intel_pm.c 153.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2012 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
 *
 */

28
#include <linux/cpufreq.h>
29 30
#include "i915_drv.h"
#include "intel_drv.h"
31 32
#include "../../../platform/x86/intel_ips.h"
#include <linux/module.h>
33

34
#define FORCEWAKE_ACK_TIMEOUT_MS 2
35

36 37 38
/* FBC, or Frame Buffer Compression, is a technique employed to compress the
 * framebuffer contents in-memory, aiming at reducing the required bandwidth
 * during in-memory transfers and, therefore, reduce the power packet.
39
 *
40 41
 * The benefits of FBC are mostly visible with solid backgrounds and
 * variation-less patterns.
42
 *
43 44
 * FBC-related functionality can be enabled by the means of the
 * i915.i915_enable_fbc parameter
45 46
 */

47 48 49 50 51 52 53 54
static bool intel_crtc_active(struct drm_crtc *crtc)
{
	/* Be paranoid as we can arrive here with only partial
	 * state retrieved from the hardware during setup.
	 */
	return to_intel_crtc(crtc)->active && crtc->fb && crtc->mode.clock;
}

55
static void i8xx_disable_fbc(struct drm_device *dev)
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 fbc_ctl;

	/* Disable compression */
	fbc_ctl = I915_READ(FBC_CONTROL);
	if ((fbc_ctl & FBC_CTL_EN) == 0)
		return;

	fbc_ctl &= ~FBC_CTL_EN;
	I915_WRITE(FBC_CONTROL, fbc_ctl);

	/* Wait for compressing bit to clear */
	if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
		DRM_DEBUG_KMS("FBC idle timed out\n");
		return;
	}

	DRM_DEBUG_KMS("disabled FBC\n");
}

77
static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_framebuffer *fb = crtc->fb;
	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
	struct drm_i915_gem_object *obj = intel_fb->obj;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	int cfb_pitch;
	int plane, i;
	u32 fbc_ctl, fbc_ctl2;

	cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
	if (fb->pitches[0] < cfb_pitch)
		cfb_pitch = fb->pitches[0];

	/* FBC_CTL wants 64B units */
	cfb_pitch = (cfb_pitch / 64) - 1;
	plane = intel_crtc->plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;

	/* Clear old tags */
	for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
		I915_WRITE(FBC_TAG + (i * 4), 0);

	/* Set it up... */
	fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
	fbc_ctl2 |= plane;
	I915_WRITE(FBC_CONTROL2, fbc_ctl2);
	I915_WRITE(FBC_FENCE_OFF, crtc->y);

	/* enable it... */
	fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
	if (IS_I945GM(dev))
		fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
	fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
	fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
	fbc_ctl |= obj->fence_reg;
	I915_WRITE(FBC_CONTROL, fbc_ctl);

116 117
	DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %c, ",
		      cfb_pitch, crtc->y, plane_name(intel_crtc->plane));
118 119
}

120
static bool i8xx_fbc_enabled(struct drm_device *dev)
121 122 123 124 125 126
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
}

127
static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_framebuffer *fb = crtc->fb;
	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
	struct drm_i915_gem_object *obj = intel_fb->obj;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
	unsigned long stall_watermark = 200;
	u32 dpfc_ctl;

	dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
	dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
	I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);

	I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
		   (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
		   (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
	I915_WRITE(DPFC_FENCE_YOFF, crtc->y);

	/* enable it... */
	I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);

151
	DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
152 153
}

154
static void g4x_disable_fbc(struct drm_device *dev)
155 156 157 158 159 160 161 162 163 164 165 166 167 168
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 dpfc_ctl;

	/* Disable compression */
	dpfc_ctl = I915_READ(DPFC_CONTROL);
	if (dpfc_ctl & DPFC_CTL_EN) {
		dpfc_ctl &= ~DPFC_CTL_EN;
		I915_WRITE(DPFC_CONTROL, dpfc_ctl);

		DRM_DEBUG_KMS("disabled FBC\n");
	}
}

169
static bool g4x_fbc_enabled(struct drm_device *dev)
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
}

static void sandybridge_blit_fbc_update(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 blt_ecoskpd;

	/* Make sure blitter notifies FBC of writes */
	gen6_gt_force_wake_get(dev_priv);
	blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
	blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
		GEN6_BLITTER_LOCK_SHIFT;
	I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
	blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
	I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
	blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
			 GEN6_BLITTER_LOCK_SHIFT);
	I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
	POSTING_READ(GEN6_BLITTER_ECOSKPD);
	gen6_gt_force_wake_put(dev_priv);
}

196
static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_framebuffer *fb = crtc->fb;
	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
	struct drm_i915_gem_object *obj = intel_fb->obj;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
	unsigned long stall_watermark = 200;
	u32 dpfc_ctl;

	dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
	dpfc_ctl &= DPFC_RESERVED;
	dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
	/* Set persistent mode for front-buffer rendering, ala X. */
	dpfc_ctl |= DPFC_CTL_PERSISTENT_MODE;
	dpfc_ctl |= (DPFC_CTL_FENCE_EN | obj->fence_reg);
	I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);

	I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
		   (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
		   (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
	I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
	I915_WRITE(ILK_FBC_RT_BASE, obj->gtt_offset | ILK_FBC_RT_VALID);
	/* enable it... */
	I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);

	if (IS_GEN6(dev)) {
		I915_WRITE(SNB_DPFC_CTL_SA,
			   SNB_CPU_FENCE_ENABLE | obj->fence_reg);
		I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
		sandybridge_blit_fbc_update(dev);
	}

231
	DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
232 233
}

234
static void ironlake_disable_fbc(struct drm_device *dev)
235 236 237 238 239 240 241 242 243 244
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 dpfc_ctl;

	/* Disable compression */
	dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
	if (dpfc_ctl & DPFC_CTL_EN) {
		dpfc_ctl &= ~DPFC_CTL_EN;
		I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);

245
		if (IS_IVYBRIDGE(dev))
246
			/* WaFbcDisableDpfcClockGating:ivb */
247 248 249 250
			I915_WRITE(ILK_DSPCLK_GATE_D,
				   I915_READ(ILK_DSPCLK_GATE_D) &
				   ~ILK_DPFCUNIT_CLOCK_GATE_DISABLE);

251
		if (IS_HASWELL(dev))
252
			/* WaFbcDisableDpfcClockGating:hsw */
253 254 255 256
			I915_WRITE(HSW_CLKGATE_DISABLE_PART_1,
				   I915_READ(HSW_CLKGATE_DISABLE_PART_1) &
				   ~HSW_DPFC_GATING_DISABLE);

257 258 259 260
		DRM_DEBUG_KMS("disabled FBC\n");
	}
}

261
static bool ironlake_fbc_enabled(struct drm_device *dev)
262 263 264 265 266 267
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
}

268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
static void gen7_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_framebuffer *fb = crtc->fb;
	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
	struct drm_i915_gem_object *obj = intel_fb->obj;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);

	I915_WRITE(IVB_FBC_RT_BASE, obj->gtt_offset | ILK_FBC_RT_VALID);

	I915_WRITE(ILK_DPFC_CONTROL, DPFC_CTL_EN | DPFC_CTL_LIMIT_1X |
		   IVB_DPFC_CTL_FENCE_EN |
		   intel_crtc->plane << IVB_DPFC_CTL_PLANE_SHIFT);

R
Rodrigo Vivi 已提交
283
	if (IS_IVYBRIDGE(dev)) {
284
		/* WaFbcAsynchFlipDisableFbcQueue:ivb */
R
Rodrigo Vivi 已提交
285
		I915_WRITE(ILK_DISPLAY_CHICKEN1, ILK_FBCQ_DIS);
286
		/* WaFbcDisableDpfcClockGating:ivb */
R
Rodrigo Vivi 已提交
287 288 289
		I915_WRITE(ILK_DSPCLK_GATE_D,
			   I915_READ(ILK_DSPCLK_GATE_D) |
			   ILK_DPFCUNIT_CLOCK_GATE_DISABLE);
290
	} else {
291
		/* WaFbcAsynchFlipDisableFbcQueue:hsw */
292 293
		I915_WRITE(HSW_PIPE_SLICE_CHICKEN_1(intel_crtc->pipe),
			   HSW_BYPASS_FBC_QUEUE);
294
		/* WaFbcDisableDpfcClockGating:hsw */
295 296 297
		I915_WRITE(HSW_CLKGATE_DISABLE_PART_1,
			   I915_READ(HSW_CLKGATE_DISABLE_PART_1) |
			   HSW_DPFC_GATING_DISABLE);
R
Rodrigo Vivi 已提交
298
	}
299

300 301 302 303 304 305 306 307 308
	I915_WRITE(SNB_DPFC_CTL_SA,
		   SNB_CPU_FENCE_ENABLE | obj->fence_reg);
	I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);

	sandybridge_blit_fbc_update(dev);

	DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
}

309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
bool intel_fbc_enabled(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (!dev_priv->display.fbc_enabled)
		return false;

	return dev_priv->display.fbc_enabled(dev);
}

static void intel_fbc_work_fn(struct work_struct *__work)
{
	struct intel_fbc_work *work =
		container_of(to_delayed_work(__work),
			     struct intel_fbc_work, work);
	struct drm_device *dev = work->crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;

	mutex_lock(&dev->struct_mutex);
	if (work == dev_priv->fbc_work) {
		/* Double check that we haven't switched fb without cancelling
		 * the prior work.
		 */
		if (work->crtc->fb == work->fb) {
			dev_priv->display.enable_fbc(work->crtc,
						     work->interval);

			dev_priv->cfb_plane = to_intel_crtc(work->crtc)->plane;
			dev_priv->cfb_fb = work->crtc->fb->base.id;
			dev_priv->cfb_y = work->crtc->y;
		}

		dev_priv->fbc_work = NULL;
	}
	mutex_unlock(&dev->struct_mutex);

	kfree(work);
}

static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
{
	if (dev_priv->fbc_work == NULL)
		return;

	DRM_DEBUG_KMS("cancelling pending FBC enable\n");

	/* Synchronisation is provided by struct_mutex and checking of
	 * dev_priv->fbc_work, so we can perform the cancellation
	 * entirely asynchronously.
	 */
	if (cancel_delayed_work(&dev_priv->fbc_work->work))
		/* tasklet was killed before being run, clean up */
		kfree(dev_priv->fbc_work);

	/* Mark the work as no longer wanted so that if it does
	 * wake-up (because the work was already running and waiting
	 * for our mutex), it will discover that is no longer
	 * necessary to run.
	 */
	dev_priv->fbc_work = NULL;
}

void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
{
	struct intel_fbc_work *work;
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (!dev_priv->display.enable_fbc)
		return;

	intel_cancel_fbc_work(dev_priv);

	work = kzalloc(sizeof *work, GFP_KERNEL);
	if (work == NULL) {
		dev_priv->display.enable_fbc(crtc, interval);
		return;
	}

	work->crtc = crtc;
	work->fb = crtc->fb;
	work->interval = interval;
	INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);

	dev_priv->fbc_work = work;

	DRM_DEBUG_KMS("scheduling delayed FBC enable\n");

	/* Delay the actual enabling to let pageflipping cease and the
	 * display to settle before starting the compression. Note that
	 * this delay also serves a second purpose: it allows for a
	 * vblank to pass after disabling the FBC before we attempt
	 * to modify the control registers.
	 *
	 * A more complicated solution would involve tracking vblanks
	 * following the termination of the page-flipping sequence
	 * and indeed performing the enable as a co-routine and not
	 * waiting synchronously upon the vblank.
	 */
	schedule_delayed_work(&work->work, msecs_to_jiffies(50));
}

void intel_disable_fbc(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	intel_cancel_fbc_work(dev_priv);

	if (!dev_priv->display.disable_fbc)
		return;

	dev_priv->display.disable_fbc(dev);
	dev_priv->cfb_plane = -1;
}

/**
 * intel_update_fbc - enable/disable FBC as needed
 * @dev: the drm_device
 *
 * Set up the framebuffer compression hardware at mode set time.  We
 * enable it if possible:
 *   - plane A only (on pre-965)
 *   - no pixel mulitply/line duplication
 *   - no alpha buffer discard
 *   - no dual wide
 *   - framebuffer <= 2048 in width, 1536 in height
 *
 * We can't assume that any compression will take place (worst case),
 * so the compressed buffer has to be the same size as the uncompressed
 * one.  It also must reside (along with the line length buffer) in
 * stolen memory.
 *
 * We need to enable/disable FBC on a global basis.
 */
void intel_update_fbc(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc = NULL, *tmp_crtc;
	struct intel_crtc *intel_crtc;
	struct drm_framebuffer *fb;
	struct intel_framebuffer *intel_fb;
	struct drm_i915_gem_object *obj;
	int enable_fbc;

	if (!i915_powersave)
		return;

	if (!I915_HAS_FBC(dev))
		return;

	/*
	 * If FBC is already on, we just have to verify that we can
	 * keep it that way...
	 * Need to disable if:
	 *   - more than one pipe is active
	 *   - changing FBC params (stride, fence, mode)
	 *   - new fb is too large to fit in compressed buffer
	 *   - going to an unsupported config (interlace, pixel multiply, etc.)
	 */
	list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
469 470
		if (intel_crtc_active(tmp_crtc) &&
		    !to_intel_crtc(tmp_crtc)->primary_disabled) {
471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
			if (crtc) {
				DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
				dev_priv->no_fbc_reason = FBC_MULTIPLE_PIPES;
				goto out_disable;
			}
			crtc = tmp_crtc;
		}
	}

	if (!crtc || crtc->fb == NULL) {
		DRM_DEBUG_KMS("no output, disabling\n");
		dev_priv->no_fbc_reason = FBC_NO_OUTPUT;
		goto out_disable;
	}

	intel_crtc = to_intel_crtc(crtc);
	fb = crtc->fb;
	intel_fb = to_intel_framebuffer(fb);
	obj = intel_fb->obj;

	enable_fbc = i915_enable_fbc;
	if (enable_fbc < 0) {
		DRM_DEBUG_KMS("fbc set to per-chip default\n");
		enable_fbc = 1;
R
Rodrigo Vivi 已提交
495
		if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
			enable_fbc = 0;
	}
	if (!enable_fbc) {
		DRM_DEBUG_KMS("fbc disabled per module param\n");
		dev_priv->no_fbc_reason = FBC_MODULE_PARAM;
		goto out_disable;
	}
	if ((crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) ||
	    (crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)) {
		DRM_DEBUG_KMS("mode incompatible with compression, "
			      "disabling\n");
		dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
		goto out_disable;
	}
	if ((crtc->mode.hdisplay > 2048) ||
	    (crtc->mode.vdisplay > 1536)) {
		DRM_DEBUG_KMS("mode too large for compression, disabling\n");
		dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
		goto out_disable;
	}
R
Rodrigo Vivi 已提交
516 517
	if ((IS_I915GM(dev) || IS_I945GM(dev) || IS_HASWELL(dev)) &&
	    intel_crtc->plane != 0) {
518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
		DRM_DEBUG_KMS("plane not 0, disabling compression\n");
		dev_priv->no_fbc_reason = FBC_BAD_PLANE;
		goto out_disable;
	}

	/* The use of a CPU fence is mandatory in order to detect writes
	 * by the CPU to the scanout and trigger updates to the FBC.
	 */
	if (obj->tiling_mode != I915_TILING_X ||
	    obj->fence_reg == I915_FENCE_REG_NONE) {
		DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
		dev_priv->no_fbc_reason = FBC_NOT_TILED;
		goto out_disable;
	}

	/* If the kernel debugger is active, always disable compression */
	if (in_dbg_master())
		goto out_disable;

537 538 539 540 541 542
	if (i915_gem_stolen_setup_compression(dev, intel_fb->obj->base.size)) {
		DRM_DEBUG_KMS("framebuffer too large, disabling compression\n");
		dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
		goto out_disable;
	}

543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589
	/* If the scanout has not changed, don't modify the FBC settings.
	 * Note that we make the fundamental assumption that the fb->obj
	 * cannot be unpinned (and have its GTT offset and fence revoked)
	 * without first being decoupled from the scanout and FBC disabled.
	 */
	if (dev_priv->cfb_plane == intel_crtc->plane &&
	    dev_priv->cfb_fb == fb->base.id &&
	    dev_priv->cfb_y == crtc->y)
		return;

	if (intel_fbc_enabled(dev)) {
		/* We update FBC along two paths, after changing fb/crtc
		 * configuration (modeswitching) and after page-flipping
		 * finishes. For the latter, we know that not only did
		 * we disable the FBC at the start of the page-flip
		 * sequence, but also more than one vblank has passed.
		 *
		 * For the former case of modeswitching, it is possible
		 * to switch between two FBC valid configurations
		 * instantaneously so we do need to disable the FBC
		 * before we can modify its control registers. We also
		 * have to wait for the next vblank for that to take
		 * effect. However, since we delay enabling FBC we can
		 * assume that a vblank has passed since disabling and
		 * that we can safely alter the registers in the deferred
		 * callback.
		 *
		 * In the scenario that we go from a valid to invalid
		 * and then back to valid FBC configuration we have
		 * no strict enforcement that a vblank occurred since
		 * disabling the FBC. However, along all current pipe
		 * disabling paths we do need to wait for a vblank at
		 * some point. And we wait before enabling FBC anyway.
		 */
		DRM_DEBUG_KMS("disabling active FBC for update\n");
		intel_disable_fbc(dev);
	}

	intel_enable_fbc(crtc, 500);
	return;

out_disable:
	/* Multiple disables should be harmless */
	if (intel_fbc_enabled(dev)) {
		DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
		intel_disable_fbc(dev);
	}
590
	i915_gem_stolen_cleanup_compression(dev);
591 592
}

593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659
static void i915_pineview_get_mem_freq(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	u32 tmp;

	tmp = I915_READ(CLKCFG);

	switch (tmp & CLKCFG_FSB_MASK) {
	case CLKCFG_FSB_533:
		dev_priv->fsb_freq = 533; /* 133*4 */
		break;
	case CLKCFG_FSB_800:
		dev_priv->fsb_freq = 800; /* 200*4 */
		break;
	case CLKCFG_FSB_667:
		dev_priv->fsb_freq =  667; /* 167*4 */
		break;
	case CLKCFG_FSB_400:
		dev_priv->fsb_freq = 400; /* 100*4 */
		break;
	}

	switch (tmp & CLKCFG_MEM_MASK) {
	case CLKCFG_MEM_533:
		dev_priv->mem_freq = 533;
		break;
	case CLKCFG_MEM_667:
		dev_priv->mem_freq = 667;
		break;
	case CLKCFG_MEM_800:
		dev_priv->mem_freq = 800;
		break;
	}

	/* detect pineview DDR3 setting */
	tmp = I915_READ(CSHRDDR3CTL);
	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
}

static void i915_ironlake_get_mem_freq(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	u16 ddrpll, csipll;

	ddrpll = I915_READ16(DDRMPLL1);
	csipll = I915_READ16(CSIPLL0);

	switch (ddrpll & 0xff) {
	case 0xc:
		dev_priv->mem_freq = 800;
		break;
	case 0x10:
		dev_priv->mem_freq = 1066;
		break;
	case 0x14:
		dev_priv->mem_freq = 1333;
		break;
	case 0x18:
		dev_priv->mem_freq = 1600;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
				 ddrpll & 0xff);
		dev_priv->mem_freq = 0;
		break;
	}

660
	dev_priv->ips.r_t = dev_priv->mem_freq;
661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691

	switch (csipll & 0x3ff) {
	case 0x00c:
		dev_priv->fsb_freq = 3200;
		break;
	case 0x00e:
		dev_priv->fsb_freq = 3733;
		break;
	case 0x010:
		dev_priv->fsb_freq = 4266;
		break;
	case 0x012:
		dev_priv->fsb_freq = 4800;
		break;
	case 0x014:
		dev_priv->fsb_freq = 5333;
		break;
	case 0x016:
		dev_priv->fsb_freq = 5866;
		break;
	case 0x018:
		dev_priv->fsb_freq = 6400;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
				 csipll & 0x3ff);
		dev_priv->fsb_freq = 0;
		break;
	}

	if (dev_priv->fsb_freq == 3200) {
692
		dev_priv->ips.c_m = 0;
693
	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
694
		dev_priv->ips.c_m = 1;
695
	} else {
696
		dev_priv->ips.c_m = 2;
697 698 699
	}
}

700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737
static const struct cxsr_latency cxsr_latency_table[] = {
	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */

	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */

	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */

	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */

	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */

	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
};

738
static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761
							 int is_ddr3,
							 int fsb,
							 int mem)
{
	const struct cxsr_latency *latency;
	int i;

	if (fsb == 0 || mem == 0)
		return NULL;

	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
		latency = &cxsr_latency_table[i];
		if (is_desktop == latency->is_desktop &&
		    is_ddr3 == latency->is_ddr3 &&
		    fsb == latency->fsb_freq && mem == latency->mem_freq)
			return latency;
	}

	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");

	return NULL;
}

762
static void pineview_disable_cxsr(struct drm_device *dev)
763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	/* deactivate cxsr */
	I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
}

/*
 * Latency for FIFO fetches is dependent on several factors:
 *   - memory configuration (speed, channels)
 *   - chipset
 *   - current MCH state
 * It can be fairly high in some situations, so here we assume a fairly
 * pessimal value.  It's a tradeoff between extra memory fetches (if we
 * set this value too high, the FIFO will fetch frequently to stay full)
 * and power consumption (set it too low to save power and we might see
 * FIFO underruns and display "flicker").
 *
 * A value of 5us seems to be a good balance; safe for very low end
 * platforms but not overly aggressive on lower latency configs.
 */
static const int latency_ns = 5000;

786
static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
787 788 789 790 791 792 793 794 795 796 797 798 799 800 801
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	if (plane)
		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

802
static int i85x_get_fifo_size(struct drm_device *dev, int plane)
803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x1ff;
	if (plane)
		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
	size >>= 1; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

819
static int i845_get_fifo_size(struct drm_device *dev, int plane)
820 821 822 823 824 825 826 827 828 829 830 831 832 833 834
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	size >>= 2; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A",
		      size);

	return size;
}

835
static int i830_get_fifo_size(struct drm_device *dev, int plane)
836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	size >>= 1; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

/* Pineview has different values for various configs */
static const struct intel_watermark_params pineview_display_wm = {
	PINEVIEW_DISPLAY_FIFO,
	PINEVIEW_MAX_WM,
	PINEVIEW_DFT_WM,
	PINEVIEW_GUARD_WM,
	PINEVIEW_FIFO_LINE_SIZE
};
static const struct intel_watermark_params pineview_display_hplloff_wm = {
	PINEVIEW_DISPLAY_FIFO,
	PINEVIEW_MAX_WM,
	PINEVIEW_DFT_HPLLOFF_WM,
	PINEVIEW_GUARD_WM,
	PINEVIEW_FIFO_LINE_SIZE
};
static const struct intel_watermark_params pineview_cursor_wm = {
	PINEVIEW_CURSOR_FIFO,
	PINEVIEW_CURSOR_MAX_WM,
	PINEVIEW_CURSOR_DFT_WM,
	PINEVIEW_CURSOR_GUARD_WM,
	PINEVIEW_FIFO_LINE_SIZE,
};
static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
	PINEVIEW_CURSOR_FIFO,
	PINEVIEW_CURSOR_MAX_WM,
	PINEVIEW_CURSOR_DFT_WM,
	PINEVIEW_CURSOR_GUARD_WM,
	PINEVIEW_FIFO_LINE_SIZE
};
static const struct intel_watermark_params g4x_wm_info = {
	G4X_FIFO_SIZE,
	G4X_MAX_WM,
	G4X_MAX_WM,
	2,
	G4X_FIFO_LINE_SIZE,
};
static const struct intel_watermark_params g4x_cursor_wm_info = {
	I965_CURSOR_FIFO,
	I965_CURSOR_MAX_WM,
	I965_CURSOR_DFT_WM,
	2,
	G4X_FIFO_LINE_SIZE,
};
static const struct intel_watermark_params valleyview_wm_info = {
	VALLEYVIEW_FIFO_SIZE,
	VALLEYVIEW_MAX_WM,
	VALLEYVIEW_MAX_WM,
	2,
	G4X_FIFO_LINE_SIZE,
};
static const struct intel_watermark_params valleyview_cursor_wm_info = {
	I965_CURSOR_FIFO,
	VALLEYVIEW_CURSOR_MAX_WM,
	I965_CURSOR_DFT_WM,
	2,
	G4X_FIFO_LINE_SIZE,
};
static const struct intel_watermark_params i965_cursor_wm_info = {
	I965_CURSOR_FIFO,
	I965_CURSOR_MAX_WM,
	I965_CURSOR_DFT_WM,
	2,
	I915_FIFO_LINE_SIZE,
};
static const struct intel_watermark_params i945_wm_info = {
	I945_FIFO_SIZE,
	I915_MAX_WM,
	1,
	2,
	I915_FIFO_LINE_SIZE
};
static const struct intel_watermark_params i915_wm_info = {
	I915_FIFO_SIZE,
	I915_MAX_WM,
	1,
	2,
	I915_FIFO_LINE_SIZE
};
static const struct intel_watermark_params i855_wm_info = {
	I855GM_FIFO_SIZE,
	I915_MAX_WM,
	1,
	2,
	I830_FIFO_LINE_SIZE
};
static const struct intel_watermark_params i830_wm_info = {
	I830_FIFO_SIZE,
	I915_MAX_WM,
	1,
	2,
	I830_FIFO_LINE_SIZE
};

static const struct intel_watermark_params ironlake_display_wm_info = {
	ILK_DISPLAY_FIFO,
	ILK_DISPLAY_MAXWM,
	ILK_DISPLAY_DFTWM,
	2,
	ILK_FIFO_LINE_SIZE
};
static const struct intel_watermark_params ironlake_cursor_wm_info = {
	ILK_CURSOR_FIFO,
	ILK_CURSOR_MAXWM,
	ILK_CURSOR_DFTWM,
	2,
	ILK_FIFO_LINE_SIZE
};
static const struct intel_watermark_params ironlake_display_srwm_info = {
	ILK_DISPLAY_SR_FIFO,
	ILK_DISPLAY_MAX_SRWM,
	ILK_DISPLAY_DFT_SRWM,
	2,
	ILK_FIFO_LINE_SIZE
};
static const struct intel_watermark_params ironlake_cursor_srwm_info = {
	ILK_CURSOR_SR_FIFO,
	ILK_CURSOR_MAX_SRWM,
	ILK_CURSOR_DFT_SRWM,
	2,
	ILK_FIFO_LINE_SIZE
};

static const struct intel_watermark_params sandybridge_display_wm_info = {
	SNB_DISPLAY_FIFO,
	SNB_DISPLAY_MAXWM,
	SNB_DISPLAY_DFTWM,
	2,
	SNB_FIFO_LINE_SIZE
};
static const struct intel_watermark_params sandybridge_cursor_wm_info = {
	SNB_CURSOR_FIFO,
	SNB_CURSOR_MAXWM,
	SNB_CURSOR_DFTWM,
	2,
	SNB_FIFO_LINE_SIZE
};
static const struct intel_watermark_params sandybridge_display_srwm_info = {
	SNB_DISPLAY_SR_FIFO,
	SNB_DISPLAY_MAX_SRWM,
	SNB_DISPLAY_DFT_SRWM,
	2,
	SNB_FIFO_LINE_SIZE
};
static const struct intel_watermark_params sandybridge_cursor_srwm_info = {
	SNB_CURSOR_SR_FIFO,
	SNB_CURSOR_MAX_SRWM,
	SNB_CURSOR_DFT_SRWM,
	2,
	SNB_FIFO_LINE_SIZE
};


/**
 * intel_calculate_wm - calculate watermark level
 * @clock_in_khz: pixel clock
 * @wm: chip FIFO params
 * @pixel_size: display pixel size
 * @latency_ns: memory latency for the platform
 *
 * Calculate the watermark level (the level at which the display plane will
 * start fetching from memory again).  Each chip has a different display
 * FIFO size and allocation, so the caller needs to figure that out and pass
 * in the correct intel_watermark_params structure.
 *
 * As the pixel clock runs, the FIFO will be drained at a rate that depends
 * on the pixel size.  When it reaches the watermark level, it'll start
 * fetching FIFO line sized based chunks from memory until the FIFO fills
 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
 * will occur, and a display engine hang could result.
 */
static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
					const struct intel_watermark_params *wm,
					int fifo_size,
					int pixel_size,
					unsigned long latency_ns)
{
	long entries_required, wm_size;

	/*
	 * Note: we need to make sure we don't overflow for various clock &
	 * latency values.
	 * clocks go from a few thousand to several hundred thousand.
	 * latency is usually a few thousand
	 */
	entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
		1000;
	entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);

	DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);

	wm_size = fifo_size - (entries_required + wm->guard_size);

	DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);

	/* Don't promote wm_size to unsigned... */
	if (wm_size > (long)wm->max_wm)
		wm_size = wm->max_wm;
	if (wm_size <= 0)
		wm_size = wm->default_wm;
	return wm_size;
}

static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
{
	struct drm_crtc *crtc, *enabled = NULL;

	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
1057
		if (intel_crtc_active(crtc)) {
1058 1059 1060 1061 1062 1063 1064 1065 1066
			if (enabled)
				return NULL;
			enabled = crtc;
		}
	}

	return enabled;
}

1067
static void pineview_update_wm(struct drm_device *dev)
1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc;
	const struct cxsr_latency *latency;
	u32 reg;
	unsigned long wm;

	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
					 dev_priv->fsb_freq, dev_priv->mem_freq);
	if (!latency) {
		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
		pineview_disable_cxsr(dev);
		return;
	}

	crtc = single_enabled_crtc(dev);
	if (crtc) {
		int clock = crtc->mode.clock;
		int pixel_size = crtc->fb->bits_per_pixel / 8;

		/* Display SR */
		wm = intel_calculate_wm(clock, &pineview_display_wm,
					pineview_display_wm.fifo_size,
					pixel_size, latency->display_sr);
		reg = I915_READ(DSPFW1);
		reg &= ~DSPFW_SR_MASK;
		reg |= wm << DSPFW_SR_SHIFT;
		I915_WRITE(DSPFW1, reg);
		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);

		/* cursor SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
					pineview_display_wm.fifo_size,
					pixel_size, latency->cursor_sr);
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_CURSOR_SR_MASK;
		reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
		I915_WRITE(DSPFW3, reg);

		/* Display HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
					pixel_size, latency->display_hpll_disable);
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_SR_MASK;
		reg |= wm & DSPFW_HPLL_SR_MASK;
		I915_WRITE(DSPFW3, reg);

		/* cursor HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
					pixel_size, latency->cursor_hpll_disable);
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_CURSOR_MASK;
		reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
		I915_WRITE(DSPFW3, reg);
		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);

		/* activate cxsr */
		I915_WRITE(DSPFW3,
			   I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
		DRM_DEBUG_KMS("Self-refresh is enabled\n");
	} else {
		pineview_disable_cxsr(dev);
		DRM_DEBUG_KMS("Self-refresh is disabled\n");
	}
}

static bool g4x_compute_wm0(struct drm_device *dev,
			    int plane,
			    const struct intel_watermark_params *display,
			    int display_latency_ns,
			    const struct intel_watermark_params *cursor,
			    int cursor_latency_ns,
			    int *plane_wm,
			    int *cursor_wm)
{
	struct drm_crtc *crtc;
	int htotal, hdisplay, clock, pixel_size;
	int line_time_us, line_count;
	int entries, tlb_miss;

	crtc = intel_get_crtc_for_plane(dev, plane);
1151
	if (!intel_crtc_active(crtc)) {
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
		*cursor_wm = cursor->guard_size;
		*plane_wm = display->guard_size;
		return false;
	}

	htotal = crtc->mode.htotal;
	hdisplay = crtc->mode.hdisplay;
	clock = crtc->mode.clock;
	pixel_size = crtc->fb->bits_per_pixel / 8;

	/* Use the small buffer method to calculate plane watermark */
	entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
	tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, display->cacheline_size);
	*plane_wm = entries + display->guard_size;
	if (*plane_wm > (int)display->max_wm)
		*plane_wm = display->max_wm;

	/* Use the large buffer method to calculate cursor watermark */
	line_time_us = ((htotal * 1000) / clock);
	line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
	entries = line_count * 64 * pixel_size;
	tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;
	if (*cursor_wm > (int)cursor->max_wm)
		*cursor_wm = (int)cursor->max_wm;

	return true;
}

/*
 * Check the wm result.
 *
 * If any calculated watermark values is larger than the maximum value that
 * can be programmed into the associated watermark register, that watermark
 * must be disabled.
 */
static bool g4x_check_srwm(struct drm_device *dev,
			   int display_wm, int cursor_wm,
			   const struct intel_watermark_params *display,
			   const struct intel_watermark_params *cursor)
{
	DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
		      display_wm, cursor_wm);

	if (display_wm > display->max_wm) {
		DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
			      display_wm, display->max_wm);
		return false;
	}

	if (cursor_wm > cursor->max_wm) {
		DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
			      cursor_wm, cursor->max_wm);
		return false;
	}

	if (!(display_wm || cursor_wm)) {
		DRM_DEBUG_KMS("SR latency is 0, disabling\n");
		return false;
	}

	return true;
}

static bool g4x_compute_srwm(struct drm_device *dev,
			     int plane,
			     int latency_ns,
			     const struct intel_watermark_params *display,
			     const struct intel_watermark_params *cursor,
			     int *display_wm, int *cursor_wm)
{
	struct drm_crtc *crtc;
	int hdisplay, htotal, pixel_size, clock;
	unsigned long line_time_us;
	int line_count, line_size;
	int small, large;
	int entries;

	if (!latency_ns) {
		*display_wm = *cursor_wm = 0;
		return false;
	}

	crtc = intel_get_crtc_for_plane(dev, plane);
	hdisplay = crtc->mode.hdisplay;
	htotal = crtc->mode.htotal;
	clock = crtc->mode.clock;
	pixel_size = crtc->fb->bits_per_pixel / 8;

	line_time_us = (htotal * 1000) / clock;
	line_count = (latency_ns / line_time_us + 1000) / 1000;
	line_size = hdisplay * pixel_size;

	/* Use the minimum of the small and large buffer method for primary */
	small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
	large = line_count * line_size;

	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
	*display_wm = entries + display->guard_size;

	/* calculate the self-refresh watermark for display cursor */
	entries = line_count * pixel_size * 64;
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;

	return g4x_check_srwm(dev,
			      *display_wm, *cursor_wm,
			      display, cursor);
}

static bool vlv_compute_drain_latency(struct drm_device *dev,
				     int plane,
				     int *plane_prec_mult,
				     int *plane_dl,
				     int *cursor_prec_mult,
				     int *cursor_dl)
{
	struct drm_crtc *crtc;
	int clock, pixel_size;
	int entries;

	crtc = intel_get_crtc_for_plane(dev, plane);
1280
	if (!intel_crtc_active(crtc))
1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344
		return false;

	clock = crtc->mode.clock;	/* VESA DOT Clock */
	pixel_size = crtc->fb->bits_per_pixel / 8;	/* BPP */

	entries = (clock / 1000) * pixel_size;
	*plane_prec_mult = (entries > 256) ?
		DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
	*plane_dl = (64 * (*plane_prec_mult) * 4) / ((clock / 1000) *
						     pixel_size);

	entries = (clock / 1000) * 4;	/* BPP is always 4 for cursor */
	*cursor_prec_mult = (entries > 256) ?
		DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
	*cursor_dl = (64 * (*cursor_prec_mult) * 4) / ((clock / 1000) * 4);

	return true;
}

/*
 * Update drain latency registers of memory arbiter
 *
 * Valleyview SoC has a new memory arbiter and needs drain latency registers
 * to be programmed. Each plane has a drain latency multiplier and a drain
 * latency value.
 */

static void vlv_update_drain_latency(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int planea_prec, planea_dl, planeb_prec, planeb_dl;
	int cursora_prec, cursora_dl, cursorb_prec, cursorb_dl;
	int plane_prec_mult, cursor_prec_mult; /* Precision multiplier is
							either 16 or 32 */

	/* For plane A, Cursor A */
	if (vlv_compute_drain_latency(dev, 0, &plane_prec_mult, &planea_dl,
				      &cursor_prec_mult, &cursora_dl)) {
		cursora_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
			DDL_CURSORA_PRECISION_32 : DDL_CURSORA_PRECISION_16;
		planea_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
			DDL_PLANEA_PRECISION_32 : DDL_PLANEA_PRECISION_16;

		I915_WRITE(VLV_DDL1, cursora_prec |
				(cursora_dl << DDL_CURSORA_SHIFT) |
				planea_prec | planea_dl);
	}

	/* For plane B, Cursor B */
	if (vlv_compute_drain_latency(dev, 1, &plane_prec_mult, &planeb_dl,
				      &cursor_prec_mult, &cursorb_dl)) {
		cursorb_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
			DDL_CURSORB_PRECISION_32 : DDL_CURSORB_PRECISION_16;
		planeb_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
			DDL_PLANEB_PRECISION_32 : DDL_PLANEB_PRECISION_16;

		I915_WRITE(VLV_DDL2, cursorb_prec |
				(cursorb_dl << DDL_CURSORB_SHIFT) |
				planeb_prec | planeb_dl);
	}
}

#define single_plane_enabled(mask) is_power_of_2(mask)

1345
static void valleyview_update_wm(struct drm_device *dev)
1346 1347 1348 1349 1350
{
	static const int sr_latency_ns = 12000;
	struct drm_i915_private *dev_priv = dev->dev_private;
	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
	int plane_sr, cursor_sr;
1351
	int ignore_plane_sr, ignore_cursor_sr;
1352 1353 1354 1355
	unsigned int enabled = 0;

	vlv_update_drain_latency(dev);

1356
	if (g4x_compute_wm0(dev, PIPE_A,
1357 1358 1359
			    &valleyview_wm_info, latency_ns,
			    &valleyview_cursor_wm_info, latency_ns,
			    &planea_wm, &cursora_wm))
1360
		enabled |= 1 << PIPE_A;
1361

1362
	if (g4x_compute_wm0(dev, PIPE_B,
1363 1364 1365
			    &valleyview_wm_info, latency_ns,
			    &valleyview_cursor_wm_info, latency_ns,
			    &planeb_wm, &cursorb_wm))
1366
		enabled |= 1 << PIPE_B;
1367 1368 1369 1370 1371 1372

	if (single_plane_enabled(enabled) &&
	    g4x_compute_srwm(dev, ffs(enabled) - 1,
			     sr_latency_ns,
			     &valleyview_wm_info,
			     &valleyview_cursor_wm_info,
1373 1374 1375 1376 1377
			     &plane_sr, &ignore_cursor_sr) &&
	    g4x_compute_srwm(dev, ffs(enabled) - 1,
			     2*sr_latency_ns,
			     &valleyview_wm_info,
			     &valleyview_cursor_wm_info,
1378
			     &ignore_plane_sr, &cursor_sr)) {
1379
		I915_WRITE(FW_BLC_SELF_VLV, FW_CSPWRDWNEN);
1380
	} else {
1381 1382
		I915_WRITE(FW_BLC_SELF_VLV,
			   I915_READ(FW_BLC_SELF_VLV) & ~FW_CSPWRDWNEN);
1383 1384
		plane_sr = cursor_sr = 0;
	}
1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
		      planea_wm, cursora_wm,
		      planeb_wm, cursorb_wm,
		      plane_sr, cursor_sr);

	I915_WRITE(DSPFW1,
		   (plane_sr << DSPFW_SR_SHIFT) |
		   (cursorb_wm << DSPFW_CURSORB_SHIFT) |
		   (planeb_wm << DSPFW_PLANEB_SHIFT) |
		   planea_wm);
	I915_WRITE(DSPFW2,
1397
		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1398 1399
		   (cursora_wm << DSPFW_CURSORA_SHIFT));
	I915_WRITE(DSPFW3,
1400 1401
		   (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
		   (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1402 1403
}

1404
static void g4x_update_wm(struct drm_device *dev)
1405 1406 1407 1408 1409 1410 1411
{
	static const int sr_latency_ns = 12000;
	struct drm_i915_private *dev_priv = dev->dev_private;
	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
	int plane_sr, cursor_sr;
	unsigned int enabled = 0;

1412
	if (g4x_compute_wm0(dev, PIPE_A,
1413 1414 1415
			    &g4x_wm_info, latency_ns,
			    &g4x_cursor_wm_info, latency_ns,
			    &planea_wm, &cursora_wm))
1416
		enabled |= 1 << PIPE_A;
1417

1418
	if (g4x_compute_wm0(dev, PIPE_B,
1419 1420 1421
			    &g4x_wm_info, latency_ns,
			    &g4x_cursor_wm_info, latency_ns,
			    &planeb_wm, &cursorb_wm))
1422
		enabled |= 1 << PIPE_B;
1423 1424 1425 1426 1427 1428

	if (single_plane_enabled(enabled) &&
	    g4x_compute_srwm(dev, ffs(enabled) - 1,
			     sr_latency_ns,
			     &g4x_wm_info,
			     &g4x_cursor_wm_info,
1429
			     &plane_sr, &cursor_sr)) {
1430
		I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1431
	} else {
1432 1433
		I915_WRITE(FW_BLC_SELF,
			   I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
1434 1435
		plane_sr = cursor_sr = 0;
	}
1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
		      planea_wm, cursora_wm,
		      planeb_wm, cursorb_wm,
		      plane_sr, cursor_sr);

	I915_WRITE(DSPFW1,
		   (plane_sr << DSPFW_SR_SHIFT) |
		   (cursorb_wm << DSPFW_CURSORB_SHIFT) |
		   (planeb_wm << DSPFW_PLANEB_SHIFT) |
		   planea_wm);
	I915_WRITE(DSPFW2,
1448
		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1449 1450 1451
		   (cursora_wm << DSPFW_CURSORA_SHIFT));
	/* HPLL off in SR has some issues on G4x... disable it */
	I915_WRITE(DSPFW3,
1452
		   (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1453 1454 1455
		   (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
}

1456
static void i965_update_wm(struct drm_device *dev)
1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc;
	int srwm = 1;
	int cursor_sr = 16;

	/* Calc sr entries for one plane configs */
	crtc = single_enabled_crtc(dev);
	if (crtc) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 12000;
		int clock = crtc->mode.clock;
		int htotal = crtc->mode.htotal;
		int hdisplay = crtc->mode.hdisplay;
		int pixel_size = crtc->fb->bits_per_pixel / 8;
		unsigned long line_time_us;
		int entries;

		line_time_us = ((htotal * 1000) / clock);

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
			pixel_size * hdisplay;
		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
		srwm = I965_FIFO_SIZE - entries;
		if (srwm < 0)
			srwm = 1;
		srwm &= 0x1ff;
		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
			      entries, srwm);

		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
			pixel_size * 64;
		entries = DIV_ROUND_UP(entries,
					  i965_cursor_wm_info.cacheline_size);
		cursor_sr = i965_cursor_wm_info.fifo_size -
			(entries + i965_cursor_wm_info.guard_size);

		if (cursor_sr > i965_cursor_wm_info.max_wm)
			cursor_sr = i965_cursor_wm_info.max_wm;

		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
			      "cursor %d\n", srwm, cursor_sr);

		if (IS_CRESTLINE(dev))
			I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
	} else {
		/* Turn off self refresh if both pipes are enabled */
		if (IS_CRESTLINE(dev))
			I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
				   & ~FW_BLC_SELF_EN);
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
		      srwm);

	/* 965 has limitations... */
	I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
		   (8 << 16) | (8 << 8) | (8 << 0));
	I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
	/* update cursor SR watermark */
	I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
}

1521
static void i9xx_update_wm(struct drm_device *dev)
1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	const struct intel_watermark_params *wm_info;
	uint32_t fwater_lo;
	uint32_t fwater_hi;
	int cwm, srwm = 1;
	int fifo_size;
	int planea_wm, planeb_wm;
	struct drm_crtc *crtc, *enabled = NULL;

	if (IS_I945GM(dev))
		wm_info = &i945_wm_info;
	else if (!IS_GEN2(dev))
		wm_info = &i915_wm_info;
	else
		wm_info = &i855_wm_info;

	fifo_size = dev_priv->display.get_fifo_size(dev, 0);
	crtc = intel_get_crtc_for_plane(dev, 0);
1541
	if (intel_crtc_active(crtc)) {
1542 1543 1544 1545
		int cpp = crtc->fb->bits_per_pixel / 8;
		if (IS_GEN2(dev))
			cpp = 4;

1546
		planea_wm = intel_calculate_wm(crtc->mode.clock,
1547
					       wm_info, fifo_size, cpp,
1548 1549 1550 1551 1552 1553 1554
					       latency_ns);
		enabled = crtc;
	} else
		planea_wm = fifo_size - wm_info->guard_size;

	fifo_size = dev_priv->display.get_fifo_size(dev, 1);
	crtc = intel_get_crtc_for_plane(dev, 1);
1555
	if (intel_crtc_active(crtc)) {
1556 1557 1558 1559
		int cpp = crtc->fb->bits_per_pixel / 8;
		if (IS_GEN2(dev))
			cpp = 4;

1560
		planeb_wm = intel_calculate_wm(crtc->mode.clock,
1561
					       wm_info, fifo_size, cpp,
1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637
					       latency_ns);
		if (enabled == NULL)
			enabled = crtc;
		else
			enabled = NULL;
	} else
		planeb_wm = fifo_size - wm_info->guard_size;

	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);

	/*
	 * Overlay gets an aggressive default since video jitter is bad.
	 */
	cwm = 2;

	/* Play safe and disable self-refresh before adjusting watermarks. */
	if (IS_I945G(dev) || IS_I945GM(dev))
		I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
	else if (IS_I915GM(dev))
		I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);

	/* Calc sr entries for one plane configs */
	if (HAS_FW_BLC(dev) && enabled) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 6000;
		int clock = enabled->mode.clock;
		int htotal = enabled->mode.htotal;
		int hdisplay = enabled->mode.hdisplay;
		int pixel_size = enabled->fb->bits_per_pixel / 8;
		unsigned long line_time_us;
		int entries;

		line_time_us = (htotal * 1000) / clock;

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
			pixel_size * hdisplay;
		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
		srwm = wm_info->fifo_size - entries;
		if (srwm < 0)
			srwm = 1;

		if (IS_I945G(dev) || IS_I945GM(dev))
			I915_WRITE(FW_BLC_SELF,
				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
		else if (IS_I915GM(dev))
			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
		      planea_wm, planeb_wm, cwm, srwm);

	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
	fwater_hi = (cwm & 0x1f);

	/* Set request length to 8 cachelines per fetch */
	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
	fwater_hi = fwater_hi | (1 << 8);

	I915_WRITE(FW_BLC, fwater_lo);
	I915_WRITE(FW_BLC2, fwater_hi);

	if (HAS_FW_BLC(dev)) {
		if (enabled) {
			if (IS_I945G(dev) || IS_I945GM(dev))
				I915_WRITE(FW_BLC_SELF,
					   FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
			else if (IS_I915GM(dev))
				I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
			DRM_DEBUG_KMS("memory self refresh enabled\n");
		} else
			DRM_DEBUG_KMS("memory self refresh disabled\n");
	}
}

1638
static void i830_update_wm(struct drm_device *dev)
1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc;
	uint32_t fwater_lo;
	int planea_wm;

	crtc = single_enabled_crtc(dev);
	if (crtc == NULL)
		return;

	planea_wm = intel_calculate_wm(crtc->mode.clock, &i830_wm_info,
				       dev_priv->display.get_fifo_size(dev, 0),
1651
				       4, latency_ns);
1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687
	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
	fwater_lo |= (3<<8) | planea_wm;

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);

	I915_WRITE(FW_BLC, fwater_lo);
}

#define ILK_LP0_PLANE_LATENCY		700
#define ILK_LP0_CURSOR_LATENCY		1300

/*
 * Check the wm result.
 *
 * If any calculated watermark values is larger than the maximum value that
 * can be programmed into the associated watermark register, that watermark
 * must be disabled.
 */
static bool ironlake_check_srwm(struct drm_device *dev, int level,
				int fbc_wm, int display_wm, int cursor_wm,
				const struct intel_watermark_params *display,
				const struct intel_watermark_params *cursor)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
		      " cursor %d\n", level, display_wm, fbc_wm, cursor_wm);

	if (fbc_wm > SNB_FBC_MAX_SRWM) {
		DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
			      fbc_wm, SNB_FBC_MAX_SRWM, level);

		/* fbc has it's own way to disable FBC WM */
		I915_WRITE(DISP_ARB_CTL,
			   I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
		return false;
1688 1689 1690 1691
	} else if (INTEL_INFO(dev)->gen >= 6) {
		/* enable FBC WM (except on ILK, where it must remain off) */
		I915_WRITE(DISP_ARB_CTL,
			   I915_READ(DISP_ARB_CTL) & ~DISP_FBC_WM_DIS);
1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767
	}

	if (display_wm > display->max_wm) {
		DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
			      display_wm, SNB_DISPLAY_MAX_SRWM, level);
		return false;
	}

	if (cursor_wm > cursor->max_wm) {
		DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
			      cursor_wm, SNB_CURSOR_MAX_SRWM, level);
		return false;
	}

	if (!(fbc_wm || display_wm || cursor_wm)) {
		DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
		return false;
	}

	return true;
}

/*
 * Compute watermark values of WM[1-3],
 */
static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane,
				  int latency_ns,
				  const struct intel_watermark_params *display,
				  const struct intel_watermark_params *cursor,
				  int *fbc_wm, int *display_wm, int *cursor_wm)
{
	struct drm_crtc *crtc;
	unsigned long line_time_us;
	int hdisplay, htotal, pixel_size, clock;
	int line_count, line_size;
	int small, large;
	int entries;

	if (!latency_ns) {
		*fbc_wm = *display_wm = *cursor_wm = 0;
		return false;
	}

	crtc = intel_get_crtc_for_plane(dev, plane);
	hdisplay = crtc->mode.hdisplay;
	htotal = crtc->mode.htotal;
	clock = crtc->mode.clock;
	pixel_size = crtc->fb->bits_per_pixel / 8;

	line_time_us = (htotal * 1000) / clock;
	line_count = (latency_ns / line_time_us + 1000) / 1000;
	line_size = hdisplay * pixel_size;

	/* Use the minimum of the small and large buffer method for primary */
	small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
	large = line_count * line_size;

	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
	*display_wm = entries + display->guard_size;

	/*
	 * Spec says:
	 * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
	 */
	*fbc_wm = DIV_ROUND_UP(*display_wm * 64, line_size) + 2;

	/* calculate the self-refresh watermark for display cursor */
	entries = line_count * pixel_size * 64;
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;

	return ironlake_check_srwm(dev, level,
				   *fbc_wm, *display_wm, *cursor_wm,
				   display, cursor);
}

1768
static void ironlake_update_wm(struct drm_device *dev)
1769 1770 1771 1772 1773 1774
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int fbc_wm, plane_wm, cursor_wm;
	unsigned int enabled;

	enabled = 0;
1775
	if (g4x_compute_wm0(dev, PIPE_A,
1776 1777 1778 1779 1780 1781 1782 1783 1784 1785
			    &ironlake_display_wm_info,
			    ILK_LP0_PLANE_LATENCY,
			    &ironlake_cursor_wm_info,
			    ILK_LP0_CURSOR_LATENCY,
			    &plane_wm, &cursor_wm)) {
		I915_WRITE(WM0_PIPEA_ILK,
			   (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
		DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
			      " plane %d, " "cursor: %d\n",
			      plane_wm, cursor_wm);
1786
		enabled |= 1 << PIPE_A;
1787 1788
	}

1789
	if (g4x_compute_wm0(dev, PIPE_B,
1790 1791 1792 1793 1794 1795 1796 1797 1798 1799
			    &ironlake_display_wm_info,
			    ILK_LP0_PLANE_LATENCY,
			    &ironlake_cursor_wm_info,
			    ILK_LP0_CURSOR_LATENCY,
			    &plane_wm, &cursor_wm)) {
		I915_WRITE(WM0_PIPEB_ILK,
			   (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
		DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
			      " plane %d, cursor: %d\n",
			      plane_wm, cursor_wm);
1800
		enabled |= 1 << PIPE_B;
1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850
	}

	/*
	 * Calculate and update the self-refresh watermark only when one
	 * display plane is used.
	 */
	I915_WRITE(WM3_LP_ILK, 0);
	I915_WRITE(WM2_LP_ILK, 0);
	I915_WRITE(WM1_LP_ILK, 0);

	if (!single_plane_enabled(enabled))
		return;
	enabled = ffs(enabled) - 1;

	/* WM1 */
	if (!ironlake_compute_srwm(dev, 1, enabled,
				   ILK_READ_WM1_LATENCY() * 500,
				   &ironlake_display_srwm_info,
				   &ironlake_cursor_srwm_info,
				   &fbc_wm, &plane_wm, &cursor_wm))
		return;

	I915_WRITE(WM1_LP_ILK,
		   WM1_LP_SR_EN |
		   (ILK_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
		   (fbc_wm << WM1_LP_FBC_SHIFT) |
		   (plane_wm << WM1_LP_SR_SHIFT) |
		   cursor_wm);

	/* WM2 */
	if (!ironlake_compute_srwm(dev, 2, enabled,
				   ILK_READ_WM2_LATENCY() * 500,
				   &ironlake_display_srwm_info,
				   &ironlake_cursor_srwm_info,
				   &fbc_wm, &plane_wm, &cursor_wm))
		return;

	I915_WRITE(WM2_LP_ILK,
		   WM2_LP_EN |
		   (ILK_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
		   (fbc_wm << WM1_LP_FBC_SHIFT) |
		   (plane_wm << WM1_LP_SR_SHIFT) |
		   cursor_wm);

	/*
	 * WM3 is unsupported on ILK, probably because we don't have latency
	 * data for that power state
	 */
}

1851
static void sandybridge_update_wm(struct drm_device *dev)
1852 1853 1854 1855 1856 1857 1858 1859
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int latency = SNB_READ_WM0_LATENCY() * 100;	/* In unit 0.1us */
	u32 val;
	int fbc_wm, plane_wm, cursor_wm;
	unsigned int enabled;

	enabled = 0;
1860
	if (g4x_compute_wm0(dev, PIPE_A,
1861 1862 1863 1864 1865 1866 1867 1868 1869 1870
			    &sandybridge_display_wm_info, latency,
			    &sandybridge_cursor_wm_info, latency,
			    &plane_wm, &cursor_wm)) {
		val = I915_READ(WM0_PIPEA_ILK);
		val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
		I915_WRITE(WM0_PIPEA_ILK, val |
			   ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
		DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
			      " plane %d, " "cursor: %d\n",
			      plane_wm, cursor_wm);
1871
		enabled |= 1 << PIPE_A;
1872 1873
	}

1874
	if (g4x_compute_wm0(dev, PIPE_B,
1875 1876 1877 1878 1879 1880 1881 1882 1883 1884
			    &sandybridge_display_wm_info, latency,
			    &sandybridge_cursor_wm_info, latency,
			    &plane_wm, &cursor_wm)) {
		val = I915_READ(WM0_PIPEB_ILK);
		val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
		I915_WRITE(WM0_PIPEB_ILK, val |
			   ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
		DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
			      " plane %d, cursor: %d\n",
			      plane_wm, cursor_wm);
1885
		enabled |= 1 << PIPE_B;
1886 1887
	}

1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962
	/*
	 * Calculate and update the self-refresh watermark only when one
	 * display plane is used.
	 *
	 * SNB support 3 levels of watermark.
	 *
	 * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
	 * and disabled in the descending order
	 *
	 */
	I915_WRITE(WM3_LP_ILK, 0);
	I915_WRITE(WM2_LP_ILK, 0);
	I915_WRITE(WM1_LP_ILK, 0);

	if (!single_plane_enabled(enabled) ||
	    dev_priv->sprite_scaling_enabled)
		return;
	enabled = ffs(enabled) - 1;

	/* WM1 */
	if (!ironlake_compute_srwm(dev, 1, enabled,
				   SNB_READ_WM1_LATENCY() * 500,
				   &sandybridge_display_srwm_info,
				   &sandybridge_cursor_srwm_info,
				   &fbc_wm, &plane_wm, &cursor_wm))
		return;

	I915_WRITE(WM1_LP_ILK,
		   WM1_LP_SR_EN |
		   (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
		   (fbc_wm << WM1_LP_FBC_SHIFT) |
		   (plane_wm << WM1_LP_SR_SHIFT) |
		   cursor_wm);

	/* WM2 */
	if (!ironlake_compute_srwm(dev, 2, enabled,
				   SNB_READ_WM2_LATENCY() * 500,
				   &sandybridge_display_srwm_info,
				   &sandybridge_cursor_srwm_info,
				   &fbc_wm, &plane_wm, &cursor_wm))
		return;

	I915_WRITE(WM2_LP_ILK,
		   WM2_LP_EN |
		   (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
		   (fbc_wm << WM1_LP_FBC_SHIFT) |
		   (plane_wm << WM1_LP_SR_SHIFT) |
		   cursor_wm);

	/* WM3 */
	if (!ironlake_compute_srwm(dev, 3, enabled,
				   SNB_READ_WM3_LATENCY() * 500,
				   &sandybridge_display_srwm_info,
				   &sandybridge_cursor_srwm_info,
				   &fbc_wm, &plane_wm, &cursor_wm))
		return;

	I915_WRITE(WM3_LP_ILK,
		   WM3_LP_EN |
		   (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
		   (fbc_wm << WM1_LP_FBC_SHIFT) |
		   (plane_wm << WM1_LP_SR_SHIFT) |
		   cursor_wm);
}

static void ivybridge_update_wm(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int latency = SNB_READ_WM0_LATENCY() * 100;	/* In unit 0.1us */
	u32 val;
	int fbc_wm, plane_wm, cursor_wm;
	int ignore_fbc_wm, ignore_plane_wm, ignore_cursor_wm;
	unsigned int enabled;

	enabled = 0;
1963
	if (g4x_compute_wm0(dev, PIPE_A,
1964 1965 1966 1967 1968 1969 1970 1971 1972 1973
			    &sandybridge_display_wm_info, latency,
			    &sandybridge_cursor_wm_info, latency,
			    &plane_wm, &cursor_wm)) {
		val = I915_READ(WM0_PIPEA_ILK);
		val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
		I915_WRITE(WM0_PIPEA_ILK, val |
			   ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
		DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
			      " plane %d, " "cursor: %d\n",
			      plane_wm, cursor_wm);
1974
		enabled |= 1 << PIPE_A;
1975 1976
	}

1977
	if (g4x_compute_wm0(dev, PIPE_B,
1978 1979 1980 1981 1982 1983 1984 1985 1986 1987
			    &sandybridge_display_wm_info, latency,
			    &sandybridge_cursor_wm_info, latency,
			    &plane_wm, &cursor_wm)) {
		val = I915_READ(WM0_PIPEB_ILK);
		val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
		I915_WRITE(WM0_PIPEB_ILK, val |
			   ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
		DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
			      " plane %d, cursor: %d\n",
			      plane_wm, cursor_wm);
1988
		enabled |= 1 << PIPE_B;
1989 1990
	}

1991
	if (g4x_compute_wm0(dev, PIPE_C,
1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
			    &sandybridge_display_wm_info, latency,
			    &sandybridge_cursor_wm_info, latency,
			    &plane_wm, &cursor_wm)) {
		val = I915_READ(WM0_PIPEC_IVB);
		val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
		I915_WRITE(WM0_PIPEC_IVB, val |
			   ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
		DRM_DEBUG_KMS("FIFO watermarks For pipe C -"
			      " plane %d, cursor: %d\n",
			      plane_wm, cursor_wm);
2002
		enabled |= 1 << PIPE_C;
2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053
	}

	/*
	 * Calculate and update the self-refresh watermark only when one
	 * display plane is used.
	 *
	 * SNB support 3 levels of watermark.
	 *
	 * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
	 * and disabled in the descending order
	 *
	 */
	I915_WRITE(WM3_LP_ILK, 0);
	I915_WRITE(WM2_LP_ILK, 0);
	I915_WRITE(WM1_LP_ILK, 0);

	if (!single_plane_enabled(enabled) ||
	    dev_priv->sprite_scaling_enabled)
		return;
	enabled = ffs(enabled) - 1;

	/* WM1 */
	if (!ironlake_compute_srwm(dev, 1, enabled,
				   SNB_READ_WM1_LATENCY() * 500,
				   &sandybridge_display_srwm_info,
				   &sandybridge_cursor_srwm_info,
				   &fbc_wm, &plane_wm, &cursor_wm))
		return;

	I915_WRITE(WM1_LP_ILK,
		   WM1_LP_SR_EN |
		   (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
		   (fbc_wm << WM1_LP_FBC_SHIFT) |
		   (plane_wm << WM1_LP_SR_SHIFT) |
		   cursor_wm);

	/* WM2 */
	if (!ironlake_compute_srwm(dev, 2, enabled,
				   SNB_READ_WM2_LATENCY() * 500,
				   &sandybridge_display_srwm_info,
				   &sandybridge_cursor_srwm_info,
				   &fbc_wm, &plane_wm, &cursor_wm))
		return;

	I915_WRITE(WM2_LP_ILK,
		   WM2_LP_EN |
		   (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
		   (fbc_wm << WM1_LP_FBC_SHIFT) |
		   (plane_wm << WM1_LP_SR_SHIFT) |
		   cursor_wm);

2054
	/* WM3, note we have to correct the cursor latency */
2055 2056 2057 2058
	if (!ironlake_compute_srwm(dev, 3, enabled,
				   SNB_READ_WM3_LATENCY() * 500,
				   &sandybridge_display_srwm_info,
				   &sandybridge_cursor_srwm_info,
2059 2060 2061 2062 2063 2064
				   &fbc_wm, &plane_wm, &ignore_cursor_wm) ||
	    !ironlake_compute_srwm(dev, 3, enabled,
				   2 * SNB_READ_WM3_LATENCY() * 500,
				   &sandybridge_display_srwm_info,
				   &sandybridge_cursor_srwm_info,
				   &ignore_fbc_wm, &ignore_plane_wm, &cursor_wm))
2065 2066 2067 2068 2069 2070 2071 2072 2073 2074
		return;

	I915_WRITE(WM3_LP_ILK,
		   WM3_LP_EN |
		   (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
		   (fbc_wm << WM1_LP_FBC_SHIFT) |
		   (plane_wm << WM1_LP_SR_SHIFT) |
		   cursor_wm);
}

2075 2076 2077 2078 2079 2080
static uint32_t hsw_wm_get_pixel_rate(struct drm_device *dev,
				      struct drm_crtc *crtc)
{
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	uint32_t pixel_rate, pfit_size;

2081
	pixel_rate = intel_crtc->config.adjusted_mode.clock;
2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128

	/* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
	 * adjust the pixel_rate here. */

	pfit_size = intel_crtc->config.pch_pfit.size;
	if (pfit_size) {
		uint64_t pipe_w, pipe_h, pfit_w, pfit_h;

		pipe_w = intel_crtc->config.requested_mode.hdisplay;
		pipe_h = intel_crtc->config.requested_mode.vdisplay;
		pfit_w = (pfit_size >> 16) & 0xFFFF;
		pfit_h = pfit_size & 0xFFFF;
		if (pipe_w < pfit_w)
			pipe_w = pfit_w;
		if (pipe_h < pfit_h)
			pipe_h = pfit_h;

		pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
				     pfit_w * pfit_h);
	}

	return pixel_rate;
}

static uint32_t hsw_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
			       uint32_t latency)
{
	uint64_t ret;

	ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
	ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;

	return ret;
}

static uint32_t hsw_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
			       uint32_t horiz_pixels, uint8_t bytes_per_pixel,
			       uint32_t latency)
{
	uint32_t ret;

	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
	ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
	ret = DIV_ROUND_UP(ret, 64) + 2;
	return ret;
}

2129 2130 2131 2132 2133 2134
static uint32_t hsw_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
			   uint8_t bytes_per_pixel)
{
	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
}

2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147
struct hsw_pipe_wm_parameters {
	bool active;
	bool sprite_enabled;
	uint8_t pri_bytes_per_pixel;
	uint8_t spr_bytes_per_pixel;
	uint8_t cur_bytes_per_pixel;
	uint32_t pri_horiz_pixels;
	uint32_t spr_horiz_pixels;
	uint32_t cur_horiz_pixels;
	uint32_t pipe_htotal;
	uint32_t pixel_rate;
};

2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163
struct hsw_wm_maximums {
	uint16_t pri;
	uint16_t spr;
	uint16_t cur;
	uint16_t fbc;
};

struct hsw_lp_wm_result {
	bool enable;
	bool fbc_enable;
	uint32_t pri_val;
	uint32_t spr_val;
	uint32_t cur_val;
	uint32_t fbc_val;
};

2164 2165 2166 2167 2168
struct hsw_wm_values {
	uint32_t wm_pipe[3];
	uint32_t wm_lp[3];
	uint32_t wm_lp_spr[3];
	uint32_t wm_linetime[3];
2169
	bool enable_fbc_wm;
2170 2171 2172 2173 2174 2175 2176
};

enum hsw_data_buf_partitioning {
	HSW_DATA_BUF_PART_1_2,
	HSW_DATA_BUF_PART_5_6,
};

2177 2178 2179 2180
/* For both WM_PIPE and WM_LP. */
static uint32_t hsw_compute_pri_wm(struct hsw_pipe_wm_parameters *params,
				   uint32_t mem_value,
				   bool is_lp)
2181
{
2182 2183
	uint32_t method1, method2;

2184 2185 2186 2187
	/* TODO: for now, assume the primary plane is always enabled. */
	if (!params->active)
		return 0;

2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201
	method1 = hsw_wm_method1(params->pixel_rate,
				 params->pri_bytes_per_pixel,
				 mem_value);

	if (!is_lp)
		return method1;

	method2 = hsw_wm_method2(params->pixel_rate,
				 params->pipe_htotal,
				 params->pri_horiz_pixels,
				 params->pri_bytes_per_pixel,
				 mem_value);

	return min(method1, method2);
2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237
}

/* For both WM_PIPE and WM_LP. */
static uint32_t hsw_compute_spr_wm(struct hsw_pipe_wm_parameters *params,
				   uint32_t mem_value)
{
	uint32_t method1, method2;

	if (!params->active || !params->sprite_enabled)
		return 0;

	method1 = hsw_wm_method1(params->pixel_rate,
				 params->spr_bytes_per_pixel,
				 mem_value);
	method2 = hsw_wm_method2(params->pixel_rate,
				 params->pipe_htotal,
				 params->spr_horiz_pixels,
				 params->spr_bytes_per_pixel,
				 mem_value);
	return min(method1, method2);
}

/* For both WM_PIPE and WM_LP. */
static uint32_t hsw_compute_cur_wm(struct hsw_pipe_wm_parameters *params,
				   uint32_t mem_value)
{
	if (!params->active)
		return 0;

	return hsw_wm_method2(params->pixel_rate,
			      params->pipe_htotal,
			      params->cur_horiz_pixels,
			      params->cur_bytes_per_pixel,
			      mem_value);
}

2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284
/* Only for WM_LP. */
static uint32_t hsw_compute_fbc_wm(struct hsw_pipe_wm_parameters *params,
				   uint32_t pri_val,
				   uint32_t mem_value)
{
	if (!params->active)
		return 0;

	return hsw_wm_fbc(pri_val,
			  params->pri_horiz_pixels,
			  params->pri_bytes_per_pixel);
}

static bool hsw_compute_lp_wm(uint32_t mem_value, struct hsw_wm_maximums *max,
			      struct hsw_pipe_wm_parameters *params,
			      struct hsw_lp_wm_result *result)
{
	enum pipe pipe;
	uint32_t pri_val[3], spr_val[3], cur_val[3], fbc_val[3];

	for (pipe = PIPE_A; pipe <= PIPE_C; pipe++) {
		struct hsw_pipe_wm_parameters *p = &params[pipe];

		pri_val[pipe] = hsw_compute_pri_wm(p, mem_value, true);
		spr_val[pipe] = hsw_compute_spr_wm(p, mem_value);
		cur_val[pipe] = hsw_compute_cur_wm(p, mem_value);
		fbc_val[pipe] = hsw_compute_fbc_wm(p, pri_val[pipe], mem_value);
	}

	result->pri_val = max3(pri_val[0], pri_val[1], pri_val[2]);
	result->spr_val = max3(spr_val[0], spr_val[1], spr_val[2]);
	result->cur_val = max3(cur_val[0], cur_val[1], cur_val[2]);
	result->fbc_val = max3(fbc_val[0], fbc_val[1], fbc_val[2]);

	if (result->fbc_val > max->fbc) {
		result->fbc_enable = false;
		result->fbc_val = 0;
	} else {
		result->fbc_enable = true;
	}

	result->enable = result->pri_val <= max->pri &&
			 result->spr_val <= max->spr &&
			 result->cur_val <= max->cur;
	return result->enable;
}

2285 2286 2287 2288 2289 2290
static uint32_t hsw_compute_wm_pipe(struct drm_i915_private *dev_priv,
				    uint32_t mem_value, enum pipe pipe,
				    struct hsw_pipe_wm_parameters *params)
{
	uint32_t pri_val, cur_val, spr_val;

2291
	pri_val = hsw_compute_pri_wm(params, mem_value, false);
2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311
	spr_val = hsw_compute_spr_wm(params, mem_value);
	cur_val = hsw_compute_cur_wm(params, mem_value);

	WARN(pri_val > 127,
	     "Primary WM error, mode not supported for pipe %c\n",
	     pipe_name(pipe));
	WARN(spr_val > 127,
	     "Sprite WM error, mode not supported for pipe %c\n",
	     pipe_name(pipe));
	WARN(cur_val > 63,
	     "Cursor WM error, mode not supported for pipe %c\n",
	     pipe_name(pipe));

	return (pri_val << WM0_PIPE_PLANE_SHIFT) |
	       (spr_val << WM0_PIPE_SPRITE_SHIFT) |
	       cur_val;
}

static uint32_t
hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
2312 2313
{
	struct drm_i915_private *dev_priv = dev->dev_private;
2314 2315
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
2316
	u32 linetime, ips_linetime;
2317

2318 2319
	if (!intel_crtc_active(crtc))
		return 0;
2320

2321 2322 2323
	/* The WM are computed with base on how long it takes to fill a single
	 * row at the given clock rate, multiplied by 8.
	 * */
2324 2325 2326
	linetime = DIV_ROUND_CLOSEST(mode->htotal * 1000 * 8, mode->clock);
	ips_linetime = DIV_ROUND_CLOSEST(mode->htotal * 1000 * 8,
					 intel_ddi_get_cdclk_freq(dev_priv));
2327

2328 2329
	return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
	       PIPE_WM_LINETIME_TIME(linetime);
2330 2331
}

2332 2333
static void hsw_compute_wm_parameters(struct drm_device *dev,
				      struct hsw_pipe_wm_parameters *params,
2334
				      uint32_t *wm,
2335 2336
				      struct hsw_wm_maximums *lp_max_1_2,
				      struct hsw_wm_maximums *lp_max_5_6)
2337 2338 2339
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc;
2340 2341
	struct drm_plane *plane;
	uint64_t sskpd = I915_READ64(MCH_SSKPD);
2342
	enum pipe pipe;
2343
	int pipes_active = 0, sprites_enabled = 0;
2344

2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364
	if ((sskpd >> 56) & 0xFF)
		wm[0] = (sskpd >> 56) & 0xFF;
	else
		wm[0] = sskpd & 0xF;
	wm[1] = ((sskpd >> 4) & 0xFF) * 5;
	wm[2] = ((sskpd >> 12) & 0xFF) * 5;
	wm[3] = ((sskpd >> 20) & 0x1FF) * 5;
	wm[4] = ((sskpd >> 32) & 0x1FF) * 5;

	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
		struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
		struct hsw_pipe_wm_parameters *p;

		pipe = intel_crtc->pipe;
		p = &params[pipe];

		p->active = intel_crtc_active(crtc);
		if (!p->active)
			continue;

2365 2366
		pipes_active++;

2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385
		p->pipe_htotal = intel_crtc->config.adjusted_mode.htotal;
		p->pixel_rate = hsw_wm_get_pixel_rate(dev, crtc);
		p->pri_bytes_per_pixel = crtc->fb->bits_per_pixel / 8;
		p->cur_bytes_per_pixel = 4;
		p->pri_horiz_pixels =
			intel_crtc->config.requested_mode.hdisplay;
		p->cur_horiz_pixels = 64;
	}

	list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
		struct intel_plane *intel_plane = to_intel_plane(plane);
		struct hsw_pipe_wm_parameters *p;

		pipe = intel_plane->pipe;
		p = &params[pipe];

		p->sprite_enabled = intel_plane->wm.enable;
		p->spr_bytes_per_pixel = intel_plane->wm.bytes_per_pixel;
		p->spr_horiz_pixels = intel_plane->wm.horiz_pixels;
2386 2387 2388 2389 2390 2391

		if (p->sprite_enabled)
			sprites_enabled++;
	}

	if (pipes_active > 1) {
2392 2393 2394
		lp_max_1_2->pri = lp_max_5_6->pri = sprites_enabled ? 128 : 256;
		lp_max_1_2->spr = lp_max_5_6->spr = 128;
		lp_max_1_2->cur = lp_max_5_6->cur = 64;
2395 2396
	} else {
		lp_max_1_2->pri = sprites_enabled ? 384 : 768;
2397
		lp_max_5_6->pri = sprites_enabled ? 128 : 768;
2398
		lp_max_1_2->spr = 384;
2399 2400
		lp_max_5_6->spr = 640;
		lp_max_1_2->cur = lp_max_5_6->cur = 255;
2401
	}
2402
	lp_max_1_2->fbc = lp_max_5_6->fbc = 15;
2403 2404 2405 2406 2407
}

static void hsw_compute_wm_results(struct drm_device *dev,
				   struct hsw_pipe_wm_parameters *params,
				   uint32_t *wm,
2408
				   struct hsw_wm_maximums *lp_maximums,
2409 2410 2411 2412
				   struct hsw_wm_values *results)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc;
2413
	struct hsw_lp_wm_result lp_results[4] = {};
2414
	enum pipe pipe;
2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435
	int level, max_level, wm_lp;

	for (level = 1; level <= 4; level++)
		if (!hsw_compute_lp_wm(wm[level], lp_maximums, params,
				       &lp_results[level - 1]))
			break;
	max_level = level - 1;

	/* The spec says it is preferred to disable FBC WMs instead of disabling
	 * a WM level. */
	results->enable_fbc_wm = true;
	for (level = 1; level <= max_level; level++) {
		if (!lp_results[level - 1].fbc_enable) {
			results->enable_fbc_wm = false;
			break;
		}
	}

	memset(results, 0, sizeof(*results));
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
		const struct hsw_lp_wm_result *r;
2436

2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447
		level = (max_level == 4 && wm_lp > 1) ? wm_lp + 1 : wm_lp;
		if (level > max_level)
			break;

		r = &lp_results[level - 1];
		results->wm_lp[wm_lp - 1] = HSW_WM_LP_VAL(level * 2,
							  r->fbc_val,
							  r->pri_val,
							  r->cur_val);
		results->wm_lp_spr[wm_lp - 1] = r->spr_val;
	}
2448 2449 2450 2451 2452

	for_each_pipe(pipe)
		results->wm_pipe[pipe] = hsw_compute_wm_pipe(dev_priv, wm[0],
							     pipe,
							     &params[pipe]);
2453 2454 2455

	for_each_pipe(pipe) {
		crtc = dev_priv->pipe_to_crtc_mapping[pipe];
2456 2457 2458 2459
		results->wm_linetime[pipe] = hsw_compute_linetime_wm(dev, crtc);
	}
}

2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485
/* Find the result with the highest level enabled. Check for enable_fbc_wm in
 * case both are at the same level. Prefer r1 in case they're the same. */
struct hsw_wm_values *hsw_find_best_result(struct hsw_wm_values *r1,
					   struct hsw_wm_values *r2)
{
	int i, val_r1 = 0, val_r2 = 0;

	for (i = 0; i < 3; i++) {
		if (r1->wm_lp[i] & WM3_LP_EN)
			val_r1 = r1->wm_lp[i] & WM1_LP_LATENCY_MASK;
		if (r2->wm_lp[i] & WM3_LP_EN)
			val_r2 = r2->wm_lp[i] & WM1_LP_LATENCY_MASK;
	}

	if (val_r1 == val_r2) {
		if (r2->enable_fbc_wm && !r1->enable_fbc_wm)
			return r2;
		else
			return r1;
	} else if (val_r1 > val_r2) {
		return r1;
	} else {
		return r2;
	}
}

2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496
/*
 * The spec says we shouldn't write when we don't need, because every write
 * causes WMs to be re-evaluated, expending some power.
 */
static void hsw_write_wm_values(struct drm_i915_private *dev_priv,
				struct hsw_wm_values *results,
				enum hsw_data_buf_partitioning partitioning)
{
	struct hsw_wm_values previous;
	uint32_t val;
	enum hsw_data_buf_partitioning prev_partitioning;
2497
	bool prev_enable_fbc_wm;
2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514

	previous.wm_pipe[0] = I915_READ(WM0_PIPEA_ILK);
	previous.wm_pipe[1] = I915_READ(WM0_PIPEB_ILK);
	previous.wm_pipe[2] = I915_READ(WM0_PIPEC_IVB);
	previous.wm_lp[0] = I915_READ(WM1_LP_ILK);
	previous.wm_lp[1] = I915_READ(WM2_LP_ILK);
	previous.wm_lp[2] = I915_READ(WM3_LP_ILK);
	previous.wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
	previous.wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
	previous.wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
	previous.wm_linetime[0] = I915_READ(PIPE_WM_LINETIME(PIPE_A));
	previous.wm_linetime[1] = I915_READ(PIPE_WM_LINETIME(PIPE_B));
	previous.wm_linetime[2] = I915_READ(PIPE_WM_LINETIME(PIPE_C));

	prev_partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
			    HSW_DATA_BUF_PART_5_6 : HSW_DATA_BUF_PART_1_2;

2515 2516
	prev_enable_fbc_wm = !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);

2517 2518 2519 2520 2521 2522 2523 2524
	if (memcmp(results->wm_pipe, previous.wm_pipe,
		   sizeof(results->wm_pipe)) == 0 &&
	    memcmp(results->wm_lp, previous.wm_lp,
		   sizeof(results->wm_lp)) == 0 &&
	    memcmp(results->wm_lp_spr, previous.wm_lp_spr,
		   sizeof(results->wm_lp_spr)) == 0 &&
	    memcmp(results->wm_linetime, previous.wm_linetime,
		   sizeof(results->wm_linetime)) == 0 &&
2525 2526
	    partitioning == prev_partitioning &&
	    results->enable_fbc_wm == prev_enable_fbc_wm)
2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556
		return;

	if (previous.wm_lp[2] != 0)
		I915_WRITE(WM3_LP_ILK, 0);
	if (previous.wm_lp[1] != 0)
		I915_WRITE(WM2_LP_ILK, 0);
	if (previous.wm_lp[0] != 0)
		I915_WRITE(WM1_LP_ILK, 0);

	if (previous.wm_pipe[0] != results->wm_pipe[0])
		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
	if (previous.wm_pipe[1] != results->wm_pipe[1])
		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
	if (previous.wm_pipe[2] != results->wm_pipe[2])
		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);

	if (previous.wm_linetime[0] != results->wm_linetime[0])
		I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
	if (previous.wm_linetime[1] != results->wm_linetime[1])
		I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
	if (previous.wm_linetime[2] != results->wm_linetime[2])
		I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);

	if (prev_partitioning != partitioning) {
		val = I915_READ(WM_MISC);
		if (partitioning == HSW_DATA_BUF_PART_1_2)
			val &= ~WM_MISC_DATA_PARTITION_5_6;
		else
			val |= WM_MISC_DATA_PARTITION_5_6;
		I915_WRITE(WM_MISC, val);
2557 2558
	}

2559 2560 2561 2562 2563 2564 2565 2566 2567
	if (prev_enable_fbc_wm != results->enable_fbc_wm) {
		val = I915_READ(DISP_ARB_CTL);
		if (results->enable_fbc_wm)
			val &= ~DISP_FBC_WM_DIS;
		else
			val |= DISP_FBC_WM_DIS;
		I915_WRITE(DISP_ARB_CTL, val);
	}

2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585
	if (previous.wm_lp_spr[0] != results->wm_lp_spr[0])
		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
	if (previous.wm_lp_spr[1] != results->wm_lp_spr[1])
		I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
	if (previous.wm_lp_spr[2] != results->wm_lp_spr[2])
		I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);

	if (results->wm_lp[0] != 0)
		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
	if (results->wm_lp[1] != 0)
		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
	if (results->wm_lp[2] != 0)
		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
}

static void haswell_update_wm(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
2586
	struct hsw_wm_maximums lp_max_1_2, lp_max_5_6;
2587
	struct hsw_pipe_wm_parameters params[3];
2588
	struct hsw_wm_values results_1_2, results_5_6, *best_results;
2589
	uint32_t wm[5];
2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604
	enum hsw_data_buf_partitioning partitioning;

	hsw_compute_wm_parameters(dev, params, wm, &lp_max_1_2, &lp_max_5_6);

	hsw_compute_wm_results(dev, params, wm, &lp_max_1_2, &results_1_2);
	if (lp_max_1_2.pri != lp_max_5_6.pri) {
		hsw_compute_wm_results(dev, params, wm, &lp_max_5_6,
				       &results_5_6);
		best_results = hsw_find_best_result(&results_1_2, &results_5_6);
	} else {
		best_results = &results_1_2;
	}

	partitioning = (best_results == &results_1_2) ?
		       HSW_DATA_BUF_PART_1_2 : HSW_DATA_BUF_PART_5_6;
2605

2606
	hsw_write_wm_values(dev_priv, best_results, partitioning);
2607 2608
}

2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628
static void haswell_update_sprite_wm(struct drm_device *dev, int pipe,
				     uint32_t sprite_width, int pixel_size,
				     bool enable)
{
	struct drm_plane *plane;

	list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
		struct intel_plane *intel_plane = to_intel_plane(plane);

		if (intel_plane->pipe == pipe) {
			intel_plane->wm.enable = enable;
			intel_plane->wm.horiz_pixels = sprite_width + 1;
			intel_plane->wm.bytes_per_pixel = pixel_size;
			break;
		}
	}

	haswell_update_wm(dev);
}

2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639
static bool
sandybridge_compute_sprite_wm(struct drm_device *dev, int plane,
			      uint32_t sprite_width, int pixel_size,
			      const struct intel_watermark_params *display,
			      int display_latency_ns, int *sprite_wm)
{
	struct drm_crtc *crtc;
	int clock;
	int entries, tlb_miss;

	crtc = intel_get_crtc_for_plane(dev, plane);
2640
	if (!intel_crtc_active(crtc)) {
2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704
		*sprite_wm = display->guard_size;
		return false;
	}

	clock = crtc->mode.clock;

	/* Use the small buffer method to calculate the sprite watermark */
	entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
	tlb_miss = display->fifo_size*display->cacheline_size -
		sprite_width * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, display->cacheline_size);
	*sprite_wm = entries + display->guard_size;
	if (*sprite_wm > (int)display->max_wm)
		*sprite_wm = display->max_wm;

	return true;
}

static bool
sandybridge_compute_sprite_srwm(struct drm_device *dev, int plane,
				uint32_t sprite_width, int pixel_size,
				const struct intel_watermark_params *display,
				int latency_ns, int *sprite_wm)
{
	struct drm_crtc *crtc;
	unsigned long line_time_us;
	int clock;
	int line_count, line_size;
	int small, large;
	int entries;

	if (!latency_ns) {
		*sprite_wm = 0;
		return false;
	}

	crtc = intel_get_crtc_for_plane(dev, plane);
	clock = crtc->mode.clock;
	if (!clock) {
		*sprite_wm = 0;
		return false;
	}

	line_time_us = (sprite_width * 1000) / clock;
	if (!line_time_us) {
		*sprite_wm = 0;
		return false;
	}

	line_count = (latency_ns / line_time_us + 1000) / 1000;
	line_size = sprite_width * pixel_size;

	/* Use the minimum of the small and large buffer method for primary */
	small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
	large = line_count * line_size;

	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
	*sprite_wm = entries + display->guard_size;

	return *sprite_wm > 0x3ff ? false : true;
}

2705
static void sandybridge_update_sprite_wm(struct drm_device *dev, int pipe,
2706 2707
					 uint32_t sprite_width, int pixel_size,
					 bool enable)
2708 2709 2710 2711 2712 2713 2714
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int latency = SNB_READ_WM0_LATENCY() * 100;	/* In unit 0.1us */
	u32 val;
	int sprite_wm, reg;
	int ret;

2715 2716 2717
	if (!enable)
		return;

2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735
	switch (pipe) {
	case 0:
		reg = WM0_PIPEA_ILK;
		break;
	case 1:
		reg = WM0_PIPEB_ILK;
		break;
	case 2:
		reg = WM0_PIPEC_IVB;
		break;
	default:
		return; /* bad pipe */
	}

	ret = sandybridge_compute_sprite_wm(dev, pipe, sprite_width, pixel_size,
					    &sandybridge_display_wm_info,
					    latency, &sprite_wm);
	if (!ret) {
2736 2737
		DRM_DEBUG_KMS("failed to compute sprite wm for pipe %c\n",
			      pipe_name(pipe));
2738 2739 2740 2741 2742 2743
		return;
	}

	val = I915_READ(reg);
	val &= ~WM0_PIPE_SPRITE_MASK;
	I915_WRITE(reg, val | (sprite_wm << WM0_PIPE_SPRITE_SHIFT));
2744
	DRM_DEBUG_KMS("sprite watermarks For pipe %c - %d\n", pipe_name(pipe), sprite_wm);
2745 2746 2747 2748 2749 2750 2751 2752


	ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
					      pixel_size,
					      &sandybridge_display_srwm_info,
					      SNB_READ_WM1_LATENCY() * 500,
					      &sprite_wm);
	if (!ret) {
2753 2754
		DRM_DEBUG_KMS("failed to compute sprite lp1 wm on pipe %c\n",
			      pipe_name(pipe));
2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768
		return;
	}
	I915_WRITE(WM1S_LP_ILK, sprite_wm);

	/* Only IVB has two more LP watermarks for sprite */
	if (!IS_IVYBRIDGE(dev))
		return;

	ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
					      pixel_size,
					      &sandybridge_display_srwm_info,
					      SNB_READ_WM2_LATENCY() * 500,
					      &sprite_wm);
	if (!ret) {
2769 2770
		DRM_DEBUG_KMS("failed to compute sprite lp2 wm on pipe %c\n",
			      pipe_name(pipe));
2771 2772 2773 2774 2775 2776 2777 2778 2779 2780
		return;
	}
	I915_WRITE(WM2S_LP_IVB, sprite_wm);

	ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
					      pixel_size,
					      &sandybridge_display_srwm_info,
					      SNB_READ_WM3_LATENCY() * 500,
					      &sprite_wm);
	if (!ret) {
2781 2782
		DRM_DEBUG_KMS("failed to compute sprite lp3 wm on pipe %c\n",
			      pipe_name(pipe));
2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828
		return;
	}
	I915_WRITE(WM3S_LP_IVB, sprite_wm);
}

/**
 * intel_update_watermarks - update FIFO watermark values based on current modes
 *
 * Calculate watermark values for the various WM regs based on current mode
 * and plane configuration.
 *
 * There are several cases to deal with here:
 *   - normal (i.e. non-self-refresh)
 *   - self-refresh (SR) mode
 *   - lines are large relative to FIFO size (buffer can hold up to 2)
 *   - lines are small relative to FIFO size (buffer can hold more than 2
 *     lines), so need to account for TLB latency
 *
 *   The normal calculation is:
 *     watermark = dotclock * bytes per pixel * latency
 *   where latency is platform & configuration dependent (we assume pessimal
 *   values here).
 *
 *   The SR calculation is:
 *     watermark = (trunc(latency/line time)+1) * surface width *
 *       bytes per pixel
 *   where
 *     line time = htotal / dotclock
 *     surface width = hdisplay for normal plane and 64 for cursor
 *   and latency is assumed to be high, as above.
 *
 * The final value programmed to the register should always be rounded up,
 * and include an extra 2 entries to account for clock crossings.
 *
 * We don't use the sprite, so we can ignore that.  And on Crestline we have
 * to set the non-SR watermarks to 8.
 */
void intel_update_watermarks(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (dev_priv->display.update_wm)
		dev_priv->display.update_wm(dev);
}

void intel_update_sprite_watermarks(struct drm_device *dev, int pipe,
2829 2830
				    uint32_t sprite_width, int pixel_size,
				    bool enable)
2831 2832 2833 2834 2835
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (dev_priv->display.update_sprite_wm)
		dev_priv->display.update_sprite_wm(dev, pipe, sprite_width,
2836
						   pixel_size, enable);
2837 2838
}

2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852
static struct drm_i915_gem_object *
intel_alloc_context_page(struct drm_device *dev)
{
	struct drm_i915_gem_object *ctx;
	int ret;

	WARN_ON(!mutex_is_locked(&dev->struct_mutex));

	ctx = i915_gem_alloc_object(dev, 4096);
	if (!ctx) {
		DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
		return NULL;
	}

2853
	ret = i915_gem_object_pin(ctx, 4096, true, false);
2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873
	if (ret) {
		DRM_ERROR("failed to pin power context: %d\n", ret);
		goto err_unref;
	}

	ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
	if (ret) {
		DRM_ERROR("failed to set-domain on power context: %d\n", ret);
		goto err_unpin;
	}

	return ctx;

err_unpin:
	i915_gem_object_unpin(ctx);
err_unref:
	drm_gem_object_unreference(&ctx->base);
	return NULL;
}

2874 2875 2876 2877 2878 2879 2880 2881 2882
/**
 * Lock protecting IPS related data structures
 */
DEFINE_SPINLOCK(mchdev_lock);

/* Global for IPS driver to get at the current i915 device. Protected by
 * mchdev_lock. */
static struct drm_i915_private *i915_mch_dev;

2883 2884 2885 2886 2887
bool ironlake_set_drps(struct drm_device *dev, u8 val)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u16 rgvswctl;

2888 2889
	assert_spin_locked(&mchdev_lock);

2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906
	rgvswctl = I915_READ16(MEMSWCTL);
	if (rgvswctl & MEMCTL_CMD_STS) {
		DRM_DEBUG("gpu busy, RCS change rejected\n");
		return false; /* still busy with another command */
	}

	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
	I915_WRITE16(MEMSWCTL, rgvswctl);
	POSTING_READ16(MEMSWCTL);

	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE16(MEMSWCTL, rgvswctl);

	return true;
}

2907
static void ironlake_enable_drps(struct drm_device *dev)
2908 2909 2910 2911 2912
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 rgvmodectl = I915_READ(MEMMODECTL);
	u8 fmax, fmin, fstart, vstart;

2913 2914
	spin_lock_irq(&mchdev_lock);

2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937
	/* Enable temp reporting */
	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);

	/* 100ms RC evaluation intervals */
	I915_WRITE(RCUPEI, 100000);
	I915_WRITE(RCDNEI, 100000);

	/* Set max/min thresholds to 90ms and 80ms respectively */
	I915_WRITE(RCBMAXAVG, 90000);
	I915_WRITE(RCBMINAVG, 80000);

	I915_WRITE(MEMIHYST, 1);

	/* Set up min, max, and cur for interrupt handling */
	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
		MEMMODE_FSTART_SHIFT;

	vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
		PXVFREQ_PX_SHIFT;

2938 2939
	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
	dev_priv->ips.fstart = fstart;
2940

2941 2942 2943
	dev_priv->ips.max_delay = fstart;
	dev_priv->ips.min_delay = fmin;
	dev_priv->ips.cur_delay = fstart;
2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959

	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
			 fmax, fmin, fstart);

	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);

	/*
	 * Interrupts will be enabled in ironlake_irq_postinstall
	 */

	I915_WRITE(VIDSTART, vstart);
	POSTING_READ(VIDSTART);

	rgvmodectl |= MEMMODE_SWMODE_EN;
	I915_WRITE(MEMMODECTL, rgvmodectl);

2960
	if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
2961
		DRM_ERROR("stuck trying to change perf mode\n");
2962
	mdelay(1);
2963 2964 2965

	ironlake_set_drps(dev, fstart);

2966
	dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
2967
		I915_READ(0x112e0);
2968 2969 2970
	dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
	dev_priv->ips.last_count2 = I915_READ(0x112f4);
	getrawmonotonic(&dev_priv->ips.last_time2);
2971 2972

	spin_unlock_irq(&mchdev_lock);
2973 2974
}

2975
static void ironlake_disable_drps(struct drm_device *dev)
2976 2977
{
	struct drm_i915_private *dev_priv = dev->dev_private;
2978 2979 2980 2981 2982
	u16 rgvswctl;

	spin_lock_irq(&mchdev_lock);

	rgvswctl = I915_READ16(MEMSWCTL);
2983 2984 2985 2986 2987 2988 2989 2990 2991

	/* Ack interrupts, disable EFC interrupt */
	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
	I915_WRITE(DEIIR, DE_PCU_EVENT);
	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);

	/* Go back to the starting frequency */
2992
	ironlake_set_drps(dev, dev_priv->ips.fstart);
2993
	mdelay(1);
2994 2995
	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE(MEMSWCTL, rgvswctl);
2996
	mdelay(1);
2997

2998
	spin_unlock_irq(&mchdev_lock);
2999 3000
}

3001 3002 3003 3004 3005
/* There's a funny hw issue where the hw returns all 0 when reading from
 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
 * ourselves, instead of doing a rmw cycle (which might result in us clearing
 * all limits and the gpu stuck at whatever frequency it is at atm).
 */
3006
static u32 gen6_rps_limits(struct drm_i915_private *dev_priv, u8 *val)
3007
{
3008
	u32 limits;
3009

3010
	limits = 0;
3011 3012 3013 3014

	if (*val >= dev_priv->rps.max_delay)
		*val = dev_priv->rps.max_delay;
	limits |= dev_priv->rps.max_delay << 24;
3015 3016 3017 3018 3019 3020 3021

	/* Only set the down limit when we've reached the lowest level to avoid
	 * getting more interrupts, otherwise leave this clear. This prevents a
	 * race in the hw when coming out of rc6: There's a tiny window where
	 * the hw runs at the minimal clock before selecting the desired
	 * frequency, if the down threshold expires in that window we will not
	 * receive a down interrupt. */
3022 3023 3024
	if (*val <= dev_priv->rps.min_delay) {
		*val = dev_priv->rps.min_delay;
		limits |= dev_priv->rps.min_delay << 16;
3025 3026 3027 3028 3029 3030 3031 3032
	}

	return limits;
}

void gen6_set_rps(struct drm_device *dev, u8 val)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
3033
	u32 limits = gen6_rps_limits(dev_priv, &val);
3034

3035
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3036 3037
	WARN_ON(val > dev_priv->rps.max_delay);
	WARN_ON(val < dev_priv->rps.min_delay);
3038

3039
	if (val == dev_priv->rps.cur_delay)
3040 3041
		return;

3042 3043 3044 3045 3046 3047 3048 3049
	if (IS_HASWELL(dev))
		I915_WRITE(GEN6_RPNSWREQ,
			   HSW_FREQUENCY(val));
	else
		I915_WRITE(GEN6_RPNSWREQ,
			   GEN6_FREQUENCY(val) |
			   GEN6_OFFSET(0) |
			   GEN6_AGGRESSIVE_TURBO);
3050 3051 3052 3053 3054 3055

	/* Make sure we continue to get interrupts
	 * until we hit the minimum or maximum frequencies.
	 */
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, limits);

3056 3057
	POSTING_READ(GEN6_RPNSWREQ);

3058
	dev_priv->rps.cur_delay = val;
3059 3060

	trace_intel_gpu_freq_change(val * 50);
3061 3062
}

3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081
void valleyview_set_rps(struct drm_device *dev, u8 val)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	unsigned long timeout = jiffies + msecs_to_jiffies(10);
	u32 limits = gen6_rps_limits(dev_priv, &val);
	u32 pval;

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
	WARN_ON(val > dev_priv->rps.max_delay);
	WARN_ON(val < dev_priv->rps.min_delay);

	DRM_DEBUG_DRIVER("gpu freq request from %d to %d\n",
			 vlv_gpu_freq(dev_priv->mem_freq,
				      dev_priv->rps.cur_delay),
			 vlv_gpu_freq(dev_priv->mem_freq, val));

	if (val == dev_priv->rps.cur_delay)
		return;

3082
	vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
3083 3084

	do {
3085
		pval = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
3086 3087 3088 3089 3090 3091 3092
		if (time_after(jiffies, timeout)) {
			DRM_DEBUG_DRIVER("timed out waiting for Punit\n");
			break;
		}
		udelay(10);
	} while (pval & 1);

3093
	pval = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108
	if ((pval >> 8) != val)
		DRM_DEBUG_DRIVER("punit overrode freq: %d requested, but got %d\n",
			  val, pval >> 8);

	/* Make sure we continue to get interrupts
	 * until we hit the minimum or maximum frequencies.
	 */
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, limits);

	dev_priv->rps.cur_delay = pval >> 8;

	trace_intel_gpu_freq_change(vlv_gpu_freq(dev_priv->mem_freq, val));
}


3109
static void gen6_disable_rps(struct drm_device *dev)
3110 3111 3112
{
	struct drm_i915_private *dev_priv = dev->dev_private;

3113
	I915_WRITE(GEN6_RC_CONTROL, 0);
3114 3115
	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
	I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
3116
	I915_WRITE(GEN6_PMIER, I915_READ(GEN6_PMIER) & ~GEN6_PM_RPS_EVENTS);
3117 3118 3119 3120 3121
	/* Complete PM interrupt masking here doesn't race with the rps work
	 * item again unmasking PM interrupts because that is using a different
	 * register (PMIMR) to mask PM interrupts. The only risk is in leaving
	 * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */

3122 3123 3124
	spin_lock_irq(&dev_priv->rps.lock);
	dev_priv->rps.pm_iir = 0;
	spin_unlock_irq(&dev_priv->rps.lock);
3125

3126
	I915_WRITE(GEN6_PMIIR, GEN6_PM_RPS_EVENTS);
3127 3128
}

3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145
static void valleyview_disable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(GEN6_RC_CONTROL, 0);
	I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
	I915_WRITE(GEN6_PMIER, 0);
	/* Complete PM interrupt masking here doesn't race with the rps work
	 * item again unmasking PM interrupts because that is using a different
	 * register (PMIMR) to mask PM interrupts. The only risk is in leaving
	 * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */

	spin_lock_irq(&dev_priv->rps.lock);
	dev_priv->rps.pm_iir = 0;
	spin_unlock_irq(&dev_priv->rps.lock);

	I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
3146 3147 3148 3149 3150

	if (dev_priv->vlv_pctx) {
		drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
		dev_priv->vlv_pctx = NULL;
	}
3151 3152
}

3153 3154
int intel_enable_rc6(const struct drm_device *dev)
{
3155
	/* Respect the kernel parameter if it is set */
3156 3157 3158
	if (i915_enable_rc6 >= 0)
		return i915_enable_rc6;

3159 3160 3161
	/* Disable RC6 on Ironlake */
	if (INTEL_INFO(dev)->gen == 5)
		return 0;
3162

3163 3164
	if (IS_HASWELL(dev)) {
		DRM_DEBUG_DRIVER("Haswell: only RC6 available\n");
3165
		return INTEL_RC6_ENABLE;
3166
	}
3167

3168
	/* snb/ivb have more than one rc6 state. */
3169 3170 3171 3172
	if (INTEL_INFO(dev)->gen == 6) {
		DRM_DEBUG_DRIVER("Sandybridge: deep RC6 disabled\n");
		return INTEL_RC6_ENABLE;
	}
3173

3174 3175 3176 3177
	DRM_DEBUG_DRIVER("RC6 and deep RC6 enabled\n");
	return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
}

3178
static void gen6_enable_rps(struct drm_device *dev)
3179
{
3180
	struct drm_i915_private *dev_priv = dev->dev_private;
3181
	struct intel_ring_buffer *ring;
3182 3183
	u32 rp_state_cap;
	u32 gt_perf_status;
3184
	u32 rc6vids, pcu_mbox, rc6_mask = 0;
3185 3186
	u32 gtfifodbg;
	int rc6_mode;
B
Ben Widawsky 已提交
3187
	int i, ret;
3188

3189
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3190

3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206
	/* Here begins a magic sequence of register writes to enable
	 * auto-downclocking.
	 *
	 * Perhaps there might be some value in exposing these to
	 * userspace...
	 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* Clear the DBG now so we don't confuse earlier errors */
	if ((gtfifodbg = I915_READ(GTFIFODBG))) {
		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

	gen6_gt_force_wake_get(dev_priv);

3207 3208 3209
	rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
	gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);

3210 3211
	/* In units of 50MHz */
	dev_priv->rps.hw_max = dev_priv->rps.max_delay = rp_state_cap & 0xff;
3212 3213
	dev_priv->rps.min_delay = (rp_state_cap & 0xff0000) >> 16;
	dev_priv->rps.cur_delay = 0;
3214

3215 3216 3217 3218 3219 3220 3221 3222 3223
	/* disable the counters and set deterministic thresholds */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

3224 3225
	for_each_ring(ring, dev_priv, i)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
3226 3227 3228 3229

	I915_WRITE(GEN6_RC_SLEEP, 0);
	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
	I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
3230
	I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
3231 3232
	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */

3233
	/* Check if we are enabling RC6 */
3234 3235 3236 3237
	rc6_mode = intel_enable_rc6(dev_priv->dev);
	if (rc6_mode & INTEL_RC6_ENABLE)
		rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;

3238 3239 3240 3241
	/* We don't use those on Haswell */
	if (!IS_HASWELL(dev)) {
		if (rc6_mode & INTEL_RC6p_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
3242

3243 3244 3245
		if (rc6_mode & INTEL_RC6pp_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
	}
3246 3247

	DRM_INFO("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
3248 3249 3250
			(rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
			(rc6_mask & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
			(rc6_mask & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
3251 3252 3253 3254 3255 3256

	I915_WRITE(GEN6_RC_CONTROL,
		   rc6_mask |
		   GEN6_RC_CTL_EI_MODE(1) |
		   GEN6_RC_CTL_HW_ENABLE);

3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269
	if (IS_HASWELL(dev)) {
		I915_WRITE(GEN6_RPNSWREQ,
			   HSW_FREQUENCY(10));
		I915_WRITE(GEN6_RC_VIDEO_FREQ,
			   HSW_FREQUENCY(12));
	} else {
		I915_WRITE(GEN6_RPNSWREQ,
			   GEN6_FREQUENCY(10) |
			   GEN6_OFFSET(0) |
			   GEN6_AGGRESSIVE_TURBO);
		I915_WRITE(GEN6_RC_VIDEO_FREQ,
			   GEN6_FREQUENCY(12));
	}
3270 3271 3272

	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
3273 3274
		   dev_priv->rps.max_delay << 24 |
		   dev_priv->rps.min_delay << 16);
3275

3276 3277 3278 3279
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);
3280

3281 3282 3283
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
3284
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
3285 3286 3287
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
3288
		   (IS_HASWELL(dev) ? GEN7_RP_DOWN_IDLE_AVG : GEN6_RP_DOWN_IDLE_CONT));
3289

B
Ben Widawsky 已提交
3290
	ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
3291
	if (!ret) {
B
Ben Widawsky 已提交
3292 3293
		pcu_mbox = 0;
		ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
3294
		if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
3295
			DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
3296 3297
					 (dev_priv->rps.max_delay & 0xff) * 50,
					 (pcu_mbox & 0xff) * 50);
3298
			dev_priv->rps.hw_max = pcu_mbox & 0xff;
B
Ben Widawsky 已提交
3299 3300 3301
		}
	} else {
		DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
3302 3303
	}

3304
	gen6_set_rps(dev_priv->dev, (gt_perf_status & 0xff00) >> 8);
3305 3306

	/* requires MSI enabled */
3307
	I915_WRITE(GEN6_PMIER, I915_READ(GEN6_PMIER) | GEN6_PM_RPS_EVENTS);
3308
	spin_lock_irq(&dev_priv->rps.lock);
3309 3310 3311
	/* FIXME: Our interrupt enabling sequence is bonghits.
	 * dev_priv->rps.pm_iir really should be 0 here. */
	dev_priv->rps.pm_iir = 0;
3312 3313
	I915_WRITE(GEN6_PMIMR, I915_READ(GEN6_PMIMR) & ~GEN6_PM_RPS_EVENTS);
	I915_WRITE(GEN6_PMIIR, GEN6_PM_RPS_EVENTS);
3314
	spin_unlock_irq(&dev_priv->rps.lock);
3315
	/* unmask all PM interrupts */
3316 3317
	I915_WRITE(GEN6_PMINTRMSK, 0);

3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331
	rc6vids = 0;
	ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
	if (IS_GEN6(dev) && ret) {
		DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
	} else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
		DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
			  GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
		rc6vids &= 0xffff00;
		rc6vids |= GEN6_ENCODE_RC6_VID(450);
		ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
		if (ret)
			DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
	}

3332 3333 3334
	gen6_gt_force_wake_put(dev_priv);
}

3335
static void gen6_update_ring_freq(struct drm_device *dev)
3336
{
3337
	struct drm_i915_private *dev_priv = dev->dev_private;
3338
	int min_freq = 15;
3339 3340
	unsigned int gpu_freq;
	unsigned int max_ia_freq, min_ring_freq;
3341 3342
	int scaling_factor = 180;

3343
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3344

3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355
	max_ia_freq = cpufreq_quick_get_max(0);
	/*
	 * Default to measured freq if none found, PCU will ensure we don't go
	 * over
	 */
	if (!max_ia_freq)
		max_ia_freq = tsc_khz;

	/* Convert from kHz to MHz */
	max_ia_freq /= 1000;

3356 3357 3358 3359
	min_ring_freq = I915_READ(MCHBAR_MIRROR_BASE_SNB + DCLK);
	/* convert DDR frequency from units of 133.3MHz to bandwidth */
	min_ring_freq = (2 * 4 * min_ring_freq + 2) / 3;

3360 3361 3362 3363 3364
	/*
	 * For each potential GPU frequency, load a ring frequency we'd like
	 * to use for memory access.  We do this by specifying the IA frequency
	 * the PCU should use as a reference to determine the ring frequency.
	 */
3365
	for (gpu_freq = dev_priv->rps.max_delay; gpu_freq >= dev_priv->rps.min_delay;
3366
	     gpu_freq--) {
3367
		int diff = dev_priv->rps.max_delay - gpu_freq;
3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387
		unsigned int ia_freq = 0, ring_freq = 0;

		if (IS_HASWELL(dev)) {
			ring_freq = (gpu_freq * 5 + 3) / 4;
			ring_freq = max(min_ring_freq, ring_freq);
			/* leave ia_freq as the default, chosen by cpufreq */
		} else {
			/* On older processors, there is no separate ring
			 * clock domain, so in order to boost the bandwidth
			 * of the ring, we need to upclock the CPU (ia_freq).
			 *
			 * For GPU frequencies less than 750MHz,
			 * just use the lowest ring freq.
			 */
			if (gpu_freq < min_freq)
				ia_freq = 800;
			else
				ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
			ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
		}
3388

B
Ben Widawsky 已提交
3389 3390
		sandybridge_pcode_write(dev_priv,
					GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
3391 3392 3393
					ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
					ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
					gpu_freq);
3394 3395 3396
	}
}

3397 3398 3399 3400
int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp0;

3401
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413

	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
	/* Clamp to max */
	rp0 = min_t(u32, rp0, 0xea);

	return rp0;
}

static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

3414
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
3415
	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
3416
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
3417 3418 3419 3420 3421 3422 3423
	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;

	return rpe;
}

int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
{
3424
	return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
3425 3426
}

3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443
static void vlv_rps_timer_work(struct work_struct *work)
{
	drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
						    rps.vlv_work.work);

	/*
	 * Timer fired, we must be idle.  Drop to min voltage state.
	 * Note: we use RPe here since it should match the
	 * Vmin we were shooting for.  That should give us better
	 * perf when we come back out of RC6 than if we used the
	 * min freq available.
	 */
	mutex_lock(&dev_priv->rps.hw_lock);
	valleyview_set_rps(dev_priv->dev, dev_priv->rps.rpe_delay);
	mutex_unlock(&dev_priv->rps.hw_lock);
}

3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459
static void valleyview_setup_pctx(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *pctx;
	unsigned long pctx_paddr;
	u32 pcbr;
	int pctx_size = 24*1024;

	pcbr = I915_READ(VLV_PCBR);
	if (pcbr) {
		/* BIOS set it up already, grab the pre-alloc'd space */
		int pcbr_offset;

		pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
		pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
								      pcbr_offset,
3460
								      -1,
3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485
								      pctx_size);
		goto out;
	}

	/*
	 * From the Gunit register HAS:
	 * The Gfx driver is expected to program this register and ensure
	 * proper allocation within Gfx stolen memory.  For example, this
	 * register should be programmed such than the PCBR range does not
	 * overlap with other ranges, such as the frame buffer, protected
	 * memory, or any other relevant ranges.
	 */
	pctx = i915_gem_object_create_stolen(dev, pctx_size);
	if (!pctx) {
		DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
		return;
	}

	pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
	I915_WRITE(VLV_PCBR, pctx_paddr);

out:
	dev_priv->vlv_pctx = pctx;
}

3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499
static void valleyview_enable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_ring_buffer *ring;
	u32 gtfifodbg, val, rpe;
	int i;

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

	if ((gtfifodbg = I915_READ(GTFIFODBG))) {
		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

3500 3501
	valleyview_setup_pctx(dev);

3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532
	gen6_gt_force_wake_get(dev_priv);

	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_CONT);

	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

	for_each_ring(ring, dev_priv, i)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);

	I915_WRITE(GEN6_RC6_THRESHOLD, 0xc350);

	/* allows RC6 residency counter to work */
	I915_WRITE(0x138104, _MASKED_BIT_ENABLE(0x3));
	I915_WRITE(GEN6_RC_CONTROL,
		   GEN7_RC_CTL_TO_MODE);

3533
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545
	switch ((val >> 6) & 3) {
	case 0:
	case 1:
		dev_priv->mem_freq = 800;
		break;
	case 2:
		dev_priv->mem_freq = 1066;
		break;
	case 3:
		dev_priv->mem_freq = 1333;
		break;
	}
3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562
	DRM_DEBUG_DRIVER("DDR speed: %d MHz", dev_priv->mem_freq);

	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & 0x10 ? "yes" : "no");
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

	DRM_DEBUG_DRIVER("current GPU freq: %d\n",
			 vlv_gpu_freq(dev_priv->mem_freq, (val >> 8) & 0xff));
	dev_priv->rps.cur_delay = (val >> 8) & 0xff;

	dev_priv->rps.max_delay = valleyview_rps_max_freq(dev_priv);
	dev_priv->rps.hw_max = dev_priv->rps.max_delay;
	DRM_DEBUG_DRIVER("max GPU freq: %d\n", vlv_gpu_freq(dev_priv->mem_freq,
						     dev_priv->rps.max_delay));

	rpe = valleyview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d\n",
			 vlv_gpu_freq(dev_priv->mem_freq, rpe));
3563
	dev_priv->rps.rpe_delay = rpe;
3564 3565 3566 3567 3568 3569 3570 3571 3572

	val = valleyview_rps_min_freq(dev_priv);
	DRM_DEBUG_DRIVER("min GPU freq: %d\n", vlv_gpu_freq(dev_priv->mem_freq,
							    val));
	dev_priv->rps.min_delay = val;

	DRM_DEBUG_DRIVER("setting GPU freq to %d\n",
			 vlv_gpu_freq(dev_priv->mem_freq, rpe));

3573 3574
	INIT_DELAYED_WORK(&dev_priv->rps.vlv_work, vlv_rps_timer_work);

3575 3576 3577
	valleyview_set_rps(dev_priv->dev, rpe);

	/* requires MSI enabled */
3578
	I915_WRITE(GEN6_PMIER, GEN6_PM_RPS_EVENTS);
3579 3580 3581 3582 3583 3584 3585 3586 3587 3588
	spin_lock_irq(&dev_priv->rps.lock);
	WARN_ON(dev_priv->rps.pm_iir != 0);
	I915_WRITE(GEN6_PMIMR, 0);
	spin_unlock_irq(&dev_priv->rps.lock);
	/* enable all PM interrupts */
	I915_WRITE(GEN6_PMINTRMSK, 0);

	gen6_gt_force_wake_put(dev_priv);
}

3589
void ironlake_teardown_rc6(struct drm_device *dev)
3590 3591 3592
{
	struct drm_i915_private *dev_priv = dev->dev_private;

3593 3594 3595 3596
	if (dev_priv->ips.renderctx) {
		i915_gem_object_unpin(dev_priv->ips.renderctx);
		drm_gem_object_unreference(&dev_priv->ips.renderctx->base);
		dev_priv->ips.renderctx = NULL;
3597 3598
	}

3599 3600 3601 3602
	if (dev_priv->ips.pwrctx) {
		i915_gem_object_unpin(dev_priv->ips.pwrctx);
		drm_gem_object_unreference(&dev_priv->ips.pwrctx->base);
		dev_priv->ips.pwrctx = NULL;
3603 3604 3605
	}
}

3606
static void ironlake_disable_rc6(struct drm_device *dev)
3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (I915_READ(PWRCTXA)) {
		/* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
		I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
		wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
			 50);

		I915_WRITE(PWRCTXA, 0);
		POSTING_READ(PWRCTXA);

		I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
		POSTING_READ(RSTDBYCTL);
	}
}

static int ironlake_setup_rc6(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

3628 3629 3630
	if (dev_priv->ips.renderctx == NULL)
		dev_priv->ips.renderctx = intel_alloc_context_page(dev);
	if (!dev_priv->ips.renderctx)
3631 3632
		return -ENOMEM;

3633 3634 3635
	if (dev_priv->ips.pwrctx == NULL)
		dev_priv->ips.pwrctx = intel_alloc_context_page(dev);
	if (!dev_priv->ips.pwrctx) {
3636 3637 3638 3639 3640 3641 3642
		ironlake_teardown_rc6(dev);
		return -ENOMEM;
	}

	return 0;
}

3643
static void ironlake_enable_rc6(struct drm_device *dev)
3644 3645
{
	struct drm_i915_private *dev_priv = dev->dev_private;
3646
	struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
3647
	bool was_interruptible;
3648 3649 3650 3651 3652 3653 3654 3655
	int ret;

	/* rc6 disabled by default due to repeated reports of hanging during
	 * boot and resume.
	 */
	if (!intel_enable_rc6(dev))
		return;

3656 3657
	WARN_ON(!mutex_is_locked(&dev->struct_mutex));

3658
	ret = ironlake_setup_rc6(dev);
3659
	if (ret)
3660 3661
		return;

3662 3663 3664
	was_interruptible = dev_priv->mm.interruptible;
	dev_priv->mm.interruptible = false;

3665 3666 3667 3668
	/*
	 * GPU can automatically power down the render unit if given a page
	 * to save state.
	 */
3669
	ret = intel_ring_begin(ring, 6);
3670 3671
	if (ret) {
		ironlake_teardown_rc6(dev);
3672
		dev_priv->mm.interruptible = was_interruptible;
3673 3674 3675
		return;
	}

3676 3677
	intel_ring_emit(ring, MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
	intel_ring_emit(ring, MI_SET_CONTEXT);
3678
	intel_ring_emit(ring, dev_priv->ips.renderctx->gtt_offset |
3679 3680 3681 3682 3683 3684 3685 3686
			MI_MM_SPACE_GTT |
			MI_SAVE_EXT_STATE_EN |
			MI_RESTORE_EXT_STATE_EN |
			MI_RESTORE_INHIBIT);
	intel_ring_emit(ring, MI_SUSPEND_FLUSH);
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_emit(ring, MI_FLUSH);
	intel_ring_advance(ring);
3687 3688 3689 3690 3691 3692

	/*
	 * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
	 * does an implicit flush, combined with MI_FLUSH above, it should be
	 * safe to assume that renderctx is valid
	 */
3693 3694
	ret = intel_ring_idle(ring);
	dev_priv->mm.interruptible = was_interruptible;
3695
	if (ret) {
3696
		DRM_ERROR("failed to enable ironlake power savings\n");
3697 3698 3699 3700
		ironlake_teardown_rc6(dev);
		return;
	}

3701
	I915_WRITE(PWRCTXA, dev_priv->ips.pwrctx->gtt_offset | PWRCTX_EN);
3702 3703 3704
	I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
}

3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719
static unsigned long intel_pxfreq(u32 vidfreq)
{
	unsigned long freq;
	int div = (vidfreq & 0x3f0000) >> 16;
	int post = (vidfreq & 0x3000) >> 12;
	int pre = (vidfreq & 0x7);

	if (!pre)
		return 0;

	freq = ((div * 133333) / ((1<<post) * pre));

	return freq;
}

3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733
static const struct cparams {
	u16 i;
	u16 t;
	u16 m;
	u16 c;
} cparams[] = {
	{ 1, 1333, 301, 28664 },
	{ 1, 1066, 294, 24460 },
	{ 1, 800, 294, 25192 },
	{ 0, 1333, 276, 27605 },
	{ 0, 1066, 276, 27605 },
	{ 0, 800, 231, 23784 },
};

3734
static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
3735 3736 3737 3738 3739 3740
{
	u64 total_count, diff, ret;
	u32 count1, count2, count3, m = 0, c = 0;
	unsigned long now = jiffies_to_msecs(jiffies), diff1;
	int i;

3741 3742
	assert_spin_locked(&mchdev_lock);

3743
	diff1 = now - dev_priv->ips.last_time1;
3744 3745 3746 3747 3748 3749 3750

	/* Prevent division-by-zero if we are asking too fast.
	 * Also, we don't get interesting results if we are polling
	 * faster than once in 10ms, so just return the saved value
	 * in such cases.
	 */
	if (diff1 <= 10)
3751
		return dev_priv->ips.chipset_power;
3752 3753 3754 3755 3756 3757 3758 3759

	count1 = I915_READ(DMIEC);
	count2 = I915_READ(DDREC);
	count3 = I915_READ(CSIEC);

	total_count = count1 + count2 + count3;

	/* FIXME: handle per-counter overflow */
3760 3761
	if (total_count < dev_priv->ips.last_count1) {
		diff = ~0UL - dev_priv->ips.last_count1;
3762 3763
		diff += total_count;
	} else {
3764
		diff = total_count - dev_priv->ips.last_count1;
3765 3766 3767
	}

	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
3768 3769
		if (cparams[i].i == dev_priv->ips.c_m &&
		    cparams[i].t == dev_priv->ips.r_t) {
3770 3771 3772 3773 3774 3775 3776 3777 3778 3779
			m = cparams[i].m;
			c = cparams[i].c;
			break;
		}
	}

	diff = div_u64(diff, diff1);
	ret = ((m * diff) + c);
	ret = div_u64(ret, 10);

3780 3781
	dev_priv->ips.last_count1 = total_count;
	dev_priv->ips.last_time1 = now;
3782

3783
	dev_priv->ips.chipset_power = ret;
3784 3785 3786 3787

	return ret;
}

3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803
unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
{
	unsigned long val;

	if (dev_priv->info->gen != 5)
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_chipset_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959
unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
{
	unsigned long m, x, b;
	u32 tsfs;

	tsfs = I915_READ(TSFS);

	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
	x = I915_READ8(TR1);

	b = tsfs & TSFS_INTR_MASK;

	return ((m * x) / 127) - b;
}

static u16 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
{
	static const struct v_table {
		u16 vd; /* in .1 mil */
		u16 vm; /* in .1 mil */
	} v_table[] = {
		{ 0, 0, },
		{ 375, 0, },
		{ 500, 0, },
		{ 625, 0, },
		{ 750, 0, },
		{ 875, 0, },
		{ 1000, 0, },
		{ 1125, 0, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4250, 3125, },
		{ 4375, 3250, },
		{ 4500, 3375, },
		{ 4625, 3500, },
		{ 4750, 3625, },
		{ 4875, 3750, },
		{ 5000, 3875, },
		{ 5125, 4000, },
		{ 5250, 4125, },
		{ 5375, 4250, },
		{ 5500, 4375, },
		{ 5625, 4500, },
		{ 5750, 4625, },
		{ 5875, 4750, },
		{ 6000, 4875, },
		{ 6125, 5000, },
		{ 6250, 5125, },
		{ 6375, 5250, },
		{ 6500, 5375, },
		{ 6625, 5500, },
		{ 6750, 5625, },
		{ 6875, 5750, },
		{ 7000, 5875, },
		{ 7125, 6000, },
		{ 7250, 6125, },
		{ 7375, 6250, },
		{ 7500, 6375, },
		{ 7625, 6500, },
		{ 7750, 6625, },
		{ 7875, 6750, },
		{ 8000, 6875, },
		{ 8125, 7000, },
		{ 8250, 7125, },
		{ 8375, 7250, },
		{ 8500, 7375, },
		{ 8625, 7500, },
		{ 8750, 7625, },
		{ 8875, 7750, },
		{ 9000, 7875, },
		{ 9125, 8000, },
		{ 9250, 8125, },
		{ 9375, 8250, },
		{ 9500, 8375, },
		{ 9625, 8500, },
		{ 9750, 8625, },
		{ 9875, 8750, },
		{ 10000, 8875, },
		{ 10125, 9000, },
		{ 10250, 9125, },
		{ 10375, 9250, },
		{ 10500, 9375, },
		{ 10625, 9500, },
		{ 10750, 9625, },
		{ 10875, 9750, },
		{ 11000, 9875, },
		{ 11125, 10000, },
		{ 11250, 10125, },
		{ 11375, 10250, },
		{ 11500, 10375, },
		{ 11625, 10500, },
		{ 11750, 10625, },
		{ 11875, 10750, },
		{ 12000, 10875, },
		{ 12125, 11000, },
		{ 12250, 11125, },
		{ 12375, 11250, },
		{ 12500, 11375, },
		{ 12625, 11500, },
		{ 12750, 11625, },
		{ 12875, 11750, },
		{ 13000, 11875, },
		{ 13125, 12000, },
		{ 13250, 12125, },
		{ 13375, 12250, },
		{ 13500, 12375, },
		{ 13625, 12500, },
		{ 13750, 12625, },
		{ 13875, 12750, },
		{ 14000, 12875, },
		{ 14125, 13000, },
		{ 14250, 13125, },
		{ 14375, 13250, },
		{ 14500, 13375, },
		{ 14625, 13500, },
		{ 14750, 13625, },
		{ 14875, 13750, },
		{ 15000, 13875, },
		{ 15125, 14000, },
		{ 15250, 14125, },
		{ 15375, 14250, },
		{ 15500, 14375, },
		{ 15625, 14500, },
		{ 15750, 14625, },
		{ 15875, 14750, },
		{ 16000, 14875, },
		{ 16125, 15000, },
	};
	if (dev_priv->info->is_mobile)
		return v_table[pxvid].vm;
	else
		return v_table[pxvid].vd;
}

3960
static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
3961 3962 3963 3964 3965 3966
{
	struct timespec now, diff1;
	u64 diff;
	unsigned long diffms;
	u32 count;

3967
	assert_spin_locked(&mchdev_lock);
3968 3969

	getrawmonotonic(&now);
3970
	diff1 = timespec_sub(now, dev_priv->ips.last_time2);
3971 3972 3973 3974 3975 3976 3977 3978

	/* Don't divide by 0 */
	diffms = diff1.tv_sec * 1000 + diff1.tv_nsec / 1000000;
	if (!diffms)
		return;

	count = I915_READ(GFXEC);

3979 3980
	if (count < dev_priv->ips.last_count2) {
		diff = ~0UL - dev_priv->ips.last_count2;
3981 3982
		diff += count;
	} else {
3983
		diff = count - dev_priv->ips.last_count2;
3984 3985
	}

3986 3987
	dev_priv->ips.last_count2 = count;
	dev_priv->ips.last_time2 = now;
3988 3989 3990 3991

	/* More magic constants... */
	diff = diff * 1181;
	diff = div_u64(diff, diffms * 10);
3992
	dev_priv->ips.gfx_power = diff;
3993 3994
}

3995 3996 3997 3998 3999
void i915_update_gfx_val(struct drm_i915_private *dev_priv)
{
	if (dev_priv->info->gen != 5)
		return;

4000
	spin_lock_irq(&mchdev_lock);
4001 4002 4003

	__i915_update_gfx_val(dev_priv);

4004
	spin_unlock_irq(&mchdev_lock);
4005 4006
}

4007
static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
4008 4009 4010 4011
{
	unsigned long t, corr, state1, corr2, state2;
	u32 pxvid, ext_v;

4012 4013
	assert_spin_locked(&mchdev_lock);

4014
	pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_delay * 4));
4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033
	pxvid = (pxvid >> 24) & 0x7f;
	ext_v = pvid_to_extvid(dev_priv, pxvid);

	state1 = ext_v;

	t = i915_mch_val(dev_priv);

	/* Revel in the empirically derived constants */

	/* Correction factor in 1/100000 units */
	if (t > 80)
		corr = ((t * 2349) + 135940);
	else if (t >= 50)
		corr = ((t * 964) + 29317);
	else /* < 50 */
		corr = ((t * 301) + 1004);

	corr = corr * ((150142 * state1) / 10000 - 78642);
	corr /= 100000;
4034
	corr2 = (corr * dev_priv->ips.corr);
4035 4036 4037 4038

	state2 = (corr2 * state1) / 10000;
	state2 /= 100; /* convert to mW */

4039
	__i915_update_gfx_val(dev_priv);
4040

4041
	return dev_priv->ips.gfx_power + state2;
4042 4043
}

4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059
unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
{
	unsigned long val;

	if (dev_priv->info->gen != 5)
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_gfx_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070
/**
 * i915_read_mch_val - return value for IPS use
 *
 * Calculate and return a value for the IPS driver to use when deciding whether
 * we have thermal and power headroom to increase CPU or GPU power budget.
 */
unsigned long i915_read_mch_val(void)
{
	struct drm_i915_private *dev_priv;
	unsigned long chipset_val, graphics_val, ret = 0;

4071
	spin_lock_irq(&mchdev_lock);
4072 4073 4074 4075
	if (!i915_mch_dev)
		goto out_unlock;
	dev_priv = i915_mch_dev;

4076 4077
	chipset_val = __i915_chipset_val(dev_priv);
	graphics_val = __i915_gfx_val(dev_priv);
4078 4079 4080 4081

	ret = chipset_val + graphics_val;

out_unlock:
4082
	spin_unlock_irq(&mchdev_lock);
4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097

	return ret;
}
EXPORT_SYMBOL_GPL(i915_read_mch_val);

/**
 * i915_gpu_raise - raise GPU frequency limit
 *
 * Raise the limit; IPS indicates we have thermal headroom.
 */
bool i915_gpu_raise(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

4098
	spin_lock_irq(&mchdev_lock);
4099 4100 4101 4102 4103 4104
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

4105 4106
	if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
		dev_priv->ips.max_delay--;
4107 4108

out_unlock:
4109
	spin_unlock_irq(&mchdev_lock);
4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_raise);

/**
 * i915_gpu_lower - lower GPU frequency limit
 *
 * IPS indicates we're close to a thermal limit, so throttle back the GPU
 * frequency maximum.
 */
bool i915_gpu_lower(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

4126
	spin_lock_irq(&mchdev_lock);
4127 4128 4129 4130 4131 4132
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

4133 4134
	if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
		dev_priv->ips.max_delay++;
4135 4136

out_unlock:
4137
	spin_unlock_irq(&mchdev_lock);
4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_lower);

/**
 * i915_gpu_busy - indicate GPU business to IPS
 *
 * Tell the IPS driver whether or not the GPU is busy.
 */
bool i915_gpu_busy(void)
{
	struct drm_i915_private *dev_priv;
4151
	struct intel_ring_buffer *ring;
4152
	bool ret = false;
4153
	int i;
4154

4155
	spin_lock_irq(&mchdev_lock);
4156 4157 4158 4159
	if (!i915_mch_dev)
		goto out_unlock;
	dev_priv = i915_mch_dev;

4160 4161
	for_each_ring(ring, dev_priv, i)
		ret |= !list_empty(&ring->request_list);
4162 4163

out_unlock:
4164
	spin_unlock_irq(&mchdev_lock);
4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_busy);

/**
 * i915_gpu_turbo_disable - disable graphics turbo
 *
 * Disable graphics turbo by resetting the max frequency and setting the
 * current frequency to the default.
 */
bool i915_gpu_turbo_disable(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

4181
	spin_lock_irq(&mchdev_lock);
4182 4183 4184 4185 4186 4187
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

4188
	dev_priv->ips.max_delay = dev_priv->ips.fstart;
4189

4190
	if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
4191 4192 4193
		ret = false;

out_unlock:
4194
	spin_unlock_irq(&mchdev_lock);
4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);

/**
 * Tells the intel_ips driver that the i915 driver is now loaded, if
 * IPS got loaded first.
 *
 * This awkward dance is so that neither module has to depend on the
 * other in order for IPS to do the appropriate communication of
 * GPU turbo limits to i915.
 */
static void
ips_ping_for_i915_load(void)
{
	void (*link)(void);

	link = symbol_get(ips_link_to_i915_driver);
	if (link) {
		link();
		symbol_put(ips_link_to_i915_driver);
	}
}

void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
{
4222 4223
	/* We only register the i915 ips part with intel-ips once everything is
	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
4224
	spin_lock_irq(&mchdev_lock);
4225
	i915_mch_dev = dev_priv;
4226
	spin_unlock_irq(&mchdev_lock);
4227 4228 4229 4230 4231 4232

	ips_ping_for_i915_load();
}

void intel_gpu_ips_teardown(void)
{
4233
	spin_lock_irq(&mchdev_lock);
4234
	i915_mch_dev = NULL;
4235
	spin_unlock_irq(&mchdev_lock);
4236
}
4237
static void intel_init_emon(struct drm_device *dev)
4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 lcfuse;
	u8 pxw[16];
	int i;

	/* Disable to program */
	I915_WRITE(ECR, 0);
	POSTING_READ(ECR);

	/* Program energy weights for various events */
	I915_WRITE(SDEW, 0x15040d00);
	I915_WRITE(CSIEW0, 0x007f0000);
	I915_WRITE(CSIEW1, 0x1e220004);
	I915_WRITE(CSIEW2, 0x04000004);

	for (i = 0; i < 5; i++)
		I915_WRITE(PEW + (i * 4), 0);
	for (i = 0; i < 3; i++)
		I915_WRITE(DEW + (i * 4), 0);

	/* Program P-state weights to account for frequency power adjustment */
	for (i = 0; i < 16; i++) {
		u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
		unsigned long freq = intel_pxfreq(pxvidfreq);
		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
			PXVFREQ_PX_SHIFT;
		unsigned long val;

		val = vid * vid;
		val *= (freq / 1000);
		val *= 255;
		val /= (127*127*900);
		if (val > 0xff)
			DRM_ERROR("bad pxval: %ld\n", val);
		pxw[i] = val;
	}
	/* Render standby states get 0 weight */
	pxw[14] = 0;
	pxw[15] = 0;

	for (i = 0; i < 4; i++) {
		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
		I915_WRITE(PXW + (i * 4), val);
	}

	/* Adjust magic regs to magic values (more experimental results) */
	I915_WRITE(OGW0, 0);
	I915_WRITE(OGW1, 0);
	I915_WRITE(EG0, 0x00007f00);
	I915_WRITE(EG1, 0x0000000e);
	I915_WRITE(EG2, 0x000e0000);
	I915_WRITE(EG3, 0x68000300);
	I915_WRITE(EG4, 0x42000000);
	I915_WRITE(EG5, 0x00140031);
	I915_WRITE(EG6, 0);
	I915_WRITE(EG7, 0);

	for (i = 0; i < 8; i++)
		I915_WRITE(PXWL + (i * 4), 0);

	/* Enable PMON + select events */
	I915_WRITE(ECR, 0x80000019);

	lcfuse = I915_READ(LCFUSE02);

4305
	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
4306 4307
}

4308 4309
void intel_disable_gt_powersave(struct drm_device *dev)
{
4310 4311
	struct drm_i915_private *dev_priv = dev->dev_private;

4312 4313 4314
	/* Interrupts should be disabled already to avoid re-arming. */
	WARN_ON(dev->irq_enabled);

4315
	if (IS_IRONLAKE_M(dev)) {
4316
		ironlake_disable_drps(dev);
4317
		ironlake_disable_rc6(dev);
4318
	} else if (INTEL_INFO(dev)->gen >= 6) {
4319
		cancel_delayed_work_sync(&dev_priv->rps.delayed_resume_work);
4320
		cancel_work_sync(&dev_priv->rps.work);
4321 4322
		if (IS_VALLEYVIEW(dev))
			cancel_delayed_work_sync(&dev_priv->rps.vlv_work);
4323
		mutex_lock(&dev_priv->rps.hw_lock);
4324 4325 4326 4327
		if (IS_VALLEYVIEW(dev))
			valleyview_disable_rps(dev);
		else
			gen6_disable_rps(dev);
4328
		mutex_unlock(&dev_priv->rps.hw_lock);
4329
	}
4330 4331
}

4332 4333 4334 4335 4336 4337 4338
static void intel_gen6_powersave_work(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, struct drm_i915_private,
			     rps.delayed_resume_work.work);
	struct drm_device *dev = dev_priv->dev;

4339
	mutex_lock(&dev_priv->rps.hw_lock);
4340 4341 4342 4343 4344 4345 4346

	if (IS_VALLEYVIEW(dev)) {
		valleyview_enable_rps(dev);
	} else {
		gen6_enable_rps(dev);
		gen6_update_ring_freq(dev);
	}
4347
	mutex_unlock(&dev_priv->rps.hw_lock);
4348 4349
}

4350 4351
void intel_enable_gt_powersave(struct drm_device *dev)
{
4352 4353
	struct drm_i915_private *dev_priv = dev->dev_private;

4354 4355 4356 4357
	if (IS_IRONLAKE_M(dev)) {
		ironlake_enable_drps(dev);
		ironlake_enable_rc6(dev);
		intel_init_emon(dev);
4358
	} else if (IS_GEN6(dev) || IS_GEN7(dev)) {
4359 4360 4361 4362 4363 4364 4365
		/*
		 * PCU communication is slow and this doesn't need to be
		 * done at any specific time, so do this out of our fast path
		 * to make resume and init faster.
		 */
		schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
				      round_jiffies_up_relative(HZ));
4366 4367 4368
	}
}

4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380
static void ibx_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
}

4381
static void ironlake_init_clock_gating(struct drm_device *dev)
4382 4383
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4384
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
4385 4386

	/* Required for FBC */
4387 4388 4389
	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406

	I915_WRITE(PCH_3DCGDIS0,
		   MARIUNIT_CLOCK_GATE_DISABLE |
		   SVSMUNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(PCH_3DCGDIS1,
		   VFMUNIT_CLOCK_GATE_DISABLE);

	/*
	 * According to the spec the following bits should be set in
	 * order to enable memory self-refresh
	 * The bit 22/21 of 0x42004
	 * The bit 5 of 0x42020
	 * The bit 15 of 0x45000
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
4407
	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430
	I915_WRITE(DISP_ARB_CTL,
		   (I915_READ(DISP_ARB_CTL) |
		    DISP_FBC_WM_DIS));
	I915_WRITE(WM3_LP_ILK, 0);
	I915_WRITE(WM2_LP_ILK, 0);
	I915_WRITE(WM1_LP_ILK, 0);

	/*
	 * Based on the document from hardware guys the following bits
	 * should be set unconditionally in order to enable FBC.
	 * The bit 22 of 0x42000
	 * The bit 22 of 0x42004
	 * The bit 7,8,9 of 0x42020.
	 */
	if (IS_IRONLAKE_M(dev)) {
		I915_WRITE(ILK_DISPLAY_CHICKEN1,
			   I915_READ(ILK_DISPLAY_CHICKEN1) |
			   ILK_FBCQ_DIS);
		I915_WRITE(ILK_DISPLAY_CHICKEN2,
			   I915_READ(ILK_DISPLAY_CHICKEN2) |
			   ILK_DPARB_GATE);
	}

4431 4432
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);

4433 4434 4435 4436 4437 4438
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);
	I915_WRITE(_3D_CHICKEN2,
		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
		   _3D_CHICKEN2_WM_READ_PIPELINED);
4439

4440
	/* WaDisableRenderCachePipelinedFlush:ilk */
4441 4442
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
4443 4444 4445 4446 4447 4448 4449 4450

	ibx_init_clock_gating(dev);
}

static void cpt_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int pipe;
4451
	uint32_t val;
4452 4453 4454 4455 4456 4457 4458 4459 4460

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
		   DPLS_EDP_PPS_FIX_DIS);
4461 4462 4463
	/* The below fixes the weird display corruption, a few pixels shifted
	 * downward, on (only) LVDS of some HP laptops with IVY.
	 */
4464
	for_each_pipe(pipe) {
4465 4466 4467
		val = I915_READ(TRANS_CHICKEN2(pipe));
		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
4468
		if (dev_priv->vbt.fdi_rx_polarity_inverted)
4469
			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
4470 4471 4472
		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
4473 4474
		I915_WRITE(TRANS_CHICKEN2(pipe), val);
	}
4475 4476 4477 4478 4479
	/* WADP0ClockGatingDisable */
	for_each_pipe(pipe) {
		I915_WRITE(TRANS_CHICKEN1(pipe),
			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
	}
4480 4481
}

4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494
static void gen6_check_mch_setup(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t tmp;

	tmp = I915_READ(MCH_SSKPD);
	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL) {
		DRM_INFO("Wrong MCH_SSKPD value: 0x%08x\n", tmp);
		DRM_INFO("This can cause pipe underruns and display issues.\n");
		DRM_INFO("Please upgrade your BIOS to fix this.\n");
	}
}

4495
static void gen6_init_clock_gating(struct drm_device *dev)
4496 4497 4498
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int pipe;
4499
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
4500

4501
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
4502 4503 4504 4505 4506

	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);

4507
	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
4508 4509 4510
	I915_WRITE(_3D_CHICKEN,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));

4511
	/* WaSetupGtModeTdRowDispatch:snb */
4512 4513 4514 4515
	if (IS_SNB_GT1(dev))
		I915_WRITE(GEN6_GT_MODE,
			   _MASKED_BIT_ENABLE(GEN6_TD_FOUR_ROW_DISPATCH_DISABLE));

4516 4517 4518 4519 4520
	I915_WRITE(WM3_LP_ILK, 0);
	I915_WRITE(WM2_LP_ILK, 0);
	I915_WRITE(WM1_LP_ILK, 0);

	I915_WRITE(CACHE_MODE_0,
4521
		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536

	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) |
		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);

	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
	 * gating disable must be set.  Failure to set it results in
	 * flickering pixels due to Z write ordering failures after
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
	 * Sanctuary and Tropics, and apparently anything else with
	 * alpha test or pixel discard.
	 *
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
	 * but we didn't debug actual testcases to find it out.
4537
	 *
4538 4539
	 * Also apply WaDisableVDSUnitClockGating:snb and
	 * WaDisableRCPBUnitClockGating:snb.
4540 4541
	 */
	I915_WRITE(GEN6_UCGCTL2,
4542
		   GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
4543 4544 4545 4546
		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);

	/* Bspec says we need to always set all mask bits. */
4547 4548
	I915_WRITE(_3D_CHICKEN3, (0xFFFF << 16) |
		   _3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL);
4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564

	/*
	 * According to the spec the following bits should be
	 * set in order to enable memory self-refresh and fbc:
	 * The bit21 and bit22 of 0x42000
	 * The bit21 and bit22 of 0x42004
	 * The bit5 and bit7 of 0x42020
	 * The bit14 of 0x70180
	 * The bit14 of 0x71180
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN1,
		   I915_READ(ILK_DISPLAY_CHICKEN1) |
		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
4565 4566 4567 4568
	I915_WRITE(ILK_DSPCLK_GATE_D,
		   I915_READ(ILK_DSPCLK_GATE_D) |
		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
4569

4570
	/* WaMbcDriverBootEnable:snb */
4571 4572 4573
	I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
		   GEN6_MBCTL_ENABLE_BOOT_FETCH);

4574 4575 4576 4577 4578 4579
	for_each_pipe(pipe) {
		I915_WRITE(DSPCNTR(pipe),
			   I915_READ(DSPCNTR(pipe)) |
			   DISPPLANE_TRICKLE_FEED_DISABLE);
		intel_flush_display_plane(dev_priv, pipe);
	}
B
Ben Widawsky 已提交
4580 4581 4582 4583 4584

	/* The default value should be 0x200 according to docs, but the two
	 * platforms I checked have a 0 for this. (Maybe BIOS overrides?) */
	I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_DISABLE(0xffff));
	I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_ENABLE(GEN6_GT_MODE_HI));
4585 4586

	cpt_init_clock_gating(dev);
4587 4588

	gen6_check_mch_setup(dev);
4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599
}

static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
{
	uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);

	reg &= ~GEN7_FF_SCHED_MASK;
	reg |= GEN7_FF_TS_SCHED_HW;
	reg |= GEN7_FF_VS_SCHED_HW;
	reg |= GEN7_FF_DS_SCHED_HW;

4600 4601 4602
	if (IS_HASWELL(dev_priv->dev))
		reg &= ~GEN7_FF_VS_REF_CNT_FFME;

4603 4604 4605
	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
}

4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617
static void lpt_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	/*
	 * TODO: this bit should only be enabled when really needed, then
	 * disabled when not needed anymore in order to save power.
	 */
	if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
		I915_WRITE(SOUTH_DSPCLK_GATE_D,
			   I915_READ(SOUTH_DSPCLK_GATE_D) |
			   PCH_LP_PARTITION_LEVEL_DISABLE);
4618 4619 4620 4621 4622

	/* WADPOClockGatingDisable:hsw */
	I915_WRITE(_TRANSA_CHICKEN1,
		   I915_READ(_TRANSA_CHICKEN1) |
		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
4623 4624
}

4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636
static void lpt_suspend_hw(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
		uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);

		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
	}
}

4637 4638 4639 4640 4641 4642 4643 4644 4645 4646
static void haswell_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int pipe;

	I915_WRITE(WM3_LP_ILK, 0);
	I915_WRITE(WM2_LP_ILK, 0);
	I915_WRITE(WM1_LP_ILK, 0);

	/* According to the spec, bit 13 (RCZUNIT) must be set on IVB.
4647
	 * This implements the WaDisableRCZUnitClockGating:hsw workaround.
4648 4649 4650
	 */
	I915_WRITE(GEN6_UCGCTL2, GEN6_RCZUNIT_CLOCK_GATE_DISABLE);

4651
	/* Apply the WaDisableRHWOOptimizationForRenderHang:hsw workaround. */
4652 4653 4654
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);

4655
	/* WaApplyL3ControlAndL3ChickenMode:hsw */
4656 4657 4658 4659 4660
	I915_WRITE(GEN7_L3CNTLREG1,
			GEN7_WA_FOR_GEN7_L3_CONTROL);
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
			GEN7_WA_L3_CHICKEN_MODE);

4661
	/* This is required by WaCatErrorRejectionIssue:hsw */
4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

	for_each_pipe(pipe) {
		I915_WRITE(DSPCNTR(pipe),
			   I915_READ(DSPCNTR(pipe)) |
			   DISPPLANE_TRICKLE_FEED_DISABLE);
		intel_flush_display_plane(dev_priv, pipe);
	}

4673
	/* WaVSRefCountFullforceMissDisable:hsw */
4674 4675
	gen7_setup_fixed_func_scheduler(dev_priv);

4676
	/* WaDisable4x2SubspanOptimization:hsw */
4677 4678
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
4679

4680
	/* WaMbcDriverBootEnable:hsw */
4681 4682 4683
	I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
		   GEN6_MBCTL_ENABLE_BOOT_FETCH);

4684
	/* WaSwitchSolVfFArbitrationPriority:hsw */
4685 4686
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);

4687 4688 4689
	/* WaRsPkgCStateDisplayPMReq:hsw */
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
4690

4691
	lpt_init_clock_gating(dev);
4692 4693
}

4694
static void ivybridge_init_clock_gating(struct drm_device *dev)
4695 4696 4697
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int pipe;
4698
	uint32_t snpcr;
4699 4700 4701 4702 4703

	I915_WRITE(WM3_LP_ILK, 0);
	I915_WRITE(WM2_LP_ILK, 0);
	I915_WRITE(WM1_LP_ILK, 0);

4704
	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
4705

4706
	/* WaDisableEarlyCull:ivb */
4707 4708 4709
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

4710
	/* WaDisableBackToBackFlipFix:ivb */
4711 4712 4713 4714
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

4715
	/* WaDisablePSDDualDispatchEnable:ivb */
4716 4717 4718 4719 4720 4721 4722
	if (IS_IVB_GT1(dev))
		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
	else
		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1_GT2,
			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));

4723
	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
4724 4725 4726
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);

4727
	/* WaApplyL3ControlAndL3ChickenMode:ivb */
4728 4729 4730
	I915_WRITE(GEN7_L3CNTLREG1,
			GEN7_WA_FOR_GEN7_L3_CONTROL);
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
4731 4732 4733 4734 4735 4736 4737 4738
		   GEN7_WA_L3_CHICKEN_MODE);
	if (IS_IVB_GT1(dev))
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
	else
		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));

4739

4740
	/* WaForceL3Serialization:ivb */
4741 4742 4743
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754
	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
	 * gating disable must be set.  Failure to set it results in
	 * flickering pixels due to Z write ordering failures after
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
	 * Sanctuary and Tropics, and apparently anything else with
	 * alpha test or pixel discard.
	 *
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
	 * but we didn't debug actual testcases to find it out.
	 *
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
4755
	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
4756 4757 4758 4759 4760
	 */
	I915_WRITE(GEN6_UCGCTL2,
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);

4761
	/* This is required by WaCatErrorRejectionIssue:ivb */
4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

	for_each_pipe(pipe) {
		I915_WRITE(DSPCNTR(pipe),
			   I915_READ(DSPCNTR(pipe)) |
			   DISPPLANE_TRICKLE_FEED_DISABLE);
		intel_flush_display_plane(dev_priv, pipe);
	}

4773
	/* WaMbcDriverBootEnable:ivb */
4774 4775 4776
	I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
		   GEN6_MBCTL_ENABLE_BOOT_FETCH);

4777
	/* WaVSRefCountFullforceMissDisable:ivb */
4778
	gen7_setup_fixed_func_scheduler(dev_priv);
4779

4780
	/* WaDisable4x2SubspanOptimization:ivb */
4781 4782
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
4783 4784 4785 4786 4787

	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
	snpcr &= ~GEN6_MBC_SNPCR_MASK;
	snpcr |= GEN6_MBC_SNPCR_MED;
	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
4788

4789 4790
	if (!HAS_PCH_NOP(dev))
		cpt_init_clock_gating(dev);
4791 4792

	gen6_check_mch_setup(dev);
4793 4794
}

4795
static void valleyview_init_clock_gating(struct drm_device *dev)
4796 4797 4798 4799 4800 4801 4802 4803
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int pipe;

	I915_WRITE(WM3_LP_ILK, 0);
	I915_WRITE(WM2_LP_ILK, 0);
	I915_WRITE(WM1_LP_ILK, 0);

4804
	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
4805

4806
	/* WaDisableEarlyCull:vlv */
4807 4808 4809
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

4810
	/* WaDisableBackToBackFlipFix:vlv */
4811 4812 4813 4814
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

4815
	/* WaDisablePSDDualDispatchEnable:vlv */
4816
	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
4817 4818
		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
4819

4820
	/* Apply the WaDisableRHWOOptimizationForRenderHang:vlv workaround. */
4821 4822 4823
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);

4824
	/* WaApplyL3ControlAndL3ChickenMode:vlv */
4825
	I915_WRITE(GEN7_L3CNTLREG1, I915_READ(GEN7_L3CNTLREG1) | GEN7_L3AGDIS);
4826 4827
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER, GEN7_WA_L3_CHICKEN_MODE);

4828
	/* WaForceL3Serialization:vlv */
4829 4830 4831
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

4832
	/* WaDisableDopClockGating:vlv */
4833 4834 4835
	I915_WRITE(GEN7_ROW_CHICKEN2,
		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));

4836
	/* WaForceL3Serialization:vlv */
4837 4838 4839
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

4840
	/* This is required by WaCatErrorRejectionIssue:vlv */
4841 4842 4843 4844
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

4845
	/* WaMbcDriverBootEnable:vlv */
4846 4847 4848
	I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
		   GEN6_MBCTL_ENABLE_BOOT_FETCH);

4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860

	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
	 * gating disable must be set.  Failure to set it results in
	 * flickering pixels due to Z write ordering failures after
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
	 * Sanctuary and Tropics, and apparently anything else with
	 * alpha test or pixel discard.
	 *
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
	 * but we didn't debug actual testcases to find it out.
	 *
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
4861
	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
4862
	 *
4863 4864
	 * Also apply WaDisableVDSUnitClockGating:vlv and
	 * WaDisableRCPBUnitClockGating:vlv.
4865 4866 4867
	 */
	I915_WRITE(GEN6_UCGCTL2,
		   GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
4868
		   GEN7_TDLUNIT_CLOCK_GATE_DISABLE |
4869 4870 4871 4872
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);

4873 4874
	I915_WRITE(GEN7_UCGCTL4, GEN7_L3BANK2X_CLOCK_GATE_DISABLE);

4875 4876 4877 4878 4879 4880 4881
	for_each_pipe(pipe) {
		I915_WRITE(DSPCNTR(pipe),
			   I915_READ(DSPCNTR(pipe)) |
			   DISPPLANE_TRICKLE_FEED_DISABLE);
		intel_flush_display_plane(dev_priv, pipe);
	}

4882 4883
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
4884

4885
	/*
4886
	 * WaDisableVLVClockGating_VBIIssue:vlv
4887 4888 4889
	 * Disable clock gating on th GCFG unit to prevent a delay
	 * in the reporting of vblank events.
	 */
4890 4891 4892 4893 4894 4895 4896 4897 4898 4899
	I915_WRITE(VLV_GUNIT_CLOCK_GATE, 0xffffffff);

	/* Conservative clock gating settings for now */
	I915_WRITE(0x9400, 0xffffffff);
	I915_WRITE(0x9404, 0xffffffff);
	I915_WRITE(0x9408, 0xffffffff);
	I915_WRITE(0x940c, 0xffffffff);
	I915_WRITE(0x9410, 0xffffffff);
	I915_WRITE(0x9414, 0xffffffff);
	I915_WRITE(0x9418, 0xffffffff);
4900 4901
}

4902
static void g4x_init_clock_gating(struct drm_device *dev)
4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dspclk_gate;

	I915_WRITE(RENCLK_GATE_D1, 0);
	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
		   GS_UNIT_CLOCK_GATE_DISABLE |
		   CL_UNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(RAMCLK_GATE_D, 0);
	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
		OVRUNIT_CLOCK_GATE_DISABLE |
		OVCUNIT_CLOCK_GATE_DISABLE;
	if (IS_GM45(dev))
		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
4918 4919 4920 4921

	/* WaDisableRenderCachePipelinedFlush */
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
4922 4923
}

4924
static void crestline_init_clock_gating(struct drm_device *dev)
4925 4926 4927 4928 4929 4930 4931 4932 4933 4934
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
	I915_WRITE(DSPCLK_GATE_D, 0);
	I915_WRITE(RAMCLK_GATE_D, 0);
	I915_WRITE16(DEUC, 0);
}

4935
static void broadwater_init_clock_gating(struct drm_device *dev)
4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
		   I965_RCC_CLOCK_GATE_DISABLE |
		   I965_RCPB_CLOCK_GATE_DISABLE |
		   I965_ISC_CLOCK_GATE_DISABLE |
		   I965_FBC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
}

4947
static void gen3_init_clock_gating(struct drm_device *dev)
4948 4949 4950 4951 4952 4953 4954
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 dstate = I915_READ(D_STATE);

	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
		DSTATE_DOT_CLOCK_GATING;
	I915_WRITE(D_STATE, dstate);
4955 4956 4957

	if (IS_PINEVIEW(dev))
		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
4958 4959 4960

	/* IIR "flip pending" means done if this bit is set */
	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
4961 4962
}

4963
static void i85x_init_clock_gating(struct drm_device *dev)
4964 4965 4966 4967 4968 4969
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
}

4970
static void i830_init_clock_gating(struct drm_device *dev)
4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
}

void intel_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	dev_priv->display.init_clock_gating(dev);
}

4984 4985 4986 4987 4988 4989
void intel_suspend_hw(struct drm_device *dev)
{
	if (HAS_PCH_LPT(dev))
		lpt_suspend_hw(dev);
}

4990 4991 4992 4993 4994
/**
 * We should only use the power well if we explicitly asked the hardware to
 * enable it, so check if it's enabled and also check if we've requested it to
 * be enabled.
 */
4995 4996
bool intel_display_power_enabled(struct drm_device *dev,
				 enum intel_display_power_domain domain)
4997 4998 4999
{
	struct drm_i915_private *dev_priv = dev->dev_private;

5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014
	if (!HAS_POWER_WELL(dev))
		return true;

	switch (domain) {
	case POWER_DOMAIN_PIPE_A:
	case POWER_DOMAIN_TRANSCODER_EDP:
		return true;
	case POWER_DOMAIN_PIPE_B:
	case POWER_DOMAIN_PIPE_C:
	case POWER_DOMAIN_PIPE_A_PANEL_FITTER:
	case POWER_DOMAIN_PIPE_B_PANEL_FITTER:
	case POWER_DOMAIN_PIPE_C_PANEL_FITTER:
	case POWER_DOMAIN_TRANSCODER_A:
	case POWER_DOMAIN_TRANSCODER_B:
	case POWER_DOMAIN_TRANSCODER_C:
5015 5016
		return I915_READ(HSW_PWR_WELL_DRIVER) ==
		       (HSW_PWR_WELL_ENABLE | HSW_PWR_WELL_STATE);
5017 5018 5019
	default:
		BUG();
	}
5020 5021
}

5022
void intel_set_power_well(struct drm_device *dev, bool enable)
5023 5024
{
	struct drm_i915_private *dev_priv = dev->dev_private;
5025 5026
	bool is_enabled, enable_requested;
	uint32_t tmp;
5027

P
Paulo Zanoni 已提交
5028
	if (!HAS_POWER_WELL(dev))
5029 5030
		return;

5031 5032 5033
	if (!i915_disable_power_well && !enable)
		return;

5034 5035 5036
	tmp = I915_READ(HSW_PWR_WELL_DRIVER);
	is_enabled = tmp & HSW_PWR_WELL_STATE;
	enable_requested = tmp & HSW_PWR_WELL_ENABLE;
5037

5038 5039 5040
	if (enable) {
		if (!enable_requested)
			I915_WRITE(HSW_PWR_WELL_DRIVER, HSW_PWR_WELL_ENABLE);
5041

5042 5043 5044 5045 5046 5047 5048 5049 5050 5051
		if (!is_enabled) {
			DRM_DEBUG_KMS("Enabling power well\n");
			if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER) &
				      HSW_PWR_WELL_STATE), 20))
				DRM_ERROR("Timeout enabling power well\n");
		}
	} else {
		if (enable_requested) {
			I915_WRITE(HSW_PWR_WELL_DRIVER, 0);
			DRM_DEBUG_KMS("Requesting to disable the power well\n");
5052 5053
		}
	}
5054
}
5055

5056 5057 5058 5059 5060
/*
 * Starting with Haswell, we have a "Power Down Well" that can be turned off
 * when not needed anymore. We have 4 registers that can request the power well
 * to be enabled, and it will only be disabled if none of the registers is
 * requesting it to be enabled.
5061
 */
5062
void intel_init_power_well(struct drm_device *dev)
5063 5064 5065
{
	struct drm_i915_private *dev_priv = dev->dev_private;

P
Paulo Zanoni 已提交
5066
	if (!HAS_POWER_WELL(dev))
5067 5068
		return;

5069 5070
	/* For now, we need the power well to be always enabled. */
	intel_set_power_well(dev, true);
5071

5072 5073 5074 5075
	/* We're taking over the BIOS, so clear any requests made by it since
	 * the driver is in charge now. */
	if (I915_READ(HSW_PWR_WELL_BIOS) & HSW_PWR_WELL_ENABLE)
		I915_WRITE(HSW_PWR_WELL_BIOS, 0);
5076 5077
}

5078 5079 5080 5081 5082 5083 5084 5085
/* Set up chip specific power management-related functions */
void intel_init_pm(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (I915_HAS_FBC(dev)) {
		if (HAS_PCH_SPLIT(dev)) {
			dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
R
Rodrigo Vivi 已提交
5086
			if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
5087 5088 5089 5090 5091
				dev_priv->display.enable_fbc =
					gen7_enable_fbc;
			else
				dev_priv->display.enable_fbc =
					ironlake_enable_fbc;
5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104
			dev_priv->display.disable_fbc = ironlake_disable_fbc;
		} else if (IS_GM45(dev)) {
			dev_priv->display.fbc_enabled = g4x_fbc_enabled;
			dev_priv->display.enable_fbc = g4x_enable_fbc;
			dev_priv->display.disable_fbc = g4x_disable_fbc;
		} else if (IS_CRESTLINE(dev)) {
			dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
			dev_priv->display.enable_fbc = i8xx_enable_fbc;
			dev_priv->display.disable_fbc = i8xx_disable_fbc;
		}
		/* 855GM needs testing */
	}

5105 5106 5107 5108 5109 5110
	/* For cxsr */
	if (IS_PINEVIEW(dev))
		i915_pineview_get_mem_freq(dev);
	else if (IS_GEN5(dev))
		i915_ironlake_get_mem_freq(dev);

5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133
	/* For FIFO watermark updates */
	if (HAS_PCH_SPLIT(dev)) {
		if (IS_GEN5(dev)) {
			if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
				dev_priv->display.update_wm = ironlake_update_wm;
			else {
				DRM_DEBUG_KMS("Failed to get proper latency. "
					      "Disable CxSR\n");
				dev_priv->display.update_wm = NULL;
			}
			dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
		} else if (IS_GEN6(dev)) {
			if (SNB_READ_WM0_LATENCY()) {
				dev_priv->display.update_wm = sandybridge_update_wm;
				dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
			} else {
				DRM_DEBUG_KMS("Failed to read display plane latency. "
					      "Disable CxSR\n");
				dev_priv->display.update_wm = NULL;
			}
			dev_priv->display.init_clock_gating = gen6_init_clock_gating;
		} else if (IS_IVYBRIDGE(dev)) {
			if (SNB_READ_WM0_LATENCY()) {
5134
				dev_priv->display.update_wm = ivybridge_update_wm;
5135 5136 5137 5138 5139 5140 5141
				dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
			} else {
				DRM_DEBUG_KMS("Failed to read display plane latency. "
					      "Disable CxSR\n");
				dev_priv->display.update_wm = NULL;
			}
			dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
5142
		} else if (IS_HASWELL(dev)) {
5143
			if (I915_READ64(MCH_SSKPD)) {
5144
				dev_priv->display.update_wm = haswell_update_wm;
5145 5146
				dev_priv->display.update_sprite_wm =
					haswell_update_sprite_wm;
5147 5148 5149 5150 5151
			} else {
				DRM_DEBUG_KMS("Failed to read display plane latency. "
					      "Disable CxSR\n");
				dev_priv->display.update_wm = NULL;
			}
5152
			dev_priv->display.init_clock_gating = haswell_init_clock_gating;
5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205
		} else
			dev_priv->display.update_wm = NULL;
	} else if (IS_VALLEYVIEW(dev)) {
		dev_priv->display.update_wm = valleyview_update_wm;
		dev_priv->display.init_clock_gating =
			valleyview_init_clock_gating;
	} else if (IS_PINEVIEW(dev)) {
		if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
					    dev_priv->is_ddr3,
					    dev_priv->fsb_freq,
					    dev_priv->mem_freq)) {
			DRM_INFO("failed to find known CxSR latency "
				 "(found ddr%s fsb freq %d, mem freq %d), "
				 "disabling CxSR\n",
				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
				 dev_priv->fsb_freq, dev_priv->mem_freq);
			/* Disable CxSR and never update its watermark again */
			pineview_disable_cxsr(dev);
			dev_priv->display.update_wm = NULL;
		} else
			dev_priv->display.update_wm = pineview_update_wm;
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
	} else if (IS_G4X(dev)) {
		dev_priv->display.update_wm = g4x_update_wm;
		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
	} else if (IS_GEN4(dev)) {
		dev_priv->display.update_wm = i965_update_wm;
		if (IS_CRESTLINE(dev))
			dev_priv->display.init_clock_gating = crestline_init_clock_gating;
		else if (IS_BROADWATER(dev))
			dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
	} else if (IS_GEN3(dev)) {
		dev_priv->display.update_wm = i9xx_update_wm;
		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
	} else if (IS_I865G(dev)) {
		dev_priv->display.update_wm = i830_update_wm;
		dev_priv->display.init_clock_gating = i85x_init_clock_gating;
		dev_priv->display.get_fifo_size = i830_get_fifo_size;
	} else if (IS_I85X(dev)) {
		dev_priv->display.update_wm = i9xx_update_wm;
		dev_priv->display.get_fifo_size = i85x_get_fifo_size;
		dev_priv->display.init_clock_gating = i85x_init_clock_gating;
	} else {
		dev_priv->display.update_wm = i830_update_wm;
		dev_priv->display.init_clock_gating = i830_init_clock_gating;
		if (IS_845G(dev))
			dev_priv->display.get_fifo_size = i845_get_fifo_size;
		else
			dev_priv->display.get_fifo_size = i830_get_fifo_size;
	}
}

5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221
static void __gen6_gt_wait_for_thread_c0(struct drm_i915_private *dev_priv)
{
	u32 gt_thread_status_mask;

	if (IS_HASWELL(dev_priv->dev))
		gt_thread_status_mask = GEN6_GT_THREAD_STATUS_CORE_MASK_HSW;
	else
		gt_thread_status_mask = GEN6_GT_THREAD_STATUS_CORE_MASK;

	/* w/a for a sporadic read returning 0 by waiting for the GT
	 * thread to wake up.
	 */
	if (wait_for_atomic_us((I915_READ_NOTRACE(GEN6_GT_THREAD_STATUS_REG) & gt_thread_status_mask) == 0, 500))
		DRM_ERROR("GT thread status wait timed out\n");
}

5222 5223 5224 5225 5226 5227
static void __gen6_gt_force_wake_reset(struct drm_i915_private *dev_priv)
{
	I915_WRITE_NOTRACE(FORCEWAKE, 0);
	POSTING_READ(ECOBUS); /* something from same cacheline, but !FORCEWAKE */
}

5228 5229
static void __gen6_gt_force_wake_get(struct drm_i915_private *dev_priv)
{
5230
	if (wait_for_atomic((I915_READ_NOTRACE(FORCEWAKE_ACK) & 1) == 0,
5231
			    FORCEWAKE_ACK_TIMEOUT_MS))
5232
		DRM_ERROR("Timed out waiting for forcewake old ack to clear.\n");
5233

5234
	I915_WRITE_NOTRACE(FORCEWAKE, 1);
B
Ben Widawsky 已提交
5235
	POSTING_READ(ECOBUS); /* something from same cacheline, but !FORCEWAKE */
5236

5237
	if (wait_for_atomic((I915_READ_NOTRACE(FORCEWAKE_ACK) & 1),
5238
			    FORCEWAKE_ACK_TIMEOUT_MS))
5239
		DRM_ERROR("Timed out waiting for forcewake to ack request.\n");
5240

5241
	/* WaRsForcewakeWaitTC0:snb */
5242 5243 5244
	__gen6_gt_wait_for_thread_c0(dev_priv);
}

5245 5246 5247
static void __gen6_gt_force_wake_mt_reset(struct drm_i915_private *dev_priv)
{
	I915_WRITE_NOTRACE(FORCEWAKE_MT, _MASKED_BIT_DISABLE(0xffff));
5248 5249
	/* something from same cacheline, but !FORCEWAKE_MT */
	POSTING_READ(ECOBUS);
5250 5251
}

5252 5253 5254 5255 5256 5257 5258 5259 5260
static void __gen6_gt_force_wake_mt_get(struct drm_i915_private *dev_priv)
{
	u32 forcewake_ack;

	if (IS_HASWELL(dev_priv->dev))
		forcewake_ack = FORCEWAKE_ACK_HSW;
	else
		forcewake_ack = FORCEWAKE_MT_ACK;

5261
	if (wait_for_atomic((I915_READ_NOTRACE(forcewake_ack) & FORCEWAKE_KERNEL) == 0,
5262
			    FORCEWAKE_ACK_TIMEOUT_MS))
5263
		DRM_ERROR("Timed out waiting for forcewake old ack to clear.\n");
5264

5265
	I915_WRITE_NOTRACE(FORCEWAKE_MT, _MASKED_BIT_ENABLE(FORCEWAKE_KERNEL));
5266 5267
	/* something from same cacheline, but !FORCEWAKE_MT */
	POSTING_READ(ECOBUS);
5268

5269
	if (wait_for_atomic((I915_READ_NOTRACE(forcewake_ack) & FORCEWAKE_KERNEL),
5270
			    FORCEWAKE_ACK_TIMEOUT_MS))
5271
		DRM_ERROR("Timed out waiting for forcewake to ack request.\n");
5272

5273
	/* WaRsForcewakeWaitTC0:ivb,hsw */
5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304
	__gen6_gt_wait_for_thread_c0(dev_priv);
}

/*
 * Generally this is called implicitly by the register read function. However,
 * if some sequence requires the GT to not power down then this function should
 * be called at the beginning of the sequence followed by a call to
 * gen6_gt_force_wake_put() at the end of the sequence.
 */
void gen6_gt_force_wake_get(struct drm_i915_private *dev_priv)
{
	unsigned long irqflags;

	spin_lock_irqsave(&dev_priv->gt_lock, irqflags);
	if (dev_priv->forcewake_count++ == 0)
		dev_priv->gt.force_wake_get(dev_priv);
	spin_unlock_irqrestore(&dev_priv->gt_lock, irqflags);
}

void gen6_gt_check_fifodbg(struct drm_i915_private *dev_priv)
{
	u32 gtfifodbg;
	gtfifodbg = I915_READ_NOTRACE(GTFIFODBG);
	if (WARN(gtfifodbg & GT_FIFO_CPU_ERROR_MASK,
	     "MMIO read or write has been dropped %x\n", gtfifodbg))
		I915_WRITE_NOTRACE(GTFIFODBG, GT_FIFO_CPU_ERROR_MASK);
}

static void __gen6_gt_force_wake_put(struct drm_i915_private *dev_priv)
{
	I915_WRITE_NOTRACE(FORCEWAKE, 0);
5305 5306
	/* something from same cacheline, but !FORCEWAKE */
	POSTING_READ(ECOBUS);
5307 5308 5309 5310 5311
	gen6_gt_check_fifodbg(dev_priv);
}

static void __gen6_gt_force_wake_mt_put(struct drm_i915_private *dev_priv)
{
5312
	I915_WRITE_NOTRACE(FORCEWAKE_MT, _MASKED_BIT_DISABLE(FORCEWAKE_KERNEL));
5313 5314
	/* something from same cacheline, but !FORCEWAKE_MT */
	POSTING_READ(ECOBUS);
5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350
	gen6_gt_check_fifodbg(dev_priv);
}

/*
 * see gen6_gt_force_wake_get()
 */
void gen6_gt_force_wake_put(struct drm_i915_private *dev_priv)
{
	unsigned long irqflags;

	spin_lock_irqsave(&dev_priv->gt_lock, irqflags);
	if (--dev_priv->forcewake_count == 0)
		dev_priv->gt.force_wake_put(dev_priv);
	spin_unlock_irqrestore(&dev_priv->gt_lock, irqflags);
}

int __gen6_gt_wait_for_fifo(struct drm_i915_private *dev_priv)
{
	int ret = 0;

	if (dev_priv->gt_fifo_count < GT_FIFO_NUM_RESERVED_ENTRIES) {
		int loop = 500;
		u32 fifo = I915_READ_NOTRACE(GT_FIFO_FREE_ENTRIES);
		while (fifo <= GT_FIFO_NUM_RESERVED_ENTRIES && loop--) {
			udelay(10);
			fifo = I915_READ_NOTRACE(GT_FIFO_FREE_ENTRIES);
		}
		if (WARN_ON(loop < 0 && fifo <= GT_FIFO_NUM_RESERVED_ENTRIES))
			++ret;
		dev_priv->gt_fifo_count = fifo;
	}
	dev_priv->gt_fifo_count--;

	return ret;
}

5351 5352 5353
static void vlv_force_wake_reset(struct drm_i915_private *dev_priv)
{
	I915_WRITE_NOTRACE(FORCEWAKE_VLV, _MASKED_BIT_DISABLE(0xffff));
5354 5355
	/* something from same cacheline, but !FORCEWAKE_VLV */
	POSTING_READ(FORCEWAKE_ACK_VLV);
5356 5357
}

5358 5359
static void vlv_force_wake_get(struct drm_i915_private *dev_priv)
{
5360
	if (wait_for_atomic((I915_READ_NOTRACE(FORCEWAKE_ACK_VLV) & FORCEWAKE_KERNEL) == 0,
5361
			    FORCEWAKE_ACK_TIMEOUT_MS))
5362
		DRM_ERROR("Timed out waiting for forcewake old ack to clear.\n");
5363

5364
	I915_WRITE_NOTRACE(FORCEWAKE_VLV, _MASKED_BIT_ENABLE(FORCEWAKE_KERNEL));
5365 5366
	I915_WRITE_NOTRACE(FORCEWAKE_MEDIA_VLV,
			   _MASKED_BIT_ENABLE(FORCEWAKE_KERNEL));
5367

5368
	if (wait_for_atomic((I915_READ_NOTRACE(FORCEWAKE_ACK_VLV) & FORCEWAKE_KERNEL),
5369
			    FORCEWAKE_ACK_TIMEOUT_MS))
5370 5371 5372 5373 5374 5375
		DRM_ERROR("Timed out waiting for GT to ack forcewake request.\n");

	if (wait_for_atomic((I915_READ_NOTRACE(FORCEWAKE_ACK_MEDIA_VLV) &
			     FORCEWAKE_KERNEL),
			    FORCEWAKE_ACK_TIMEOUT_MS))
		DRM_ERROR("Timed out waiting for media to ack forcewake request.\n");
5376

5377
	/* WaRsForcewakeWaitTC0:vlv */
5378 5379 5380 5381 5382
	__gen6_gt_wait_for_thread_c0(dev_priv);
}

static void vlv_force_wake_put(struct drm_i915_private *dev_priv)
{
5383
	I915_WRITE_NOTRACE(FORCEWAKE_VLV, _MASKED_BIT_DISABLE(FORCEWAKE_KERNEL));
5384 5385 5386
	I915_WRITE_NOTRACE(FORCEWAKE_MEDIA_VLV,
			   _MASKED_BIT_DISABLE(FORCEWAKE_KERNEL));
	/* The below doubles as a POSTING_READ */
5387
	gen6_gt_check_fifodbg(dev_priv);
5388 5389
}

5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402
void intel_gt_reset(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (IS_VALLEYVIEW(dev)) {
		vlv_force_wake_reset(dev_priv);
	} else if (INTEL_INFO(dev)->gen >= 6) {
		__gen6_gt_force_wake_reset(dev_priv);
		if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
			__gen6_gt_force_wake_mt_reset(dev_priv);
	}
}

5403 5404 5405 5406 5407 5408
void intel_gt_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	spin_lock_init(&dev_priv->gt_lock);

5409 5410
	intel_gt_reset(dev);

5411 5412 5413
	if (IS_VALLEYVIEW(dev)) {
		dev_priv->gt.force_wake_get = vlv_force_wake_get;
		dev_priv->gt.force_wake_put = vlv_force_wake_put;
5414 5415 5416 5417
	} else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
		dev_priv->gt.force_wake_get = __gen6_gt_force_wake_mt_get;
		dev_priv->gt.force_wake_put = __gen6_gt_force_wake_mt_put;
	} else if (IS_GEN6(dev)) {
5418 5419 5420
		dev_priv->gt.force_wake_get = __gen6_gt_force_wake_get;
		dev_priv->gt.force_wake_put = __gen6_gt_force_wake_put;
	}
5421 5422
	INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
			  intel_gen6_powersave_work);
5423 5424
}

B
Ben Widawsky 已提交
5425 5426
int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u8 mbox, u32 *val)
{
5427
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450

	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
		return -EAGAIN;
	}

	I915_WRITE(GEN6_PCODE_DATA, *val);
	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);

	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
		     500)) {
		DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

	*val = I915_READ(GEN6_PCODE_DATA);
	I915_WRITE(GEN6_PCODE_DATA, 0);

	return 0;
}

int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u8 mbox, u32 val)
{
5451
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470

	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
		return -EAGAIN;
	}

	I915_WRITE(GEN6_PCODE_DATA, val);
	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);

	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
		     500)) {
		DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

	I915_WRITE(GEN6_PCODE_DATA, 0);

	return 0;
}
5471

5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526
int vlv_gpu_freq(int ddr_freq, int val)
{
	int mult, base;

	switch (ddr_freq) {
	case 800:
		mult = 20;
		base = 120;
		break;
	case 1066:
		mult = 22;
		base = 133;
		break;
	case 1333:
		mult = 21;
		base = 125;
		break;
	default:
		return -1;
	}

	return ((val - 0xbd) * mult) + base;
}

int vlv_freq_opcode(int ddr_freq, int val)
{
	int mult, base;

	switch (ddr_freq) {
	case 800:
		mult = 20;
		base = 120;
		break;
	case 1066:
		mult = 22;
		base = 133;
		break;
	case 1333:
		mult = 21;
		base = 125;
		break;
	default:
		return -1;
	}

	val /= mult;
	val -= base / mult;
	val += 0xbd;

	if (val > 0xea)
		val = 0xea;

	return val;
}