fec.c 66.8 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4
/*
 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
 *
5
 * Right now, I am very wasteful with the buffers.  I allocate memory
L
Linus Torvalds 已提交
6 7 8 9 10 11 12 13 14
 * pages and then divide them into 2K frame buffers.  This way I know I
 * have buffers large enough to hold one frame within one buffer descriptor.
 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
 * will be much more memory efficient and will easily handle lots of
 * small packets.
 *
 * Much better multiple PHY support by Magnus Damm.
 * Copyright (c) 2000 Ericsson Radio Systems AB.
 *
15 16
 * Support for FEC controller of ColdFire processors.
 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
17 18
 *
 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
19
 * Copyright (c) 2004-2006 Macq Electronique SA.
L
Linus Torvalds 已提交
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
 */

#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/ptrace.h>
#include <linux/errno.h>
#include <linux/ioport.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/spinlock.h>
#include <linux/workqueue.h>
#include <linux/bitops.h>
39 40
#include <linux/io.h>
#include <linux/irq.h>
41
#include <linux/clk.h>
42
#include <linux/platform_device.h>
L
Linus Torvalds 已提交
43

44
#include <asm/cacheflush.h>
45 46

#ifndef CONFIG_ARCH_MXC
L
Linus Torvalds 已提交
47 48
#include <asm/coldfire.h>
#include <asm/mcfsim.h>
49
#endif
50

L
Linus Torvalds 已提交
51 52
#include "fec.h"

53 54 55 56 57 58 59
#ifdef CONFIG_ARCH_MXC
#include <mach/hardware.h>
#define FEC_ALIGNMENT	0xf
#else
#define FEC_ALIGNMENT	0x3
#endif

60 61 62 63 64 65
#if defined CONFIG_M5272 || defined CONFIG_M527x || defined CONFIG_M523x \
	|| defined CONFIG_M528x || defined CONFIG_M532x || defined CONFIG_M520x
#define FEC_LEGACY
/*
 * Define the fixed address of the FEC hardware.
 */
66
#if defined(CONFIG_M5272)
67 68 69
#define HAVE_mii_link_interrupt
#endif

70 71 72 73 74 75
#if defined(CONFIG_FEC2)
#define	FEC_MAX_PORTS	2
#else
#define	FEC_MAX_PORTS	1
#endif

L
Linus Torvalds 已提交
76 77 78 79 80 81
static unsigned int fec_hw[] = {
#if defined(CONFIG_M5272)
	(MCF_MBAR + 0x840),
#elif defined(CONFIG_M527x)
	(MCF_MBAR + 0x1000),
	(MCF_MBAR + 0x1800),
82
#elif defined(CONFIG_M523x) || defined(CONFIG_M528x)
L
Linus Torvalds 已提交
83
	(MCF_MBAR + 0x1000),
84 85
#elif defined(CONFIG_M520x)
	(MCF_MBAR+0x30000),
86 87
#elif defined(CONFIG_M532x)
	(MCF_MBAR+0xfc030000),
L
Linus Torvalds 已提交
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
#endif
};

static unsigned char	fec_mac_default[] = {
	0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
};

/*
 * Some hardware gets it MAC address out of local flash memory.
 * if this is non-zero then assume it is the address to get MAC from.
 */
#if defined(CONFIG_NETtel)
#define	FEC_FLASHMAC	0xf0006006
#elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
#define	FEC_FLASHMAC	0xf0006000
#elif defined(CONFIG_CANCam)
#define	FEC_FLASHMAC	0xf0020000
105 106 107 108
#elif defined (CONFIG_M5272C3)
#define	FEC_FLASHMAC	(0xffe04000 + 4)
#elif defined(CONFIG_MOD5272)
#define FEC_FLASHMAC 	0xffc0406b
L
Linus Torvalds 已提交
109 110 111 112
#else
#define	FEC_FLASHMAC	0
#endif

113 114
#endif /* FEC_LEGACY */

L
Linus Torvalds 已提交
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
/* Forward declarations of some structures to support different PHYs
*/

typedef struct {
	uint mii_data;
	void (*funct)(uint mii_reg, struct net_device *dev);
} phy_cmd_t;

typedef struct {
	uint id;
	char *name;

	const phy_cmd_t *config;
	const phy_cmd_t *startup;
	const phy_cmd_t *ack_int;
	const phy_cmd_t *shutdown;
} phy_info_t;

/* The number of Tx and Rx buffers.  These are allocated from the page
 * pool.  The code may assume these are power of two, so it it best
 * to keep them that size.
 * We don't need to allocate pages for the transmitter.  We just use
 * the skbuffer directly.
 */
#define FEC_ENET_RX_PAGES	8
#define FEC_ENET_RX_FRSIZE	2048
#define FEC_ENET_RX_FRPPG	(PAGE_SIZE / FEC_ENET_RX_FRSIZE)
#define RX_RING_SIZE		(FEC_ENET_RX_FRPPG * FEC_ENET_RX_PAGES)
#define FEC_ENET_TX_FRSIZE	2048
#define FEC_ENET_TX_FRPPG	(PAGE_SIZE / FEC_ENET_TX_FRSIZE)
#define TX_RING_SIZE		16	/* Must be power of two */
#define TX_RING_MOD_MASK	15	/*   for this to work */

148
#if (((RX_RING_SIZE + TX_RING_SIZE) * 8) > PAGE_SIZE)
149
#error "FEC: descriptor ring size constants too large"
150 151
#endif

L
Linus Torvalds 已提交
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
/* Interrupt events/masks.
*/
#define FEC_ENET_HBERR	((uint)0x80000000)	/* Heartbeat error */
#define FEC_ENET_BABR	((uint)0x40000000)	/* Babbling receiver */
#define FEC_ENET_BABT	((uint)0x20000000)	/* Babbling transmitter */
#define FEC_ENET_GRA	((uint)0x10000000)	/* Graceful stop complete */
#define FEC_ENET_TXF	((uint)0x08000000)	/* Full frame transmitted */
#define FEC_ENET_TXB	((uint)0x04000000)	/* A buffer was transmitted */
#define FEC_ENET_RXF	((uint)0x02000000)	/* Full frame received */
#define FEC_ENET_RXB	((uint)0x01000000)	/* A buffer was received */
#define FEC_ENET_MII	((uint)0x00800000)	/* MII interrupt */
#define FEC_ENET_EBERR	((uint)0x00400000)	/* SDMA bus error */

/* The FEC stores dest/src/type, data, and checksum for receive packets.
 */
#define PKT_MAXBUF_SIZE		1518
#define PKT_MINBUF_SIZE		64
#define PKT_MAXBLR_SIZE		1520


/*
173
 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
L
Linus Torvalds 已提交
174 175 176
 * size bits. Other FEC hardware does not, so we need to take that into
 * account when setting it.
 */
177
#if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
178
    defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARCH_MXC)
L
Linus Torvalds 已提交
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
#define	OPT_FRAME_SIZE	(PKT_MAXBUF_SIZE << 16)
#else
#define	OPT_FRAME_SIZE	0
#endif

/* The FEC buffer descriptors track the ring buffers.  The rx_bd_base and
 * tx_bd_base always point to the base of the buffer descriptors.  The
 * cur_rx and cur_tx point to the currently available buffer.
 * The dirty_tx tracks the current buffer that is being sent by the
 * controller.  The cur_tx and dirty_tx are equal under both completely
 * empty and completely full conditions.  The empty/ready indicator in
 * the buffer descriptor determines the actual condition.
 */
struct fec_enet_private {
	/* Hardware registers of the FEC device */
	volatile fec_t	*hwp;

G
Greg Ungerer 已提交
196 197
	struct net_device *netdev;

198 199
	struct clk *clk;

L
Linus Torvalds 已提交
200 201 202 203 204 205 206 207
	/* The saved address of a sent-in-place packet/buffer, for skfree(). */
	unsigned char *tx_bounce[TX_RING_SIZE];
	struct	sk_buff* tx_skbuff[TX_RING_SIZE];
	ushort	skb_cur;
	ushort	skb_dirty;

	/* CPM dual port RAM relative addresses.
	*/
208
	dma_addr_t	bd_dma;
L
Linus Torvalds 已提交
209 210 211 212 213
	cbd_t	*rx_bd_base;		/* Address of Rx and Tx buffers. */
	cbd_t	*tx_bd_base;
	cbd_t	*cur_rx, *cur_tx;		/* The next free ring entry */
	cbd_t	*dirty_tx;	/* The ring entries to be free()ed. */
	uint	tx_full;
214 215 216 217
	/* hold while accessing the HW like ringbuffer for tx/rx but not MAC */
	spinlock_t hw_lock;
	/* hold while accessing the mii_list_t() elements */
	spinlock_t mii_lock;
L
Linus Torvalds 已提交
218 219 220 221 222

	uint	phy_id;
	uint	phy_id_done;
	uint	phy_status;
	uint	phy_speed;
223
	phy_info_t const	*phy;
L
Linus Torvalds 已提交
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
	struct work_struct phy_task;

	uint	sequence_done;
	uint	mii_phy_task_queued;

	uint	phy_addr;

	int	index;
	int	opened;
	int	link;
	int	old_link;
	int	full_duplex;
};

static int fec_enet_open(struct net_device *dev);
static int fec_enet_start_xmit(struct sk_buff *skb, struct net_device *dev);
static void fec_enet_mii(struct net_device *dev);
241
static irqreturn_t fec_enet_interrupt(int irq, void * dev_id);
L
Linus Torvalds 已提交
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
static void fec_enet_tx(struct net_device *dev);
static void fec_enet_rx(struct net_device *dev);
static int fec_enet_close(struct net_device *dev);
static void set_multicast_list(struct net_device *dev);
static void fec_restart(struct net_device *dev, int duplex);
static void fec_stop(struct net_device *dev);
static void fec_set_mac_address(struct net_device *dev);


/* MII processing.  We keep this as simple as possible.  Requests are
 * placed on the list (if there is room).  When the request is finished
 * by the MII, an optional function may be called.
 */
typedef struct mii_list {
	uint	mii_regval;
	void	(*mii_func)(uint val, struct net_device *dev);
	struct	mii_list *mii_next;
} mii_list_t;

#define		NMII	20
262 263 264 265
static mii_list_t	mii_cmds[NMII];
static mii_list_t	*mii_free;
static mii_list_t	*mii_head;
static mii_list_t	*mii_tail;
L
Linus Torvalds 已提交
266

267
static int	mii_queue(struct net_device *dev, int request,
L
Linus Torvalds 已提交
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
				void (*func)(uint, struct net_device *));

/* Make MII read/write commands for the FEC.
*/
#define mk_mii_read(REG)	(0x60020000 | ((REG & 0x1f) << 18))
#define mk_mii_write(REG, VAL)	(0x50020000 | ((REG & 0x1f) << 18) | \
						(VAL & 0xffff))
#define mk_mii_end	0

/* Transmitter timeout.
*/
#define TX_TIMEOUT (2*HZ)

/* Register definitions for the PHY.
*/

#define MII_REG_CR          0  /* Control Register                         */
#define MII_REG_SR          1  /* Status Register                          */
#define MII_REG_PHYIR1      2  /* PHY Identification Register 1            */
#define MII_REG_PHYIR2      3  /* PHY Identification Register 2            */
288
#define MII_REG_ANAR        4  /* A-N Advertisement Register               */
L
Linus Torvalds 已提交
289 290 291 292 293 294 295 296 297 298 299
#define MII_REG_ANLPAR      5  /* A-N Link Partner Ability Register        */
#define MII_REG_ANER        6  /* A-N Expansion Register                   */
#define MII_REG_ANNPTR      7  /* A-N Next Page Transmit Register          */
#define MII_REG_ANLPRNPR    8  /* A-N Link Partner Received Next Page Reg. */

/* values for phy_status */

#define PHY_CONF_ANE	0x0001  /* 1 auto-negotiation enabled */
#define PHY_CONF_LOOP	0x0002  /* 1 loopback mode enabled */
#define PHY_CONF_SPMASK	0x00f0  /* mask for speed */
#define PHY_CONF_10HDX	0x0010  /* 10 Mbit half duplex supported */
300
#define PHY_CONF_10FDX	0x0020  /* 10 Mbit full duplex supported */
L
Linus Torvalds 已提交
301
#define PHY_CONF_100HDX	0x0040  /* 100 Mbit half duplex supported */
302
#define PHY_CONF_100FDX	0x0080  /* 100 Mbit full duplex supported */
L
Linus Torvalds 已提交
303 304 305 306 307 308

#define PHY_STAT_LINK	0x0100  /* 1 up - 0 down */
#define PHY_STAT_FAULT	0x0200  /* 1 remote fault */
#define PHY_STAT_ANC	0x0400  /* 1 auto-negotiation complete	*/
#define PHY_STAT_SPMASK	0xf000  /* mask for speed */
#define PHY_STAT_10HDX	0x1000  /* 10 Mbit half duplex selected	*/
309
#define PHY_STAT_10FDX	0x2000  /* 10 Mbit full duplex selected	*/
L
Linus Torvalds 已提交
310
#define PHY_STAT_100HDX	0x4000  /* 100 Mbit half duplex selected */
311
#define PHY_STAT_100FDX	0x8000  /* 100 Mbit full duplex selected */
L
Linus Torvalds 已提交
312 313 314 315 316 317 318 319


static int
fec_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
	struct fec_enet_private *fep;
	volatile fec_t	*fecp;
	volatile cbd_t	*bdp;
320
	unsigned short	status;
321
	unsigned long flags;
L
Linus Torvalds 已提交
322 323 324 325 326 327 328 329 330

	fep = netdev_priv(dev);
	fecp = (volatile fec_t*)dev->base_addr;

	if (!fep->link) {
		/* Link is down or autonegotiation is in progress. */
		return 1;
	}

331
	spin_lock_irqsave(&fep->hw_lock, flags);
L
Linus Torvalds 已提交
332 333 334
	/* Fill in a Tx ring entry */
	bdp = fep->cur_tx;

335
	status = bdp->cbd_sc;
L
Linus Torvalds 已提交
336
#ifndef final_version
337
	if (status & BD_ENET_TX_READY) {
L
Linus Torvalds 已提交
338 339 340 341
		/* Ooops.  All transmit buffers are full.  Bail out.
		 * This should not happen, since dev->tbusy should be set.
		 */
		printk("%s: tx queue full!.\n", dev->name);
342
		spin_unlock_irqrestore(&fep->hw_lock, flags);
L
Linus Torvalds 已提交
343 344 345 346 347 348
		return 1;
	}
#endif

	/* Clear all of the status flags.
	 */
349
	status &= ~BD_ENET_TX_STATS;
L
Linus Torvalds 已提交
350 351 352 353 354 355 356 357 358 359 360

	/* Set buffer length and buffer pointer.
	*/
	bdp->cbd_bufaddr = __pa(skb->data);
	bdp->cbd_datlen = skb->len;

	/*
	 *	On some FEC implementations data must be aligned on
	 *	4-byte boundaries. Use bounce buffers to copy data
	 *	and get it aligned. Ugh.
	 */
361
	if (bdp->cbd_bufaddr & FEC_ALIGNMENT) {
L
Linus Torvalds 已提交
362 363
		unsigned int index;
		index = bdp - fep->tx_bd_base;
364
		memcpy(fep->tx_bounce[index], (void *)skb->data, skb->len);
L
Linus Torvalds 已提交
365 366 367 368 369 370 371
		bdp->cbd_bufaddr = __pa(fep->tx_bounce[index]);
	}

	/* Save skb pointer.
	*/
	fep->tx_skbuff[fep->skb_cur] = skb;

372
	dev->stats.tx_bytes += skb->len;
L
Linus Torvalds 已提交
373
	fep->skb_cur = (fep->skb_cur+1) & TX_RING_MOD_MASK;
374

L
Linus Torvalds 已提交
375 376 377
	/* Push the data cache so the CPM does not get stale memory
	 * data.
	 */
378 379
	dma_sync_single(NULL, bdp->cbd_bufaddr,
			bdp->cbd_datlen, DMA_TO_DEVICE);
L
Linus Torvalds 已提交
380

381 382
	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
	 * it's the last BD of the frame, and to put the CRC on the end.
L
Linus Torvalds 已提交
383 384
	 */

385
	status |= (BD_ENET_TX_READY | BD_ENET_TX_INTR
L
Linus Torvalds 已提交
386
			| BD_ENET_TX_LAST | BD_ENET_TX_TC);
387
	bdp->cbd_sc = status;
L
Linus Torvalds 已提交
388 389 390 391

	dev->trans_start = jiffies;

	/* Trigger transmission start */
392
	fecp->fec_x_des_active = 0;
L
Linus Torvalds 已提交
393 394 395

	/* If this was the last BD in the ring, start at the beginning again.
	*/
396
	if (status & BD_ENET_TX_WRAP) {
L
Linus Torvalds 已提交
397 398 399 400 401 402 403 404 405 406 407 408
		bdp = fep->tx_bd_base;
	} else {
		bdp++;
	}

	if (bdp == fep->dirty_tx) {
		fep->tx_full = 1;
		netif_stop_queue(dev);
	}

	fep->cur_tx = (cbd_t *)bdp;

409
	spin_unlock_irqrestore(&fep->hw_lock, flags);
L
Linus Torvalds 已提交
410 411 412 413 414 415 416 417 418 419

	return 0;
}

static void
fec_timeout(struct net_device *dev)
{
	struct fec_enet_private *fep = netdev_priv(dev);

	printk("%s: transmit timed out.\n", dev->name);
420
	dev->stats.tx_errors++;
L
Linus Torvalds 已提交
421 422 423 424 425 426 427 428 429 430 431 432 433
#ifndef final_version
	{
	int	i;
	cbd_t	*bdp;

	printk("Ring data dump: cur_tx %lx%s, dirty_tx %lx cur_rx: %lx\n",
	       (unsigned long)fep->cur_tx, fep->tx_full ? " (full)" : "",
	       (unsigned long)fep->dirty_tx,
	       (unsigned long)fep->cur_rx);

	bdp = fep->tx_bd_base;
	printk(" tx: %u buffers\n",  TX_RING_SIZE);
	for (i = 0 ; i < TX_RING_SIZE; i++) {
434
		printk("  %08x: %04x %04x %08x\n",
L
Linus Torvalds 已提交
435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
		       (uint) bdp,
		       bdp->cbd_sc,
		       bdp->cbd_datlen,
		       (int) bdp->cbd_bufaddr);
		bdp++;
	}

	bdp = fep->rx_bd_base;
	printk(" rx: %lu buffers\n",  (unsigned long) RX_RING_SIZE);
	for (i = 0 ; i < RX_RING_SIZE; i++) {
		printk("  %08x: %04x %04x %08x\n",
		       (uint) bdp,
		       bdp->cbd_sc,
		       bdp->cbd_datlen,
		       (int) bdp->cbd_bufaddr);
		bdp++;
	}
	}
#endif
454
	fec_restart(dev, fep->full_duplex);
L
Linus Torvalds 已提交
455 456 457 458 459 460 461
	netif_wake_queue(dev);
}

/* The interrupt handler.
 * This is called from the MPC core interrupt.
 */
static irqreturn_t
462
fec_enet_interrupt(int irq, void * dev_id)
L
Linus Torvalds 已提交
463 464 465 466
{
	struct	net_device *dev = dev_id;
	volatile fec_t	*fecp;
	uint	int_events;
467
	irqreturn_t ret = IRQ_NONE;
L
Linus Torvalds 已提交
468 469 470 471 472

	fecp = (volatile fec_t*)dev->base_addr;

	/* Get the interrupt events that caused us to be here.
	*/
473 474
	do {
		int_events = fecp->fec_ievent;
L
Linus Torvalds 已提交
475 476 477 478 479
		fecp->fec_ievent = int_events;

		/* Handle receive event in its own function.
		 */
		if (int_events & FEC_ENET_RXF) {
480
			ret = IRQ_HANDLED;
L
Linus Torvalds 已提交
481 482 483 484 485 486 487 488
			fec_enet_rx(dev);
		}

		/* Transmit OK, or non-fatal error. Update the buffer
		   descriptors. FEC handles all errors, we just discover
		   them as part of the transmit process.
		*/
		if (int_events & FEC_ENET_TXF) {
489
			ret = IRQ_HANDLED;
L
Linus Torvalds 已提交
490 491 492 493
			fec_enet_tx(dev);
		}

		if (int_events & FEC_ENET_MII) {
494
			ret = IRQ_HANDLED;
L
Linus Torvalds 已提交
495 496
			fec_enet_mii(dev);
		}
497

498 499 500
	} while (int_events);

	return ret;
L
Linus Torvalds 已提交
501 502 503 504 505 506 507 508
}


static void
fec_enet_tx(struct net_device *dev)
{
	struct	fec_enet_private *fep;
	volatile cbd_t	*bdp;
509
	unsigned short status;
L
Linus Torvalds 已提交
510 511 512
	struct	sk_buff	*skb;

	fep = netdev_priv(dev);
513
	spin_lock_irq(&fep->hw_lock);
L
Linus Torvalds 已提交
514 515
	bdp = fep->dirty_tx;

516
	while (((status = bdp->cbd_sc) & BD_ENET_TX_READY) == 0) {
L
Linus Torvalds 已提交
517 518 519 520
		if (bdp == fep->cur_tx && fep->tx_full == 0) break;

		skb = fep->tx_skbuff[fep->skb_dirty];
		/* Check for errors. */
521
		if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
L
Linus Torvalds 已提交
522 523
				   BD_ENET_TX_RL | BD_ENET_TX_UN |
				   BD_ENET_TX_CSL)) {
524
			dev->stats.tx_errors++;
525
			if (status & BD_ENET_TX_HB)  /* No heartbeat */
526
				dev->stats.tx_heartbeat_errors++;
527
			if (status & BD_ENET_TX_LC)  /* Late collision */
528
				dev->stats.tx_window_errors++;
529
			if (status & BD_ENET_TX_RL)  /* Retrans limit */
530
				dev->stats.tx_aborted_errors++;
531
			if (status & BD_ENET_TX_UN)  /* Underrun */
532
				dev->stats.tx_fifo_errors++;
533
			if (status & BD_ENET_TX_CSL) /* Carrier lost */
534
				dev->stats.tx_carrier_errors++;
L
Linus Torvalds 已提交
535
		} else {
536
			dev->stats.tx_packets++;
L
Linus Torvalds 已提交
537 538 539
		}

#ifndef final_version
540
		if (status & BD_ENET_TX_READY)
L
Linus Torvalds 已提交
541 542 543 544 545
			printk("HEY! Enet xmit interrupt and TX_READY.\n");
#endif
		/* Deferred means some collisions occurred during transmit,
		 * but we eventually sent the packet OK.
		 */
546
		if (status & BD_ENET_TX_DEF)
547
			dev->stats.collisions++;
548

L
Linus Torvalds 已提交
549 550 551 552 553
		/* Free the sk buffer associated with this last transmit.
		 */
		dev_kfree_skb_any(skb);
		fep->tx_skbuff[fep->skb_dirty] = NULL;
		fep->skb_dirty = (fep->skb_dirty + 1) & TX_RING_MOD_MASK;
554

L
Linus Torvalds 已提交
555 556
		/* Update pointer to next buffer descriptor to be transmitted.
		 */
557
		if (status & BD_ENET_TX_WRAP)
L
Linus Torvalds 已提交
558 559 560
			bdp = fep->tx_bd_base;
		else
			bdp++;
561

L
Linus Torvalds 已提交
562 563 564 565 566 567 568 569 570 571
		/* Since we have freed up a buffer, the ring is no longer
		 * full.
		 */
		if (fep->tx_full) {
			fep->tx_full = 0;
			if (netif_queue_stopped(dev))
				netif_wake_queue(dev);
		}
	}
	fep->dirty_tx = (cbd_t *)bdp;
572
	spin_unlock_irq(&fep->hw_lock);
L
Linus Torvalds 已提交
573 574 575 576 577 578 579 580 581 582 583 584 585 586
}


/* During a receive, the cur_rx points to the current incoming buffer.
 * When we update through the ring, if the next incoming buffer has
 * not been given to the system, we just set the empty indicator,
 * effectively tossing the packet.
 */
static void
fec_enet_rx(struct net_device *dev)
{
	struct	fec_enet_private *fep;
	volatile fec_t	*fecp;
	volatile cbd_t *bdp;
587
	unsigned short status;
L
Linus Torvalds 已提交
588 589 590
	struct	sk_buff	*skb;
	ushort	pkt_len;
	__u8 *data;
591

592 593
#ifdef CONFIG_M532x
	flush_cache_all();
594
#endif
L
Linus Torvalds 已提交
595 596 597 598

	fep = netdev_priv(dev);
	fecp = (volatile fec_t*)dev->base_addr;

599 600
	spin_lock_irq(&fep->hw_lock);

L
Linus Torvalds 已提交
601 602 603 604 605
	/* First, grab all of the stats for the incoming packet.
	 * These get messed up if we get called due to a busy condition.
	 */
	bdp = fep->cur_rx;

606
while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) {
L
Linus Torvalds 已提交
607 608 609 610 611

#ifndef final_version
	/* Since we have allocated space to hold a complete frame,
	 * the last indicator should be set.
	 */
612
	if ((status & BD_ENET_RX_LAST) == 0)
L
Linus Torvalds 已提交
613 614 615 616 617 618 619
		printk("FEC ENET: rcv is not +last\n");
#endif

	if (!fep->opened)
		goto rx_processing_done;

	/* Check for errors. */
620
	if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
L
Linus Torvalds 已提交
621
			   BD_ENET_RX_CR | BD_ENET_RX_OV)) {
622
		dev->stats.rx_errors++;
623
		if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH)) {
L
Linus Torvalds 已提交
624
		/* Frame too long or too short. */
625
			dev->stats.rx_length_errors++;
L
Linus Torvalds 已提交
626
		}
627
		if (status & BD_ENET_RX_NO)	/* Frame alignment */
628
			dev->stats.rx_frame_errors++;
629
		if (status & BD_ENET_RX_CR)	/* CRC Error */
630
			dev->stats.rx_crc_errors++;
631
		if (status & BD_ENET_RX_OV)	/* FIFO overrun */
632
			dev->stats.rx_fifo_errors++;
L
Linus Torvalds 已提交
633 634 635 636 637 638
	}

	/* Report late collisions as a frame error.
	 * On this error, the BD is closed, but we don't know what we
	 * have in the buffer.  So, just drop this frame on the floor.
	 */
639
	if (status & BD_ENET_RX_CL) {
640 641
		dev->stats.rx_errors++;
		dev->stats.rx_frame_errors++;
L
Linus Torvalds 已提交
642 643 644 645 646
		goto rx_processing_done;
	}

	/* Process the incoming frame.
	 */
647
	dev->stats.rx_packets++;
L
Linus Torvalds 已提交
648
	pkt_len = bdp->cbd_datlen;
649
	dev->stats.rx_bytes += pkt_len;
L
Linus Torvalds 已提交
650 651
	data = (__u8*)__va(bdp->cbd_bufaddr);

652 653 654
	dma_sync_single(NULL, (unsigned long)__pa(data),
			pkt_len - 4, DMA_FROM_DEVICE);

L
Linus Torvalds 已提交
655 656 657 658 659 660 661 662 663
	/* This does 16 byte alignment, exactly what we need.
	 * The packet length includes FCS, but we don't want to
	 * include that when passing upstream as it messes up
	 * bridging applications.
	 */
	skb = dev_alloc_skb(pkt_len-4);

	if (skb == NULL) {
		printk("%s: Memory squeeze, dropping packet.\n", dev->name);
664
		dev->stats.rx_dropped++;
L
Linus Torvalds 已提交
665 666
	} else {
		skb_put(skb,pkt_len-4);	/* Make room */
667
		skb_copy_to_linear_data(skb, data, pkt_len-4);
L
Linus Torvalds 已提交
668 669 670 671 672 673 674
		skb->protocol=eth_type_trans(skb,dev);
		netif_rx(skb);
	}
  rx_processing_done:

	/* Clear the status flags for this buffer.
	*/
675
	status &= ~BD_ENET_RX_STATS;
L
Linus Torvalds 已提交
676 677 678

	/* Mark the buffer empty.
	*/
679 680
	status |= BD_ENET_RX_EMPTY;
	bdp->cbd_sc = status;
L
Linus Torvalds 已提交
681 682 683

	/* Update BD pointer to next entry.
	*/
684
	if (status & BD_ENET_RX_WRAP)
L
Linus Torvalds 已提交
685 686 687
		bdp = fep->rx_bd_base;
	else
		bdp++;
688

L
Linus Torvalds 已提交
689 690 691 692 693
#if 1
	/* Doing this here will keep the FEC running while we process
	 * incoming frames.  On a heavily loaded network, we should be
	 * able to keep up at the expense of system resources.
	 */
694
	fecp->fec_r_des_active = 0;
L
Linus Torvalds 已提交
695
#endif
696
   } /* while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) */
L
Linus Torvalds 已提交
697 698 699 700 701 702 703 704 705 706
	fep->cur_rx = (cbd_t *)bdp;

#if 0
	/* Doing this here will allow us to process all frames in the
	 * ring before the FEC is allowed to put more there.  On a heavily
	 * loaded network, some frames may be lost.  Unfortunately, this
	 * increases the interrupt overhead since we can potentially work
	 * our way back to the interrupt return only to come right back
	 * here.
	 */
707
	fecp->fec_r_des_active = 0;
L
Linus Torvalds 已提交
708
#endif
709 710

	spin_unlock_irq(&fep->hw_lock);
L
Linus Torvalds 已提交
711 712 713
}


714
/* called from interrupt context */
L
Linus Torvalds 已提交
715 716 717 718 719 720 721 722 723
static void
fec_enet_mii(struct net_device *dev)
{
	struct	fec_enet_private *fep;
	volatile fec_t	*ep;
	mii_list_t	*mip;
	uint		mii_reg;

	fep = netdev_priv(dev);
724 725
	spin_lock_irq(&fep->mii_lock);

L
Linus Torvalds 已提交
726 727
	ep = fep->hwp;
	mii_reg = ep->fec_mii_data;
728

L
Linus Torvalds 已提交
729 730
	if ((mip = mii_head) == NULL) {
		printk("MII and no head!\n");
731
		goto unlock;
L
Linus Torvalds 已提交
732 733 734 735 736 737 738 739 740 741 742
	}

	if (mip->mii_func != NULL)
		(*(mip->mii_func))(mii_reg, dev);

	mii_head = mip->mii_next;
	mip->mii_next = mii_free;
	mii_free = mip;

	if ((mip = mii_head) != NULL)
		ep->fec_mii_data = mip->mii_regval;
743 744

unlock:
745
	spin_unlock_irq(&fep->mii_lock);
L
Linus Torvalds 已提交
746 747 748 749 750 751 752 753 754 755 756 757 758
}

static int
mii_queue(struct net_device *dev, int regval, void (*func)(uint, struct net_device *))
{
	struct fec_enet_private *fep;
	unsigned long	flags;
	mii_list_t	*mip;
	int		retval;

	/* Add PHY address to register command.
	*/
	fep = netdev_priv(dev);
759
	spin_lock_irqsave(&fep->mii_lock, flags);
L
Linus Torvalds 已提交
760

761
	regval |= fep->phy_addr << 23;
L
Linus Torvalds 已提交
762 763 764 765 766 767 768 769 770 771
	retval = 0;

	if ((mip = mii_free) != NULL) {
		mii_free = mip->mii_next;
		mip->mii_regval = regval;
		mip->mii_func = func;
		mip->mii_next = NULL;
		if (mii_head) {
			mii_tail->mii_next = mip;
			mii_tail = mip;
772
		} else {
L
Linus Torvalds 已提交
773 774 775
			mii_head = mii_tail = mip;
			fep->hwp->fec_mii_data = regval;
		}
776
	} else {
L
Linus Torvalds 已提交
777 778 779
		retval = 1;
	}

780 781
	spin_unlock_irqrestore(&fep->mii_lock, flags);
	return retval;
L
Linus Torvalds 已提交
782 783 784 785 786 787 788
}

static void mii_do_cmd(struct net_device *dev, const phy_cmd_t *c)
{
	if(!c)
		return;

789 790
	for (; c->mii_data != mk_mii_end; c++)
		mii_queue(dev, c->mii_data, c->funct);
L
Linus Torvalds 已提交
791 792 793 794 795 796
}

static void mii_parse_sr(uint mii_reg, struct net_device *dev)
{
	struct fec_enet_private *fep = netdev_priv(dev);
	volatile uint *s = &(fep->phy_status);
797
	uint status;
L
Linus Torvalds 已提交
798

799
	status = *s & ~(PHY_STAT_LINK | PHY_STAT_FAULT | PHY_STAT_ANC);
L
Linus Torvalds 已提交
800 801

	if (mii_reg & 0x0004)
802
		status |= PHY_STAT_LINK;
L
Linus Torvalds 已提交
803
	if (mii_reg & 0x0010)
804
		status |= PHY_STAT_FAULT;
L
Linus Torvalds 已提交
805
	if (mii_reg & 0x0020)
806 807
		status |= PHY_STAT_ANC;
	*s = status;
L
Linus Torvalds 已提交
808 809 810 811 812 813
}

static void mii_parse_cr(uint mii_reg, struct net_device *dev)
{
	struct fec_enet_private *fep = netdev_priv(dev);
	volatile uint *s = &(fep->phy_status);
814
	uint status;
L
Linus Torvalds 已提交
815

816
	status = *s & ~(PHY_CONF_ANE | PHY_CONF_LOOP);
L
Linus Torvalds 已提交
817 818

	if (mii_reg & 0x1000)
819
		status |= PHY_CONF_ANE;
L
Linus Torvalds 已提交
820
	if (mii_reg & 0x4000)
821 822
		status |= PHY_CONF_LOOP;
	*s = status;
L
Linus Torvalds 已提交
823 824 825 826 827 828
}

static void mii_parse_anar(uint mii_reg, struct net_device *dev)
{
	struct fec_enet_private *fep = netdev_priv(dev);
	volatile uint *s = &(fep->phy_status);
829
	uint status;
L
Linus Torvalds 已提交
830

831
	status = *s & ~(PHY_CONF_SPMASK);
L
Linus Torvalds 已提交
832 833

	if (mii_reg & 0x0020)
834
		status |= PHY_CONF_10HDX;
L
Linus Torvalds 已提交
835
	if (mii_reg & 0x0040)
836
		status |= PHY_CONF_10FDX;
L
Linus Torvalds 已提交
837
	if (mii_reg & 0x0080)
838
		status |= PHY_CONF_100HDX;
L
Linus Torvalds 已提交
839
	if (mii_reg & 0x00100)
840 841
		status |= PHY_CONF_100FDX;
	*s = status;
L
Linus Torvalds 已提交
842 843 844 845 846 847 848 849 850 851 852 853 854 855 856
}

/* ------------------------------------------------------------------------- */
/* The Level one LXT970 is used by many boards				     */

#define MII_LXT970_MIRROR    16  /* Mirror register           */
#define MII_LXT970_IER       17  /* Interrupt Enable Register */
#define MII_LXT970_ISR       18  /* Interrupt Status Register */
#define MII_LXT970_CONFIG    19  /* Configuration Register    */
#define MII_LXT970_CSR       20  /* Chip Status Register      */

static void mii_parse_lxt970_csr(uint mii_reg, struct net_device *dev)
{
	struct fec_enet_private *fep = netdev_priv(dev);
	volatile uint *s = &(fep->phy_status);
857
	uint status;
L
Linus Torvalds 已提交
858

859
	status = *s & ~(PHY_STAT_SPMASK);
L
Linus Torvalds 已提交
860 861
	if (mii_reg & 0x0800) {
		if (mii_reg & 0x1000)
862
			status |= PHY_STAT_100FDX;
L
Linus Torvalds 已提交
863
		else
864
			status |= PHY_STAT_100HDX;
L
Linus Torvalds 已提交
865 866
	} else {
		if (mii_reg & 0x1000)
867
			status |= PHY_STAT_10FDX;
L
Linus Torvalds 已提交
868
		else
869
			status |= PHY_STAT_10HDX;
L
Linus Torvalds 已提交
870
	}
871
	*s = status;
L
Linus Torvalds 已提交
872 873
}

874
static phy_cmd_t const phy_cmd_lxt970_config[] = {
L
Linus Torvalds 已提交
875 876 877
		{ mk_mii_read(MII_REG_CR), mii_parse_cr },
		{ mk_mii_read(MII_REG_ANAR), mii_parse_anar },
		{ mk_mii_end, }
878 879
	};
static phy_cmd_t const phy_cmd_lxt970_startup[] = { /* enable interrupts */
L
Linus Torvalds 已提交
880 881 882
		{ mk_mii_write(MII_LXT970_IER, 0x0002), NULL },
		{ mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
		{ mk_mii_end, }
883 884
	};
static phy_cmd_t const phy_cmd_lxt970_ack_int[] = {
L
Linus Torvalds 已提交
885 886 887 888 889 890 891
		/* read SR and ISR to acknowledge */
		{ mk_mii_read(MII_REG_SR), mii_parse_sr },
		{ mk_mii_read(MII_LXT970_ISR), NULL },

		/* find out the current status */
		{ mk_mii_read(MII_LXT970_CSR), mii_parse_lxt970_csr },
		{ mk_mii_end, }
892 893
	};
static phy_cmd_t const phy_cmd_lxt970_shutdown[] = { /* disable interrupts */
L
Linus Torvalds 已提交
894 895
		{ mk_mii_write(MII_LXT970_IER, 0x0000), NULL },
		{ mk_mii_end, }
896 897
	};
static phy_info_t const phy_info_lxt970 = {
898
	.id = 0x07810000,
899 900 901 902 903
	.name = "LXT970",
	.config = phy_cmd_lxt970_config,
	.startup = phy_cmd_lxt970_startup,
	.ack_int = phy_cmd_lxt970_ack_int,
	.shutdown = phy_cmd_lxt970_shutdown
L
Linus Torvalds 已提交
904
};
905

L
Linus Torvalds 已提交
906 907 908 909 910 911 912 913 914 915 916 917
/* ------------------------------------------------------------------------- */
/* The Level one LXT971 is used on some of my custom boards                  */

/* register definitions for the 971 */

#define MII_LXT971_PCR       16  /* Port Control Register     */
#define MII_LXT971_SR2       17  /* Status Register 2         */
#define MII_LXT971_IER       18  /* Interrupt Enable Register */
#define MII_LXT971_ISR       19  /* Interrupt Status Register */
#define MII_LXT971_LCR       20  /* LED Control Register      */
#define MII_LXT971_TCR       30  /* Transmit Control Register */

918
/*
L
Linus Torvalds 已提交
919 920 921 922 923 924 925 926 927
 * I had some nice ideas of running the MDIO faster...
 * The 971 should support 8MHz and I tried it, but things acted really
 * weird, so 2.5 MHz ought to be enough for anyone...
 */

static void mii_parse_lxt971_sr2(uint mii_reg, struct net_device *dev)
{
	struct fec_enet_private *fep = netdev_priv(dev);
	volatile uint *s = &(fep->phy_status);
928
	uint status;
L
Linus Torvalds 已提交
929

930
	status = *s & ~(PHY_STAT_SPMASK | PHY_STAT_LINK | PHY_STAT_ANC);
L
Linus Torvalds 已提交
931 932 933

	if (mii_reg & 0x0400) {
		fep->link = 1;
934
		status |= PHY_STAT_LINK;
L
Linus Torvalds 已提交
935 936 937 938
	} else {
		fep->link = 0;
	}
	if (mii_reg & 0x0080)
939
		status |= PHY_STAT_ANC;
L
Linus Torvalds 已提交
940 941
	if (mii_reg & 0x4000) {
		if (mii_reg & 0x0200)
942
			status |= PHY_STAT_100FDX;
L
Linus Torvalds 已提交
943
		else
944
			status |= PHY_STAT_100HDX;
L
Linus Torvalds 已提交
945 946
	} else {
		if (mii_reg & 0x0200)
947
			status |= PHY_STAT_10FDX;
L
Linus Torvalds 已提交
948
		else
949
			status |= PHY_STAT_10HDX;
L
Linus Torvalds 已提交
950 951
	}
	if (mii_reg & 0x0008)
952
		status |= PHY_STAT_FAULT;
L
Linus Torvalds 已提交
953

954 955
	*s = status;
}
956

957
static phy_cmd_t const phy_cmd_lxt971_config[] = {
958
		/* limit to 10MBit because my prototype board
L
Linus Torvalds 已提交
959 960 961 962 963
		 * doesn't work with 100. */
		{ mk_mii_read(MII_REG_CR), mii_parse_cr },
		{ mk_mii_read(MII_REG_ANAR), mii_parse_anar },
		{ mk_mii_read(MII_LXT971_SR2), mii_parse_lxt971_sr2 },
		{ mk_mii_end, }
964 965
	};
static phy_cmd_t const phy_cmd_lxt971_startup[] = {  /* enable interrupts */
L
Linus Torvalds 已提交
966 967 968 969 970 971
		{ mk_mii_write(MII_LXT971_IER, 0x00f2), NULL },
		{ mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
		{ mk_mii_write(MII_LXT971_LCR, 0xd422), NULL }, /* LED config */
		/* Somehow does the 971 tell me that the link is down
		 * the first read after power-up.
		 * read here to get a valid value in ack_int */
972
		{ mk_mii_read(MII_REG_SR), mii_parse_sr },
L
Linus Torvalds 已提交
973
		{ mk_mii_end, }
974 975 976 977
	};
static phy_cmd_t const phy_cmd_lxt971_ack_int[] = {
		/* acknowledge the int before reading status ! */
		{ mk_mii_read(MII_LXT971_ISR), NULL },
L
Linus Torvalds 已提交
978 979 980 981
		/* find out the current status */
		{ mk_mii_read(MII_REG_SR), mii_parse_sr },
		{ mk_mii_read(MII_LXT971_SR2), mii_parse_lxt971_sr2 },
		{ mk_mii_end, }
982 983
	};
static phy_cmd_t const phy_cmd_lxt971_shutdown[] = { /* disable interrupts */
L
Linus Torvalds 已提交
984 985
		{ mk_mii_write(MII_LXT971_IER, 0x0000), NULL },
		{ mk_mii_end, }
986 987
	};
static phy_info_t const phy_info_lxt971 = {
988
	.id = 0x0001378e,
989 990 991 992 993
	.name = "LXT971",
	.config = phy_cmd_lxt971_config,
	.startup = phy_cmd_lxt971_startup,
	.ack_int = phy_cmd_lxt971_ack_int,
	.shutdown = phy_cmd_lxt971_shutdown
L
Linus Torvalds 已提交
994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
};

/* ------------------------------------------------------------------------- */
/* The Quality Semiconductor QS6612 is used on the RPX CLLF                  */

/* register definitions */

#define MII_QS6612_MCR       17  /* Mode Control Register      */
#define MII_QS6612_FTR       27  /* Factory Test Register      */
#define MII_QS6612_MCO       28  /* Misc. Control Register     */
#define MII_QS6612_ISR       29  /* Interrupt Source Register  */
#define MII_QS6612_IMR       30  /* Interrupt Mask Register    */
#define MII_QS6612_PCR       31  /* 100BaseTx PHY Control Reg. */

static void mii_parse_qs6612_pcr(uint mii_reg, struct net_device *dev)
{
	struct fec_enet_private *fep = netdev_priv(dev);
	volatile uint *s = &(fep->phy_status);
1012
	uint status;
L
Linus Torvalds 已提交
1013

1014
	status = *s & ~(PHY_STAT_SPMASK);
L
Linus Torvalds 已提交
1015 1016

	switch((mii_reg >> 2) & 7) {
1017 1018 1019 1020
	case 1: status |= PHY_STAT_10HDX; break;
	case 2: status |= PHY_STAT_100HDX; break;
	case 5: status |= PHY_STAT_10FDX; break;
	case 6: status |= PHY_STAT_100FDX; break;
L
Linus Torvalds 已提交
1021 1022
}

1023 1024 1025 1026
	*s = status;
}

static phy_cmd_t const phy_cmd_qs6612_config[] = {
1027
		/* The PHY powers up isolated on the RPX,
L
Linus Torvalds 已提交
1028 1029 1030 1031 1032 1033 1034 1035
		 * so send a command to allow operation.
		 */
		{ mk_mii_write(MII_QS6612_PCR, 0x0dc0), NULL },

		/* parse cr and anar to get some info */
		{ mk_mii_read(MII_REG_CR), mii_parse_cr },
		{ mk_mii_read(MII_REG_ANAR), mii_parse_anar },
		{ mk_mii_end, }
1036 1037
	};
static phy_cmd_t const phy_cmd_qs6612_startup[] = {  /* enable interrupts */
L
Linus Torvalds 已提交
1038 1039 1040
		{ mk_mii_write(MII_QS6612_IMR, 0x003a), NULL },
		{ mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
		{ mk_mii_end, }
1041 1042
	};
static phy_cmd_t const phy_cmd_qs6612_ack_int[] = {
L
Linus Torvalds 已提交
1043 1044 1045 1046 1047 1048 1049 1050
		/* we need to read ISR, SR and ANER to acknowledge */
		{ mk_mii_read(MII_QS6612_ISR), NULL },
		{ mk_mii_read(MII_REG_SR), mii_parse_sr },
		{ mk_mii_read(MII_REG_ANER), NULL },

		/* read pcr to get info */
		{ mk_mii_read(MII_QS6612_PCR), mii_parse_qs6612_pcr },
		{ mk_mii_end, }
1051 1052
	};
static phy_cmd_t const phy_cmd_qs6612_shutdown[] = { /* disable interrupts */
L
Linus Torvalds 已提交
1053 1054
		{ mk_mii_write(MII_QS6612_IMR, 0x0000), NULL },
		{ mk_mii_end, }
1055 1056
	};
static phy_info_t const phy_info_qs6612 = {
1057
	.id = 0x00181440,
1058 1059 1060 1061 1062
	.name = "QS6612",
	.config = phy_cmd_qs6612_config,
	.startup = phy_cmd_qs6612_startup,
	.ack_int = phy_cmd_qs6612_ack_int,
	.shutdown = phy_cmd_qs6612_shutdown
L
Linus Torvalds 已提交
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
};

/* ------------------------------------------------------------------------- */
/* AMD AM79C874 phy                                                          */

/* register definitions for the 874 */

#define MII_AM79C874_MFR       16  /* Miscellaneous Feature Register */
#define MII_AM79C874_ICSR      17  /* Interrupt/Status Register      */
#define MII_AM79C874_DR        18  /* Diagnostic Register            */
#define MII_AM79C874_PMLR      19  /* Power and Loopback Register    */
#define MII_AM79C874_MCR       21  /* ModeControl Register           */
#define MII_AM79C874_DC        23  /* Disconnect Counter             */
#define MII_AM79C874_REC       24  /* Recieve Error Counter          */

static void mii_parse_am79c874_dr(uint mii_reg, struct net_device *dev)
{
	struct fec_enet_private *fep = netdev_priv(dev);
	volatile uint *s = &(fep->phy_status);
1082
	uint status;
L
Linus Torvalds 已提交
1083

1084
	status = *s & ~(PHY_STAT_SPMASK | PHY_STAT_ANC);
L
Linus Torvalds 已提交
1085 1086

	if (mii_reg & 0x0080)
1087
		status |= PHY_STAT_ANC;
L
Linus Torvalds 已提交
1088
	if (mii_reg & 0x0400)
1089
		status |= ((mii_reg & 0x0800) ? PHY_STAT_100FDX : PHY_STAT_100HDX);
L
Linus Torvalds 已提交
1090
	else
1091 1092 1093
		status |= ((mii_reg & 0x0800) ? PHY_STAT_10FDX : PHY_STAT_10HDX);

	*s = status;
L
Linus Torvalds 已提交
1094 1095
}

1096
static phy_cmd_t const phy_cmd_am79c874_config[] = {
L
Linus Torvalds 已提交
1097 1098 1099 1100
		{ mk_mii_read(MII_REG_CR), mii_parse_cr },
		{ mk_mii_read(MII_REG_ANAR), mii_parse_anar },
		{ mk_mii_read(MII_AM79C874_DR), mii_parse_am79c874_dr },
		{ mk_mii_end, }
1101 1102
	};
static phy_cmd_t const phy_cmd_am79c874_startup[] = {  /* enable interrupts */
L
Linus Torvalds 已提交
1103 1104
		{ mk_mii_write(MII_AM79C874_ICSR, 0xff00), NULL },
		{ mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
1105
		{ mk_mii_read(MII_REG_SR), mii_parse_sr },
L
Linus Torvalds 已提交
1106
		{ mk_mii_end, }
1107 1108
	};
static phy_cmd_t const phy_cmd_am79c874_ack_int[] = {
L
Linus Torvalds 已提交
1109 1110 1111 1112 1113 1114
		/* find out the current status */
		{ mk_mii_read(MII_REG_SR), mii_parse_sr },
		{ mk_mii_read(MII_AM79C874_DR), mii_parse_am79c874_dr },
		/* we only need to read ISR to acknowledge */
		{ mk_mii_read(MII_AM79C874_ICSR), NULL },
		{ mk_mii_end, }
1115 1116
	};
static phy_cmd_t const phy_cmd_am79c874_shutdown[] = { /* disable interrupts */
L
Linus Torvalds 已提交
1117 1118
		{ mk_mii_write(MII_AM79C874_ICSR, 0x0000), NULL },
		{ mk_mii_end, }
1119 1120 1121 1122 1123 1124 1125 1126
	};
static phy_info_t const phy_info_am79c874 = {
	.id = 0x00022561,
	.name = "AM79C874",
	.config = phy_cmd_am79c874_config,
	.startup = phy_cmd_am79c874_startup,
	.ack_int = phy_cmd_am79c874_ack_int,
	.shutdown = phy_cmd_am79c874_shutdown
L
Linus Torvalds 已提交
1127 1128
};

1129

L
Linus Torvalds 已提交
1130 1131 1132 1133 1134 1135
/* ------------------------------------------------------------------------- */
/* Kendin KS8721BL phy                                                       */

/* register definitions for the 8721 */

#define MII_KS8721BL_RXERCR	21
1136
#define MII_KS8721BL_ICSR	27
L
Linus Torvalds 已提交
1137 1138
#define	MII_KS8721BL_PHYCR	31

1139
static phy_cmd_t const phy_cmd_ks8721bl_config[] = {
L
Linus Torvalds 已提交
1140 1141 1142
		{ mk_mii_read(MII_REG_CR), mii_parse_cr },
		{ mk_mii_read(MII_REG_ANAR), mii_parse_anar },
		{ mk_mii_end, }
1143 1144
	};
static phy_cmd_t const phy_cmd_ks8721bl_startup[] = {  /* enable interrupts */
L
Linus Torvalds 已提交
1145 1146
		{ mk_mii_write(MII_KS8721BL_ICSR, 0xff00), NULL },
		{ mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
1147
		{ mk_mii_read(MII_REG_SR), mii_parse_sr },
L
Linus Torvalds 已提交
1148
		{ mk_mii_end, }
1149 1150
	};
static phy_cmd_t const phy_cmd_ks8721bl_ack_int[] = {
L
Linus Torvalds 已提交
1151 1152 1153 1154 1155
		/* find out the current status */
		{ mk_mii_read(MII_REG_SR), mii_parse_sr },
		/* we only need to read ISR to acknowledge */
		{ mk_mii_read(MII_KS8721BL_ICSR), NULL },
		{ mk_mii_end, }
1156 1157
	};
static phy_cmd_t const phy_cmd_ks8721bl_shutdown[] = { /* disable interrupts */
L
Linus Torvalds 已提交
1158 1159
		{ mk_mii_write(MII_KS8721BL_ICSR, 0x0000), NULL },
		{ mk_mii_end, }
1160 1161
	};
static phy_info_t const phy_info_ks8721bl = {
1162
	.id = 0x00022161,
1163 1164 1165 1166 1167
	.name = "KS8721BL",
	.config = phy_cmd_ks8721bl_config,
	.startup = phy_cmd_ks8721bl_startup,
	.ack_int = phy_cmd_ks8721bl_ack_int,
	.shutdown = phy_cmd_ks8721bl_shutdown
L
Linus Torvalds 已提交
1168 1169
};

1170 1171 1172 1173 1174 1175 1176
/* ------------------------------------------------------------------------- */
/* register definitions for the DP83848 */

#define MII_DP8384X_PHYSTST    16  /* PHY Status Register */

static void mii_parse_dp8384x_sr2(uint mii_reg, struct net_device *dev)
{
1177
	struct fec_enet_private *fep = netdev_priv(dev);
1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
	volatile uint *s = &(fep->phy_status);

	*s &= ~(PHY_STAT_SPMASK | PHY_STAT_LINK | PHY_STAT_ANC);

	/* Link up */
	if (mii_reg & 0x0001) {
		fep->link = 1;
		*s |= PHY_STAT_LINK;
	} else
		fep->link = 0;
	/* Status of link */
	if (mii_reg & 0x0010)   /* Autonegotioation complete */
		*s |= PHY_STAT_ANC;
	if (mii_reg & 0x0002) {   /* 10MBps? */
		if (mii_reg & 0x0004)   /* Full Duplex? */
			*s |= PHY_STAT_10FDX;
		else
			*s |= PHY_STAT_10HDX;
	} else {                  /* 100 Mbps? */
		if (mii_reg & 0x0004)   /* Full Duplex? */
			*s |= PHY_STAT_100FDX;
		else
			*s |= PHY_STAT_100HDX;
	}
	if (mii_reg & 0x0008)
		*s |= PHY_STAT_FAULT;
}

static phy_info_t phy_info_dp83848= {
	0x020005c9,
	"DP83848",

	(const phy_cmd_t []) {  /* config */
		{ mk_mii_read(MII_REG_CR), mii_parse_cr },
		{ mk_mii_read(MII_REG_ANAR), mii_parse_anar },
		{ mk_mii_read(MII_DP8384X_PHYSTST), mii_parse_dp8384x_sr2 },
		{ mk_mii_end, }
	},
	(const phy_cmd_t []) {  /* startup - enable interrupts */
		{ mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
		{ mk_mii_read(MII_REG_SR), mii_parse_sr },
		{ mk_mii_end, }
	},
	(const phy_cmd_t []) { /* ack_int - never happens, no interrupt */
		{ mk_mii_end, }
	},
	(const phy_cmd_t []) {  /* shutdown */
		{ mk_mii_end, }
	},
};

L
Linus Torvalds 已提交
1229 1230
/* ------------------------------------------------------------------------- */

1231
static phy_info_t const * const phy_info[] = {
L
Linus Torvalds 已提交
1232 1233 1234 1235 1236
	&phy_info_lxt970,
	&phy_info_lxt971,
	&phy_info_qs6612,
	&phy_info_am79c874,
	&phy_info_ks8721bl,
1237
	&phy_info_dp83848,
L
Linus Torvalds 已提交
1238 1239 1240 1241
	NULL
};

/* ------------------------------------------------------------------------- */
1242
#ifdef HAVE_mii_link_interrupt
L
Linus Torvalds 已提交
1243
static irqreturn_t
1244
mii_link_interrupt(int irq, void * dev_id);
L
Linus Torvalds 已提交
1245 1246 1247 1248 1249 1250 1251 1252 1253
#endif

#if defined(CONFIG_M5272)
/*
 *	Code specific to Coldfire 5272 setup.
 */
static void __inline__ fec_request_intrs(struct net_device *dev)
{
	volatile unsigned long *icrp;
1254 1255 1256
	static const struct idesc {
		char *name;
		unsigned short irq;
1257
		irq_handler_t handler;
1258 1259 1260 1261 1262 1263 1264
	} *idp, id[] = {
		{ "fec(RX)", 86, fec_enet_interrupt },
		{ "fec(TX)", 87, fec_enet_interrupt },
		{ "fec(OTHER)", 88, fec_enet_interrupt },
		{ "fec(MII)", 66, mii_link_interrupt },
		{ NULL },
	};
L
Linus Torvalds 已提交
1265 1266

	/* Setup interrupt handlers. */
1267
	for (idp = id; idp->name; idp++) {
1268
		if (request_irq(idp->irq, idp->handler, IRQF_DISABLED, idp->name, dev) != 0)
1269 1270
			printk("FEC: Could not allocate %s IRQ(%d)!\n", idp->name, idp->irq);
	}
L
Linus Torvalds 已提交
1271 1272 1273 1274 1275

	/* Unmask interrupt at ColdFire 5272 SIM */
	icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR3);
	*icrp = 0x00000ddd;
	icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR1);
1276
	*icrp = 0x0d000000;
L
Linus Torvalds 已提交
1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300
}

static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep)
{
	volatile fec_t *fecp;

	fecp = fep->hwp;
	fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;
	fecp->fec_x_cntrl = 0x00;

	/*
	 * Set MII speed to 2.5 MHz
	 * See 5272 manual section 11.5.8: MSCR
	 */
	fep->phy_speed = ((((MCF_CLK / 4) / (2500000 / 10)) + 5) / 10) * 2;
	fecp->fec_mii_speed = fep->phy_speed;

	fec_restart(dev, 0);
}

static void __inline__ fec_get_mac(struct net_device *dev)
{
	struct fec_enet_private *fep = netdev_priv(dev);
	volatile fec_t *fecp;
1301
	unsigned char *iap, tmpaddr[ETH_ALEN];
L
Linus Torvalds 已提交
1302 1303 1304

	fecp = fep->hwp;

1305
	if (FEC_FLASHMAC) {
L
Linus Torvalds 已提交
1306 1307 1308 1309
		/*
		 * Get MAC address from FLASH.
		 * If it is all 1's or 0's, use the default.
		 */
1310
		iap = (unsigned char *)FEC_FLASHMAC;
L
Linus Torvalds 已提交
1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
		if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) &&
		    (iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0))
			iap = fec_mac_default;
		if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) &&
		    (iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff))
			iap = fec_mac_default;
	} else {
		*((unsigned long *) &tmpaddr[0]) = fecp->fec_addr_low;
		*((unsigned short *) &tmpaddr[4]) = (fecp->fec_addr_high >> 16);
		iap = &tmpaddr[0];
	}

1323
	memcpy(dev->dev_addr, iap, ETH_ALEN);
L
Linus Torvalds 已提交
1324 1325

	/* Adjust MAC if using default MAC address */
1326 1327
	if (iap == fec_mac_default)
		 dev->dev_addr[ETH_ALEN-1] = fec_mac_default[ETH_ALEN-1] + fep->index;
L
Linus Torvalds 已提交
1328 1329 1330 1331 1332 1333
}

static void __inline__ fec_disable_phy_intr(void)
{
	volatile unsigned long *icrp;
	icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR1);
1334
	*icrp = 0x08000000;
L
Linus Torvalds 已提交
1335 1336 1337 1338 1339 1340 1341
}

static void __inline__ fec_phy_ack_intr(void)
{
	volatile unsigned long *icrp;
	/* Acknowledge the interrupt */
	icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR1);
1342
	*icrp = 0x0d000000;
L
Linus Torvalds 已提交
1343 1344 1345 1346
}

/* ------------------------------------------------------------------------- */

1347
#elif defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x)
L
Linus Torvalds 已提交
1348 1349

/*
1350 1351
 *	Code specific to Coldfire 5230/5231/5232/5234/5235,
 *	the 5270/5271/5274/5275 and 5280/5282 setups.
L
Linus Torvalds 已提交
1352 1353 1354 1355 1356
 */
static void __inline__ fec_request_intrs(struct net_device *dev)
{
	struct fec_enet_private *fep;
	int b;
1357 1358 1359 1360 1361 1362 1363 1364 1365
	static const struct idesc {
		char *name;
		unsigned short irq;
	} *idp, id[] = {
		{ "fec(TXF)", 23 },
		{ "fec(RXF)", 27 },
		{ "fec(MII)", 29 },
		{ NULL },
	};
L
Linus Torvalds 已提交
1366 1367 1368 1369 1370

	fep = netdev_priv(dev);
	b = (fep->index) ? 128 : 64;

	/* Setup interrupt handlers. */
1371
	for (idp = id; idp->name; idp++) {
1372
		if (request_irq(b+idp->irq, fec_enet_interrupt, IRQF_DISABLED, idp->name, dev) != 0)
1373 1374
			printk("FEC: Could not allocate %s IRQ(%d)!\n", idp->name, b+idp->irq);
	}
L
Linus Torvalds 已提交
1375 1376 1377 1378 1379

	/* Unmask interrupts at ColdFire 5280/5282 interrupt controller */
	{
		volatile unsigned char  *icrp;
		volatile unsigned long  *imrp;
1380
		int i, ilip;
L
Linus Torvalds 已提交
1381 1382 1383 1384

		b = (fep->index) ? MCFICM_INTC1 : MCFICM_INTC0;
		icrp = (volatile unsigned char *) (MCF_IPSBAR + b +
			MCFINTC_ICR0);
1385 1386
		for (i = 23, ilip = 0x28; (i < 36); i++)
			icrp[i] = ilip--;
L
Linus Torvalds 已提交
1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398

		imrp = (volatile unsigned long *) (MCF_IPSBAR + b +
			MCFINTC_IMRH);
		*imrp &= ~0x0000000f;
		imrp = (volatile unsigned long *) (MCF_IPSBAR + b +
			MCFINTC_IMRL);
		*imrp &= ~0xff800001;
	}

#if defined(CONFIG_M528x)
	/* Set up gpio outputs for MII lines */
	{
1399 1400
		volatile u16 *gpio_paspar;
		volatile u8 *gpio_pehlpar;
1401

1402 1403 1404 1405
		gpio_paspar = (volatile u16 *) (MCF_IPSBAR + 0x100056);
		gpio_pehlpar = (volatile u16 *) (MCF_IPSBAR + 0x100058);
		*gpio_paspar |= 0x0f00;
		*gpio_pehlpar = 0xc0;
L
Linus Torvalds 已提交
1406 1407
	}
#endif
1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430

#if defined(CONFIG_M527x)
	/* Set up gpio outputs for MII lines */
	{
		volatile u8 *gpio_par_fec;
		volatile u16 *gpio_par_feci2c;

		gpio_par_feci2c = (volatile u16 *)(MCF_IPSBAR + 0x100082);
		/* Set up gpio outputs for FEC0 MII lines */
		gpio_par_fec = (volatile u8 *)(MCF_IPSBAR + 0x100078);

		*gpio_par_feci2c |= 0x0f00;
		*gpio_par_fec |= 0xc0;

#if defined(CONFIG_FEC2)
		/* Set up gpio outputs for FEC1 MII lines */
		gpio_par_fec = (volatile u8 *)(MCF_IPSBAR + 0x100079);

		*gpio_par_feci2c |= 0x00a0;
		*gpio_par_fec |= 0xc0;
#endif /* CONFIG_FEC2 */
	}
#endif /* CONFIG_M527x */
L
Linus Torvalds 已提交
1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
}

static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep)
{
	volatile fec_t *fecp;

	fecp = fep->hwp;
	fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;
	fecp->fec_x_cntrl = 0x00;

	/*
	 * Set MII speed to 2.5 MHz
	 * See 5282 manual section 17.5.4.7: MSCR
	 */
	fep->phy_speed = ((((MCF_CLK / 2) / (2500000 / 10)) + 5) / 10) * 2;
	fecp->fec_mii_speed = fep->phy_speed;

	fec_restart(dev, 0);
}

static void __inline__ fec_get_mac(struct net_device *dev)
{
	struct fec_enet_private *fep = netdev_priv(dev);
	volatile fec_t *fecp;
1455
	unsigned char *iap, tmpaddr[ETH_ALEN];
L
Linus Torvalds 已提交
1456 1457 1458

	fecp = fep->hwp;

1459
	if (FEC_FLASHMAC) {
L
Linus Torvalds 已提交
1460 1461 1462 1463
		/*
		 * Get MAC address from FLASH.
		 * If it is all 1's or 0's, use the default.
		 */
1464
		iap = FEC_FLASHMAC;
L
Linus Torvalds 已提交
1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476
		if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) &&
		    (iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0))
			iap = fec_mac_default;
		if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) &&
		    (iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff))
			iap = fec_mac_default;
	} else {
		*((unsigned long *) &tmpaddr[0]) = fecp->fec_addr_low;
		*((unsigned short *) &tmpaddr[4]) = (fecp->fec_addr_high >> 16);
		iap = &tmpaddr[0];
	}

1477
	memcpy(dev->dev_addr, iap, ETH_ALEN);
L
Linus Torvalds 已提交
1478 1479

	/* Adjust MAC if using default MAC address */
1480 1481
	if (iap == fec_mac_default)
		dev->dev_addr[ETH_ALEN-1] = fec_mac_default[ETH_ALEN-1] + fep->index;
L
Linus Torvalds 已提交
1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493
}

static void __inline__ fec_disable_phy_intr(void)
{
}

static void __inline__ fec_phy_ack_intr(void)
{
}

/* ------------------------------------------------------------------------- */

1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517
#elif defined(CONFIG_M520x)

/*
 *	Code specific to Coldfire 520x
 */
static void __inline__ fec_request_intrs(struct net_device *dev)
{
	struct fec_enet_private *fep;
	int b;
	static const struct idesc {
		char *name;
		unsigned short irq;
	} *idp, id[] = {
		{ "fec(TXF)", 23 },
		{ "fec(RXF)", 27 },
		{ "fec(MII)", 29 },
		{ NULL },
	};

	fep = netdev_priv(dev);
	b = 64 + 13;

	/* Setup interrupt handlers. */
	for (idp = id; idp->name; idp++) {
1518
		if (request_irq(b+idp->irq, fec_enet_interrupt, IRQF_DISABLED, idp->name,dev) != 0)
1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599
			printk("FEC: Could not allocate %s IRQ(%d)!\n", idp->name, b+idp->irq);
	}

	/* Unmask interrupts at ColdFire interrupt controller */
	{
		volatile unsigned char  *icrp;
		volatile unsigned long  *imrp;

		icrp = (volatile unsigned char *) (MCF_IPSBAR + MCFICM_INTC0 +
			MCFINTC_ICR0);
		for (b = 36; (b < 49); b++)
			icrp[b] = 0x04;
		imrp = (volatile unsigned long *) (MCF_IPSBAR + MCFICM_INTC0 +
			MCFINTC_IMRH);
		*imrp &= ~0x0001FFF0;
	}
	*(volatile unsigned char *)(MCF_IPSBAR + MCF_GPIO_PAR_FEC) |= 0xf0;
	*(volatile unsigned char *)(MCF_IPSBAR + MCF_GPIO_PAR_FECI2C) |= 0x0f;
}

static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep)
{
	volatile fec_t *fecp;

	fecp = fep->hwp;
	fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;
	fecp->fec_x_cntrl = 0x00;

	/*
	 * Set MII speed to 2.5 MHz
	 * See 5282 manual section 17.5.4.7: MSCR
	 */
	fep->phy_speed = ((((MCF_CLK / 2) / (2500000 / 10)) + 5) / 10) * 2;
	fecp->fec_mii_speed = fep->phy_speed;

	fec_restart(dev, 0);
}

static void __inline__ fec_get_mac(struct net_device *dev)
{
	struct fec_enet_private *fep = netdev_priv(dev);
	volatile fec_t *fecp;
	unsigned char *iap, tmpaddr[ETH_ALEN];

	fecp = fep->hwp;

	if (FEC_FLASHMAC) {
		/*
		 * Get MAC address from FLASH.
		 * If it is all 1's or 0's, use the default.
		 */
		iap = FEC_FLASHMAC;
		if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) &&
		   (iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0))
			iap = fec_mac_default;
		if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) &&
		   (iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff))
			iap = fec_mac_default;
	} else {
		*((unsigned long *) &tmpaddr[0]) = fecp->fec_addr_low;
		*((unsigned short *) &tmpaddr[4]) = (fecp->fec_addr_high >> 16);
		iap = &tmpaddr[0];
	}

	memcpy(dev->dev_addr, iap, ETH_ALEN);

	/* Adjust MAC if using default MAC address */
	if (iap == fec_mac_default)
		dev->dev_addr[ETH_ALEN-1] = fec_mac_default[ETH_ALEN-1] + fep->index;
}

static void __inline__ fec_disable_phy_intr(void)
{
}

static void __inline__ fec_phy_ack_intr(void)
{
}

/* ------------------------------------------------------------------------- */

1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622
#elif defined(CONFIG_M532x)
/*
 * Code specific for M532x
 */
static void __inline__ fec_request_intrs(struct net_device *dev)
{
	struct fec_enet_private *fep;
	int b;
	static const struct idesc {
		char *name;
		unsigned short irq;
	} *idp, id[] = {
	    { "fec(TXF)", 36 },
	    { "fec(RXF)", 40 },
	    { "fec(MII)", 42 },
	    { NULL },
	};

	fep = netdev_priv(dev);
	b = (fep->index) ? 128 : 64;

	/* Setup interrupt handlers. */
	for (idp = id; idp->name; idp++) {
1623
		if (request_irq(b+idp->irq, fec_enet_interrupt, IRQF_DISABLED, idp->name,dev) != 0)
1624
			printk("FEC: Could not allocate %s IRQ(%d)!\n",
1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677
				idp->name, b+idp->irq);
	}

	/* Unmask interrupts */
	MCF_INTC0_ICR36 = 0x2;
	MCF_INTC0_ICR37 = 0x2;
	MCF_INTC0_ICR38 = 0x2;
	MCF_INTC0_ICR39 = 0x2;
	MCF_INTC0_ICR40 = 0x2;
	MCF_INTC0_ICR41 = 0x2;
	MCF_INTC0_ICR42 = 0x2;
	MCF_INTC0_ICR43 = 0x2;
	MCF_INTC0_ICR44 = 0x2;
	MCF_INTC0_ICR45 = 0x2;
	MCF_INTC0_ICR46 = 0x2;
	MCF_INTC0_ICR47 = 0x2;
	MCF_INTC0_ICR48 = 0x2;

	MCF_INTC0_IMRH &= ~(
		MCF_INTC_IMRH_INT_MASK36 |
		MCF_INTC_IMRH_INT_MASK37 |
		MCF_INTC_IMRH_INT_MASK38 |
		MCF_INTC_IMRH_INT_MASK39 |
		MCF_INTC_IMRH_INT_MASK40 |
		MCF_INTC_IMRH_INT_MASK41 |
		MCF_INTC_IMRH_INT_MASK42 |
		MCF_INTC_IMRH_INT_MASK43 |
		MCF_INTC_IMRH_INT_MASK44 |
		MCF_INTC_IMRH_INT_MASK45 |
		MCF_INTC_IMRH_INT_MASK46 |
		MCF_INTC_IMRH_INT_MASK47 |
		MCF_INTC_IMRH_INT_MASK48 );

	/* Set up gpio outputs for MII lines */
	MCF_GPIO_PAR_FECI2C |= (0 |
		MCF_GPIO_PAR_FECI2C_PAR_MDC_EMDC |
		MCF_GPIO_PAR_FECI2C_PAR_MDIO_EMDIO);
	MCF_GPIO_PAR_FEC = (0 |
		MCF_GPIO_PAR_FEC_PAR_FEC_7W_FEC |
		MCF_GPIO_PAR_FEC_PAR_FEC_MII_FEC);
}

static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep)
{
	volatile fec_t *fecp;

	fecp = fep->hwp;
	fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;
	fecp->fec_x_cntrl = 0x00;

	/*
	 * Set MII speed to 2.5 MHz
	 */
1678
	fep->phy_speed = (MCF_CLK / 3) / (2500000 * 2 ) * 2;
1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724
	fecp->fec_mii_speed = fep->phy_speed;

	fec_restart(dev, 0);
}

static void __inline__ fec_get_mac(struct net_device *dev)
{
	struct fec_enet_private *fep = netdev_priv(dev);
	volatile fec_t *fecp;
	unsigned char *iap, tmpaddr[ETH_ALEN];

	fecp = fep->hwp;

	if (FEC_FLASHMAC) {
		/*
		 * Get MAC address from FLASH.
		 * If it is all 1's or 0's, use the default.
		 */
		iap = FEC_FLASHMAC;
		if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) &&
		    (iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0))
			iap = fec_mac_default;
		if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) &&
		    (iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff))
			iap = fec_mac_default;
	} else {
		*((unsigned long *) &tmpaddr[0]) = fecp->fec_addr_low;
		*((unsigned short *) &tmpaddr[4]) = (fecp->fec_addr_high >> 16);
		iap = &tmpaddr[0];
	}

	memcpy(dev->dev_addr, iap, ETH_ALEN);

	/* Adjust MAC if using default MAC address */
	if (iap == fec_mac_default)
		dev->dev_addr[ETH_ALEN-1] = fec_mac_default[ETH_ALEN-1] + fep->index;
}

static void __inline__ fec_disable_phy_intr(void)
{
}

static void __inline__ fec_phy_ack_intr(void)
{
}

L
Linus Torvalds 已提交
1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764
#endif

/* ------------------------------------------------------------------------- */

static void mii_display_status(struct net_device *dev)
{
	struct fec_enet_private *fep = netdev_priv(dev);
	volatile uint *s = &(fep->phy_status);

	if (!fep->link && !fep->old_link) {
		/* Link is still down - don't print anything */
		return;
	}

	printk("%s: status: ", dev->name);

	if (!fep->link) {
		printk("link down");
	} else {
		printk("link up");

		switch(*s & PHY_STAT_SPMASK) {
		case PHY_STAT_100FDX: printk(", 100MBit Full Duplex"); break;
		case PHY_STAT_100HDX: printk(", 100MBit Half Duplex"); break;
		case PHY_STAT_10FDX: printk(", 10MBit Full Duplex"); break;
		case PHY_STAT_10HDX: printk(", 10MBit Half Duplex"); break;
		default:
			printk(", Unknown speed/duplex");
		}

		if (*s & PHY_STAT_ANC)
			printk(", auto-negotiation complete");
	}

	if (*s & PHY_STAT_FAULT)
		printk(", remote fault");

	printk(".\n");
}

G
Greg Ungerer 已提交
1765
static void mii_display_config(struct work_struct *work)
L
Linus Torvalds 已提交
1766
{
G
Greg Ungerer 已提交
1767 1768
	struct fec_enet_private *fep = container_of(work, struct fec_enet_private, phy_task);
	struct net_device *dev = fep->netdev;
1769
	uint status = fep->phy_status;
L
Linus Torvalds 已提交
1770 1771 1772 1773 1774 1775 1776 1777

	/*
	** When we get here, phy_task is already removed from
	** the workqueue.  It is thus safe to allow to reuse it.
	*/
	fep->mii_phy_task_queued = 0;
	printk("%s: config: auto-negotiation ", dev->name);

1778
	if (status & PHY_CONF_ANE)
L
Linus Torvalds 已提交
1779 1780 1781 1782
		printk("on");
	else
		printk("off");

1783
	if (status & PHY_CONF_100FDX)
L
Linus Torvalds 已提交
1784
		printk(", 100FDX");
1785
	if (status & PHY_CONF_100HDX)
L
Linus Torvalds 已提交
1786
		printk(", 100HDX");
1787
	if (status & PHY_CONF_10FDX)
L
Linus Torvalds 已提交
1788
		printk(", 10FDX");
1789
	if (status & PHY_CONF_10HDX)
L
Linus Torvalds 已提交
1790
		printk(", 10HDX");
1791
	if (!(status & PHY_CONF_SPMASK))
L
Linus Torvalds 已提交
1792 1793
		printk(", No speed/duplex selected?");

1794
	if (status & PHY_CONF_LOOP)
L
Linus Torvalds 已提交
1795
		printk(", loopback enabled");
1796

L
Linus Torvalds 已提交
1797 1798 1799 1800 1801
	printk(".\n");

	fep->sequence_done = 1;
}

G
Greg Ungerer 已提交
1802
static void mii_relink(struct work_struct *work)
L
Linus Torvalds 已提交
1803
{
G
Greg Ungerer 已提交
1804 1805
	struct fec_enet_private *fep = container_of(work, struct fec_enet_private, phy_task);
	struct net_device *dev = fep->netdev;
L
Linus Torvalds 已提交
1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818
	int duplex;

	/*
	** When we get here, phy_task is already removed from
	** the workqueue.  It is thus safe to allow to reuse it.
	*/
	fep->mii_phy_task_queued = 0;
	fep->link = (fep->phy_status & PHY_STAT_LINK) ? 1 : 0;
	mii_display_status(dev);
	fep->old_link = fep->link;

	if (fep->link) {
		duplex = 0;
1819
		if (fep->phy_status
L
Linus Torvalds 已提交
1820 1821 1822
		    & (PHY_STAT_100FDX | PHY_STAT_10FDX))
			duplex = 1;
		fec_restart(dev, duplex);
1823
	} else
L
Linus Torvalds 已提交
1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847
		fec_stop(dev);

#if 0
	enable_irq(fep->mii_irq);
#endif

}

/* mii_queue_relink is called in interrupt context from mii_link_interrupt */
static void mii_queue_relink(uint mii_reg, struct net_device *dev)
{
	struct fec_enet_private *fep = netdev_priv(dev);

	/*
	** We cannot queue phy_task twice in the workqueue.  It
	** would cause an endless loop in the workqueue.
	** Fortunately, if the last mii_relink entry has not yet been
	** executed now, it will do the job for the current interrupt,
	** which is just what we want.
	*/
	if (fep->mii_phy_task_queued)
		return;

	fep->mii_phy_task_queued = 1;
G
Greg Ungerer 已提交
1848
	INIT_WORK(&fep->phy_task, mii_relink);
L
Linus Torvalds 已提交
1849 1850 1851
	schedule_work(&fep->phy_task);
}

1852
/* mii_queue_config is called in interrupt context from fec_enet_mii */
L
Linus Torvalds 已提交
1853 1854 1855 1856 1857 1858 1859 1860
static void mii_queue_config(uint mii_reg, struct net_device *dev)
{
	struct fec_enet_private *fep = netdev_priv(dev);

	if (fep->mii_phy_task_queued)
		return;

	fep->mii_phy_task_queued = 1;
G
Greg Ungerer 已提交
1861
	INIT_WORK(&fep->phy_task, mii_display_config);
L
Linus Torvalds 已提交
1862 1863 1864
	schedule_work(&fep->phy_task);
}

1865 1866 1867 1868 1869 1870 1871 1872
phy_cmd_t const phy_cmd_relink[] = {
	{ mk_mii_read(MII_REG_CR), mii_queue_relink },
	{ mk_mii_end, }
	};
phy_cmd_t const phy_cmd_config[] = {
	{ mk_mii_read(MII_REG_CR), mii_queue_config },
	{ mk_mii_end, }
	};
L
Linus Torvalds 已提交
1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894

/* Read remainder of PHY ID.
*/
static void
mii_discover_phy3(uint mii_reg, struct net_device *dev)
{
	struct fec_enet_private *fep;
	int i;

	fep = netdev_priv(dev);
	fep->phy_id |= (mii_reg & 0xffff);
	printk("fec: PHY @ 0x%x, ID 0x%08x", fep->phy_addr, fep->phy_id);

	for(i = 0; phy_info[i]; i++) {
		if(phy_info[i]->id == (fep->phy_id >> 4))
			break;
	}

	if (phy_info[i])
		printk(" -- %s\n", phy_info[i]->name);
	else
		printk(" -- unknown PHY!\n");
1895

L
Linus Torvalds 已提交
1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914
	fep->phy = phy_info[i];
	fep->phy_id_done = 1;
}

/* Scan all of the MII PHY addresses looking for someone to respond
 * with a valid ID.  This usually happens quickly.
 */
static void
mii_discover_phy(uint mii_reg, struct net_device *dev)
{
	struct fec_enet_private *fep;
	volatile fec_t *fecp;
	uint phytype;

	fep = netdev_priv(dev);
	fecp = fep->hwp;

	if (fep->phy_addr < 32) {
		if ((phytype = (mii_reg & 0xffff)) != 0xffff && phytype != 0) {
1915

L
Linus Torvalds 已提交
1916 1917 1918 1919 1920
			/* Got first part of ID, now get remainder.
			*/
			fep->phy_id = phytype << 16;
			mii_queue(dev, mk_mii_read(MII_REG_PHYIR2),
							mii_discover_phy3);
1921
		} else {
L
Linus Torvalds 已提交
1922 1923 1924 1925 1926 1927 1928 1929
			fep->phy_addr++;
			mii_queue(dev, mk_mii_read(MII_REG_PHYIR1),
							mii_discover_phy);
		}
	} else {
		printk("FEC: No PHY device found.\n");
		/* Disable external MII interface */
		fecp->fec_mii_speed = fep->phy_speed = 0;
1930
#ifdef FREC_LEGACY
L
Linus Torvalds 已提交
1931
		fec_disable_phy_intr();
1932
#endif
L
Linus Torvalds 已提交
1933 1934 1935 1936 1937
	}
}

/* This interrupt occurs when the PHY detects a link change.
*/
1938
#ifdef HAVE_mii_link_interrupt
L
Linus Torvalds 已提交
1939
static irqreturn_t
1940
mii_link_interrupt(int irq, void * dev_id)
L
Linus Torvalds 已提交
1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955
{
	struct	net_device *dev = dev_id;
	struct fec_enet_private *fep = netdev_priv(dev);

	fec_phy_ack_intr();

#if 0
	disable_irq(fep->mii_irq);  /* disable now, enable later */
#endif

	mii_do_cmd(dev, fep->phy->ack_int);
	mii_do_cmd(dev, phy_cmd_relink);  /* restart and display status */

	return IRQ_HANDLED;
}
1956
#endif
L
Linus Torvalds 已提交
1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975

static int
fec_enet_open(struct net_device *dev)
{
	struct fec_enet_private *fep = netdev_priv(dev);

	/* I should reset the ring buffers here, but I don't yet know
	 * a simple way to do that.
	 */
	fec_set_mac_address(dev);

	fep->sequence_done = 0;
	fep->link = 0;

	if (fep->phy) {
		mii_do_cmd(dev, fep->phy->ack_int);
		mii_do_cmd(dev, fep->phy->config);
		mii_do_cmd(dev, phy_cmd_config);  /* display configuration */

1976 1977 1978 1979 1980 1981
		/* Poll until the PHY tells us its configuration
		 * (not link state).
		 * Request is initiated by mii_do_cmd above, but answer
		 * comes by interrupt.
		 * This should take about 25 usec per register at 2.5 MHz,
		 * and we read approximately 5 registers.
L
Linus Torvalds 已提交
1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051
		 */
		while(!fep->sequence_done)
			schedule();

		mii_do_cmd(dev, fep->phy->startup);

		/* Set the initial link state to true. A lot of hardware
		 * based on this device does not implement a PHY interrupt,
		 * so we are never notified of link change.
		 */
		fep->link = 1;
	} else {
		fep->link = 1; /* lets just try it and see */
		/* no phy,  go full duplex,  it's most likely a hub chip */
		fec_restart(dev, 1);
	}

	netif_start_queue(dev);
	fep->opened = 1;
	return 0;		/* Success */
}

static int
fec_enet_close(struct net_device *dev)
{
	struct fec_enet_private *fep = netdev_priv(dev);

	/* Don't know what to do yet.
	*/
	fep->opened = 0;
	netif_stop_queue(dev);
	fec_stop(dev);

	return 0;
}

/* Set or clear the multicast filter for this adaptor.
 * Skeleton taken from sunlance driver.
 * The CPM Ethernet implementation allows Multicast as well as individual
 * MAC address filtering.  Some of the drivers check to make sure it is
 * a group multicast address, and discard those that are not.  I guess I
 * will do the same for now, but just remove the test if you want
 * individual filtering as well (do the upper net layers want or support
 * this kind of feature?).
 */

#define HASH_BITS	6		/* #bits in hash */
#define CRC32_POLY	0xEDB88320

static void set_multicast_list(struct net_device *dev)
{
	struct fec_enet_private *fep;
	volatile fec_t *ep;
	struct dev_mc_list *dmi;
	unsigned int i, j, bit, data, crc;
	unsigned char hash;

	fep = netdev_priv(dev);
	ep = fep->hwp;

	if (dev->flags&IFF_PROMISC) {
		ep->fec_r_cntrl |= 0x0008;
	} else {

		ep->fec_r_cntrl &= ~0x0008;

		if (dev->flags & IFF_ALLMULTI) {
			/* Catch all multicast addresses, so set the
			 * filter to all 1's.
			 */
2052 2053
			ep->fec_grp_hash_table_high = 0xffffffff;
			ep->fec_grp_hash_table_low = 0xffffffff;
L
Linus Torvalds 已提交
2054 2055 2056
		} else {
			/* Clear filter and add the addresses in hash register.
			*/
2057 2058
			ep->fec_grp_hash_table_high = 0;
			ep->fec_grp_hash_table_low = 0;
2059

L
Linus Torvalds 已提交
2060 2061 2062 2063 2064 2065 2066 2067
			dmi = dev->mc_list;

			for (j = 0; j < dev->mc_count; j++, dmi = dmi->next)
			{
				/* Only support group multicast for now.
				*/
				if (!(dmi->dmi_addr[0] & 1))
					continue;
2068

L
Linus Torvalds 已提交
2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086
				/* calculate crc32 value of mac address
				*/
				crc = 0xffffffff;

				for (i = 0; i < dmi->dmi_addrlen; i++)
				{
					data = dmi->dmi_addr[i];
					for (bit = 0; bit < 8; bit++, data >>= 1)
					{
						crc = (crc >> 1) ^
						(((crc ^ data) & 1) ? CRC32_POLY : 0);
					}
				}

				/* only upper 6 bits (HASH_BITS) are used
				   which point to specific bit in he hash registers
				*/
				hash = (crc >> (32 - HASH_BITS)) & 0x3f;
2087

L
Linus Torvalds 已提交
2088
				if (hash > 31)
2089
					ep->fec_grp_hash_table_high |= 1 << (hash - 32);
L
Linus Torvalds 已提交
2090
				else
2091
					ep->fec_grp_hash_table_low |= 1 << hash;
L
Linus Torvalds 已提交
2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103
			}
		}
	}
}

/* Set a MAC change in hardware.
 */
static void
fec_set_mac_address(struct net_device *dev)
{
	volatile fec_t *fecp;

2104
	fecp = ((struct fec_enet_private *)netdev_priv(dev))->hwp;
L
Linus Torvalds 已提交
2105 2106

	/* Set station address. */
2107 2108 2109 2110
	fecp->fec_addr_low = dev->dev_addr[3] | (dev->dev_addr[2] << 8) |
		(dev->dev_addr[1] << 16) | (dev->dev_addr[0] << 24);
	fecp->fec_addr_high = (dev->dev_addr[5] << 16) |
		(dev->dev_addr[4] << 24);
L
Linus Torvalds 已提交
2111 2112 2113 2114 2115

}

 /*
  * XXX:  We need to clean up on failure exits here.
2116 2117
  *
  * index is only used in legacy code
L
Linus Torvalds 已提交
2118
  */
2119
int __init fec_enet_init(struct net_device *dev, int index)
L
Linus Torvalds 已提交
2120 2121 2122 2123 2124 2125 2126 2127
{
	struct fec_enet_private *fep = netdev_priv(dev);
	unsigned long	mem_addr;
	volatile cbd_t	*bdp;
	cbd_t		*cbd_base;
	volatile fec_t	*fecp;
	int 		i, j;

2128 2129
	/* Allocate memory for buffer descriptors.
	*/
2130 2131
	mem_addr = (unsigned long)dma_alloc_coherent(NULL, PAGE_SIZE,
			&fep->bd_dma, GFP_KERNEL);
2132 2133 2134 2135 2136
	if (mem_addr == 0) {
		printk("FEC: allocate descriptor memory failed?\n");
		return -ENOMEM;
	}

2137 2138 2139
	spin_lock_init(&fep->hw_lock);
	spin_lock_init(&fep->mii_lock);

L
Linus Torvalds 已提交
2140 2141
	/* Create an Ethernet device instance.
	*/
2142
	fecp = (volatile fec_t *)dev->base_addr;
L
Linus Torvalds 已提交
2143 2144 2145

	fep->index = index;
	fep->hwp = fecp;
G
Greg Ungerer 已提交
2146
	fep->netdev = dev;
L
Linus Torvalds 已提交
2147 2148 2149 2150 2151 2152

	/* Whack a reset.  We should wait for this.
	*/
	fecp->fec_ecntrl = 1;
	udelay(10);

2153 2154
	/* Set the Ethernet address */
#ifdef FEC_LEGACY
L
Linus Torvalds 已提交
2155
	fec_get_mac(dev);
2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168
#else
	{
		unsigned long l;
		l = fecp->fec_addr_low;
		dev->dev_addr[0] = (unsigned char)((l & 0xFF000000) >> 24);
		dev->dev_addr[1] = (unsigned char)((l & 0x00FF0000) >> 16);
		dev->dev_addr[2] = (unsigned char)((l & 0x0000FF00) >> 8);
		dev->dev_addr[3] = (unsigned char)((l & 0x000000FF) >> 0);
		l = fecp->fec_addr_high;
		dev->dev_addr[4] = (unsigned char)((l & 0xFF000000) >> 24);
		dev->dev_addr[5] = (unsigned char)((l & 0x00FF0000) >> 16);
	}
#endif
L
Linus Torvalds 已提交
2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233

	cbd_base = (cbd_t *)mem_addr;

	/* Set receive and transmit descriptor base.
	*/
	fep->rx_bd_base = cbd_base;
	fep->tx_bd_base = cbd_base + RX_RING_SIZE;

	fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
	fep->cur_rx = fep->rx_bd_base;

	fep->skb_cur = fep->skb_dirty = 0;

	/* Initialize the receive buffer descriptors.
	*/
	bdp = fep->rx_bd_base;
	for (i=0; i<FEC_ENET_RX_PAGES; i++) {

		/* Allocate a page.
		*/
		mem_addr = __get_free_page(GFP_KERNEL);
		/* XXX: missing check for allocation failure */

		/* Initialize the BD for every fragment in the page.
		*/
		for (j=0; j<FEC_ENET_RX_FRPPG; j++) {
			bdp->cbd_sc = BD_ENET_RX_EMPTY;
			bdp->cbd_bufaddr = __pa(mem_addr);
			mem_addr += FEC_ENET_RX_FRSIZE;
			bdp++;
		}
	}

	/* Set the last buffer to wrap.
	*/
	bdp--;
	bdp->cbd_sc |= BD_SC_WRAP;

	/* ...and the same for transmmit.
	*/
	bdp = fep->tx_bd_base;
	for (i=0, j=FEC_ENET_TX_FRPPG; i<TX_RING_SIZE; i++) {
		if (j >= FEC_ENET_TX_FRPPG) {
			mem_addr = __get_free_page(GFP_KERNEL);
			j = 1;
		} else {
			mem_addr += FEC_ENET_TX_FRSIZE;
			j++;
		}
		fep->tx_bounce[i] = (unsigned char *) mem_addr;

		/* Initialize the BD for every fragment in the page.
		*/
		bdp->cbd_sc = 0;
		bdp->cbd_bufaddr = 0;
		bdp++;
	}

	/* Set the last buffer to wrap.
	*/
	bdp--;
	bdp->cbd_sc |= BD_SC_WRAP;

	/* Set receive and transmit descriptor base.
	*/
2234 2235 2236
	fecp->fec_r_des_start = fep->bd_dma;
	fecp->fec_x_des_start = (unsigned long)fep->bd_dma + sizeof(cbd_t)
				* RX_RING_SIZE;
L
Linus Torvalds 已提交
2237

2238
#ifdef FEC_LEGACY
L
Linus Torvalds 已提交
2239 2240 2241 2242
	/* Install our interrupt handlers. This varies depending on
	 * the architecture.
	*/
	fec_request_intrs(dev);
2243
#endif
L
Linus Torvalds 已提交
2244

2245 2246
	fecp->fec_grp_hash_table_high = 0;
	fecp->fec_grp_hash_table_low = 0;
2247 2248
	fecp->fec_r_buff_size = PKT_MAXBLR_SIZE;
	fecp->fec_ecntrl = 2;
2249
	fecp->fec_r_des_active = 0;
2250 2251 2252 2253
#ifndef CONFIG_M5272
	fecp->fec_hash_table_high = 0;
	fecp->fec_hash_table_low = 0;
#endif
2254

L
Linus Torvalds 已提交
2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267
	/* The FEC Ethernet specific entries in the device structure. */
	dev->open = fec_enet_open;
	dev->hard_start_xmit = fec_enet_start_xmit;
	dev->tx_timeout = fec_timeout;
	dev->watchdog_timeo = TX_TIMEOUT;
	dev->stop = fec_enet_close;
	dev->set_multicast_list = set_multicast_list;

	for (i=0; i<NMII-1; i++)
		mii_cmds[i].mii_next = &mii_cmds[i+1];
	mii_free = mii_cmds;

	/* setup MII interface */
2268
#ifdef FEC_LEGACY
L
Linus Torvalds 已提交
2269
	fec_set_mii(dev, fep);
2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281
#else
	fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;
	fecp->fec_x_cntrl = 0x00;

	/*
	 * Set MII speed to 2.5 MHz
	 */
	fep->phy_speed = ((((clk_get_rate(fep->clk) / 2 + 4999999)
					/ 2500000) / 2) & 0x3F) << 1;
	fecp->fec_mii_speed = fep->phy_speed;
	fec_restart(dev, 0);
#endif
L
Linus Torvalds 已提交
2282

2283 2284
	/* Clear and enable interrupts */
	fecp->fec_ievent = 0xffc00000;
2285
	fecp->fec_imask = (FEC_ENET_TXF | FEC_ENET_RXF | FEC_ENET_MII);
2286

L
Linus Torvalds 已提交
2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318
	/* Queue up command to detect the PHY and initialize the
	 * remainder of the interface.
	 */
	fep->phy_id_done = 0;
	fep->phy_addr = 0;
	mii_queue(dev, mk_mii_read(MII_REG_PHYIR1), mii_discover_phy);

	return 0;
}

/* This function is called to start or restart the FEC during a link
 * change.  This only happens when switching between half and full
 * duplex.
 */
static void
fec_restart(struct net_device *dev, int duplex)
{
	struct fec_enet_private *fep;
	volatile cbd_t *bdp;
	volatile fec_t *fecp;
	int i;

	fep = netdev_priv(dev);
	fecp = fep->hwp;

	/* Whack a reset.  We should wait for this.
	*/
	fecp->fec_ecntrl = 1;
	udelay(10);

	/* Clear any outstanding interrupt.
	*/
2319
	fecp->fec_ievent = 0xffc00000;
L
Linus Torvalds 已提交
2320 2321 2322

	/* Set station address.
	*/
2323
	fec_set_mac_address(dev);
L
Linus Torvalds 已提交
2324 2325 2326

	/* Reset all multicast.
	*/
2327 2328
	fecp->fec_grp_hash_table_high = 0;
	fecp->fec_grp_hash_table_low = 0;
L
Linus Torvalds 已提交
2329 2330 2331 2332 2333 2334 2335

	/* Set maximum receive buffer size.
	*/
	fecp->fec_r_buff_size = PKT_MAXBLR_SIZE;

	/* Set receive and transmit descriptor base.
	*/
2336 2337 2338
	fecp->fec_r_des_start = fep->bd_dma;
	fecp->fec_x_des_start = (unsigned long)fep->bd_dma + sizeof(cbd_t)
				* RX_RING_SIZE;
L
Linus Torvalds 已提交
2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390

	fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
	fep->cur_rx = fep->rx_bd_base;

	/* Reset SKB transmit buffers.
	*/
	fep->skb_cur = fep->skb_dirty = 0;
	for (i=0; i<=TX_RING_MOD_MASK; i++) {
		if (fep->tx_skbuff[i] != NULL) {
			dev_kfree_skb_any(fep->tx_skbuff[i]);
			fep->tx_skbuff[i] = NULL;
		}
	}

	/* Initialize the receive buffer descriptors.
	*/
	bdp = fep->rx_bd_base;
	for (i=0; i<RX_RING_SIZE; i++) {

		/* Initialize the BD for every fragment in the page.
		*/
		bdp->cbd_sc = BD_ENET_RX_EMPTY;
		bdp++;
	}

	/* Set the last buffer to wrap.
	*/
	bdp--;
	bdp->cbd_sc |= BD_SC_WRAP;

	/* ...and the same for transmmit.
	*/
	bdp = fep->tx_bd_base;
	for (i=0; i<TX_RING_SIZE; i++) {

		/* Initialize the BD for every fragment in the page.
		*/
		bdp->cbd_sc = 0;
		bdp->cbd_bufaddr = 0;
		bdp++;
	}

	/* Set the last buffer to wrap.
	*/
	bdp--;
	bdp->cbd_sc |= BD_SC_WRAP;

	/* Enable MII mode.
	*/
	if (duplex) {
		fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;/* MII enable */
		fecp->fec_x_cntrl = 0x04;		  /* FD enable */
2391
	} else {
L
Linus Torvalds 已提交
2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404
		/* MII enable|No Rcv on Xmit */
		fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x06;
		fecp->fec_x_cntrl = 0x00;
	}
	fep->full_duplex = duplex;

	/* Set MII speed.
	*/
	fecp->fec_mii_speed = fep->phy_speed;

	/* And last, enable the transmit and receive processing.
	*/
	fecp->fec_ecntrl = 2;
2405 2406 2407 2408
	fecp->fec_r_des_active = 0;

	/* Enable interrupts we wish to service.
	*/
2409
	fecp->fec_imask = (FEC_ENET_TXF | FEC_ENET_RXF | FEC_ENET_MII);
L
Linus Torvalds 已提交
2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420
}

static void
fec_stop(struct net_device *dev)
{
	volatile fec_t *fecp;
	struct fec_enet_private *fep;

	fep = netdev_priv(dev);
	fecp = fep->hwp;

2421 2422 2423 2424 2425 2426 2427 2428 2429 2430
	/*
	** We cannot expect a graceful transmit stop without link !!!
	*/
	if (fep->link)
		{
		fecp->fec_x_cntrl = 0x01;	/* Graceful transmit stop */
		udelay(10);
		if (!(fecp->fec_ievent & FEC_ENET_GRA))
			printk("fec_stop : Graceful transmit stop did not complete !\n");
		}
L
Linus Torvalds 已提交
2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444

	/* Whack a reset.  We should wait for this.
	*/
	fecp->fec_ecntrl = 1;
	udelay(10);

	/* Clear outstanding MII command interrupts.
	*/
	fecp->fec_ievent = FEC_ENET_MII;

	fecp->fec_imask = FEC_ENET_MII;
	fecp->fec_mii_speed = fep->phy_speed;
}

2445
#ifdef FEC_LEGACY
L
Linus Torvalds 已提交
2446 2447 2448
static int __init fec_enet_module_init(void)
{
	struct net_device *dev;
2449
	int i, err;
2450 2451

	printk("FEC ENET Version 0.2\n");
L
Linus Torvalds 已提交
2452 2453 2454 2455 2456

	for (i = 0; (i < FEC_MAX_PORTS); i++) {
		dev = alloc_etherdev(sizeof(struct fec_enet_private));
		if (!dev)
			return -ENOMEM;
2457 2458
		dev->base_addr = (unsigned long)fec_hw[i];
		err = fec_enet_init(dev, i);
L
Linus Torvalds 已提交
2459 2460 2461 2462 2463 2464 2465 2466 2467
		if (err) {
			free_netdev(dev);
			continue;
		}
		if (register_netdev(dev) != 0) {
			/* XXX: missing cleanup here */
			free_netdev(dev);
			return -EIO;
		}
2468

J
Johannes Berg 已提交
2469
		printk("%s: ethernet %pM\n", dev->name, dev->dev_addr);
L
Linus Torvalds 已提交
2470 2471 2472
	}
	return 0;
}
2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636
#else

static int __devinit
fec_probe(struct platform_device *pdev)
{
	struct fec_enet_private *fep;
	struct net_device *ndev;
	int i, irq, ret = 0;
	struct resource *r;

	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	if (!r)
		return -ENXIO;

	r = request_mem_region(r->start, resource_size(r), pdev->name);
	if (!r)
		return -EBUSY;

	/* Init network device */
	ndev = alloc_etherdev(sizeof(struct fec_enet_private));
	if (!ndev)
		return -ENOMEM;

	SET_NETDEV_DEV(ndev, &pdev->dev);

	/* setup board info structure */
	fep = netdev_priv(ndev);
	memset(fep, 0, sizeof(*fep));

	ndev->base_addr = (unsigned long)ioremap(r->start, resource_size(r));

	if (!ndev->base_addr) {
		ret = -ENOMEM;
		goto failed_ioremap;
	}

	platform_set_drvdata(pdev, ndev);

	/* This device has up to three irqs on some platforms */
	for (i = 0; i < 3; i++) {
		irq = platform_get_irq(pdev, i);
		if (i && irq < 0)
			break;
		ret = request_irq(irq, fec_enet_interrupt, IRQF_DISABLED, pdev->name, ndev);
		if (ret) {
			while (i >= 0) {
				irq = platform_get_irq(pdev, i);
				free_irq(irq, ndev);
				i--;
			}
			goto failed_irq;
		}
	}

	fep->clk = clk_get(&pdev->dev, "fec_clk");
	if (IS_ERR(fep->clk)) {
		ret = PTR_ERR(fep->clk);
		goto failed_clk;
	}
	clk_enable(fep->clk);

	ret = fec_enet_init(ndev, 0);
	if (ret)
		goto failed_init;

	ret = register_netdev(ndev);
	if (ret)
		goto failed_register;

	return 0;

failed_register:
failed_init:
	clk_disable(fep->clk);
	clk_put(fep->clk);
failed_clk:
	for (i = 0; i < 3; i++) {
		irq = platform_get_irq(pdev, i);
		if (irq > 0)
			free_irq(irq, ndev);
	}
failed_irq:
	iounmap((void __iomem *)ndev->base_addr);
failed_ioremap:
	free_netdev(ndev);

	return ret;
}

static int __devexit
fec_drv_remove(struct platform_device *pdev)
{
	struct net_device *ndev = platform_get_drvdata(pdev);
	struct fec_enet_private *fep = netdev_priv(ndev);

	platform_set_drvdata(pdev, NULL);

	fec_stop(ndev);
	clk_disable(fep->clk);
	clk_put(fep->clk);
	iounmap((void __iomem *)ndev->base_addr);
	unregister_netdev(ndev);
	free_netdev(ndev);
	return 0;
}

static int
fec_suspend(struct platform_device *dev, pm_message_t state)
{
	struct net_device *ndev = platform_get_drvdata(dev);
	struct fec_enet_private *fep;

	if (ndev) {
		fep = netdev_priv(ndev);
		if (netif_running(ndev)) {
			netif_device_detach(ndev);
			fec_stop(ndev);
		}
	}
	return 0;
}

static int
fec_resume(struct platform_device *dev)
{
	struct net_device *ndev = platform_get_drvdata(dev);

	if (ndev) {
		if (netif_running(ndev)) {
			fec_enet_init(ndev, 0);
			netif_device_attach(ndev);
		}
	}
	return 0;
}

static struct platform_driver fec_driver = {
	.driver	= {
		.name    = "fec",
		.owner	 = THIS_MODULE,
	},
	.probe   = fec_probe,
	.remove  = __devexit_p(fec_drv_remove),
	.suspend = fec_suspend,
	.resume  = fec_resume,
};

static int __init
fec_enet_module_init(void)
{
	printk(KERN_INFO "FEC Ethernet Driver\n");

	return platform_driver_register(&fec_driver);
}

static void __exit
fec_enet_cleanup(void)
{
	platform_driver_unregister(&fec_driver);
}

module_exit(fec_enet_cleanup);

#endif /* FEC_LEGACY */
L
Linus Torvalds 已提交
2637 2638 2639 2640

module_init(fec_enet_module_init);

MODULE_LICENSE("GPL");