fec.c 62.8 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4
/*
 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
 *
5
 * Right now, I am very wasteful with the buffers.  I allocate memory
L
Linus Torvalds 已提交
6 7 8 9 10 11 12 13 14
 * pages and then divide them into 2K frame buffers.  This way I know I
 * have buffers large enough to hold one frame within one buffer descriptor.
 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
 * will be much more memory efficient and will easily handle lots of
 * small packets.
 *
 * Much better multiple PHY support by Magnus Damm.
 * Copyright (c) 2000 Ericsson Radio Systems AB.
 *
15 16
 * Support for FEC controller of ColdFire processors.
 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
17 18
 *
 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
19
 * Copyright (c) 2004-2006 Macq Electronique SA.
L
Linus Torvalds 已提交
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
 */

#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/ptrace.h>
#include <linux/errno.h>
#include <linux/ioport.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/spinlock.h>
#include <linux/workqueue.h>
#include <linux/bitops.h>
39 40
#include <linux/io.h>
#include <linux/irq.h>
L
Linus Torvalds 已提交
41

42
#include <asm/cacheflush.h>
L
Linus Torvalds 已提交
43 44
#include <asm/coldfire.h>
#include <asm/mcfsim.h>
45

L
Linus Torvalds 已提交
46 47 48 49 50 51 52 53
#include "fec.h"

#if defined(CONFIG_FEC2)
#define	FEC_MAX_PORTS	2
#else
#define	FEC_MAX_PORTS	1
#endif

54
#if defined(CONFIG_M5272)
55 56 57
#define HAVE_mii_link_interrupt
#endif

L
Linus Torvalds 已提交
58 59 60 61 62 63 64 65 66
/*
 * Define the fixed address of the FEC hardware.
 */
static unsigned int fec_hw[] = {
#if defined(CONFIG_M5272)
	(MCF_MBAR + 0x840),
#elif defined(CONFIG_M527x)
	(MCF_MBAR + 0x1000),
	(MCF_MBAR + 0x1800),
67
#elif defined(CONFIG_M523x) || defined(CONFIG_M528x)
L
Linus Torvalds 已提交
68
	(MCF_MBAR + 0x1000),
69 70
#elif defined(CONFIG_M520x)
	(MCF_MBAR+0x30000),
71 72
#elif defined(CONFIG_M532x)
	(MCF_MBAR+0xfc030000),
L
Linus Torvalds 已提交
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
#endif
};

static unsigned char	fec_mac_default[] = {
	0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
};

/*
 * Some hardware gets it MAC address out of local flash memory.
 * if this is non-zero then assume it is the address to get MAC from.
 */
#if defined(CONFIG_NETtel)
#define	FEC_FLASHMAC	0xf0006006
#elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
#define	FEC_FLASHMAC	0xf0006000
#elif defined(CONFIG_CANCam)
#define	FEC_FLASHMAC	0xf0020000
90 91 92 93
#elif defined (CONFIG_M5272C3)
#define	FEC_FLASHMAC	(0xffe04000 + 4)
#elif defined(CONFIG_MOD5272)
#define FEC_FLASHMAC 	0xffc0406b
L
Linus Torvalds 已提交
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
#else
#define	FEC_FLASHMAC	0
#endif

/* Forward declarations of some structures to support different PHYs
*/

typedef struct {
	uint mii_data;
	void (*funct)(uint mii_reg, struct net_device *dev);
} phy_cmd_t;

typedef struct {
	uint id;
	char *name;

	const phy_cmd_t *config;
	const phy_cmd_t *startup;
	const phy_cmd_t *ack_int;
	const phy_cmd_t *shutdown;
} phy_info_t;

/* The number of Tx and Rx buffers.  These are allocated from the page
 * pool.  The code may assume these are power of two, so it it best
 * to keep them that size.
 * We don't need to allocate pages for the transmitter.  We just use
 * the skbuffer directly.
 */
#define FEC_ENET_RX_PAGES	8
#define FEC_ENET_RX_FRSIZE	2048
#define FEC_ENET_RX_FRPPG	(PAGE_SIZE / FEC_ENET_RX_FRSIZE)
#define RX_RING_SIZE		(FEC_ENET_RX_FRPPG * FEC_ENET_RX_PAGES)
#define FEC_ENET_TX_FRSIZE	2048
#define FEC_ENET_TX_FRPPG	(PAGE_SIZE / FEC_ENET_TX_FRSIZE)
#define TX_RING_SIZE		16	/* Must be power of two */
#define TX_RING_MOD_MASK	15	/*   for this to work */

131
#if (((RX_RING_SIZE + TX_RING_SIZE) * 8) > PAGE_SIZE)
132
#error "FEC: descriptor ring size constants too large"
133 134
#endif

L
Linus Torvalds 已提交
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
/* Interrupt events/masks.
*/
#define FEC_ENET_HBERR	((uint)0x80000000)	/* Heartbeat error */
#define FEC_ENET_BABR	((uint)0x40000000)	/* Babbling receiver */
#define FEC_ENET_BABT	((uint)0x20000000)	/* Babbling transmitter */
#define FEC_ENET_GRA	((uint)0x10000000)	/* Graceful stop complete */
#define FEC_ENET_TXF	((uint)0x08000000)	/* Full frame transmitted */
#define FEC_ENET_TXB	((uint)0x04000000)	/* A buffer was transmitted */
#define FEC_ENET_RXF	((uint)0x02000000)	/* Full frame received */
#define FEC_ENET_RXB	((uint)0x01000000)	/* A buffer was received */
#define FEC_ENET_MII	((uint)0x00800000)	/* MII interrupt */
#define FEC_ENET_EBERR	((uint)0x00400000)	/* SDMA bus error */

/* The FEC stores dest/src/type, data, and checksum for receive packets.
 */
#define PKT_MAXBUF_SIZE		1518
#define PKT_MINBUF_SIZE		64
#define PKT_MAXBLR_SIZE		1520


/*
156
 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
L
Linus Torvalds 已提交
157 158 159
 * size bits. Other FEC hardware does not, so we need to take that into
 * account when setting it.
 */
160
#if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
161
    defined(CONFIG_M520x) || defined(CONFIG_M532x)
L
Linus Torvalds 已提交
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
#define	OPT_FRAME_SIZE	(PKT_MAXBUF_SIZE << 16)
#else
#define	OPT_FRAME_SIZE	0
#endif

/* The FEC buffer descriptors track the ring buffers.  The rx_bd_base and
 * tx_bd_base always point to the base of the buffer descriptors.  The
 * cur_rx and cur_tx point to the currently available buffer.
 * The dirty_tx tracks the current buffer that is being sent by the
 * controller.  The cur_tx and dirty_tx are equal under both completely
 * empty and completely full conditions.  The empty/ready indicator in
 * the buffer descriptor determines the actual condition.
 */
struct fec_enet_private {
	/* Hardware registers of the FEC device */
	volatile fec_t	*hwp;

G
Greg Ungerer 已提交
179 180
	struct net_device *netdev;

L
Linus Torvalds 已提交
181 182 183 184 185 186 187 188
	/* The saved address of a sent-in-place packet/buffer, for skfree(). */
	unsigned char *tx_bounce[TX_RING_SIZE];
	struct	sk_buff* tx_skbuff[TX_RING_SIZE];
	ushort	skb_cur;
	ushort	skb_dirty;

	/* CPM dual port RAM relative addresses.
	*/
189
	dma_addr_t	bd_dma;
L
Linus Torvalds 已提交
190 191 192 193 194
	cbd_t	*rx_bd_base;		/* Address of Rx and Tx buffers. */
	cbd_t	*tx_bd_base;
	cbd_t	*cur_rx, *cur_tx;		/* The next free ring entry */
	cbd_t	*dirty_tx;	/* The ring entries to be free()ed. */
	uint	tx_full;
195 196 197 198
	/* hold while accessing the HW like ringbuffer for tx/rx but not MAC */
	spinlock_t hw_lock;
	/* hold while accessing the mii_list_t() elements */
	spinlock_t mii_lock;
L
Linus Torvalds 已提交
199 200 201 202 203

	uint	phy_id;
	uint	phy_id_done;
	uint	phy_status;
	uint	phy_speed;
204
	phy_info_t const	*phy;
L
Linus Torvalds 已提交
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
	struct work_struct phy_task;

	uint	sequence_done;
	uint	mii_phy_task_queued;

	uint	phy_addr;

	int	index;
	int	opened;
	int	link;
	int	old_link;
	int	full_duplex;
};

static int fec_enet_open(struct net_device *dev);
static int fec_enet_start_xmit(struct sk_buff *skb, struct net_device *dev);
static void fec_enet_mii(struct net_device *dev);
222
static irqreturn_t fec_enet_interrupt(int irq, void * dev_id);
L
Linus Torvalds 已提交
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
static void fec_enet_tx(struct net_device *dev);
static void fec_enet_rx(struct net_device *dev);
static int fec_enet_close(struct net_device *dev);
static void set_multicast_list(struct net_device *dev);
static void fec_restart(struct net_device *dev, int duplex);
static void fec_stop(struct net_device *dev);
static void fec_set_mac_address(struct net_device *dev);


/* MII processing.  We keep this as simple as possible.  Requests are
 * placed on the list (if there is room).  When the request is finished
 * by the MII, an optional function may be called.
 */
typedef struct mii_list {
	uint	mii_regval;
	void	(*mii_func)(uint val, struct net_device *dev);
	struct	mii_list *mii_next;
} mii_list_t;

#define		NMII	20
243 244 245 246
static mii_list_t	mii_cmds[NMII];
static mii_list_t	*mii_free;
static mii_list_t	*mii_head;
static mii_list_t	*mii_tail;
L
Linus Torvalds 已提交
247

248
static int	mii_queue(struct net_device *dev, int request,
L
Linus Torvalds 已提交
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
				void (*func)(uint, struct net_device *));

/* Make MII read/write commands for the FEC.
*/
#define mk_mii_read(REG)	(0x60020000 | ((REG & 0x1f) << 18))
#define mk_mii_write(REG, VAL)	(0x50020000 | ((REG & 0x1f) << 18) | \
						(VAL & 0xffff))
#define mk_mii_end	0

/* Transmitter timeout.
*/
#define TX_TIMEOUT (2*HZ)

/* Register definitions for the PHY.
*/

#define MII_REG_CR          0  /* Control Register                         */
#define MII_REG_SR          1  /* Status Register                          */
#define MII_REG_PHYIR1      2  /* PHY Identification Register 1            */
#define MII_REG_PHYIR2      3  /* PHY Identification Register 2            */
269
#define MII_REG_ANAR        4  /* A-N Advertisement Register               */
L
Linus Torvalds 已提交
270 271 272 273 274 275 276 277 278 279 280
#define MII_REG_ANLPAR      5  /* A-N Link Partner Ability Register        */
#define MII_REG_ANER        6  /* A-N Expansion Register                   */
#define MII_REG_ANNPTR      7  /* A-N Next Page Transmit Register          */
#define MII_REG_ANLPRNPR    8  /* A-N Link Partner Received Next Page Reg. */

/* values for phy_status */

#define PHY_CONF_ANE	0x0001  /* 1 auto-negotiation enabled */
#define PHY_CONF_LOOP	0x0002  /* 1 loopback mode enabled */
#define PHY_CONF_SPMASK	0x00f0  /* mask for speed */
#define PHY_CONF_10HDX	0x0010  /* 10 Mbit half duplex supported */
281
#define PHY_CONF_10FDX	0x0020  /* 10 Mbit full duplex supported */
L
Linus Torvalds 已提交
282
#define PHY_CONF_100HDX	0x0040  /* 100 Mbit half duplex supported */
283
#define PHY_CONF_100FDX	0x0080  /* 100 Mbit full duplex supported */
L
Linus Torvalds 已提交
284 285 286 287 288 289

#define PHY_STAT_LINK	0x0100  /* 1 up - 0 down */
#define PHY_STAT_FAULT	0x0200  /* 1 remote fault */
#define PHY_STAT_ANC	0x0400  /* 1 auto-negotiation complete	*/
#define PHY_STAT_SPMASK	0xf000  /* mask for speed */
#define PHY_STAT_10HDX	0x1000  /* 10 Mbit half duplex selected	*/
290
#define PHY_STAT_10FDX	0x2000  /* 10 Mbit full duplex selected	*/
L
Linus Torvalds 已提交
291
#define PHY_STAT_100HDX	0x4000  /* 100 Mbit half duplex selected */
292
#define PHY_STAT_100FDX	0x8000  /* 100 Mbit full duplex selected */
L
Linus Torvalds 已提交
293 294 295 296 297 298 299 300


static int
fec_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
	struct fec_enet_private *fep;
	volatile fec_t	*fecp;
	volatile cbd_t	*bdp;
301
	unsigned short	status;
302
	unsigned long flags;
L
Linus Torvalds 已提交
303 304 305 306 307 308 309 310 311

	fep = netdev_priv(dev);
	fecp = (volatile fec_t*)dev->base_addr;

	if (!fep->link) {
		/* Link is down or autonegotiation is in progress. */
		return 1;
	}

312
	spin_lock_irqsave(&fep->hw_lock, flags);
L
Linus Torvalds 已提交
313 314 315
	/* Fill in a Tx ring entry */
	bdp = fep->cur_tx;

316
	status = bdp->cbd_sc;
L
Linus Torvalds 已提交
317
#ifndef final_version
318
	if (status & BD_ENET_TX_READY) {
L
Linus Torvalds 已提交
319 320 321 322
		/* Ooops.  All transmit buffers are full.  Bail out.
		 * This should not happen, since dev->tbusy should be set.
		 */
		printk("%s: tx queue full!.\n", dev->name);
323
		spin_unlock_irqrestore(&fep->hw_lock, flags);
L
Linus Torvalds 已提交
324 325 326 327 328 329
		return 1;
	}
#endif

	/* Clear all of the status flags.
	 */
330
	status &= ~BD_ENET_TX_STATS;
L
Linus Torvalds 已提交
331 332 333 334 335 336 337 338 339 340 341 342 343 344

	/* Set buffer length and buffer pointer.
	*/
	bdp->cbd_bufaddr = __pa(skb->data);
	bdp->cbd_datlen = skb->len;

	/*
	 *	On some FEC implementations data must be aligned on
	 *	4-byte boundaries. Use bounce buffers to copy data
	 *	and get it aligned. Ugh.
	 */
	if (bdp->cbd_bufaddr & 0x3) {
		unsigned int index;
		index = bdp - fep->tx_bd_base;
345
		memcpy(fep->tx_bounce[index], (void *)skb->data, skb->len);
L
Linus Torvalds 已提交
346 347 348 349 350 351 352
		bdp->cbd_bufaddr = __pa(fep->tx_bounce[index]);
	}

	/* Save skb pointer.
	*/
	fep->tx_skbuff[fep->skb_cur] = skb;

353
	dev->stats.tx_bytes += skb->len;
L
Linus Torvalds 已提交
354
	fep->skb_cur = (fep->skb_cur+1) & TX_RING_MOD_MASK;
355

L
Linus Torvalds 已提交
356 357 358 359 360 361
	/* Push the data cache so the CPM does not get stale memory
	 * data.
	 */
	flush_dcache_range((unsigned long)skb->data,
			   (unsigned long)skb->data + skb->len);

362 363
	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
	 * it's the last BD of the frame, and to put the CRC on the end.
L
Linus Torvalds 已提交
364 365
	 */

366
	status |= (BD_ENET_TX_READY | BD_ENET_TX_INTR
L
Linus Torvalds 已提交
367
			| BD_ENET_TX_LAST | BD_ENET_TX_TC);
368
	bdp->cbd_sc = status;
L
Linus Torvalds 已提交
369 370 371 372

	dev->trans_start = jiffies;

	/* Trigger transmission start */
373
	fecp->fec_x_des_active = 0;
L
Linus Torvalds 已提交
374 375 376

	/* If this was the last BD in the ring, start at the beginning again.
	*/
377
	if (status & BD_ENET_TX_WRAP) {
L
Linus Torvalds 已提交
378 379 380 381 382 383 384 385 386 387 388 389
		bdp = fep->tx_bd_base;
	} else {
		bdp++;
	}

	if (bdp == fep->dirty_tx) {
		fep->tx_full = 1;
		netif_stop_queue(dev);
	}

	fep->cur_tx = (cbd_t *)bdp;

390
	spin_unlock_irqrestore(&fep->hw_lock, flags);
L
Linus Torvalds 已提交
391 392 393 394 395 396 397 398 399 400

	return 0;
}

static void
fec_timeout(struct net_device *dev)
{
	struct fec_enet_private *fep = netdev_priv(dev);

	printk("%s: transmit timed out.\n", dev->name);
401
	dev->stats.tx_errors++;
L
Linus Torvalds 已提交
402 403 404 405 406 407 408 409 410 411 412 413 414
#ifndef final_version
	{
	int	i;
	cbd_t	*bdp;

	printk("Ring data dump: cur_tx %lx%s, dirty_tx %lx cur_rx: %lx\n",
	       (unsigned long)fep->cur_tx, fep->tx_full ? " (full)" : "",
	       (unsigned long)fep->dirty_tx,
	       (unsigned long)fep->cur_rx);

	bdp = fep->tx_bd_base;
	printk(" tx: %u buffers\n",  TX_RING_SIZE);
	for (i = 0 ; i < TX_RING_SIZE; i++) {
415
		printk("  %08x: %04x %04x %08x\n",
L
Linus Torvalds 已提交
416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
		       (uint) bdp,
		       bdp->cbd_sc,
		       bdp->cbd_datlen,
		       (int) bdp->cbd_bufaddr);
		bdp++;
	}

	bdp = fep->rx_bd_base;
	printk(" rx: %lu buffers\n",  (unsigned long) RX_RING_SIZE);
	for (i = 0 ; i < RX_RING_SIZE; i++) {
		printk("  %08x: %04x %04x %08x\n",
		       (uint) bdp,
		       bdp->cbd_sc,
		       bdp->cbd_datlen,
		       (int) bdp->cbd_bufaddr);
		bdp++;
	}
	}
#endif
435
	fec_restart(dev, fep->full_duplex);
L
Linus Torvalds 已提交
436 437 438 439 440 441 442
	netif_wake_queue(dev);
}

/* The interrupt handler.
 * This is called from the MPC core interrupt.
 */
static irqreturn_t
443
fec_enet_interrupt(int irq, void * dev_id)
L
Linus Torvalds 已提交
444 445 446 447
{
	struct	net_device *dev = dev_id;
	volatile fec_t	*fecp;
	uint	int_events;
448
	irqreturn_t ret = IRQ_NONE;
L
Linus Torvalds 已提交
449 450 451 452 453

	fecp = (volatile fec_t*)dev->base_addr;

	/* Get the interrupt events that caused us to be here.
	*/
454 455
	do {
		int_events = fecp->fec_ievent;
L
Linus Torvalds 已提交
456 457 458 459 460
		fecp->fec_ievent = int_events;

		/* Handle receive event in its own function.
		 */
		if (int_events & FEC_ENET_RXF) {
461
			ret = IRQ_HANDLED;
L
Linus Torvalds 已提交
462 463 464 465 466 467 468 469
			fec_enet_rx(dev);
		}

		/* Transmit OK, or non-fatal error. Update the buffer
		   descriptors. FEC handles all errors, we just discover
		   them as part of the transmit process.
		*/
		if (int_events & FEC_ENET_TXF) {
470
			ret = IRQ_HANDLED;
L
Linus Torvalds 已提交
471 472 473 474
			fec_enet_tx(dev);
		}

		if (int_events & FEC_ENET_MII) {
475
			ret = IRQ_HANDLED;
L
Linus Torvalds 已提交
476 477
			fec_enet_mii(dev);
		}
478

479 480 481
	} while (int_events);

	return ret;
L
Linus Torvalds 已提交
482 483 484 485 486 487 488 489
}


static void
fec_enet_tx(struct net_device *dev)
{
	struct	fec_enet_private *fep;
	volatile cbd_t	*bdp;
490
	unsigned short status;
L
Linus Torvalds 已提交
491 492 493
	struct	sk_buff	*skb;

	fep = netdev_priv(dev);
494
	spin_lock_irq(&fep->hw_lock);
L
Linus Torvalds 已提交
495 496
	bdp = fep->dirty_tx;

497
	while (((status = bdp->cbd_sc) & BD_ENET_TX_READY) == 0) {
L
Linus Torvalds 已提交
498 499 500 501
		if (bdp == fep->cur_tx && fep->tx_full == 0) break;

		skb = fep->tx_skbuff[fep->skb_dirty];
		/* Check for errors. */
502
		if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
L
Linus Torvalds 已提交
503 504
				   BD_ENET_TX_RL | BD_ENET_TX_UN |
				   BD_ENET_TX_CSL)) {
505
			dev->stats.tx_errors++;
506
			if (status & BD_ENET_TX_HB)  /* No heartbeat */
507
				dev->stats.tx_heartbeat_errors++;
508
			if (status & BD_ENET_TX_LC)  /* Late collision */
509
				dev->stats.tx_window_errors++;
510
			if (status & BD_ENET_TX_RL)  /* Retrans limit */
511
				dev->stats.tx_aborted_errors++;
512
			if (status & BD_ENET_TX_UN)  /* Underrun */
513
				dev->stats.tx_fifo_errors++;
514
			if (status & BD_ENET_TX_CSL) /* Carrier lost */
515
				dev->stats.tx_carrier_errors++;
L
Linus Torvalds 已提交
516
		} else {
517
			dev->stats.tx_packets++;
L
Linus Torvalds 已提交
518 519 520
		}

#ifndef final_version
521
		if (status & BD_ENET_TX_READY)
L
Linus Torvalds 已提交
522 523 524 525 526
			printk("HEY! Enet xmit interrupt and TX_READY.\n");
#endif
		/* Deferred means some collisions occurred during transmit,
		 * but we eventually sent the packet OK.
		 */
527
		if (status & BD_ENET_TX_DEF)
528
			dev->stats.collisions++;
529

L
Linus Torvalds 已提交
530 531 532 533 534
		/* Free the sk buffer associated with this last transmit.
		 */
		dev_kfree_skb_any(skb);
		fep->tx_skbuff[fep->skb_dirty] = NULL;
		fep->skb_dirty = (fep->skb_dirty + 1) & TX_RING_MOD_MASK;
535

L
Linus Torvalds 已提交
536 537
		/* Update pointer to next buffer descriptor to be transmitted.
		 */
538
		if (status & BD_ENET_TX_WRAP)
L
Linus Torvalds 已提交
539 540 541
			bdp = fep->tx_bd_base;
		else
			bdp++;
542

L
Linus Torvalds 已提交
543 544 545 546 547 548 549 550 551 552
		/* Since we have freed up a buffer, the ring is no longer
		 * full.
		 */
		if (fep->tx_full) {
			fep->tx_full = 0;
			if (netif_queue_stopped(dev))
				netif_wake_queue(dev);
		}
	}
	fep->dirty_tx = (cbd_t *)bdp;
553
	spin_unlock_irq(&fep->hw_lock);
L
Linus Torvalds 已提交
554 555 556 557 558 559 560 561 562 563 564 565 566 567
}


/* During a receive, the cur_rx points to the current incoming buffer.
 * When we update through the ring, if the next incoming buffer has
 * not been given to the system, we just set the empty indicator,
 * effectively tossing the packet.
 */
static void
fec_enet_rx(struct net_device *dev)
{
	struct	fec_enet_private *fep;
	volatile fec_t	*fecp;
	volatile cbd_t *bdp;
568
	unsigned short status;
L
Linus Torvalds 已提交
569 570 571
	struct	sk_buff	*skb;
	ushort	pkt_len;
	__u8 *data;
572

573 574
#ifdef CONFIG_M532x
	flush_cache_all();
575
#endif
L
Linus Torvalds 已提交
576 577 578 579

	fep = netdev_priv(dev);
	fecp = (volatile fec_t*)dev->base_addr;

580 581
	spin_lock_irq(&fep->hw_lock);

L
Linus Torvalds 已提交
582 583 584 585 586
	/* First, grab all of the stats for the incoming packet.
	 * These get messed up if we get called due to a busy condition.
	 */
	bdp = fep->cur_rx;

587
while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) {
L
Linus Torvalds 已提交
588 589 590 591 592

#ifndef final_version
	/* Since we have allocated space to hold a complete frame,
	 * the last indicator should be set.
	 */
593
	if ((status & BD_ENET_RX_LAST) == 0)
L
Linus Torvalds 已提交
594 595 596 597 598 599 600
		printk("FEC ENET: rcv is not +last\n");
#endif

	if (!fep->opened)
		goto rx_processing_done;

	/* Check for errors. */
601
	if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
L
Linus Torvalds 已提交
602
			   BD_ENET_RX_CR | BD_ENET_RX_OV)) {
603
		dev->stats.rx_errors++;
604
		if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH)) {
L
Linus Torvalds 已提交
605
		/* Frame too long or too short. */
606
			dev->stats.rx_length_errors++;
L
Linus Torvalds 已提交
607
		}
608
		if (status & BD_ENET_RX_NO)	/* Frame alignment */
609
			dev->stats.rx_frame_errors++;
610
		if (status & BD_ENET_RX_CR)	/* CRC Error */
611
			dev->stats.rx_crc_errors++;
612
		if (status & BD_ENET_RX_OV)	/* FIFO overrun */
613
			dev->stats.rx_fifo_errors++;
L
Linus Torvalds 已提交
614 615 616 617 618 619
	}

	/* Report late collisions as a frame error.
	 * On this error, the BD is closed, but we don't know what we
	 * have in the buffer.  So, just drop this frame on the floor.
	 */
620
	if (status & BD_ENET_RX_CL) {
621 622
		dev->stats.rx_errors++;
		dev->stats.rx_frame_errors++;
L
Linus Torvalds 已提交
623 624 625 626 627
		goto rx_processing_done;
	}

	/* Process the incoming frame.
	 */
628
	dev->stats.rx_packets++;
L
Linus Torvalds 已提交
629
	pkt_len = bdp->cbd_datlen;
630
	dev->stats.rx_bytes += pkt_len;
L
Linus Torvalds 已提交
631 632 633 634 635 636 637 638 639 640 641
	data = (__u8*)__va(bdp->cbd_bufaddr);

	/* This does 16 byte alignment, exactly what we need.
	 * The packet length includes FCS, but we don't want to
	 * include that when passing upstream as it messes up
	 * bridging applications.
	 */
	skb = dev_alloc_skb(pkt_len-4);

	if (skb == NULL) {
		printk("%s: Memory squeeze, dropping packet.\n", dev->name);
642
		dev->stats.rx_dropped++;
L
Linus Torvalds 已提交
643 644
	} else {
		skb_put(skb,pkt_len-4);	/* Make room */
645
		skb_copy_to_linear_data(skb, data, pkt_len-4);
L
Linus Torvalds 已提交
646 647 648 649 650 651 652
		skb->protocol=eth_type_trans(skb,dev);
		netif_rx(skb);
	}
  rx_processing_done:

	/* Clear the status flags for this buffer.
	*/
653
	status &= ~BD_ENET_RX_STATS;
L
Linus Torvalds 已提交
654 655 656

	/* Mark the buffer empty.
	*/
657 658
	status |= BD_ENET_RX_EMPTY;
	bdp->cbd_sc = status;
L
Linus Torvalds 已提交
659 660 661

	/* Update BD pointer to next entry.
	*/
662
	if (status & BD_ENET_RX_WRAP)
L
Linus Torvalds 已提交
663 664 665
		bdp = fep->rx_bd_base;
	else
		bdp++;
666

L
Linus Torvalds 已提交
667 668 669 670 671
#if 1
	/* Doing this here will keep the FEC running while we process
	 * incoming frames.  On a heavily loaded network, we should be
	 * able to keep up at the expense of system resources.
	 */
672
	fecp->fec_r_des_active = 0;
L
Linus Torvalds 已提交
673
#endif
674
   } /* while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) */
L
Linus Torvalds 已提交
675 676 677 678 679 680 681 682 683 684
	fep->cur_rx = (cbd_t *)bdp;

#if 0
	/* Doing this here will allow us to process all frames in the
	 * ring before the FEC is allowed to put more there.  On a heavily
	 * loaded network, some frames may be lost.  Unfortunately, this
	 * increases the interrupt overhead since we can potentially work
	 * our way back to the interrupt return only to come right back
	 * here.
	 */
685
	fecp->fec_r_des_active = 0;
L
Linus Torvalds 已提交
686
#endif
687 688

	spin_unlock_irq(&fep->hw_lock);
L
Linus Torvalds 已提交
689 690 691
}


692
/* called from interrupt context */
L
Linus Torvalds 已提交
693 694 695 696 697 698 699 700 701
static void
fec_enet_mii(struct net_device *dev)
{
	struct	fec_enet_private *fep;
	volatile fec_t	*ep;
	mii_list_t	*mip;
	uint		mii_reg;

	fep = netdev_priv(dev);
702 703
	spin_lock_irq(&fep->mii_lock);

L
Linus Torvalds 已提交
704 705
	ep = fep->hwp;
	mii_reg = ep->fec_mii_data;
706

L
Linus Torvalds 已提交
707 708
	if ((mip = mii_head) == NULL) {
		printk("MII and no head!\n");
709
		goto unlock;
L
Linus Torvalds 已提交
710 711 712 713 714 715 716 717 718 719 720
	}

	if (mip->mii_func != NULL)
		(*(mip->mii_func))(mii_reg, dev);

	mii_head = mip->mii_next;
	mip->mii_next = mii_free;
	mii_free = mip;

	if ((mip = mii_head) != NULL)
		ep->fec_mii_data = mip->mii_regval;
721 722

unlock:
723
	spin_unlock_irq(&fep->mii_lock);
L
Linus Torvalds 已提交
724 725 726 727 728 729 730 731 732 733 734 735 736
}

static int
mii_queue(struct net_device *dev, int regval, void (*func)(uint, struct net_device *))
{
	struct fec_enet_private *fep;
	unsigned long	flags;
	mii_list_t	*mip;
	int		retval;

	/* Add PHY address to register command.
	*/
	fep = netdev_priv(dev);
737
	spin_lock_irqsave(&fep->mii_lock, flags);
L
Linus Torvalds 已提交
738

739
	regval |= fep->phy_addr << 23;
L
Linus Torvalds 已提交
740 741 742 743 744 745 746 747 748 749
	retval = 0;

	if ((mip = mii_free) != NULL) {
		mii_free = mip->mii_next;
		mip->mii_regval = regval;
		mip->mii_func = func;
		mip->mii_next = NULL;
		if (mii_head) {
			mii_tail->mii_next = mip;
			mii_tail = mip;
750
		} else {
L
Linus Torvalds 已提交
751 752 753
			mii_head = mii_tail = mip;
			fep->hwp->fec_mii_data = regval;
		}
754
	} else {
L
Linus Torvalds 已提交
755 756 757
		retval = 1;
	}

758 759
	spin_unlock_irqrestore(&fep->mii_lock, flags);
	return retval;
L
Linus Torvalds 已提交
760 761 762 763 764 765 766
}

static void mii_do_cmd(struct net_device *dev, const phy_cmd_t *c)
{
	if(!c)
		return;

767 768
	for (; c->mii_data != mk_mii_end; c++)
		mii_queue(dev, c->mii_data, c->funct);
L
Linus Torvalds 已提交
769 770 771 772 773 774
}

static void mii_parse_sr(uint mii_reg, struct net_device *dev)
{
	struct fec_enet_private *fep = netdev_priv(dev);
	volatile uint *s = &(fep->phy_status);
775
	uint status;
L
Linus Torvalds 已提交
776

777
	status = *s & ~(PHY_STAT_LINK | PHY_STAT_FAULT | PHY_STAT_ANC);
L
Linus Torvalds 已提交
778 779

	if (mii_reg & 0x0004)
780
		status |= PHY_STAT_LINK;
L
Linus Torvalds 已提交
781
	if (mii_reg & 0x0010)
782
		status |= PHY_STAT_FAULT;
L
Linus Torvalds 已提交
783
	if (mii_reg & 0x0020)
784 785
		status |= PHY_STAT_ANC;
	*s = status;
L
Linus Torvalds 已提交
786 787 788 789 790 791
}

static void mii_parse_cr(uint mii_reg, struct net_device *dev)
{
	struct fec_enet_private *fep = netdev_priv(dev);
	volatile uint *s = &(fep->phy_status);
792
	uint status;
L
Linus Torvalds 已提交
793

794
	status = *s & ~(PHY_CONF_ANE | PHY_CONF_LOOP);
L
Linus Torvalds 已提交
795 796

	if (mii_reg & 0x1000)
797
		status |= PHY_CONF_ANE;
L
Linus Torvalds 已提交
798
	if (mii_reg & 0x4000)
799 800
		status |= PHY_CONF_LOOP;
	*s = status;
L
Linus Torvalds 已提交
801 802 803 804 805 806
}

static void mii_parse_anar(uint mii_reg, struct net_device *dev)
{
	struct fec_enet_private *fep = netdev_priv(dev);
	volatile uint *s = &(fep->phy_status);
807
	uint status;
L
Linus Torvalds 已提交
808

809
	status = *s & ~(PHY_CONF_SPMASK);
L
Linus Torvalds 已提交
810 811

	if (mii_reg & 0x0020)
812
		status |= PHY_CONF_10HDX;
L
Linus Torvalds 已提交
813
	if (mii_reg & 0x0040)
814
		status |= PHY_CONF_10FDX;
L
Linus Torvalds 已提交
815
	if (mii_reg & 0x0080)
816
		status |= PHY_CONF_100HDX;
L
Linus Torvalds 已提交
817
	if (mii_reg & 0x00100)
818 819
		status |= PHY_CONF_100FDX;
	*s = status;
L
Linus Torvalds 已提交
820 821 822 823 824 825 826 827 828 829 830 831 832 833 834
}

/* ------------------------------------------------------------------------- */
/* The Level one LXT970 is used by many boards				     */

#define MII_LXT970_MIRROR    16  /* Mirror register           */
#define MII_LXT970_IER       17  /* Interrupt Enable Register */
#define MII_LXT970_ISR       18  /* Interrupt Status Register */
#define MII_LXT970_CONFIG    19  /* Configuration Register    */
#define MII_LXT970_CSR       20  /* Chip Status Register      */

static void mii_parse_lxt970_csr(uint mii_reg, struct net_device *dev)
{
	struct fec_enet_private *fep = netdev_priv(dev);
	volatile uint *s = &(fep->phy_status);
835
	uint status;
L
Linus Torvalds 已提交
836

837
	status = *s & ~(PHY_STAT_SPMASK);
L
Linus Torvalds 已提交
838 839
	if (mii_reg & 0x0800) {
		if (mii_reg & 0x1000)
840
			status |= PHY_STAT_100FDX;
L
Linus Torvalds 已提交
841
		else
842
			status |= PHY_STAT_100HDX;
L
Linus Torvalds 已提交
843 844
	} else {
		if (mii_reg & 0x1000)
845
			status |= PHY_STAT_10FDX;
L
Linus Torvalds 已提交
846
		else
847
			status |= PHY_STAT_10HDX;
L
Linus Torvalds 已提交
848
	}
849
	*s = status;
L
Linus Torvalds 已提交
850 851
}

852
static phy_cmd_t const phy_cmd_lxt970_config[] = {
L
Linus Torvalds 已提交
853 854 855
		{ mk_mii_read(MII_REG_CR), mii_parse_cr },
		{ mk_mii_read(MII_REG_ANAR), mii_parse_anar },
		{ mk_mii_end, }
856 857
	};
static phy_cmd_t const phy_cmd_lxt970_startup[] = { /* enable interrupts */
L
Linus Torvalds 已提交
858 859 860
		{ mk_mii_write(MII_LXT970_IER, 0x0002), NULL },
		{ mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
		{ mk_mii_end, }
861 862
	};
static phy_cmd_t const phy_cmd_lxt970_ack_int[] = {
L
Linus Torvalds 已提交
863 864 865 866 867 868 869
		/* read SR and ISR to acknowledge */
		{ mk_mii_read(MII_REG_SR), mii_parse_sr },
		{ mk_mii_read(MII_LXT970_ISR), NULL },

		/* find out the current status */
		{ mk_mii_read(MII_LXT970_CSR), mii_parse_lxt970_csr },
		{ mk_mii_end, }
870 871
	};
static phy_cmd_t const phy_cmd_lxt970_shutdown[] = { /* disable interrupts */
L
Linus Torvalds 已提交
872 873
		{ mk_mii_write(MII_LXT970_IER, 0x0000), NULL },
		{ mk_mii_end, }
874 875
	};
static phy_info_t const phy_info_lxt970 = {
876
	.id = 0x07810000,
877 878 879 880 881
	.name = "LXT970",
	.config = phy_cmd_lxt970_config,
	.startup = phy_cmd_lxt970_startup,
	.ack_int = phy_cmd_lxt970_ack_int,
	.shutdown = phy_cmd_lxt970_shutdown
L
Linus Torvalds 已提交
882
};
883

L
Linus Torvalds 已提交
884 885 886 887 888 889 890 891 892 893 894 895
/* ------------------------------------------------------------------------- */
/* The Level one LXT971 is used on some of my custom boards                  */

/* register definitions for the 971 */

#define MII_LXT971_PCR       16  /* Port Control Register     */
#define MII_LXT971_SR2       17  /* Status Register 2         */
#define MII_LXT971_IER       18  /* Interrupt Enable Register */
#define MII_LXT971_ISR       19  /* Interrupt Status Register */
#define MII_LXT971_LCR       20  /* LED Control Register      */
#define MII_LXT971_TCR       30  /* Transmit Control Register */

896
/*
L
Linus Torvalds 已提交
897 898 899 900 901 902 903 904 905
 * I had some nice ideas of running the MDIO faster...
 * The 971 should support 8MHz and I tried it, but things acted really
 * weird, so 2.5 MHz ought to be enough for anyone...
 */

static void mii_parse_lxt971_sr2(uint mii_reg, struct net_device *dev)
{
	struct fec_enet_private *fep = netdev_priv(dev);
	volatile uint *s = &(fep->phy_status);
906
	uint status;
L
Linus Torvalds 已提交
907

908
	status = *s & ~(PHY_STAT_SPMASK | PHY_STAT_LINK | PHY_STAT_ANC);
L
Linus Torvalds 已提交
909 910 911

	if (mii_reg & 0x0400) {
		fep->link = 1;
912
		status |= PHY_STAT_LINK;
L
Linus Torvalds 已提交
913 914 915 916
	} else {
		fep->link = 0;
	}
	if (mii_reg & 0x0080)
917
		status |= PHY_STAT_ANC;
L
Linus Torvalds 已提交
918 919
	if (mii_reg & 0x4000) {
		if (mii_reg & 0x0200)
920
			status |= PHY_STAT_100FDX;
L
Linus Torvalds 已提交
921
		else
922
			status |= PHY_STAT_100HDX;
L
Linus Torvalds 已提交
923 924
	} else {
		if (mii_reg & 0x0200)
925
			status |= PHY_STAT_10FDX;
L
Linus Torvalds 已提交
926
		else
927
			status |= PHY_STAT_10HDX;
L
Linus Torvalds 已提交
928 929
	}
	if (mii_reg & 0x0008)
930
		status |= PHY_STAT_FAULT;
L
Linus Torvalds 已提交
931

932 933
	*s = status;
}
934

935
static phy_cmd_t const phy_cmd_lxt971_config[] = {
936
		/* limit to 10MBit because my prototype board
L
Linus Torvalds 已提交
937 938 939 940 941
		 * doesn't work with 100. */
		{ mk_mii_read(MII_REG_CR), mii_parse_cr },
		{ mk_mii_read(MII_REG_ANAR), mii_parse_anar },
		{ mk_mii_read(MII_LXT971_SR2), mii_parse_lxt971_sr2 },
		{ mk_mii_end, }
942 943
	};
static phy_cmd_t const phy_cmd_lxt971_startup[] = {  /* enable interrupts */
L
Linus Torvalds 已提交
944 945 946 947 948 949
		{ mk_mii_write(MII_LXT971_IER, 0x00f2), NULL },
		{ mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
		{ mk_mii_write(MII_LXT971_LCR, 0xd422), NULL }, /* LED config */
		/* Somehow does the 971 tell me that the link is down
		 * the first read after power-up.
		 * read here to get a valid value in ack_int */
950
		{ mk_mii_read(MII_REG_SR), mii_parse_sr },
L
Linus Torvalds 已提交
951
		{ mk_mii_end, }
952 953 954 955
	};
static phy_cmd_t const phy_cmd_lxt971_ack_int[] = {
		/* acknowledge the int before reading status ! */
		{ mk_mii_read(MII_LXT971_ISR), NULL },
L
Linus Torvalds 已提交
956 957 958 959
		/* find out the current status */
		{ mk_mii_read(MII_REG_SR), mii_parse_sr },
		{ mk_mii_read(MII_LXT971_SR2), mii_parse_lxt971_sr2 },
		{ mk_mii_end, }
960 961
	};
static phy_cmd_t const phy_cmd_lxt971_shutdown[] = { /* disable interrupts */
L
Linus Torvalds 已提交
962 963
		{ mk_mii_write(MII_LXT971_IER, 0x0000), NULL },
		{ mk_mii_end, }
964 965
	};
static phy_info_t const phy_info_lxt971 = {
966
	.id = 0x0001378e,
967 968 969 970 971
	.name = "LXT971",
	.config = phy_cmd_lxt971_config,
	.startup = phy_cmd_lxt971_startup,
	.ack_int = phy_cmd_lxt971_ack_int,
	.shutdown = phy_cmd_lxt971_shutdown
L
Linus Torvalds 已提交
972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989
};

/* ------------------------------------------------------------------------- */
/* The Quality Semiconductor QS6612 is used on the RPX CLLF                  */

/* register definitions */

#define MII_QS6612_MCR       17  /* Mode Control Register      */
#define MII_QS6612_FTR       27  /* Factory Test Register      */
#define MII_QS6612_MCO       28  /* Misc. Control Register     */
#define MII_QS6612_ISR       29  /* Interrupt Source Register  */
#define MII_QS6612_IMR       30  /* Interrupt Mask Register    */
#define MII_QS6612_PCR       31  /* 100BaseTx PHY Control Reg. */

static void mii_parse_qs6612_pcr(uint mii_reg, struct net_device *dev)
{
	struct fec_enet_private *fep = netdev_priv(dev);
	volatile uint *s = &(fep->phy_status);
990
	uint status;
L
Linus Torvalds 已提交
991

992
	status = *s & ~(PHY_STAT_SPMASK);
L
Linus Torvalds 已提交
993 994

	switch((mii_reg >> 2) & 7) {
995 996 997 998
	case 1: status |= PHY_STAT_10HDX; break;
	case 2: status |= PHY_STAT_100HDX; break;
	case 5: status |= PHY_STAT_10FDX; break;
	case 6: status |= PHY_STAT_100FDX; break;
L
Linus Torvalds 已提交
999 1000
}

1001 1002 1003 1004
	*s = status;
}

static phy_cmd_t const phy_cmd_qs6612_config[] = {
1005
		/* The PHY powers up isolated on the RPX,
L
Linus Torvalds 已提交
1006 1007 1008 1009 1010 1011 1012 1013
		 * so send a command to allow operation.
		 */
		{ mk_mii_write(MII_QS6612_PCR, 0x0dc0), NULL },

		/* parse cr and anar to get some info */
		{ mk_mii_read(MII_REG_CR), mii_parse_cr },
		{ mk_mii_read(MII_REG_ANAR), mii_parse_anar },
		{ mk_mii_end, }
1014 1015
	};
static phy_cmd_t const phy_cmd_qs6612_startup[] = {  /* enable interrupts */
L
Linus Torvalds 已提交
1016 1017 1018
		{ mk_mii_write(MII_QS6612_IMR, 0x003a), NULL },
		{ mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
		{ mk_mii_end, }
1019 1020
	};
static phy_cmd_t const phy_cmd_qs6612_ack_int[] = {
L
Linus Torvalds 已提交
1021 1022 1023 1024 1025 1026 1027 1028
		/* we need to read ISR, SR and ANER to acknowledge */
		{ mk_mii_read(MII_QS6612_ISR), NULL },
		{ mk_mii_read(MII_REG_SR), mii_parse_sr },
		{ mk_mii_read(MII_REG_ANER), NULL },

		/* read pcr to get info */
		{ mk_mii_read(MII_QS6612_PCR), mii_parse_qs6612_pcr },
		{ mk_mii_end, }
1029 1030
	};
static phy_cmd_t const phy_cmd_qs6612_shutdown[] = { /* disable interrupts */
L
Linus Torvalds 已提交
1031 1032
		{ mk_mii_write(MII_QS6612_IMR, 0x0000), NULL },
		{ mk_mii_end, }
1033 1034
	};
static phy_info_t const phy_info_qs6612 = {
1035
	.id = 0x00181440,
1036 1037 1038 1039 1040
	.name = "QS6612",
	.config = phy_cmd_qs6612_config,
	.startup = phy_cmd_qs6612_startup,
	.ack_int = phy_cmd_qs6612_ack_int,
	.shutdown = phy_cmd_qs6612_shutdown
L
Linus Torvalds 已提交
1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
};

/* ------------------------------------------------------------------------- */
/* AMD AM79C874 phy                                                          */

/* register definitions for the 874 */

#define MII_AM79C874_MFR       16  /* Miscellaneous Feature Register */
#define MII_AM79C874_ICSR      17  /* Interrupt/Status Register      */
#define MII_AM79C874_DR        18  /* Diagnostic Register            */
#define MII_AM79C874_PMLR      19  /* Power and Loopback Register    */
#define MII_AM79C874_MCR       21  /* ModeControl Register           */
#define MII_AM79C874_DC        23  /* Disconnect Counter             */
#define MII_AM79C874_REC       24  /* Recieve Error Counter          */

static void mii_parse_am79c874_dr(uint mii_reg, struct net_device *dev)
{
	struct fec_enet_private *fep = netdev_priv(dev);
	volatile uint *s = &(fep->phy_status);
1060
	uint status;
L
Linus Torvalds 已提交
1061

1062
	status = *s & ~(PHY_STAT_SPMASK | PHY_STAT_ANC);
L
Linus Torvalds 已提交
1063 1064

	if (mii_reg & 0x0080)
1065
		status |= PHY_STAT_ANC;
L
Linus Torvalds 已提交
1066
	if (mii_reg & 0x0400)
1067
		status |= ((mii_reg & 0x0800) ? PHY_STAT_100FDX : PHY_STAT_100HDX);
L
Linus Torvalds 已提交
1068
	else
1069 1070 1071
		status |= ((mii_reg & 0x0800) ? PHY_STAT_10FDX : PHY_STAT_10HDX);

	*s = status;
L
Linus Torvalds 已提交
1072 1073
}

1074
static phy_cmd_t const phy_cmd_am79c874_config[] = {
L
Linus Torvalds 已提交
1075 1076 1077 1078
		{ mk_mii_read(MII_REG_CR), mii_parse_cr },
		{ mk_mii_read(MII_REG_ANAR), mii_parse_anar },
		{ mk_mii_read(MII_AM79C874_DR), mii_parse_am79c874_dr },
		{ mk_mii_end, }
1079 1080
	};
static phy_cmd_t const phy_cmd_am79c874_startup[] = {  /* enable interrupts */
L
Linus Torvalds 已提交
1081 1082
		{ mk_mii_write(MII_AM79C874_ICSR, 0xff00), NULL },
		{ mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
1083
		{ mk_mii_read(MII_REG_SR), mii_parse_sr },
L
Linus Torvalds 已提交
1084
		{ mk_mii_end, }
1085 1086
	};
static phy_cmd_t const phy_cmd_am79c874_ack_int[] = {
L
Linus Torvalds 已提交
1087 1088 1089 1090 1091 1092
		/* find out the current status */
		{ mk_mii_read(MII_REG_SR), mii_parse_sr },
		{ mk_mii_read(MII_AM79C874_DR), mii_parse_am79c874_dr },
		/* we only need to read ISR to acknowledge */
		{ mk_mii_read(MII_AM79C874_ICSR), NULL },
		{ mk_mii_end, }
1093 1094
	};
static phy_cmd_t const phy_cmd_am79c874_shutdown[] = { /* disable interrupts */
L
Linus Torvalds 已提交
1095 1096
		{ mk_mii_write(MII_AM79C874_ICSR, 0x0000), NULL },
		{ mk_mii_end, }
1097 1098 1099 1100 1101 1102 1103 1104
	};
static phy_info_t const phy_info_am79c874 = {
	.id = 0x00022561,
	.name = "AM79C874",
	.config = phy_cmd_am79c874_config,
	.startup = phy_cmd_am79c874_startup,
	.ack_int = phy_cmd_am79c874_ack_int,
	.shutdown = phy_cmd_am79c874_shutdown
L
Linus Torvalds 已提交
1105 1106
};

1107

L
Linus Torvalds 已提交
1108 1109 1110 1111 1112 1113 1114 1115 1116
/* ------------------------------------------------------------------------- */
/* Kendin KS8721BL phy                                                       */

/* register definitions for the 8721 */

#define MII_KS8721BL_RXERCR	21
#define MII_KS8721BL_ICSR	22
#define	MII_KS8721BL_PHYCR	31

1117
static phy_cmd_t const phy_cmd_ks8721bl_config[] = {
L
Linus Torvalds 已提交
1118 1119 1120
		{ mk_mii_read(MII_REG_CR), mii_parse_cr },
		{ mk_mii_read(MII_REG_ANAR), mii_parse_anar },
		{ mk_mii_end, }
1121 1122
	};
static phy_cmd_t const phy_cmd_ks8721bl_startup[] = {  /* enable interrupts */
L
Linus Torvalds 已提交
1123 1124
		{ mk_mii_write(MII_KS8721BL_ICSR, 0xff00), NULL },
		{ mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
1125
		{ mk_mii_read(MII_REG_SR), mii_parse_sr },
L
Linus Torvalds 已提交
1126
		{ mk_mii_end, }
1127 1128
	};
static phy_cmd_t const phy_cmd_ks8721bl_ack_int[] = {
L
Linus Torvalds 已提交
1129 1130 1131 1132 1133
		/* find out the current status */
		{ mk_mii_read(MII_REG_SR), mii_parse_sr },
		/* we only need to read ISR to acknowledge */
		{ mk_mii_read(MII_KS8721BL_ICSR), NULL },
		{ mk_mii_end, }
1134 1135
	};
static phy_cmd_t const phy_cmd_ks8721bl_shutdown[] = { /* disable interrupts */
L
Linus Torvalds 已提交
1136 1137
		{ mk_mii_write(MII_KS8721BL_ICSR, 0x0000), NULL },
		{ mk_mii_end, }
1138 1139
	};
static phy_info_t const phy_info_ks8721bl = {
1140
	.id = 0x00022161,
1141 1142 1143 1144 1145
	.name = "KS8721BL",
	.config = phy_cmd_ks8721bl_config,
	.startup = phy_cmd_ks8721bl_startup,
	.ack_int = phy_cmd_ks8721bl_ack_int,
	.shutdown = phy_cmd_ks8721bl_shutdown
L
Linus Torvalds 已提交
1146 1147
};

1148 1149 1150 1151 1152 1153 1154
/* ------------------------------------------------------------------------- */
/* register definitions for the DP83848 */

#define MII_DP8384X_PHYSTST    16  /* PHY Status Register */

static void mii_parse_dp8384x_sr2(uint mii_reg, struct net_device *dev)
{
1155
	struct fec_enet_private *fep = netdev_priv(dev);
1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
	volatile uint *s = &(fep->phy_status);

	*s &= ~(PHY_STAT_SPMASK | PHY_STAT_LINK | PHY_STAT_ANC);

	/* Link up */
	if (mii_reg & 0x0001) {
		fep->link = 1;
		*s |= PHY_STAT_LINK;
	} else
		fep->link = 0;
	/* Status of link */
	if (mii_reg & 0x0010)   /* Autonegotioation complete */
		*s |= PHY_STAT_ANC;
	if (mii_reg & 0x0002) {   /* 10MBps? */
		if (mii_reg & 0x0004)   /* Full Duplex? */
			*s |= PHY_STAT_10FDX;
		else
			*s |= PHY_STAT_10HDX;
	} else {                  /* 100 Mbps? */
		if (mii_reg & 0x0004)   /* Full Duplex? */
			*s |= PHY_STAT_100FDX;
		else
			*s |= PHY_STAT_100HDX;
	}
	if (mii_reg & 0x0008)
		*s |= PHY_STAT_FAULT;
}

static phy_info_t phy_info_dp83848= {
	0x020005c9,
	"DP83848",

	(const phy_cmd_t []) {  /* config */
		{ mk_mii_read(MII_REG_CR), mii_parse_cr },
		{ mk_mii_read(MII_REG_ANAR), mii_parse_anar },
		{ mk_mii_read(MII_DP8384X_PHYSTST), mii_parse_dp8384x_sr2 },
		{ mk_mii_end, }
	},
	(const phy_cmd_t []) {  /* startup - enable interrupts */
		{ mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
		{ mk_mii_read(MII_REG_SR), mii_parse_sr },
		{ mk_mii_end, }
	},
	(const phy_cmd_t []) { /* ack_int - never happens, no interrupt */
		{ mk_mii_end, }
	},
	(const phy_cmd_t []) {  /* shutdown */
		{ mk_mii_end, }
	},
};

L
Linus Torvalds 已提交
1207 1208
/* ------------------------------------------------------------------------- */

1209
static phy_info_t const * const phy_info[] = {
L
Linus Torvalds 已提交
1210 1211 1212 1213 1214
	&phy_info_lxt970,
	&phy_info_lxt971,
	&phy_info_qs6612,
	&phy_info_am79c874,
	&phy_info_ks8721bl,
1215
	&phy_info_dp83848,
L
Linus Torvalds 已提交
1216 1217 1218 1219
	NULL
};

/* ------------------------------------------------------------------------- */
1220
#ifdef HAVE_mii_link_interrupt
L
Linus Torvalds 已提交
1221
static irqreturn_t
1222
mii_link_interrupt(int irq, void * dev_id);
L
Linus Torvalds 已提交
1223 1224 1225 1226 1227 1228 1229 1230 1231
#endif

#if defined(CONFIG_M5272)
/*
 *	Code specific to Coldfire 5272 setup.
 */
static void __inline__ fec_request_intrs(struct net_device *dev)
{
	volatile unsigned long *icrp;
1232 1233 1234
	static const struct idesc {
		char *name;
		unsigned short irq;
1235
		irq_handler_t handler;
1236 1237 1238 1239 1240 1241 1242
	} *idp, id[] = {
		{ "fec(RX)", 86, fec_enet_interrupt },
		{ "fec(TX)", 87, fec_enet_interrupt },
		{ "fec(OTHER)", 88, fec_enet_interrupt },
		{ "fec(MII)", 66, mii_link_interrupt },
		{ NULL },
	};
L
Linus Torvalds 已提交
1243 1244

	/* Setup interrupt handlers. */
1245
	for (idp = id; idp->name; idp++) {
1246
		if (request_irq(idp->irq, idp->handler, IRQF_DISABLED, idp->name, dev) != 0)
1247 1248
			printk("FEC: Could not allocate %s IRQ(%d)!\n", idp->name, idp->irq);
	}
L
Linus Torvalds 已提交
1249 1250 1251 1252 1253

	/* Unmask interrupt at ColdFire 5272 SIM */
	icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR3);
	*icrp = 0x00000ddd;
	icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR1);
1254
	*icrp = 0x0d000000;
L
Linus Torvalds 已提交
1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278
}

static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep)
{
	volatile fec_t *fecp;

	fecp = fep->hwp;
	fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;
	fecp->fec_x_cntrl = 0x00;

	/*
	 * Set MII speed to 2.5 MHz
	 * See 5272 manual section 11.5.8: MSCR
	 */
	fep->phy_speed = ((((MCF_CLK / 4) / (2500000 / 10)) + 5) / 10) * 2;
	fecp->fec_mii_speed = fep->phy_speed;

	fec_restart(dev, 0);
}

static void __inline__ fec_get_mac(struct net_device *dev)
{
	struct fec_enet_private *fep = netdev_priv(dev);
	volatile fec_t *fecp;
1279
	unsigned char *iap, tmpaddr[ETH_ALEN];
L
Linus Torvalds 已提交
1280 1281 1282

	fecp = fep->hwp;

1283
	if (FEC_FLASHMAC) {
L
Linus Torvalds 已提交
1284 1285 1286 1287
		/*
		 * Get MAC address from FLASH.
		 * If it is all 1's or 0's, use the default.
		 */
1288
		iap = (unsigned char *)FEC_FLASHMAC;
L
Linus Torvalds 已提交
1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300
		if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) &&
		    (iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0))
			iap = fec_mac_default;
		if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) &&
		    (iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff))
			iap = fec_mac_default;
	} else {
		*((unsigned long *) &tmpaddr[0]) = fecp->fec_addr_low;
		*((unsigned short *) &tmpaddr[4]) = (fecp->fec_addr_high >> 16);
		iap = &tmpaddr[0];
	}

1301
	memcpy(dev->dev_addr, iap, ETH_ALEN);
L
Linus Torvalds 已提交
1302 1303

	/* Adjust MAC if using default MAC address */
1304 1305
	if (iap == fec_mac_default)
		 dev->dev_addr[ETH_ALEN-1] = fec_mac_default[ETH_ALEN-1] + fep->index;
L
Linus Torvalds 已提交
1306 1307 1308 1309 1310 1311
}

static void __inline__ fec_disable_phy_intr(void)
{
	volatile unsigned long *icrp;
	icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR1);
1312
	*icrp = 0x08000000;
L
Linus Torvalds 已提交
1313 1314 1315 1316 1317 1318 1319
}

static void __inline__ fec_phy_ack_intr(void)
{
	volatile unsigned long *icrp;
	/* Acknowledge the interrupt */
	icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR1);
1320
	*icrp = 0x0d000000;
L
Linus Torvalds 已提交
1321 1322 1323 1324
}

/* ------------------------------------------------------------------------- */

1325
#elif defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x)
L
Linus Torvalds 已提交
1326 1327

/*
1328 1329
 *	Code specific to Coldfire 5230/5231/5232/5234/5235,
 *	the 5270/5271/5274/5275 and 5280/5282 setups.
L
Linus Torvalds 已提交
1330 1331 1332 1333 1334
 */
static void __inline__ fec_request_intrs(struct net_device *dev)
{
	struct fec_enet_private *fep;
	int b;
1335 1336 1337 1338 1339 1340 1341 1342 1343
	static const struct idesc {
		char *name;
		unsigned short irq;
	} *idp, id[] = {
		{ "fec(TXF)", 23 },
		{ "fec(RXF)", 27 },
		{ "fec(MII)", 29 },
		{ NULL },
	};
L
Linus Torvalds 已提交
1344 1345 1346 1347 1348

	fep = netdev_priv(dev);
	b = (fep->index) ? 128 : 64;

	/* Setup interrupt handlers. */
1349
	for (idp = id; idp->name; idp++) {
1350
		if (request_irq(b+idp->irq, fec_enet_interrupt, IRQF_DISABLED, idp->name, dev) != 0)
1351 1352
			printk("FEC: Could not allocate %s IRQ(%d)!\n", idp->name, b+idp->irq);
	}
L
Linus Torvalds 已提交
1353 1354 1355 1356 1357

	/* Unmask interrupts at ColdFire 5280/5282 interrupt controller */
	{
		volatile unsigned char  *icrp;
		volatile unsigned long  *imrp;
1358
		int i, ilip;
L
Linus Torvalds 已提交
1359 1360 1361 1362

		b = (fep->index) ? MCFICM_INTC1 : MCFICM_INTC0;
		icrp = (volatile unsigned char *) (MCF_IPSBAR + b +
			MCFINTC_ICR0);
1363 1364
		for (i = 23, ilip = 0x28; (i < 36); i++)
			icrp[i] = ilip--;
L
Linus Torvalds 已提交
1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376

		imrp = (volatile unsigned long *) (MCF_IPSBAR + b +
			MCFINTC_IMRH);
		*imrp &= ~0x0000000f;
		imrp = (volatile unsigned long *) (MCF_IPSBAR + b +
			MCFINTC_IMRL);
		*imrp &= ~0xff800001;
	}

#if defined(CONFIG_M528x)
	/* Set up gpio outputs for MII lines */
	{
1377 1378
		volatile u16 *gpio_paspar;
		volatile u8 *gpio_pehlpar;
1379

1380 1381 1382 1383
		gpio_paspar = (volatile u16 *) (MCF_IPSBAR + 0x100056);
		gpio_pehlpar = (volatile u16 *) (MCF_IPSBAR + 0x100058);
		*gpio_paspar |= 0x0f00;
		*gpio_pehlpar = 0xc0;
L
Linus Torvalds 已提交
1384 1385
	}
#endif
1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408

#if defined(CONFIG_M527x)
	/* Set up gpio outputs for MII lines */
	{
		volatile u8 *gpio_par_fec;
		volatile u16 *gpio_par_feci2c;

		gpio_par_feci2c = (volatile u16 *)(MCF_IPSBAR + 0x100082);
		/* Set up gpio outputs for FEC0 MII lines */
		gpio_par_fec = (volatile u8 *)(MCF_IPSBAR + 0x100078);

		*gpio_par_feci2c |= 0x0f00;
		*gpio_par_fec |= 0xc0;

#if defined(CONFIG_FEC2)
		/* Set up gpio outputs for FEC1 MII lines */
		gpio_par_fec = (volatile u8 *)(MCF_IPSBAR + 0x100079);

		*gpio_par_feci2c |= 0x00a0;
		*gpio_par_fec |= 0xc0;
#endif /* CONFIG_FEC2 */
	}
#endif /* CONFIG_M527x */
L
Linus Torvalds 已提交
1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432
}

static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep)
{
	volatile fec_t *fecp;

	fecp = fep->hwp;
	fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;
	fecp->fec_x_cntrl = 0x00;

	/*
	 * Set MII speed to 2.5 MHz
	 * See 5282 manual section 17.5.4.7: MSCR
	 */
	fep->phy_speed = ((((MCF_CLK / 2) / (2500000 / 10)) + 5) / 10) * 2;
	fecp->fec_mii_speed = fep->phy_speed;

	fec_restart(dev, 0);
}

static void __inline__ fec_get_mac(struct net_device *dev)
{
	struct fec_enet_private *fep = netdev_priv(dev);
	volatile fec_t *fecp;
1433
	unsigned char *iap, tmpaddr[ETH_ALEN];
L
Linus Torvalds 已提交
1434 1435 1436

	fecp = fep->hwp;

1437
	if (FEC_FLASHMAC) {
L
Linus Torvalds 已提交
1438 1439 1440 1441
		/*
		 * Get MAC address from FLASH.
		 * If it is all 1's or 0's, use the default.
		 */
1442
		iap = FEC_FLASHMAC;
L
Linus Torvalds 已提交
1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
		if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) &&
		    (iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0))
			iap = fec_mac_default;
		if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) &&
		    (iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff))
			iap = fec_mac_default;
	} else {
		*((unsigned long *) &tmpaddr[0]) = fecp->fec_addr_low;
		*((unsigned short *) &tmpaddr[4]) = (fecp->fec_addr_high >> 16);
		iap = &tmpaddr[0];
	}

1455
	memcpy(dev->dev_addr, iap, ETH_ALEN);
L
Linus Torvalds 已提交
1456 1457

	/* Adjust MAC if using default MAC address */
1458 1459
	if (iap == fec_mac_default)
		dev->dev_addr[ETH_ALEN-1] = fec_mac_default[ETH_ALEN-1] + fep->index;
L
Linus Torvalds 已提交
1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471
}

static void __inline__ fec_disable_phy_intr(void)
{
}

static void __inline__ fec_phy_ack_intr(void)
{
}

/* ------------------------------------------------------------------------- */

1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495
#elif defined(CONFIG_M520x)

/*
 *	Code specific to Coldfire 520x
 */
static void __inline__ fec_request_intrs(struct net_device *dev)
{
	struct fec_enet_private *fep;
	int b;
	static const struct idesc {
		char *name;
		unsigned short irq;
	} *idp, id[] = {
		{ "fec(TXF)", 23 },
		{ "fec(RXF)", 27 },
		{ "fec(MII)", 29 },
		{ NULL },
	};

	fep = netdev_priv(dev);
	b = 64 + 13;

	/* Setup interrupt handlers. */
	for (idp = id; idp->name; idp++) {
1496
		if (request_irq(b+idp->irq, fec_enet_interrupt, IRQF_DISABLED, idp->name,dev) != 0)
1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577
			printk("FEC: Could not allocate %s IRQ(%d)!\n", idp->name, b+idp->irq);
	}

	/* Unmask interrupts at ColdFire interrupt controller */
	{
		volatile unsigned char  *icrp;
		volatile unsigned long  *imrp;

		icrp = (volatile unsigned char *) (MCF_IPSBAR + MCFICM_INTC0 +
			MCFINTC_ICR0);
		for (b = 36; (b < 49); b++)
			icrp[b] = 0x04;
		imrp = (volatile unsigned long *) (MCF_IPSBAR + MCFICM_INTC0 +
			MCFINTC_IMRH);
		*imrp &= ~0x0001FFF0;
	}
	*(volatile unsigned char *)(MCF_IPSBAR + MCF_GPIO_PAR_FEC) |= 0xf0;
	*(volatile unsigned char *)(MCF_IPSBAR + MCF_GPIO_PAR_FECI2C) |= 0x0f;
}

static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep)
{
	volatile fec_t *fecp;

	fecp = fep->hwp;
	fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;
	fecp->fec_x_cntrl = 0x00;

	/*
	 * Set MII speed to 2.5 MHz
	 * See 5282 manual section 17.5.4.7: MSCR
	 */
	fep->phy_speed = ((((MCF_CLK / 2) / (2500000 / 10)) + 5) / 10) * 2;
	fecp->fec_mii_speed = fep->phy_speed;

	fec_restart(dev, 0);
}

static void __inline__ fec_get_mac(struct net_device *dev)
{
	struct fec_enet_private *fep = netdev_priv(dev);
	volatile fec_t *fecp;
	unsigned char *iap, tmpaddr[ETH_ALEN];

	fecp = fep->hwp;

	if (FEC_FLASHMAC) {
		/*
		 * Get MAC address from FLASH.
		 * If it is all 1's or 0's, use the default.
		 */
		iap = FEC_FLASHMAC;
		if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) &&
		   (iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0))
			iap = fec_mac_default;
		if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) &&
		   (iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff))
			iap = fec_mac_default;
	} else {
		*((unsigned long *) &tmpaddr[0]) = fecp->fec_addr_low;
		*((unsigned short *) &tmpaddr[4]) = (fecp->fec_addr_high >> 16);
		iap = &tmpaddr[0];
	}

	memcpy(dev->dev_addr, iap, ETH_ALEN);

	/* Adjust MAC if using default MAC address */
	if (iap == fec_mac_default)
		dev->dev_addr[ETH_ALEN-1] = fec_mac_default[ETH_ALEN-1] + fep->index;
}

static void __inline__ fec_disable_phy_intr(void)
{
}

static void __inline__ fec_phy_ack_intr(void)
{
}

/* ------------------------------------------------------------------------- */

1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600
#elif defined(CONFIG_M532x)
/*
 * Code specific for M532x
 */
static void __inline__ fec_request_intrs(struct net_device *dev)
{
	struct fec_enet_private *fep;
	int b;
	static const struct idesc {
		char *name;
		unsigned short irq;
	} *idp, id[] = {
	    { "fec(TXF)", 36 },
	    { "fec(RXF)", 40 },
	    { "fec(MII)", 42 },
	    { NULL },
	};

	fep = netdev_priv(dev);
	b = (fep->index) ? 128 : 64;

	/* Setup interrupt handlers. */
	for (idp = id; idp->name; idp++) {
1601
		if (request_irq(b+idp->irq, fec_enet_interrupt, IRQF_DISABLED, idp->name,dev) != 0)
1602
			printk("FEC: Could not allocate %s IRQ(%d)!\n",
1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702
				idp->name, b+idp->irq);
	}

	/* Unmask interrupts */
	MCF_INTC0_ICR36 = 0x2;
	MCF_INTC0_ICR37 = 0x2;
	MCF_INTC0_ICR38 = 0x2;
	MCF_INTC0_ICR39 = 0x2;
	MCF_INTC0_ICR40 = 0x2;
	MCF_INTC0_ICR41 = 0x2;
	MCF_INTC0_ICR42 = 0x2;
	MCF_INTC0_ICR43 = 0x2;
	MCF_INTC0_ICR44 = 0x2;
	MCF_INTC0_ICR45 = 0x2;
	MCF_INTC0_ICR46 = 0x2;
	MCF_INTC0_ICR47 = 0x2;
	MCF_INTC0_ICR48 = 0x2;

	MCF_INTC0_IMRH &= ~(
		MCF_INTC_IMRH_INT_MASK36 |
		MCF_INTC_IMRH_INT_MASK37 |
		MCF_INTC_IMRH_INT_MASK38 |
		MCF_INTC_IMRH_INT_MASK39 |
		MCF_INTC_IMRH_INT_MASK40 |
		MCF_INTC_IMRH_INT_MASK41 |
		MCF_INTC_IMRH_INT_MASK42 |
		MCF_INTC_IMRH_INT_MASK43 |
		MCF_INTC_IMRH_INT_MASK44 |
		MCF_INTC_IMRH_INT_MASK45 |
		MCF_INTC_IMRH_INT_MASK46 |
		MCF_INTC_IMRH_INT_MASK47 |
		MCF_INTC_IMRH_INT_MASK48 );

	/* Set up gpio outputs for MII lines */
	MCF_GPIO_PAR_FECI2C |= (0 |
		MCF_GPIO_PAR_FECI2C_PAR_MDC_EMDC |
		MCF_GPIO_PAR_FECI2C_PAR_MDIO_EMDIO);
	MCF_GPIO_PAR_FEC = (0 |
		MCF_GPIO_PAR_FEC_PAR_FEC_7W_FEC |
		MCF_GPIO_PAR_FEC_PAR_FEC_MII_FEC);
}

static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep)
{
	volatile fec_t *fecp;

	fecp = fep->hwp;
	fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;
	fecp->fec_x_cntrl = 0x00;

	/*
	 * Set MII speed to 2.5 MHz
	 */
	fep->phy_speed = ((((MCF_CLK / 2) / (2500000 / 10)) + 5) / 10) * 2;
	fecp->fec_mii_speed = fep->phy_speed;

	fec_restart(dev, 0);
}

static void __inline__ fec_get_mac(struct net_device *dev)
{
	struct fec_enet_private *fep = netdev_priv(dev);
	volatile fec_t *fecp;
	unsigned char *iap, tmpaddr[ETH_ALEN];

	fecp = fep->hwp;

	if (FEC_FLASHMAC) {
		/*
		 * Get MAC address from FLASH.
		 * If it is all 1's or 0's, use the default.
		 */
		iap = FEC_FLASHMAC;
		if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) &&
		    (iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0))
			iap = fec_mac_default;
		if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) &&
		    (iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff))
			iap = fec_mac_default;
	} else {
		*((unsigned long *) &tmpaddr[0]) = fecp->fec_addr_low;
		*((unsigned short *) &tmpaddr[4]) = (fecp->fec_addr_high >> 16);
		iap = &tmpaddr[0];
	}

	memcpy(dev->dev_addr, iap, ETH_ALEN);

	/* Adjust MAC if using default MAC address */
	if (iap == fec_mac_default)
		dev->dev_addr[ETH_ALEN-1] = fec_mac_default[ETH_ALEN-1] + fep->index;
}

static void __inline__ fec_disable_phy_intr(void)
{
}

static void __inline__ fec_phy_ack_intr(void)
{
}

L
Linus Torvalds 已提交
1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742
#endif

/* ------------------------------------------------------------------------- */

static void mii_display_status(struct net_device *dev)
{
	struct fec_enet_private *fep = netdev_priv(dev);
	volatile uint *s = &(fep->phy_status);

	if (!fep->link && !fep->old_link) {
		/* Link is still down - don't print anything */
		return;
	}

	printk("%s: status: ", dev->name);

	if (!fep->link) {
		printk("link down");
	} else {
		printk("link up");

		switch(*s & PHY_STAT_SPMASK) {
		case PHY_STAT_100FDX: printk(", 100MBit Full Duplex"); break;
		case PHY_STAT_100HDX: printk(", 100MBit Half Duplex"); break;
		case PHY_STAT_10FDX: printk(", 10MBit Full Duplex"); break;
		case PHY_STAT_10HDX: printk(", 10MBit Half Duplex"); break;
		default:
			printk(", Unknown speed/duplex");
		}

		if (*s & PHY_STAT_ANC)
			printk(", auto-negotiation complete");
	}

	if (*s & PHY_STAT_FAULT)
		printk(", remote fault");

	printk(".\n");
}

G
Greg Ungerer 已提交
1743
static void mii_display_config(struct work_struct *work)
L
Linus Torvalds 已提交
1744
{
G
Greg Ungerer 已提交
1745 1746
	struct fec_enet_private *fep = container_of(work, struct fec_enet_private, phy_task);
	struct net_device *dev = fep->netdev;
1747
	uint status = fep->phy_status;
L
Linus Torvalds 已提交
1748 1749 1750 1751 1752 1753 1754 1755

	/*
	** When we get here, phy_task is already removed from
	** the workqueue.  It is thus safe to allow to reuse it.
	*/
	fep->mii_phy_task_queued = 0;
	printk("%s: config: auto-negotiation ", dev->name);

1756
	if (status & PHY_CONF_ANE)
L
Linus Torvalds 已提交
1757 1758 1759 1760
		printk("on");
	else
		printk("off");

1761
	if (status & PHY_CONF_100FDX)
L
Linus Torvalds 已提交
1762
		printk(", 100FDX");
1763
	if (status & PHY_CONF_100HDX)
L
Linus Torvalds 已提交
1764
		printk(", 100HDX");
1765
	if (status & PHY_CONF_10FDX)
L
Linus Torvalds 已提交
1766
		printk(", 10FDX");
1767
	if (status & PHY_CONF_10HDX)
L
Linus Torvalds 已提交
1768
		printk(", 10HDX");
1769
	if (!(status & PHY_CONF_SPMASK))
L
Linus Torvalds 已提交
1770 1771
		printk(", No speed/duplex selected?");

1772
	if (status & PHY_CONF_LOOP)
L
Linus Torvalds 已提交
1773
		printk(", loopback enabled");
1774

L
Linus Torvalds 已提交
1775 1776 1777 1778 1779
	printk(".\n");

	fep->sequence_done = 1;
}

G
Greg Ungerer 已提交
1780
static void mii_relink(struct work_struct *work)
L
Linus Torvalds 已提交
1781
{
G
Greg Ungerer 已提交
1782 1783
	struct fec_enet_private *fep = container_of(work, struct fec_enet_private, phy_task);
	struct net_device *dev = fep->netdev;
L
Linus Torvalds 已提交
1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796
	int duplex;

	/*
	** When we get here, phy_task is already removed from
	** the workqueue.  It is thus safe to allow to reuse it.
	*/
	fep->mii_phy_task_queued = 0;
	fep->link = (fep->phy_status & PHY_STAT_LINK) ? 1 : 0;
	mii_display_status(dev);
	fep->old_link = fep->link;

	if (fep->link) {
		duplex = 0;
1797
		if (fep->phy_status
L
Linus Torvalds 已提交
1798 1799 1800
		    & (PHY_STAT_100FDX | PHY_STAT_10FDX))
			duplex = 1;
		fec_restart(dev, duplex);
1801
	} else
L
Linus Torvalds 已提交
1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825
		fec_stop(dev);

#if 0
	enable_irq(fep->mii_irq);
#endif

}

/* mii_queue_relink is called in interrupt context from mii_link_interrupt */
static void mii_queue_relink(uint mii_reg, struct net_device *dev)
{
	struct fec_enet_private *fep = netdev_priv(dev);

	/*
	** We cannot queue phy_task twice in the workqueue.  It
	** would cause an endless loop in the workqueue.
	** Fortunately, if the last mii_relink entry has not yet been
	** executed now, it will do the job for the current interrupt,
	** which is just what we want.
	*/
	if (fep->mii_phy_task_queued)
		return;

	fep->mii_phy_task_queued = 1;
G
Greg Ungerer 已提交
1826
	INIT_WORK(&fep->phy_task, mii_relink);
L
Linus Torvalds 已提交
1827 1828 1829
	schedule_work(&fep->phy_task);
}

1830
/* mii_queue_config is called in interrupt context from fec_enet_mii */
L
Linus Torvalds 已提交
1831 1832 1833 1834 1835 1836 1837 1838
static void mii_queue_config(uint mii_reg, struct net_device *dev)
{
	struct fec_enet_private *fep = netdev_priv(dev);

	if (fep->mii_phy_task_queued)
		return;

	fep->mii_phy_task_queued = 1;
G
Greg Ungerer 已提交
1839
	INIT_WORK(&fep->phy_task, mii_display_config);
L
Linus Torvalds 已提交
1840 1841 1842
	schedule_work(&fep->phy_task);
}

1843 1844 1845 1846 1847 1848 1849 1850
phy_cmd_t const phy_cmd_relink[] = {
	{ mk_mii_read(MII_REG_CR), mii_queue_relink },
	{ mk_mii_end, }
	};
phy_cmd_t const phy_cmd_config[] = {
	{ mk_mii_read(MII_REG_CR), mii_queue_config },
	{ mk_mii_end, }
	};
L
Linus Torvalds 已提交
1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872

/* Read remainder of PHY ID.
*/
static void
mii_discover_phy3(uint mii_reg, struct net_device *dev)
{
	struct fec_enet_private *fep;
	int i;

	fep = netdev_priv(dev);
	fep->phy_id |= (mii_reg & 0xffff);
	printk("fec: PHY @ 0x%x, ID 0x%08x", fep->phy_addr, fep->phy_id);

	for(i = 0; phy_info[i]; i++) {
		if(phy_info[i]->id == (fep->phy_id >> 4))
			break;
	}

	if (phy_info[i])
		printk(" -- %s\n", phy_info[i]->name);
	else
		printk(" -- unknown PHY!\n");
1873

L
Linus Torvalds 已提交
1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892
	fep->phy = phy_info[i];
	fep->phy_id_done = 1;
}

/* Scan all of the MII PHY addresses looking for someone to respond
 * with a valid ID.  This usually happens quickly.
 */
static void
mii_discover_phy(uint mii_reg, struct net_device *dev)
{
	struct fec_enet_private *fep;
	volatile fec_t *fecp;
	uint phytype;

	fep = netdev_priv(dev);
	fecp = fep->hwp;

	if (fep->phy_addr < 32) {
		if ((phytype = (mii_reg & 0xffff)) != 0xffff && phytype != 0) {
1893

L
Linus Torvalds 已提交
1894 1895 1896 1897 1898
			/* Got first part of ID, now get remainder.
			*/
			fep->phy_id = phytype << 16;
			mii_queue(dev, mk_mii_read(MII_REG_PHYIR2),
							mii_discover_phy3);
1899
		} else {
L
Linus Torvalds 已提交
1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913
			fep->phy_addr++;
			mii_queue(dev, mk_mii_read(MII_REG_PHYIR1),
							mii_discover_phy);
		}
	} else {
		printk("FEC: No PHY device found.\n");
		/* Disable external MII interface */
		fecp->fec_mii_speed = fep->phy_speed = 0;
		fec_disable_phy_intr();
	}
}

/* This interrupt occurs when the PHY detects a link change.
*/
1914
#ifdef HAVE_mii_link_interrupt
L
Linus Torvalds 已提交
1915
static irqreturn_t
1916
mii_link_interrupt(int irq, void * dev_id)
L
Linus Torvalds 已提交
1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931
{
	struct	net_device *dev = dev_id;
	struct fec_enet_private *fep = netdev_priv(dev);

	fec_phy_ack_intr();

#if 0
	disable_irq(fep->mii_irq);  /* disable now, enable later */
#endif

	mii_do_cmd(dev, fep->phy->ack_int);
	mii_do_cmd(dev, phy_cmd_relink);  /* restart and display status */

	return IRQ_HANDLED;
}
1932
#endif
L
Linus Torvalds 已提交
1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951

static int
fec_enet_open(struct net_device *dev)
{
	struct fec_enet_private *fep = netdev_priv(dev);

	/* I should reset the ring buffers here, but I don't yet know
	 * a simple way to do that.
	 */
	fec_set_mac_address(dev);

	fep->sequence_done = 0;
	fep->link = 0;

	if (fep->phy) {
		mii_do_cmd(dev, fep->phy->ack_int);
		mii_do_cmd(dev, fep->phy->config);
		mii_do_cmd(dev, phy_cmd_config);  /* display configuration */

1952 1953 1954 1955 1956 1957
		/* Poll until the PHY tells us its configuration
		 * (not link state).
		 * Request is initiated by mii_do_cmd above, but answer
		 * comes by interrupt.
		 * This should take about 25 usec per register at 2.5 MHz,
		 * and we read approximately 5 registers.
L
Linus Torvalds 已提交
1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027
		 */
		while(!fep->sequence_done)
			schedule();

		mii_do_cmd(dev, fep->phy->startup);

		/* Set the initial link state to true. A lot of hardware
		 * based on this device does not implement a PHY interrupt,
		 * so we are never notified of link change.
		 */
		fep->link = 1;
	} else {
		fep->link = 1; /* lets just try it and see */
		/* no phy,  go full duplex,  it's most likely a hub chip */
		fec_restart(dev, 1);
	}

	netif_start_queue(dev);
	fep->opened = 1;
	return 0;		/* Success */
}

static int
fec_enet_close(struct net_device *dev)
{
	struct fec_enet_private *fep = netdev_priv(dev);

	/* Don't know what to do yet.
	*/
	fep->opened = 0;
	netif_stop_queue(dev);
	fec_stop(dev);

	return 0;
}

/* Set or clear the multicast filter for this adaptor.
 * Skeleton taken from sunlance driver.
 * The CPM Ethernet implementation allows Multicast as well as individual
 * MAC address filtering.  Some of the drivers check to make sure it is
 * a group multicast address, and discard those that are not.  I guess I
 * will do the same for now, but just remove the test if you want
 * individual filtering as well (do the upper net layers want or support
 * this kind of feature?).
 */

#define HASH_BITS	6		/* #bits in hash */
#define CRC32_POLY	0xEDB88320

static void set_multicast_list(struct net_device *dev)
{
	struct fec_enet_private *fep;
	volatile fec_t *ep;
	struct dev_mc_list *dmi;
	unsigned int i, j, bit, data, crc;
	unsigned char hash;

	fep = netdev_priv(dev);
	ep = fep->hwp;

	if (dev->flags&IFF_PROMISC) {
		ep->fec_r_cntrl |= 0x0008;
	} else {

		ep->fec_r_cntrl &= ~0x0008;

		if (dev->flags & IFF_ALLMULTI) {
			/* Catch all multicast addresses, so set the
			 * filter to all 1's.
			 */
2028 2029
			ep->fec_grp_hash_table_high = 0xffffffff;
			ep->fec_grp_hash_table_low = 0xffffffff;
L
Linus Torvalds 已提交
2030 2031 2032
		} else {
			/* Clear filter and add the addresses in hash register.
			*/
2033 2034
			ep->fec_grp_hash_table_high = 0;
			ep->fec_grp_hash_table_low = 0;
2035

L
Linus Torvalds 已提交
2036 2037 2038 2039 2040 2041 2042 2043
			dmi = dev->mc_list;

			for (j = 0; j < dev->mc_count; j++, dmi = dmi->next)
			{
				/* Only support group multicast for now.
				*/
				if (!(dmi->dmi_addr[0] & 1))
					continue;
2044

L
Linus Torvalds 已提交
2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062
				/* calculate crc32 value of mac address
				*/
				crc = 0xffffffff;

				for (i = 0; i < dmi->dmi_addrlen; i++)
				{
					data = dmi->dmi_addr[i];
					for (bit = 0; bit < 8; bit++, data >>= 1)
					{
						crc = (crc >> 1) ^
						(((crc ^ data) & 1) ? CRC32_POLY : 0);
					}
				}

				/* only upper 6 bits (HASH_BITS) are used
				   which point to specific bit in he hash registers
				*/
				hash = (crc >> (32 - HASH_BITS)) & 0x3f;
2063

L
Linus Torvalds 已提交
2064
				if (hash > 31)
2065
					ep->fec_grp_hash_table_high |= 1 << (hash - 32);
L
Linus Torvalds 已提交
2066
				else
2067
					ep->fec_grp_hash_table_low |= 1 << hash;
L
Linus Torvalds 已提交
2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
			}
		}
	}
}

/* Set a MAC change in hardware.
 */
static void
fec_set_mac_address(struct net_device *dev)
{
	volatile fec_t *fecp;

2080
	fecp = ((struct fec_enet_private *)netdev_priv(dev))->hwp;
L
Linus Torvalds 已提交
2081 2082

	/* Set station address. */
2083 2084 2085 2086
	fecp->fec_addr_low = dev->dev_addr[3] | (dev->dev_addr[2] << 8) |
		(dev->dev_addr[1] << 16) | (dev->dev_addr[0] << 24);
	fecp->fec_addr_high = (dev->dev_addr[5] << 16) |
		(dev->dev_addr[4] << 24);
L
Linus Torvalds 已提交
2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108

}

/* Initialize the FEC Ethernet on 860T (or ColdFire 5272).
 */
 /*
  * XXX:  We need to clean up on failure exits here.
  */
int __init fec_enet_init(struct net_device *dev)
{
	struct fec_enet_private *fep = netdev_priv(dev);
	unsigned long	mem_addr;
	volatile cbd_t	*bdp;
	cbd_t		*cbd_base;
	volatile fec_t	*fecp;
	int 		i, j;
	static int	index = 0;

	/* Only allow us to be probed once. */
	if (index >= FEC_MAX_PORTS)
		return -ENXIO;

2109 2110
	/* Allocate memory for buffer descriptors.
	*/
2111 2112
	mem_addr = (unsigned long)dma_alloc_coherent(NULL, PAGE_SIZE,
			&fep->bd_dma, GFP_KERNEL);
2113 2114 2115 2116 2117
	if (mem_addr == 0) {
		printk("FEC: allocate descriptor memory failed?\n");
		return -ENOMEM;
	}

2118 2119 2120
	spin_lock_init(&fep->hw_lock);
	spin_lock_init(&fep->mii_lock);

L
Linus Torvalds 已提交
2121 2122 2123 2124 2125 2126
	/* Create an Ethernet device instance.
	*/
	fecp = (volatile fec_t *) fec_hw[index];

	fep->index = index;
	fep->hwp = fecp;
G
Greg Ungerer 已提交
2127
	fep->netdev = dev;
L
Linus Torvalds 已提交
2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206

	/* Whack a reset.  We should wait for this.
	*/
	fecp->fec_ecntrl = 1;
	udelay(10);

	/* Set the Ethernet address.  If using multiple Enets on the 8xx,
	 * this needs some work to get unique addresses.
	 *
	 * This is our default MAC address unless the user changes
	 * it via eth_mac_addr (our dev->set_mac_addr handler).
	 */
	fec_get_mac(dev);

	cbd_base = (cbd_t *)mem_addr;
	/* XXX: missing check for allocation failure */

	/* Set receive and transmit descriptor base.
	*/
	fep->rx_bd_base = cbd_base;
	fep->tx_bd_base = cbd_base + RX_RING_SIZE;

	fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
	fep->cur_rx = fep->rx_bd_base;

	fep->skb_cur = fep->skb_dirty = 0;

	/* Initialize the receive buffer descriptors.
	*/
	bdp = fep->rx_bd_base;
	for (i=0; i<FEC_ENET_RX_PAGES; i++) {

		/* Allocate a page.
		*/
		mem_addr = __get_free_page(GFP_KERNEL);
		/* XXX: missing check for allocation failure */

		/* Initialize the BD for every fragment in the page.
		*/
		for (j=0; j<FEC_ENET_RX_FRPPG; j++) {
			bdp->cbd_sc = BD_ENET_RX_EMPTY;
			bdp->cbd_bufaddr = __pa(mem_addr);
			mem_addr += FEC_ENET_RX_FRSIZE;
			bdp++;
		}
	}

	/* Set the last buffer to wrap.
	*/
	bdp--;
	bdp->cbd_sc |= BD_SC_WRAP;

	/* ...and the same for transmmit.
	*/
	bdp = fep->tx_bd_base;
	for (i=0, j=FEC_ENET_TX_FRPPG; i<TX_RING_SIZE; i++) {
		if (j >= FEC_ENET_TX_FRPPG) {
			mem_addr = __get_free_page(GFP_KERNEL);
			j = 1;
		} else {
			mem_addr += FEC_ENET_TX_FRSIZE;
			j++;
		}
		fep->tx_bounce[i] = (unsigned char *) mem_addr;

		/* Initialize the BD for every fragment in the page.
		*/
		bdp->cbd_sc = 0;
		bdp->cbd_bufaddr = 0;
		bdp++;
	}

	/* Set the last buffer to wrap.
	*/
	bdp--;
	bdp->cbd_sc |= BD_SC_WRAP;

	/* Set receive and transmit descriptor base.
	*/
2207 2208 2209
	fecp->fec_r_des_start = fep->bd_dma;
	fecp->fec_x_des_start = (unsigned long)fep->bd_dma + sizeof(cbd_t)
				* RX_RING_SIZE;
L
Linus Torvalds 已提交
2210 2211 2212 2213 2214 2215

	/* Install our interrupt handlers. This varies depending on
	 * the architecture.
	*/
	fec_request_intrs(dev);

2216 2217
	fecp->fec_grp_hash_table_high = 0;
	fecp->fec_grp_hash_table_low = 0;
2218 2219
	fecp->fec_r_buff_size = PKT_MAXBLR_SIZE;
	fecp->fec_ecntrl = 2;
2220
	fecp->fec_r_des_active = 0;
2221 2222 2223 2224
#ifndef CONFIG_M5272
	fecp->fec_hash_table_high = 0;
	fecp->fec_hash_table_low = 0;
#endif
2225

L
Linus Torvalds 已提交
2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242
	dev->base_addr = (unsigned long)fecp;

	/* The FEC Ethernet specific entries in the device structure. */
	dev->open = fec_enet_open;
	dev->hard_start_xmit = fec_enet_start_xmit;
	dev->tx_timeout = fec_timeout;
	dev->watchdog_timeo = TX_TIMEOUT;
	dev->stop = fec_enet_close;
	dev->set_multicast_list = set_multicast_list;

	for (i=0; i<NMII-1; i++)
		mii_cmds[i].mii_next = &mii_cmds[i+1];
	mii_free = mii_cmds;

	/* setup MII interface */
	fec_set_mii(dev, fep);

2243 2244
	/* Clear and enable interrupts */
	fecp->fec_ievent = 0xffc00000;
2245
	fecp->fec_imask = (FEC_ENET_TXF | FEC_ENET_RXF | FEC_ENET_MII);
2246

L
Linus Torvalds 已提交
2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279
	/* Queue up command to detect the PHY and initialize the
	 * remainder of the interface.
	 */
	fep->phy_id_done = 0;
	fep->phy_addr = 0;
	mii_queue(dev, mk_mii_read(MII_REG_PHYIR1), mii_discover_phy);

	index++;
	return 0;
}

/* This function is called to start or restart the FEC during a link
 * change.  This only happens when switching between half and full
 * duplex.
 */
static void
fec_restart(struct net_device *dev, int duplex)
{
	struct fec_enet_private *fep;
	volatile cbd_t *bdp;
	volatile fec_t *fecp;
	int i;

	fep = netdev_priv(dev);
	fecp = fep->hwp;

	/* Whack a reset.  We should wait for this.
	*/
	fecp->fec_ecntrl = 1;
	udelay(10);

	/* Clear any outstanding interrupt.
	*/
2280
	fecp->fec_ievent = 0xffc00000;
L
Linus Torvalds 已提交
2281 2282 2283

	/* Set station address.
	*/
2284
	fec_set_mac_address(dev);
L
Linus Torvalds 已提交
2285 2286 2287

	/* Reset all multicast.
	*/
2288 2289
	fecp->fec_grp_hash_table_high = 0;
	fecp->fec_grp_hash_table_low = 0;
L
Linus Torvalds 已提交
2290 2291 2292 2293 2294 2295 2296

	/* Set maximum receive buffer size.
	*/
	fecp->fec_r_buff_size = PKT_MAXBLR_SIZE;

	/* Set receive and transmit descriptor base.
	*/
2297 2298 2299
	fecp->fec_r_des_start = fep->bd_dma;
	fecp->fec_x_des_start = (unsigned long)fep->bd_dma + sizeof(cbd_t)
				* RX_RING_SIZE;
L
Linus Torvalds 已提交
2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351

	fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
	fep->cur_rx = fep->rx_bd_base;

	/* Reset SKB transmit buffers.
	*/
	fep->skb_cur = fep->skb_dirty = 0;
	for (i=0; i<=TX_RING_MOD_MASK; i++) {
		if (fep->tx_skbuff[i] != NULL) {
			dev_kfree_skb_any(fep->tx_skbuff[i]);
			fep->tx_skbuff[i] = NULL;
		}
	}

	/* Initialize the receive buffer descriptors.
	*/
	bdp = fep->rx_bd_base;
	for (i=0; i<RX_RING_SIZE; i++) {

		/* Initialize the BD for every fragment in the page.
		*/
		bdp->cbd_sc = BD_ENET_RX_EMPTY;
		bdp++;
	}

	/* Set the last buffer to wrap.
	*/
	bdp--;
	bdp->cbd_sc |= BD_SC_WRAP;

	/* ...and the same for transmmit.
	*/
	bdp = fep->tx_bd_base;
	for (i=0; i<TX_RING_SIZE; i++) {

		/* Initialize the BD for every fragment in the page.
		*/
		bdp->cbd_sc = 0;
		bdp->cbd_bufaddr = 0;
		bdp++;
	}

	/* Set the last buffer to wrap.
	*/
	bdp--;
	bdp->cbd_sc |= BD_SC_WRAP;

	/* Enable MII mode.
	*/
	if (duplex) {
		fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;/* MII enable */
		fecp->fec_x_cntrl = 0x04;		  /* FD enable */
2352
	} else {
L
Linus Torvalds 已提交
2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365
		/* MII enable|No Rcv on Xmit */
		fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x06;
		fecp->fec_x_cntrl = 0x00;
	}
	fep->full_duplex = duplex;

	/* Set MII speed.
	*/
	fecp->fec_mii_speed = fep->phy_speed;

	/* And last, enable the transmit and receive processing.
	*/
	fecp->fec_ecntrl = 2;
2366 2367 2368 2369
	fecp->fec_r_des_active = 0;

	/* Enable interrupts we wish to service.
	*/
2370
	fecp->fec_imask = (FEC_ENET_TXF | FEC_ENET_RXF | FEC_ENET_MII);
L
Linus Torvalds 已提交
2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381
}

static void
fec_stop(struct net_device *dev)
{
	volatile fec_t *fecp;
	struct fec_enet_private *fep;

	fep = netdev_priv(dev);
	fecp = fep->hwp;

2382 2383 2384 2385 2386 2387 2388 2389 2390 2391
	/*
	** We cannot expect a graceful transmit stop without link !!!
	*/
	if (fep->link)
		{
		fecp->fec_x_cntrl = 0x01;	/* Graceful transmit stop */
		udelay(10);
		if (!(fecp->fec_ievent & FEC_ENET_GRA))
			printk("fec_stop : Graceful transmit stop did not complete !\n");
		}
L
Linus Torvalds 已提交
2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408

	/* Whack a reset.  We should wait for this.
	*/
	fecp->fec_ecntrl = 1;
	udelay(10);

	/* Clear outstanding MII command interrupts.
	*/
	fecp->fec_ievent = FEC_ENET_MII;

	fecp->fec_imask = FEC_ENET_MII;
	fecp->fec_mii_speed = fep->phy_speed;
}

static int __init fec_enet_module_init(void)
{
	struct net_device *dev;
2409
	int i, err;
2410 2411

	printk("FEC ENET Version 0.2\n");
L
Linus Torvalds 已提交
2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426

	for (i = 0; (i < FEC_MAX_PORTS); i++) {
		dev = alloc_etherdev(sizeof(struct fec_enet_private));
		if (!dev)
			return -ENOMEM;
		err = fec_enet_init(dev);
		if (err) {
			free_netdev(dev);
			continue;
		}
		if (register_netdev(dev) != 0) {
			/* XXX: missing cleanup here */
			free_netdev(dev);
			return -EIO;
		}
2427

J
Johannes Berg 已提交
2428
		printk("%s: ethernet %pM\n", dev->name, dev->dev_addr);
L
Linus Torvalds 已提交
2429 2430 2431 2432 2433 2434 2435
	}
	return 0;
}

module_init(fec_enet_module_init);

MODULE_LICENSE("GPL");