- 01 7月, 2019 5 次提交
-
-
由 Ming Lei 提交于
'bio->bi_iter.bi_size' is 'unsigned int', which at most hold 4G - 1 bytes. Before 07173c3e ("block: enable multipage bvecs"), one bio can include very limited pages, and usually at most 256, so the fs bio size won't be bigger than 1M bytes most of times. Since we support multi-page bvec, in theory one fs bio really can be added > 1M pages, especially in case of hugepage, or big writeback with too many dirty pages. Then there is chance in which .bi_size is overflowed. Fixes this issue by using bio_full() to check if the added segment may overflow .bi_size. Cc: Liu Yiding <liuyd.fnst@cn.fujitsu.com> Cc: kernel test robot <rong.a.chen@intel.com> Cc: "Darrick J. Wong" <darrick.wong@oracle.com> Cc: linux-xfs@vger.kernel.org Cc: linux-fsdevel@vger.kernel.org Cc: stable@vger.kernel.org Fixes: 07173c3e ("block: enable multipage bvecs") Reviewed-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NMing Lei <ming.lei@redhat.com> Signed-off-by: NJens Axboe <axboe@kernel.dk>
-
由 Christoph Hellwig 提交于
Instead of a magic flag for xfs_trans_alloc, just ensure all callers that can't relclaim through the file system use memalloc_nofs_save to set the per-task nofs flag. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
由 Christoph Hellwig 提交于
Compare the block layer status directly instead of converting it to an errno first. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
由 Christoph Hellwig 提交于
There is no real problem merging ioends that go beyond i_size into an ioend that doesn't. We just need to move the append transaction to the base ioend. Also use the opportunity to use a real error code instead of the magic 1 to cancel the transactions, and write a comment explaining the scheme. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
由 Christoph Hellwig 提交于
The fail argument is long gone, update the comment. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
- 29 6月, 2019 3 次提交
-
-
由 Eric Sandeen 提交于
There are many, many xfs header files which are included but unneeded (or included twice) in the xfs code, so remove them. nb: xfs_linux.h includes about 9 headers for everyone, so those explicit includes get removed by this. I'm not sure what the preference is, but if we wanted explicit includes everywhere, a followup patch could remove those xfs_*.h includes from xfs_linux.h and move them into the files that need them. Or it could be left as-is. Signed-off-by: NEric Sandeen <sandeen@redhat.com> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
由 Christoph Hellwig 提交于
Link every newly allocated writeback bio to cgroup pointed to by the writeback control structure, and charge every byte written back to it. Tested-by: NStefan Priebe - Profihost AG <s.priebe@profihost.ag> Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
由 Christoph Hellwig 提交于
Move setting up operation and write hint to xfs_alloc_ioend, and then just copy over all needed information from the previous bio in xfs_chain_bio and stop passing various parameters to it. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
- 17 6月, 2019 1 次提交
-
-
由 Christoph Hellwig 提交于
We currently have an input same_page parameter to __bio_try_merge_page to prohibit merging in the same page. The rationale for that is that some callers need to account for every page added to a bio. Instead of letting these callers call twice into the merge code to account for the new vs existing page cases, just turn the paramter into an output one that returns if a merge in the same page occured and let them act accordingly. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NMing Lei <ming.lei@redhat.com> Signed-off-by: NJens Axboe <axboe@kernel.dk>
-
- 30 4月, 2019 1 次提交
-
-
由 Christoph Hellwig 提交于
We only have two callers that need the integer loop iterator, and they can easily maintain it themselves. Suggested-by: NMatthew Wilcox <willy@infradead.org> Reviewed-by: NJohannes Thumshirn <jthumshirn@suse.de> Acked-by: NDavid Sterba <dsterba@suse.com> Reviewed-by: NHannes Reinecke <hare@suse.com> Acked-by: NColy Li <colyli@suse.de> Reviewed-by: NMatthew Wilcox <willy@infradead.org> Signed-off-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NJens Axboe <axboe@kernel.dk>
-
- 17 4月, 2019 2 次提交
-
-
由 Darrick J. Wong 提交于
It's possible for pagecache writeback to split up a large amount of work into smaller pieces for throttling purposes or to reduce the amount of time a writeback operation is pending. Whatever the reason, XFS can end up with a bunch of IO completions that call for the same operation to be performed on a contiguous extent mapping. Since mappings are extent based in XFS, we'd prefer to run fewer transactions when we can. When we're processing an ioend on the list of io completions, check to see if the next items on the list are both adjacent and of the same type. If so, we can merge the completions to reduce transaction overhead. On fast storage this doesn't seem to make much of a difference in performance, though the number of transactions for an overnight xfstests run seems to drop by ~5%. Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com> Reviewed-by: NBrian Foster <bfoster@redhat.com>
-
由 Darrick J. Wong 提交于
When scheduling writeback of dirty file data in the page cache, XFS uses IO completion workqueue items to ensure that filesystem metadata only updates after the write completes successfully. This is essential for converting unwritten extents to real extents at the right time and performing COW remappings. Unfortunately, XFS queues each IO completion work item to an unbounded workqueue, which means that the kernel can spawn dozens of threads to try to handle the items quickly. These threads need to take the ILOCK to update file metadata, which results in heavy ILOCK contention if a large number of the work items target a single file, which is inefficient. Worse yet, the writeback completion threads get stuck waiting for the ILOCK while holding transaction reservations, which can use up all available log reservation space. When that happens, metadata updates to other parts of the filesystem grind to a halt, even if the filesystem could otherwise have handled it. Even worse, if one of the things grinding to a halt happens to be a thread in the middle of a defer-ops finish holding the same ILOCK and trying to obtain more log reservation having exhausted the permanent reservation, we now have an ABBA deadlock - writeback completion has a transaction reserved and wants the ILOCK, and someone else has the ILOCK and wants a transaction reservation. Therefore, we create a per-inode writeback io completion queue + work item. When writeback finishes, it can add the ioend to the per-inode queue and let the single worker item process that queue. This dramatically cuts down on the number of kworkers and ILOCK contention in the system, and seems to have eliminated an occasional deadlock I was seeing while running generic/476. Testing with a program that simulates a heavy random-write workload to a single file demonstrates that the number of kworkers drops from approximately 120 threads per file to 1, without dramatically changing write bandwidth or pagecache access latency. Note that we leave the xfs-conv workqueue's max_active alone because we still want to be able to run ioend processing for as many inodes as the system can handle. Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com> Reviewed-by: NBrian Foster <bfoster@redhat.com>
-
- 21 2月, 2019 2 次提交
-
-
由 Christoph Hellwig 提交于
Add a mode where XFS never overwrites existing blocks in place. This is to aid debugging our COW code, and also put infatructure in place for things like possible future support for zoned block devices, which can't support overwrites. This mode is enabled globally by doing a: echo 1 > /sys/fs/xfs/debug/always_cow Note that the parameter is global to allow running all tests in xfstests easily in this mode, which would not easily be possible with a per-fs sysfs file. In always_cow mode persistent preallocations are disabled, and fallocate will fail when called with a 0 mode (with our without FALLOC_FL_KEEP_SIZE), and not create unwritten extent for zeroed space when called with FALLOC_FL_ZERO_RANGE or FALLOC_FL_UNSHARE_RANGE. There are a few interesting xfstests failures when run in always_cow mode: - generic/392 fails because the bytes used in the file used to test hole punch recovery are less after the log replay. This is because the blocks written and then punched out are only freed with a delay due to the logging mechanism. - xfs/170 will fail as the already fragile file streams mechanism doesn't seem to interact well with the COW allocator - xfs/180 xfs/182 xfs/192 xfs/198 xfs/204 and xfs/208 will claim the file system is badly fragmented, but there is not much we can do to avoid that when always writing out of place - xfs/205 fails because overwriting a file in always_cow mode will require new space allocation and the assumption in the test thus don't work anymore. - xfs/326 fails to modify the file at all in always_cow mode after injecting the refcount error, leading to an unexpected md5sum after the remount, but that again is expected Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
由 Christoph Hellwig 提交于
This only matters if we want to write data through the COW fork that is not actually an overwrite of existing data. Reasons for that are speculative COW fork allocations using the cowextsize, or a mode where we always write through the COW fork. Currently both can't actually happen, but I plan to enable them. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
- 18 2月, 2019 5 次提交
-
-
由 Christoph Hellwig 提交于
While we can only truncate a block under the page lock for the current page, there is no high-level synchronization for moving extents from the COW to the data fork. This means that for example we can have another thread doing a direct I/O completion that moves extents from the COW to the data fork race with writeback. While this race is very hard to hit the always_cow seems to reproduce it reasonably well, and it also exists without that. Because of that there is a chance that a delalloc conversion for the COW fork might not find any extents to convert. In that case we should retry the whole block lookup and now find the blocks in the data fork. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
由 Christoph Hellwig 提交于
Now that we properly handle the race with truncate in the delalloc allocator there is no need to short cut this exceptional case earlier on. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NBrian Foster <bfoster@redhat.com> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
由 Christoph Hellwig 提交于
This function is a small wrapper only used by the writeback code, so move it together with the writeback code and simplify it down to the glorified do { } while loop that is now is. A few bits intentionally got lost here: no need to call xfs_qm_dqattach because quotas are always attached when we create the delalloc reservation, and no need for the imap->br_startblock == 0 check given that xfs_bmapi_convert_delalloc already has a WARN_ON_ONCE for exactly that condition. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
由 Christoph Hellwig 提交于
We already ensure all data fits into s_maxbytes in the write / fault path. The only reason we have them here is that they were copy and pasted from xfs_bmapi_read when we stopped using that function. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NBrian Foster <bfoster@redhat.com> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
由 Christoph Hellwig 提交于
The io_type field contains what is basically a summary of information from the inode fork and the imap. But we can just as easily use that information directly, simplifying a few bits here and there and improving the trace points. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NBrian Foster <bfoster@redhat.com> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
- 15 2月, 2019 2 次提交
-
-
由 Ming Lei 提交于
This patch pulls the trigger for multi-page bvecs. Reviewed-by: NOmar Sandoval <osandov@fb.com> Signed-off-by: NMing Lei <ming.lei@redhat.com> Signed-off-by: NJens Axboe <axboe@kernel.dk>
-
由 Ming Lei 提交于
This patch introduces one extra iterator variable to bio_for_each_segment_all(), then we can allow bio_for_each_segment_all() to iterate over multi-page bvec. Given it is just one mechannical & simple change on all bio_for_each_segment_all() users, this patch does tree-wide change in one single patch, so that we can avoid to use a temporary helper for this conversion. Reviewed-by: NOmar Sandoval <osandov@fb.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NMing Lei <ming.lei@redhat.com> Signed-off-by: NJens Axboe <axboe@kernel.dk>
-
- 12 2月, 2019 2 次提交
-
-
由 Brian Foster 提交于
Now that the cached writeback mapping is explicitly invalidated on data fork changes, the EOF trimming band-aid is no longer necessary. Remove xfs_trim_extent_eof() as well since it has no other users. Signed-off-by: NBrian Foster <bfoster@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
由 Brian Foster 提交于
The writeback code caches the current extent mapping across multiple xfs_do_writepage() calls to avoid repeated lookups for sequential pages backed by the same extent. This is known to be slightly racy with extent fork changes in certain difficult to reproduce scenarios. The cached extent is trimmed to within EOF to help avoid the most common vector for this problem via speculative preallocation management, but this is a band-aid that does not address the fundamental problem. Now that we have an xfs_ifork sequence counter mechanism used to facilitate COW writeback, we can use the same mechanism to validate consistency between the data fork and cached writeback mappings. On its face, this is somewhat of a big hammer approach because any change to the data fork invalidates any mapping currently cached by a writeback in progress regardless of whether the data fork change overlaps with the range under writeback. In practice, however, the impact of this approach is minimal in most cases. First, data fork changes (delayed allocations) caused by sustained sequential buffered writes are amortized across speculative preallocations. This means that a cached mapping won't be invalidated by each buffered write of a common file copy workload, but rather only on less frequent allocation events. Second, the extent tree is always entirely in-core so an additional lookup of a usable extent mostly costs a shared ilock cycle and in-memory tree lookup. This means that a cached mapping reval is relatively cheap compared to the I/O itself. Third, spurious invalidations don't impact ioend construction. This means that even if the same extent is revalidated multiple times across multiple writepage instances, we still construct and submit the same size ioend (and bio) if the blocks are physically contiguous. Update struct xfs_writepage_ctx with a new field to hold the sequence number of the data fork associated with the currently cached mapping. Check the wpc seqno against the data fork when the mapping is validated and reestablish the mapping whenever the fork has changed since the mapping was cached. This ensures that writeback always uses a valid extent mapping and thus prevents lost writebacks and stale delalloc block problems. Signed-off-by: NBrian Foster <bfoster@redhat.com> Reviewed-by: NAllison Henderson <allison.henderson@oracle.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
- 04 2月, 2019 1 次提交
-
-
由 Brian Foster 提交于
The cached writeback mapping is EOF trimmed to try and avoid races between post-eof block management and writeback that result in sending cached data to a stale location. The cached mapping is currently trimmed on the validation check, which leaves a race window between the time the mapping is cached and when it is trimmed against the current inode size. For example, if a new mapping is cached by delalloc conversion on a blocksize == page size fs, we could cycle various locks, perform memory allocations, etc. in the writeback codepath before the associated mapping is eventually trimmed to i_size. This leaves enough time for a post-eof truncate and file append before the cached mapping is trimmed. The former event essentially invalidates a range of the cached mapping and the latter bumps the inode size such the trim on the next writepage event won't trim all of the invalid blocks. fstest generic/464 reproduces this scenario occasionally and causes a lost writeback and stale delalloc blocks warning on inode inactivation. To work around this problem, trim the cached writeback mapping as soon as it is cached in addition to on subsequent validation checks. This is a minor tweak to tighten the race window as much as possible until a proper invalidation mechanism is available. Fixes: 40214d12 ("xfs: trim writepage mapping to within eof") Cc: <stable@vger.kernel.org> # v4.14+ Signed-off-by: NBrian Foster <bfoster@redhat.com> Reviewed-by: NAllison Henderson <allison.henderson@oracle.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
- 18 10月, 2018 1 次提交
-
-
由 Christoph Hellwig 提交于
The invalid state isn't any different from a hole, so merge the two states. Use the more descriptive hole name, but keep it as the first value of the enum to catch uninitialized fields. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NBrian Foster <bfoster@redhat.com> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
- 08 8月, 2018 1 次提交
-
-
由 Christoph Hellwig 提交于
This adds ordering of the updates and makes sure we always see the if_seq update before the extent tree is modified. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
- 01 8月, 2018 1 次提交
-
-
由 Christoph Hellwig 提交于
Used the per-fork sequence counter to avoid lookups in the writeback code unless the COW fork actually changed. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NCarlos Maiolino <cmaiolino@redhat.com> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
- 30 7月, 2018 1 次提交
-
-
由 Christoph Hellwig 提交于
We have a few places that already check if an inode has actual data in the COW fork to avoid work on reflink inodes that do not actually have outstanding COW blocks. There are a few more places that can avoid working if doing the same check, so add a documented helper for this condition and use it in all places where it makes sense. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
- 12 7月, 2018 12 次提交
-
-
由 Christoph Hellwig 提交于
Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NBrian Foster <bfoster@redhat.com> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
由 Christoph Hellwig 提交于
Switch to using the iomap_page structure for checking sub-page uptodate status and track sub-page I/O completion status, and remove large quantities of boilerplate code working around buffer heads. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NBrian Foster <bfoster@redhat.com> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
由 Christoph Hellwig 提交于
Disable the IOMAP_F_BUFFER_HEAD flag on file systems with a block size equal to the page size, and deal with pages without buffer heads in writeback. Thanks to the previous refactoring this is basically trivial now. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NBrian Foster <bfoster@redhat.com> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
由 Christoph Hellwig 提交于
Rejuggle how we deal with the different error vs non-error and have ioends vs not have ioend cases to keep the fast path streamlined, and the duplicate code at a minimum. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NBrian Foster <bfoster@redhat.com> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
由 Christoph Hellwig 提交于
This helper only has two callers, one of them with a constant error argument. Remove it to make pending changes to the code a little easier. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NBrian Foster <bfoster@redhat.com> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
由 Christoph Hellwig 提交于
This keeps it in a single place so it can be made otional more easily. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NBrian Foster <bfoster@redhat.com> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
由 Christoph Hellwig 提交于
Calculate all information for the bio based on the passed in information without requiring a buffer_head structure. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NBrian Foster <bfoster@redhat.com> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
由 Christoph Hellwig 提交于
Simplify the way we check for a valid imap - we know we have a valid mapping after xfs_map_blocks returned successfully, and we know we can call xfs_imap_valid on any imap, as it will always fail on a zero-initialized map. We can also remove the xfs_imap_valid function and fold it into xfs_map_blocks now. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NBrian Foster <bfoster@redhat.com> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
由 Christoph Hellwig 提交于
xfs_bmapi_read adds zero value in xfs_map_blocks. Replace it with a direct call to the low-level extent lookup function. Note that we now always pass a 0 length to the trace points as we ask for an unspecified len. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NBrian Foster <bfoster@redhat.com> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
由 Christoph Hellwig 提交于
We only have one caller left, and open coding the simple extent list lookup in it allows us to make the code both more understandable and reuse calculations and variables already present. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NBrian Foster <bfoster@redhat.com> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
由 Dave Chinner 提交于
xfs_writepage_map() iterates over the bufferheads on a page to decide what sort of IO to do and what actions to take. However, when it comes to reflink and deciding when it needs to execute a COW operation, we no longer look at the bufferhead state but instead we ignore than and look up internal state held in the COW fork extent list. This means xfs_writepage_map() is somewhat confused. It does stuff, then ignores it, then tries to handle the impedence mismatch by shovelling the results inside the existing mapping code. It works, but it's a bit of a mess and it makes it hard to fix the cached map bug that the writepage code currently has. To unify the two different mechanisms, we first have to choose a direction. That's already been set - we're de-emphasising bufferheads so they are no longer a control structure as we need to do taht to allow for eventual removal. Hence we need to move away from looking at bufferhead state to determine what operations we need to perform. We can't completely get rid of bufferheads yet - they do contain some state that is absolutely necessary, such as whether that part of the page contains valid data or not (buffer_uptodate()). Other state in the bufferhead is redundant: BH_dirty - the page is dirty, so we can ignore this and just write it BH_delay - we have delalloc extent info in the DATA fork extent tree BH_unwritten - same as BH_delay BH_mapped - indicates we've already used it once for IO and it is mapped to a disk address. Needs to be ignored for COW blocks. The BH_mapped flag is an interesting case - it's supposed to indicate that it's already mapped to disk and so we can just use it "as is". In theory, we don't even have to do an extent lookup to find where to write it too, but we have to do that anyway to determine we are actually writing over a valid extent. Hence it's not even serving the purpose of avoiding a an extent lookup during writeback, and so we can pretty much ignore it. Especially as we have to ignore it for COW operations... Therefore, use the extent map as the source of information to tell us what actions we need to take and what sort of IO we should perform. The first step is to have xfs_map_blocks() set the io type according to what it looks up. This means it can easily handle both normal overwrite and COW cases. The only thing we also need to add is the ability to return hole mappings. We need to return and cache hole mappings now for the case of multiple blocks per page. We no longer use the BH_mapped to indicate a block over a hole, so we have to get that info from xfs_map_blocks(). We cache it so that holes that span two pages don't need separate lookups. This allows us to avoid ever doing write IO over a hole, too. Now that we have xfs_map_blocks() returning both a cached map and the type of IO we need to perform, we can rewrite xfs_writepage_map() to drop all the bufferhead control. It's also much simplified because it doesn't need to explicitly handle COW operations. Instead of iterating bufferheads, it iterates blocks within the page and then looks up what per-block state is required from the appropriate bufferhead. It then validates the cached map, and if it's not valid, we get a new map. If we don't get a valid map or it's over a hole, we skip the block. At this point, we have to remap the bufferhead via xfs_map_at_offset(). As previously noted, we had to do this even if the buffer was already mapped as the mapping would be stale for XFS_IO_DELALLOC, XFS_IO_UNWRITTEN and XFS_IO_COW IO types. With xfs_map_blocks() now controlling the type, even XFS_IO_OVERWRITE types need remapping, as converted-but-not-yet- written delalloc extents beyond EOF can be reported at XFS_IO_OVERWRITE. Bufferheads that span such regions still need their BH_Delay flags cleared and their block numbers calculated, so we now unconditionally map each bufferhead before submission. But wait! There's more - remember the old "treat unwritten extents as holes on read" hack? Yeah, that means we can have a dirty page with unmapped, unwritten bufferheads that contain data! What makes these so special is that the unwritten "hole" bufferheads do not have a valid block device pointer, so if we attempt to write them xfs_add_to_ioend() blows up. So we make xfs_map_at_offset() do the "realtime or data device" lookup from the inode and ignore what was or wasn't put into the bufferhead when the buffer was instantiated. The astute reader will have realised by now that this code treats unwritten extents in multiple-blocks-per-page situations differently. If we get any combination of unwritten blocks on a dirty page that contain valid data in the page, we're going to convert them to real extents. This can actually be a win, because it means that pages with interleaving unwritten and written blocks will get converted to a single written extent with zeros replacing the interspersed unwritten blocks. This is actually good for reducing extent list and conversion overhead, and it means we issue a contiguous IO instead of lots of little ones. The downside is that we use up a little extra IO bandwidth. Neither of these seem like a bad thing given that spinning disks are seek sensitive, and SSDs/pmem have bandwidth to burn and the lower Io latency/CPU overhead of fewer, larger IOs will result in better performance on them... As a result of all this, the only state we actually care about from the bufferhead is a single flag - BH_Uptodate. We still use the bufferhead to pass some information to the bio via xfs_add_to_ioend(), but that is trivial to separate and pass explicitly. This means we really only need 1 bit of state per block per page from the buffered write path in the writeback path. Everything else we do with the bufferhead is purely to make the buffered IO front end continue to work correctly. i.e we've pretty much marginalised bufferheads in the writeback path completely. Signed-off-By: NDave Chinner <dchinner@redhat.com> [hch: forward port, refactor and split off bits into other commits] Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NBrian Foster <bfoster@redhat.com> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
由 Christoph Hellwig 提交于
Calling it file_offset makes the usage more clear, especially with a new poffset variable that will be added soon for the offset inside the page. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NBrian Foster <bfoster@redhat.com> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-