0729ea7a-2c0d-b2c5-7dd3-3629ee0803e2@infradead.org Fixes: b9fa6442 ("cpumask: Implement cpumask_or_equal()") Signed-off-by: NRandy Dunlap <rdunlap@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Vlastimil Babka 提交于
Commit 37389167 ("mm, page_owner: keep owner info when freeing the page") has introduced a flag PAGE_EXT_OWNER_ACTIVE to indicate that page is tracked as being allocated. Kirril suggested naming it PAGE_EXT_OWNER_ALLOCATED to make it more clear, as "active is somewhat loaded term for a page". Link: http://lkml.kernel.org/r/20190930122916.14969-4-vbabka@suse.czSigned-off-by: NVlastimil Babka <vbabka@suse.cz> Suggested-by: NKirill A. Shutemov <kirill@shutemov.name> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Walter Wu <walter-zh.wu@mediatek.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Vlastimil Babka 提交于
Patch series "followups to debug_pagealloc improvements through page_owner", v3. These are followups to [1] which made it to Linus meanwhile. Patches 1 and 3 are based on Kirill's review, patch 2 on KASAN request [2]. It would be nice if all of this made it to 5.4 with [1] already there (or at least Patch 1). This patch (of 3): As noted by Kirill, commit 7e2f2a0c ("mm, page_owner: record page owner for each subpage") has introduced an off-by-one error in __set_page_owner_handle() when looking up page_ext for subpages. As a result, the head page page_owner info is set twice, while for the last tail page, it's not set at all. Fix this and also make the code more efficient by advancing the page_ext pointer we already have, instead of calling lookup_page_ext() for each subpage. Since the full size of struct page_ext is not known at compile time, we can't use a simple page_ext++ statement, so introduce a page_ext_next() inline function for that. Link: http://lkml.kernel.org/r/20190930122916.14969-2-vbabka@suse.cz Fixes: 7e2f2a0c ("mm, page_owner: record page owner for each subpage") Signed-off-by: NVlastimil Babka <vbabka@suse.cz> Reported-by: NKirill A. Shutemov <kirill@shutemov.name> Reported-by: NMiles Chen <miles.chen@mediatek.com> Acked-by: NKirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Walter Wu <walter-zh.wu@mediatek.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 14 10月, 2019 1 次提交
-
-
由 Eric Dumazet 提交于
Both tcp_v4_err() and tcp_v6_err() do the following operations while they do not own the socket lock : fastopen = tp->fastopen_rsk; snd_una = fastopen ? tcp_rsk(fastopen)->snt_isn : tp->snd_una; The problem is that without appropriate barrier, the compiler might reload tp->fastopen_rsk and trigger a NULL deref. request sockets are protected by RCU, we can simply add the missing annotations and barriers to solve the issue. Fixes: 168a8f58 ("tcp: TCP Fast Open Server - main code path") Signed-off-by: NEric Dumazet <edumazet@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 12 10月, 2019 2 次提交
-
-
由 Eric Dumazet 提交于
Do not risk spanning these small structures on two cache lines. Signed-off-by: NEric Dumazet <edumazet@google.com> Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net> Link: https://lore.kernel.org/bpf/20191011181140.2898-1-edumazet@google.com
-
由 Joe Perches 提交于
Reserve the pseudo keyword 'fallthrough' for the ability to convert the various case block /* fallthrough */ style comments to appear to be an actual reserved word with the same gcc case block missing fallthrough warning capability. All switch/case blocks now should end in one of: break; fallthrough; goto <label>; return [expression]; continue; In C mode, GCC supports the __fallthrough__ attribute since 7.1, the same time the warning and the comment parsing were introduced. fallthrough devolves to an empty "do {} while (0)" if the compiler version (any version less than gcc 7) does not support the attribute. Signed-off-by: NJoe Perches <joe@perches.com> Acked-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Suggested-by: NDan Carpenter <dan.carpenter@oracle.com> Cc: Miguel Ojeda <miguel.ojeda.sandonis@gmail.com> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 11 10月, 2019 1 次提交
-
-
由 Benjamin Coddington 提交于
Since commit 4f8943f8 ("SUNRPC: Replace direct task wakeups from softirq context") there has been a race to the value of the sk_err if both XPRT_SOCK_WAKE_ERROR and XPRT_SOCK_WAKE_DISCONNECT are set. In that case, we may end up losing the sk_err value that existed when xs_error_report was called. Fix this by reverting to the previous behavior: instead of using SO_ERROR to retrieve the value at a later time (which might also return sk_err_soft), copy the sk_err value onto struct sock_xprt, and use that value to wake pending tasks. Signed-off-by: NBenjamin Coddington <bcodding@redhat.com> Fixes: 4f8943f8 ("SUNRPC: Replace direct task wakeups from softirq context") Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
- 10 10月, 2019 1 次提交
-
-
由 Randy Dunlap 提交于
Lots of fixes to kernel-doc in structs, enums, and functions. Also add header files that are being used but not yet #included. Signed-off-by: NRandy Dunlap <rdunlap@infradead.org> Cc: Yamin Friedman <yaminf@mellanox.com> Cc: Tal Gilboa <talgi@mellanox.com> Cc: Saeed Mahameed <saeedm@mellanox.com> Cc: Doug Ledford <dledford@redhat.com> Cc: Jason Gunthorpe <jgg@mellanox.com> Cc: linux-rdma@vger.kernel.org Cc: netdev@vger.kernel.org Signed-off-by: NJakub Kicinski <jakub.kicinski@netronome.com>
-
- 09 10月, 2019 3 次提交
-
-
由 Eric Dumazet 提交于
This reverts commit 0ad646c8. As noticed by Jakub, this is no longer needed after commit 11fc7d5a ("tun: fix memory leak in error path") This no longer exports dev_get_valid_name() for the exclusive use of tun driver. Suggested-by: NJakub Kicinski <jakub.kicinski@netronome.com> Signed-off-by: NEric Dumazet <edumazet@google.com> Signed-off-by: NJakub Kicinski <jakub.kicinski@netronome.com>
-
由 Dan Murphy 提交于
Update the leds.h structure documentation to define the correct arguments. Signed-off-by: NDan Murphy <dmurphy@ti.com> Signed-off-by: NJacek Anaszewski <jacek.anaszewski@gmail.com>
-
由 Vladimir Oltean 提交于
SPI is one of the interfaces used to access devices which have a POSIX clock driver (real time clocks, 1588 timers etc). The fact that the SPI bus is slow is not what the main problem is, but rather the fact that drivers don't take a constant amount of time in transferring data over SPI. When there is a high delay in the readout of time, there will be uncertainty in the value that has been read out of the peripheral. When that delay is constant, the uncertainty can at least be approximated with a certain accuracy which is fine more often than not. Timing jitter occurs all over in the kernel code, and is mainly caused by having to let go of the CPU for various reasons such as preemption, servicing interrupts, going to sleep, etc. Another major reason is CPU dynamic frequency scaling. It turns out that the problem of retrieving time from a SPI peripheral with high accuracy can be solved by the use of "PTP system timestamping" - a mechanism to correlate the time when the device has snapshotted its internal time counter with the Linux system time at that same moment. This is sufficient for having a precise time measurement - it is not necessary for the whole SPI transfer to be transmitted "as fast as possible", or "as low-jitter as possible". The system has to be low-jitter for a very short amount of time to be effective. This patch introduces a PTP system timestamping mechanism in struct spi_transfer. This is to be used by SPI device drivers when they need to know the exact time at which the underlying device's time was snapshotted. More often than not, SPI peripherals have a very exact timing for when their SPI-to-interconnect bridge issues a transaction for snapshotting and reading the time register, and that will be dependent on when the SPI-to-interconnect bridge figures out that this is what it should do, aka as soon as it sees byte N of the SPI transfer. Since spi_device drivers are the ones who'd know best how the peripheral behaves in this regard, expose a mechanism in spi_transfer which allows them to specify which word (or word range) from the transfer should be timestamped. Add a default implementation of the PTP system timestamping in the SPI core. This is not going to be satisfactory performance-wise, but should at least increase the likelihood that SPI device drivers will use PTP system timestamping in the future. There are 3 entry points from the core towards the SPI controller drivers: - transfer_one: The driver is passed individual spi_transfers to execute. This is the easiest to timestamp. - transfer_one_message: The core passes the driver an entire spi_message (a potential batch of spi_transfers). The core puts the same pre and post timestamp to all transfers within a message. This is not ideal, but nothing better can be done by default anyway, since the core has no insight into how the driver batches the transfers. - transfer: Like transfer_one_message, but for unqueued drivers (i.e. the driver implements its own queue scheduling). Signed-off-by: NVladimir Oltean <olteanv@gmail.com> Link: https://lore.kernel.org/r/20190905010114.26718-3-olteanv@gmail.comSigned-off-by: NMark Brown <broonie@kernel.org>
-
- 08 10月, 2019 9 次提交
-
-
由 Arvind Sankar 提交于
With the use of the barrier implied by barrier_data(), there is no need for memzero_explicit() to be extern. Making it inline saves the overhead of a function call, and allows the code to be reused in arch/*/purgatory without having to duplicate the implementation. Tested-by: NHans de Goede <hdegoede@redhat.com> Signed-off-by: NArvind Sankar <nivedita@alum.mit.edu> Reviewed-by: NHans de Goede <hdegoede@redhat.com> Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: Borislav Petkov <bp@alien8.de> Cc: H . Peter Anvin <hpa@zytor.com> Cc: Herbert Xu <herbert@gondor.apana.org.au> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephan Mueller <smueller@chronox.de> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-crypto@vger.kernel.org Cc: linux-s390@vger.kernel.org Fixes: 906a4bb9 ("crypto: sha256 - Use get/put_unaligned_be32 to get input, memzero_explicit") Link: https://lkml.kernel.org/r/20191007220000.GA408752@rani.riverdale.lanSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Vlastimil Babka 提交于
In most configurations, kmalloc() happens to return naturally aligned (i.e. aligned to the block size itself) blocks for power of two sizes. That means some kmalloc() users might unknowingly rely on that alignment, until stuff breaks when the kernel is built with e.g. CONFIG_SLUB_DEBUG or CONFIG_SLOB, and blocks stop being aligned. Then developers have to devise workaround such as own kmem caches with specified alignment [1], which is not always practical, as recently evidenced in [2]. The topic has been discussed at LSF/MM 2019 [3]. Adding a 'kmalloc_aligned()' variant would not help with code unknowingly relying on the implicit alignment. For slab implementations it would either require creating more kmalloc caches, or allocate a larger size and only give back part of it. That would be wasteful, especially with a generic alignment parameter (in contrast with a fixed alignment to size). Ideally we should provide to mm users what they need without difficult workarounds or own reimplementations, so let's make the kmalloc() alignment to size explicitly guaranteed for power-of-two sizes under all configurations. What this means for the three available allocators? * SLAB object layout happens to be mostly unchanged by the patch. The implicitly provided alignment could be compromised with CONFIG_DEBUG_SLAB due to redzoning, however SLAB disables redzoning for caches with alignment larger than unsigned long long. Practically on at least x86 this includes kmalloc caches as they use cache line alignment, which is larger than that. Still, this patch ensures alignment on all arches and cache sizes. * SLUB layout is also unchanged unless redzoning is enabled through CONFIG_SLUB_DEBUG and boot parameter for the particular kmalloc cache. With this patch, explicit alignment is guaranteed with redzoning as well. This will result in more memory being wasted, but that should be acceptable in a debugging scenario. * SLOB has no implicit alignment so this patch adds it explicitly for kmalloc(). The potential downside is increased fragmentation. While pathological allocation scenarios are certainly possible, in my testing, after booting a x86_64 kernel+userspace with virtme, around 16MB memory was consumed by slab pages both before and after the patch, with difference in the noise. [1] https://lore.kernel.org/linux-btrfs/c3157c8e8e0e7588312b40c853f65c02fe6c957a.1566399731.git.christophe.leroy@c-s.fr/ [2] https://lore.kernel.org/linux-fsdevel/20190225040904.5557-1-ming.lei@redhat.com/ [3] https://lwn.net/Articles/787740/ [akpm@linux-foundation.org: documentation fixlet, per Matthew] Link: http://lkml.kernel.org/r/20190826111627.7505-3-vbabka@suse.czSigned-off-by: NVlastimil Babka <vbabka@suse.cz> Reviewed-by: NMatthew Wilcox (Oracle) <willy@infradead.org> Acked-by: NMichal Hocko <mhocko@suse.com> Acked-by: NKirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: NChristoph Hellwig <hch@lst.de> Cc: David Sterba <dsterba@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Ming Lei <ming.lei@redhat.com> Cc: Dave Chinner <david@fromorbit.com> Cc: "Darrick J . Wong" <darrick.wong@oracle.com> Cc: Christoph Hellwig <hch@lst.de> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Chris Down 提交于
This patch is an incremental improvement on the existing memory.{low,min} relative reclaim work to base its scan pressure calculations on how much protection is available compared to the current usage, rather than how much the current usage is over some protection threshold. This change doesn't change the experience for the user in the normal case too much. One benefit is that it replaces the (somewhat arbitrary) 100% cutoff with an indefinite slope, which makes it easier to ballpark a memory.low value. As well as this, the old methodology doesn't quite apply generically to machines with varying amounts of physical memory. Let's say we have a top level cgroup, workload.slice, and another top level cgroup, system-management.slice. We want to roughly give 12G to system-management.slice, so on a 32GB machine we set memory.low to 20GB in workload.slice, and on a 64GB machine we set memory.low to 52GB. However, because these are relative amounts to the total machine size, while the amount of memory we want to generally be willing to yield to system.slice is absolute (12G), we end up putting more pressure on system.slice just because we have a larger machine and a larger workload to fill it, which seems fairly unintuitive. With this new behaviour, we don't end up with this unintended side effect. Previously the way that memory.low protection works is that if you are 50% over a certain baseline, you get 50% of your normal scan pressure. This is certainly better than the previous cliff-edge behaviour, but it can be improved even further by always considering memory under the currently enforced protection threshold to be out of bounds. This means that we can set relatively low memory.low thresholds for variable or bursty workloads while still getting a reasonable level of protection, whereas with the previous version we may still trivially hit the 100% clamp. The previous 100% clamp is also somewhat arbitrary, whereas this one is more concretely based on the currently enforced protection threshold, which is likely easier to reason about. There is also a subtle issue with the way that proportional reclaim worked previously -- it promotes having no memory.low, since it makes pressure higher during low reclaim. This happens because we base our scan pressure modulation on how far memory.current is between memory.min and memory.low, but if memory.low is unset, we only use the overage method. In most cromulent configurations, this then means that we end up with *more* pressure than with no memory.low at all when we're in low reclaim, which is not really very usable or expected. With this patch, memory.low and memory.min affect reclaim pressure in a more understandable and composable way. For example, from a user standpoint, "protected" memory now remains untouchable from a reclaim aggression standpoint, and users can also have more confidence that bursty workloads will still receive some amount of guaranteed protection. Link: http://lkml.kernel.org/r/20190322160307.GA3316@chrisdown.nameSigned-off-by: NChris Down <chris@chrisdown.name> Reviewed-by: NRoman Gushchin <guro@fb.com> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Acked-by: NMichal Hocko <mhocko@kernel.org> Cc: Tejun Heo <tj@kernel.org> Cc: Dennis Zhou <dennis@kernel.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Chris Down 提交于
Roman points out that when when we do the low reclaim pass, we scale the reclaim pressure relative to position between 0 and the maximum protection threshold. However, if the maximum protection is based on memory.elow, and memory.emin is above zero, this means we still may get binary behaviour on second-pass low reclaim. This is because we scale starting at 0, not starting at memory.emin, and since we don't scan at all below emin, we end up with cliff behaviour. This should be a fairly uncommon case since usually we don't go into the second pass, but it makes sense to scale our low reclaim pressure starting at emin. You can test this by catting two large sparse files, one in a cgroup with emin set to some moderate size compared to physical RAM, and another cgroup without any emin. In both cgroups, set an elow larger than 50% of physical RAM. The one with emin will have less page scanning, as reclaim pressure is lower. Rebase on top of and apply the same idea as what was applied to handle cgroup_memory=disable properly for the original proportional patch http://lkml.kernel.org/r/20190201045711.GA18302@chrisdown.name ("mm, memcg: Handle cgroup_disable=memory when getting memcg protection"). Link: http://lkml.kernel.org/r/20190201051810.GA18895@chrisdown.nameSigned-off-by: NChris Down <chris@chrisdown.name> Suggested-by: NRoman Gushchin <guro@fb.com> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Tejun Heo <tj@kernel.org> Cc: Dennis Zhou <dennis@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Chris Down 提交于
cgroup v2 introduces two memory protection thresholds: memory.low (best-effort) and memory.min (hard protection). While they generally do what they say on the tin, there is a limitation in their implementation that makes them difficult to use effectively: that cliff behaviour often manifests when they become eligible for reclaim. This patch implements more intuitive and usable behaviour, where we gradually mount more reclaim pressure as cgroups further and further exceed their protection thresholds. This cliff edge behaviour happens because we only choose whether or not to reclaim based on whether the memcg is within its protection limits (see the use of mem_cgroup_protected in shrink_node), but we don't vary our reclaim behaviour based on this information. Imagine the following timeline, with the numbers the lruvec size in this zone: 1. memory.low=1000000, memory.current=999999. 0 pages may be scanned. 2. memory.low=1000000, memory.current=1000000. 0 pages may be scanned. 3. memory.low=1000000, memory.current=1000001. 1000001* pages may be scanned. (?!) * Of course, we won't usually scan all available pages in the zone even without this patch because of scan control priority, over-reclaim protection, etc. However, as shown by the tests at the end, these techniques don't sufficiently throttle such an extreme change in input, so cliff-like behaviour isn't really averted by their existence alone. Here's an example of how this plays out in practice. At Facebook, we are trying to protect various workloads from "system" software, like configuration management tools, metric collectors, etc (see this[0] case study). In order to find a suitable memory.low value, we start by determining the expected memory range within which the workload will be comfortable operating. This isn't an exact science -- memory usage deemed "comfortable" will vary over time due to user behaviour, differences in composition of work, etc, etc. As such we need to ballpark memory.low, but doing this is currently problematic: 1. If we end up setting it too low for the workload, it won't have *any* effect (see discussion above). The group will receive the full weight of reclaim and won't have any priority while competing with the less important system software, as if we had no memory.low configured at all. 2. Because of this behaviour, we end up erring on the side of setting it too high, such that the comfort range is reliably covered. However, protected memory is completely unavailable to the rest of the system, so we might cause undue memory and IO pressure there when we *know* we have some elasticity in the workload. 3. Even if we get the value totally right, smack in the middle of the comfort zone, we get extreme jumps between no pressure and full pressure that cause unpredictable pressure spikes in the workload due to the current binary reclaim behaviour. With this patch, we can set it to our ballpark estimation without too much worry. Any undesirable behaviour, such as too much or too little reclaim pressure on the workload or system will be proportional to how far our estimation is off. This means we can set memory.low much more conservatively and thus waste less resources *without* the risk of the workload falling off a cliff if we overshoot. As a more abstract technical description, this unintuitive behaviour results in having to give high-priority workloads a large protection buffer on top of their expected usage to function reliably, as otherwise we have abrupt periods of dramatically increased memory pressure which hamper performance. Having to set these thresholds so high wastes resources and generally works against the principle of work conservation. In addition, having proportional memory reclaim behaviour has other benefits. Most notably, before this patch it's basically mandatory to set memory.low to a higher than desirable value because otherwise as soon as you exceed memory.low, all protection is lost, and all pages are eligible to scan again. By contrast, having a gradual ramp in reclaim pressure means that you now still get some protection when thresholds are exceeded, which means that one can now be more comfortable setting memory.low to lower values without worrying that all protection will be lost. This is important because workingset size is really hard to know exactly, especially with variable workloads, so at least getting *some* protection if your workingset size grows larger than you expect increases user confidence in setting memory.low without a huge buffer on top being needed. Thanks a lot to Johannes Weiner and Tejun Heo for their advice and assistance in thinking about how to make this work better. In testing these changes, I intended to verify that: 1. Changes in page scanning become gradual and proportional instead of binary. To test this, I experimented stepping further and further down memory.low protection on a workload that floats around 19G workingset when under memory.low protection, watching page scan rates for the workload cgroup: +------------+-----------------+--------------------+--------------+ | memory.low | test (pgscan/s) | control (pgscan/s) | % of control | +------------+-----------------+--------------------+--------------+ | 21G | 0 | 0 | N/A | | 17G | 867 | 3799 | 23% | | 12G | 1203 | 3543 | 34% | | 8G | 2534 | 3979 | 64% | | 4G | 3980 | 4147 | 96% | | 0 | 3799 | 3980 | 95% | +------------+-----------------+--------------------+--------------+ As you can see, the test kernel (with a kernel containing this patch) ramps up page scanning significantly more gradually than the control kernel (without this patch). 2. More gradual ramp up in reclaim aggression doesn't result in premature OOMs. To test this, I wrote a script that slowly increments the number of pages held by stress(1)'s --vm-keep mode until a production system entered severe overall memory contention. This script runs in a highly protected slice taking up the majority of available system memory. Watching vmstat revealed that page scanning continued essentially nominally between test and control, without causing forward reclaim progress to become arrested. [0]: https://facebookmicrosites.github.io/cgroup2/docs/overview.html#case-study-the-fbtax2-project [akpm@linux-foundation.org: reflow block comments to fit in 80 cols] [chris@chrisdown.name: handle cgroup_disable=memory when getting memcg protection] Link: http://lkml.kernel.org/r/20190201045711.GA18302@chrisdown.name Link: http://lkml.kernel.org/r/20190124014455.GA6396@chrisdown.nameSigned-off-by: NChris Down <chris@chrisdown.name> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Reviewed-by: NRoman Gushchin <guro@fb.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Tejun Heo <tj@kernel.org> Cc: Dennis Zhou <dennis@kernel.org> Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Baoquan He 提交于
In kdump kernel, memcg usually is disabled with 'cgroup_disable=memory' for saving memory. Now kdump kernel will always panic when dump vmcore to local disk: BUG: kernel NULL pointer dereference, address: 0000000000000ab8 Oops: 0000 [#1] SMP NOPTI CPU: 0 PID: 598 Comm: makedumpfile Not tainted 5.3.0+ #26 Hardware name: HPE ProLiant DL385 Gen10/ProLiant DL385 Gen10, BIOS A40 10/02/2018 RIP: 0010:mem_cgroup_track_foreign_dirty_slowpath+0x38/0x140 Call Trace: __set_page_dirty+0x52/0xc0 iomap_set_page_dirty+0x50/0x90 iomap_write_end+0x6e/0x270 iomap_write_actor+0xce/0x170 iomap_apply+0xba/0x11e iomap_file_buffered_write+0x62/0x90 xfs_file_buffered_aio_write+0xca/0x320 [xfs] new_sync_write+0x12d/0x1d0 vfs_write+0xa5/0x1a0 ksys_write+0x59/0xd0 do_syscall_64+0x59/0x1e0 entry_SYSCALL_64_after_hwframe+0x44/0xa9 And this will corrupt the 1st kernel too with 'cgroup_disable=memory'. Via the trace and with debugging, it is pointing to commit 97b27821 ("writeback, memcg: Implement foreign dirty flushing") which introduced this regression. Disabling memcg causes the null pointer dereference at uninitialized data in function mem_cgroup_track_foreign_dirty_slowpath(). Fix it by returning directly if memcg is disabled, but not trying to record the foreign writebacks with dirty pages. Link: http://lkml.kernel.org/r/20190924141928.GD31919@MiWiFi-R3L-srv Fixes: 97b27821 ("writeback, memcg: Implement foreign dirty flushing") Signed-off-by: NBaoquan He <bhe@redhat.com> Acked-by: NMichal Hocko <mhocko@suse.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Jan Kara <jack@suse.cz> Cc: Tejun Heo <tj@kernel.org> Cc: Jens Axboe <axboe@kernel.dk> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Linus Torvalds 提交于
In commit 9f79b78e ("Convert filldir[64]() from __put_user() to unsafe_put_user()") I made filldir() use unsafe_put_user(), which improves code generation on x86 enormously. But because we didn't have a "unsafe_copy_to_user()", the dirent name copy was also done by hand with unsafe_put_user() in a loop, and it turns out that a lot of other architectures didn't like that, because unlike x86, they have various alignment issues. Most non-x86 architectures trap and fix it up, and some (like xtensa) will just fail unaligned put_user() accesses unconditionally. Which makes that "copy using put_user() in a loop" not work for them at all. I could make that code do explicit alignment etc, but the architectures that don't like unaligned accesses also don't really use the fancy "user_access_begin/end()" model, so they might just use the regular old __copy_to_user() interface. So this commit takes that looping implementation, turns it into the x86 version of "unsafe_copy_to_user()", and makes other architectures implement the unsafe copy version as __copy_to_user() (the same way they do for the other unsafe_xyz() accessor functions). Note that it only does this for the copying _to_ user space, and we still don't have a unsafe version of copy_from_user(). That's partly because we have no current users of it, but also partly because the copy_from_user() case is slightly different and cannot efficiently be implemented in terms of a unsafe_get_user() loop (because gcc can't do asm goto with outputs). It would be trivial to do this using "rep movsb", which would work really nicely on newer x86 cores, but really badly on some older ones. Al Viro is looking at cleaning up all our user copy routines to make this all a non-issue, but for now we have this simple-but-stupid version for x86 that works fine for the dirent name copy case because those names are short strings and we simply don't need anything fancier. Fixes: 9f79b78e ("Convert filldir[64]() from __put_user() to unsafe_put_user()") Reported-by: NGuenter Roeck <linux@roeck-us.net> Reported-and-tested-by: NTony Luck <tony.luck@intel.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Max Filippov <jcmvbkbc@gmail.com> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Masahiro Yamada 提交于
The module namespace produces __strtab_ns_<sym> symbols to store namespace strings, but it does not guarantee the name uniqueness. This is a potential problem because we have exported symbols starting with "ns_". For example, kernel/capability.c exports the following symbols: EXPORT_SYMBOL(ns_capable); EXPORT_SYMBOL(capable); Assume a situation where those are converted as follows: EXPORT_SYMBOL_NS(ns_capable, some_namespace); EXPORT_SYMBOL_NS(capable, some_namespace); The former expands to "__kstrtab_ns_capable" and "__kstrtab_ns_ns_capable", and the latter to "__kstrtab_capable" and "__kstrtab_ns_capable". Then, we have the duplicated "__kstrtab_ns_capable". To ensure the uniqueness, rename "__kstrtab_ns_*" to "__kstrtabns_*". Reviewed-by: NMatthias Maennich <maennich@google.com> Signed-off-by: NMasahiro Yamada <yamada.masahiro@socionext.com> Signed-off-by: NJessica Yu <jeyu@kernel.org>
-
由 Masahiro Yamada 提交于
Currently, EXPORT_SYMBOL_NS(_GPL) constructs the kernel symbol as follows: __ksymtab_SYMBOL.NAMESPACE The sym_extract_namespace() in modpost allocates memory for the part SYMBOL.NAMESPACE when '.' is contained. One problem is that the pointer returned by strdup() is lost because the symbol name will be copied to malloc'ed memory by alloc_symbol(). No one will keep track of the pointer of strdup'ed memory. sym->namespace still points to the NAMESPACE part. So, you can free it with complicated code like this: free(sym->namespace - strlen(sym->name) - 1); It complicates memory free. To fix it elegantly, I swapped the order of the symbol and the namespace as follows: __ksymtab_NAMESPACE.SYMBOL then, simplified sym_extract_namespace() so that it allocates memory only for the NAMESPACE part. I prefer this order because it is intuitive and also matches to major languages. For example, NAMESPACE::NAME in C++, MODULE.NAME in Python. Reviewed-by: NMatthias Maennich <maennich@google.com> Signed-off-by: NMasahiro Yamada <yamada.masahiro@socionext.com> Signed-off-by: NJessica Yu <jeyu@kernel.org>
-
- 07 10月, 2019 5 次提交
-
-
由 Jakub Kicinski 提交于
Don't use bool array in struct sk_msg_sg, save 12 bytes. Signed-off-by: NJakub Kicinski <jakub.kicinski@netronome.com> Reviewed-by: NDirk van der Merwe <dirk.vandermerwe@netronome.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Heiner Kallweit 提交于
This function de-facto returns a bool, so let's change the return type accordingly. Signed-off-by: NHeiner Kallweit <hkallweit1@gmail.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Jerry Snitselaar 提交于
If __calc_tpm2_event_size() fails to parse an event it will return 0, resulting tpm2_calc_event_log_size() returning -1. Currently there is no check of this return value, and 'efi_tpm_final_log_size' can end up being set to this negative value resulting in a crash like this one: BUG: unable to handle page fault for address: ffffbc8fc00866ad #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not-present page RIP: 0010:memcpy_erms+0x6/0x10 Call Trace: tpm_read_log_efi() tpm_bios_log_setup() tpm_chip_register() tpm_tis_core_init.cold.9+0x28c/0x466 tpm_tis_plat_probe() platform_drv_probe() ... Also __calc_tpm2_event_size() returns a size of 0 when it fails to parse an event, so update function documentation to reflect this. The root cause of the issue that caused the failure of event parsing in this case is resolved by Peter Jone's patchset dealing with large event logs where crossing over a page boundary causes the page with the event count to be unmapped. Signed-off-by: NJerry Snitselaar <jsnitsel@redhat.com> Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Cc: Ben Dooks <ben.dooks@codethink.co.uk> Cc: Dave Young <dyoung@redhat.com> Cc: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Lukas Wunner <lukas@wunner.de> Cc: Lyude Paul <lyude@redhat.com> Cc: Matthew Garrett <mjg59@google.com> Cc: Octavian Purdila <octavian.purdila@intel.com> Cc: Peter Jones <pjones@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Scott Talbert <swt@techie.net> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-efi@vger.kernel.org Cc: linux-integrity@vger.kernel.org Cc: stable@vger.kernel.org Fixes: c46f3405 ("tpm: Reserve the TPM final events table") Link: https://lkml.kernel.org/r/20191002165904.8819-6-ard.biesheuvel@linaro.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Peter Jones 提交于
Some machines generate a lot of event log entries. When we're iterating over them, the code removes the old mapping and adds a new one, so once we cross the page boundary we're unmapping the page with the count on it. Hilarity ensues. This patch keeps the info from the header in local variables so we don't need to access that page again or keep track of if it's mapped. Tested-by: NLyude Paul <lyude@redhat.com> Signed-off-by: NPeter Jones <pjones@redhat.com> Signed-off-by: NJarkko Sakkinen <jarkko.sakkinen@linux.intel.com> Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Reviewed-by: NJarkko Sakkinen <jarkko.sakkinen@linux.intel.com> Acked-by: NMatthew Garrett <mjg59@google.com> Acked-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Cc: Ben Dooks <ben.dooks@codethink.co.uk> Cc: Dave Young <dyoung@redhat.com> Cc: Jerry Snitselaar <jsnitsel@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Lukas Wunner <lukas@wunner.de> Cc: Octavian Purdila <octavian.purdila@intel.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Scott Talbert <swt@techie.net> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-efi@vger.kernel.org Cc: linux-integrity@vger.kernel.org Cc: stable@vger.kernel.org Fixes: 44038bc5 ("tpm: Abstract crypto agile event size calculations") Link: https://lkml.kernel.org/r/20191002165904.8819-4-ard.biesheuvel@linaro.org [ Minor edits. ] Signed-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Hans de Goede 提交于
Some drivers (e.g dwc3) first try to get an IRQ byname and then fall back to the one at index 0. In this case we do not want the error(s) printed by platform_get_irq_byname(). This commit adds a new platform_get_irq_byname_optional(), which does not print errors, for this. While at it also improve the kdoc text for platform_get_irq_byname() a bit. BugLink: https://bugzilla.kernel.org/show_bug.cgi?id=205037Signed-off-by: NHans de Goede <hdegoede@redhat.com> Reviewed-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com> Link: https://lore.kernel.org/r/20191005210449.3926-2-hdegoede@redhat.comSigned-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
- 05 10月, 2019 5 次提交
-
-
由 Russell King 提交于
Extract the update of phylib's software pause mode state from genphy_read_status(), so that we can re-use this functionality with PHYs that have alternative ways to read the negotiation results. Tested-by: Ntinywrkb <tinywrkb@gmail.com> Reviewed-by: NAndrew Lunn <andrew@lunn.ch> Signed-off-by: NRussell King <rmk+kernel@armlinux.org.uk> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Russell King 提交于
Move reading the link partner advertisement out of genphy_read_status() into its own separate function. This will allow re-use of this code by PHY drivers that are able to read the resolved status from the PHY. Tested-by: Ntinywrkb <tinywrkb@gmail.com> Signed-off-by: NRussell King <rmk+kernel@armlinux.org.uk> Reviewed-by: NAndrew Lunn <andrew@lunn.ch> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Russell King 提交于
When userspace writes to the MII_ADVERTISE register, we update phylib's advertising mask and trigger a renegotiation. However, writing to the MII_CTRL1000 register, which contains the gigabit advertisement, does neither. This can lead to phylib's copy of the advertisement becoming de-synced with the values in the PHY register set, which can result in incorrect negotiation resolution. Fixes: 5502b218 ("net: phy: use phy_resolve_aneg_linkmode in genphy_read_status") Reviewed-by: NAndrew Lunn <andrew@lunn.ch> Signed-off-by: NRussell King <rmk+kernel@armlinux.org.uk> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Jiri Pirko 提交于
Since errors are propagated all the way up to the caller, propagate possible extack of the caller all the way down to the notifier block callback. Signed-off-by: NJiri Pirko <jiri@mellanox.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Jiri Pirko 提交于
Currently all users of FIB notifier only cares about events in init_net. Later in this patchset, users get interested in other namespaces too. However, for every registered block user is interested only about one namespace. Make the FIB notifier registration per-netns and avoid unnecessary calls of notifier block for other namespaces. Signed-off-by: NJiri Pirko <jiri@mellanox.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 04 10月, 2019 1 次提交
-
-
由 Thierry Reding 提交于
Enhanced addressing mode is only required when more than 32 bits need to be addressed. Add a DMA configuration parameter to enable this mode only when needed. Signed-off-by: NThierry Reding <treding@nvidia.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-