i3000_edac.c 14.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/*
 * Intel 3000/3010 Memory Controller kernel module
 * Copyright (C) 2007 Akamai Technologies, Inc.
 * Shamelessly copied from:
 * 	Intel D82875P Memory Controller kernel module
 * 	(C) 2003 Linux Networx (http://lnxi.com)
 *
 * This file may be distributed under the terms of the
 * GNU General Public License.
 */

#include <linux/module.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/pci_ids.h>
16
#include <linux/edac.h>
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
#include "edac_core.h"

#define I3000_REVISION		"1.1"

#define EDAC_MOD_STR		"i3000_edac"

#define I3000_RANKS		8
#define I3000_RANKS_PER_CHANNEL	4
#define I3000_CHANNELS		2

/* Intel 3000 register addresses - device 0 function 0 - DRAM Controller */

#define I3000_MCHBAR		0x44	/* MCH Memory Mapped Register BAR */
#define I3000_MCHBAR_MASK	0xffffc000
#define I3000_MMR_WINDOW_SIZE	16384

33 34 35 36 37 38 39 40 41 42 43 44
#define I3000_EDEAP	0x70	/* Extended DRAM Error Address Pointer (8b)
				 *
				 * 7:1   reserved
				 * 0     bit 32 of address
				 */
#define I3000_DEAP	0x58	/* DRAM Error Address Pointer (32b)
				 *
				 * 31:7  address
				 * 6:1   reserved
				 * 0     Error channel 0/1
				 */
#define I3000_DEAP_GRAIN 		(1 << 7)
45

46 47 48 49 50 51 52
/*
 * Helper functions to decode the DEAP/EDEAP hardware registers.
 *
 * The type promotion here is deliberate; we're deriving an
 * unsigned long pfn and offset from hardware regs which are u8/u32.
 */

53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
static inline unsigned long deap_pfn(u8 edeap, u32 deap)
{
	deap >>= PAGE_SHIFT;
	deap |= (edeap & 1) << (32 - PAGE_SHIFT);
	return deap;
}

static inline unsigned long deap_offset(u32 deap)
{
	return deap & ~(I3000_DEAP_GRAIN - 1) & ~PAGE_MASK;
}

static inline int deap_channel(u32 deap)
{
	return deap & 1;
}
69

70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
#define I3000_DERRSYN	0x5c	/* DRAM Error Syndrome (8b)
				 *
				 *  7:0  DRAM ECC Syndrome
				 */

#define I3000_ERRSTS	0xc8	/* Error Status Register (16b)
				 *
				 * 15:12 reserved
				 * 11    MCH Thermal Sensor Event
				 *         for SMI/SCI/SERR
				 * 10    reserved
				 *  9    LOCK to non-DRAM Memory Flag (LCKF)
				 *  8    Received Refresh Timeout Flag (RRTOF)
				 *  7:2  reserved
				 *  1    Multi-bit DRAM ECC Error Flag (DMERR)
				 *  0    Single-bit DRAM ECC Error Flag (DSERR)
				 */
87 88 89 90
#define I3000_ERRSTS_BITS	0x0b03	/* bits which indicate errors */
#define I3000_ERRSTS_UE		0x0002
#define I3000_ERRSTS_CE		0x0001

91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
#define I3000_ERRCMD	0xca	/* Error Command (16b)
				 *
				 * 15:12 reserved
				 * 11    SERR on MCH Thermal Sensor Event
				 *         (TSESERR)
				 * 10    reserved
				 *  9    SERR on LOCK to non-DRAM Memory
				 *         (LCKERR)
				 *  8    SERR on DRAM Refresh Timeout
				 *         (DRTOERR)
				 *  7:2  reserved
				 *  1    SERR Multi-Bit DRAM ECC Error
				 *         (DMERR)
				 *  0    SERR on Single-Bit ECC Error
				 *         (DSERR)
				 */
107 108 109 110 111

/* Intel  MMIO register space - device 0 function 0 - MMR space */

#define I3000_DRB_SHIFT 25	/* 32MiB grain */

112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
#define I3000_C0DRB	0x100	/* Channel 0 DRAM Rank Boundary (8b x 4)
				 *
				 * 7:0   Channel 0 DRAM Rank Boundary Address
				 */
#define I3000_C1DRB	0x180	/* Channel 1 DRAM Rank Boundary (8b x 4)
				 *
				 * 7:0   Channel 1 DRAM Rank Boundary Address
				 */

#define I3000_C0DRA	0x108	/* Channel 0 DRAM Rank Attribute (8b x 2)
				 *
				 * 7     reserved
				 * 6:4   DRAM odd Rank Attribute
				 * 3     reserved
				 * 2:0   DRAM even Rank Attribute
				 *
				 * Each attribute defines the page
				 * size of the corresponding rank:
				 *     000: unpopulated
				 *     001: reserved
				 *     010: 4 KB
				 *     011: 8 KB
				 *     100: 16 KB
				 *     Others: reserved
				 */
#define I3000_C1DRA	0x188	/* Channel 1 DRAM Rank Attribute (8b x 2) */
138 139 140 141 142 143 144 145 146 147

static inline unsigned char odd_rank_attrib(unsigned char dra)
{
	return (dra & 0x70) >> 4;
}

static inline unsigned char even_rank_attrib(unsigned char dra)
{
	return dra & 0x07;
}
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165

#define I3000_C0DRC0	0x120	/* DRAM Controller Mode 0 (32b)
				 *
				 * 31:30 reserved
				 * 29    Initialization Complete (IC)
				 * 28:11 reserved
				 * 10:8  Refresh Mode Select (RMS)
				 * 7     reserved
				 * 6:4   Mode Select (SMS)
				 * 3:2   reserved
				 * 1:0   DRAM Type (DT)
				 */

#define I3000_C0DRC1	0x124	/* DRAM Controller Mode 1 (32b)
				 *
				 * 31    Enhanced Addressing Enable (ENHADE)
				 * 30:0  reserved
				 */
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184

enum i3000p_chips {
	I3000 = 0,
};

struct i3000_dev_info {
	const char *ctl_name;
};

struct i3000_error_info {
	u16 errsts;
	u8 derrsyn;
	u8 edeap;
	u32 deap;
	u16 errsts2;
};

static const struct i3000_dev_info i3000_devs[] = {
	[I3000] = {
185
		.ctl_name = "i3000"},
186 187
};

188
static struct pci_dev *mci_pdev;
189
static int i3000_registered = 1;
190
static struct edac_pci_ctl_info *i3000_pci;
191 192

static void i3000_get_error_info(struct mem_ctl_info *mci,
D
Dave Jiang 已提交
193
				 struct i3000_error_info *info)
194 195 196
{
	struct pci_dev *pdev;

197
	pdev = to_pci_dev(mci->pdev);
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218

	/*
	 * This is a mess because there is no atomic way to read all the
	 * registers at once and the registers can transition from CE being
	 * overwritten by UE.
	 */
	pci_read_config_word(pdev, I3000_ERRSTS, &info->errsts);
	if (!(info->errsts & I3000_ERRSTS_BITS))
		return;
	pci_read_config_byte(pdev, I3000_EDEAP, &info->edeap);
	pci_read_config_dword(pdev, I3000_DEAP, &info->deap);
	pci_read_config_byte(pdev, I3000_DERRSYN, &info->derrsyn);
	pci_read_config_word(pdev, I3000_ERRSTS, &info->errsts2);

	/*
	 * If the error is the same for both reads then the first set
	 * of reads is valid.  If there is a change then there is a CE
	 * with no info and the second set of reads is valid and
	 * should be UE info.
	 */
	if ((info->errsts ^ info->errsts2) & I3000_ERRSTS_BITS) {
D
Dave Jiang 已提交
219 220 221
		pci_read_config_byte(pdev, I3000_EDEAP, &info->edeap);
		pci_read_config_dword(pdev, I3000_DEAP, &info->deap);
		pci_read_config_byte(pdev, I3000_DERRSYN, &info->derrsyn);
222 223
	}

224 225
	/*
	 * Clear any error bits.
226 227
	 * (Yes, we really clear bits by writing 1 to them.)
	 */
D
Dave Jiang 已提交
228 229
	pci_write_bits16(pdev, I3000_ERRSTS, I3000_ERRSTS_BITS,
			 I3000_ERRSTS_BITS);
230 231 232
}

static int i3000_process_error_info(struct mem_ctl_info *mci,
233 234
				struct i3000_error_info *info,
				int handle_errors)
235
{
236 237
	int row, multi_chan, channel;
	unsigned long pfn, offset;
238 239 240 241 242 243 244 245 246 247

	multi_chan = mci->csrows[0].nr_channels - 1;

	if (!(info->errsts & I3000_ERRSTS_BITS))
		return 0;

	if (!handle_errors)
		return 1;

	if ((info->errsts ^ info->errsts2) & I3000_ERRSTS_BITS) {
248 249 250
		edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, 0, 0, 0,
				     -1, -1, -1,
				     "UE overwrote CE", "", NULL);
251 252 253
		info->errsts = info->errsts2;
	}

254 255 256
	pfn = deap_pfn(info->edeap, info->deap);
	offset = deap_offset(info->deap);
	channel = deap_channel(info->deap);
257 258 259 260

	row = edac_mc_find_csrow_by_page(mci, pfn);

	if (info->errsts & I3000_ERRSTS_UE)
261 262 263 264
		edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci,
				     pfn, offset, 0,
				     row, -1, -1,
				     "i3000 UE", "", NULL);
265
	else
266 267 268 269
		edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci,
				     pfn, offset, info->derrsyn,
				     row, multi_chan ? channel : 0, -1,
				     "i3000 CE", "", NULL);
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289

	return 1;
}

static void i3000_check(struct mem_ctl_info *mci)
{
	struct i3000_error_info info;

	debugf1("MC%d: %s()\n", mci->mc_idx, __func__);
	i3000_get_error_info(mci, &info);
	i3000_process_error_info(mci, &info, 1);
}

static int i3000_is_interleaved(const unsigned char *c0dra,
				const unsigned char *c1dra,
				const unsigned char *c0drb,
				const unsigned char *c1drb)
{
	int i;

290 291
	/*
	 * If the channels aren't populated identically then
292 293 294
	 * we're not interleaved.
	 */
	for (i = 0; i < I3000_RANKS_PER_CHANNEL / 2; i++)
295 296 297
		if (odd_rank_attrib(c0dra[i]) != odd_rank_attrib(c1dra[i]) ||
			even_rank_attrib(c0dra[i]) !=
						even_rank_attrib(c1dra[i]))
298 299
			return 0;

300 301
	/*
	 * If the rank boundaries for the two channels are different
302 303 304 305 306 307 308 309 310 311 312 313
	 * then we're not interleaved.
	 */
	for (i = 0; i < I3000_RANKS_PER_CHANNEL; i++)
		if (c0drb[i] != c1drb[i])
			return 0;

	return 1;
}

static int i3000_probe1(struct pci_dev *pdev, int dev_idx)
{
	int rc;
314
	int i, j;
315
	struct mem_ctl_info *mci = NULL;
316
	struct edac_mc_layer layers[2];
317
	unsigned long last_cumul_size, nr_pages;
318 319 320 321 322
	int interleaved, nr_channels;
	unsigned char dra[I3000_RANKS / 2], drb[I3000_RANKS];
	unsigned char *c0dra = dra, *c1dra = &dra[I3000_RANKS_PER_CHANNEL / 2];
	unsigned char *c0drb = drb, *c1drb = &drb[I3000_RANKS_PER_CHANNEL];
	unsigned long mchbar;
A
Al Viro 已提交
323
	void __iomem *window;
324 325 326

	debugf0("MC: %s()\n", __func__);

D
Dave Jiang 已提交
327
	pci_read_config_dword(pdev, I3000_MCHBAR, (u32 *) & mchbar);
328 329 330
	mchbar &= I3000_MCHBAR_MASK;
	window = ioremap_nocache(mchbar, I3000_MMR_WINDOW_SIZE);
	if (!window) {
D
Dave Jiang 已提交
331
		printk(KERN_ERR "i3000: cannot map mmio space at 0x%lx\n",
332
			mchbar);
333 334 335
		return -ENODEV;
	}

D
Dave Jiang 已提交
336 337 338 339
	c0dra[0] = readb(window + I3000_C0DRA + 0);	/* ranks 0,1 */
	c0dra[1] = readb(window + I3000_C0DRA + 1);	/* ranks 2,3 */
	c1dra[0] = readb(window + I3000_C1DRA + 0);	/* ranks 0,1 */
	c1dra[1] = readb(window + I3000_C1DRA + 1);	/* ranks 2,3 */
340 341 342 343 344 345 346 347

	for (i = 0; i < I3000_RANKS_PER_CHANNEL; i++) {
		c0drb[i] = readb(window + I3000_C0DRB + i);
		c1drb[i] = readb(window + I3000_C1DRB + i);
	}

	iounmap(window);

348 349
	/*
	 * Figure out how many channels we have.
350 351 352 353 354 355 356 357
	 *
	 * If we have what the datasheet calls "asymmetric channels"
	 * (essentially the same as what was called "virtual single
	 * channel mode" in the i82875) then it's a single channel as
	 * far as EDAC is concerned.
	 */
	interleaved = i3000_is_interleaved(c0dra, c1dra, c0drb, c1drb);
	nr_channels = interleaved ? 2 : 1;
358 359 360 361 362 363 364

	layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
	layers[0].size = I3000_RANKS / nr_channels;
	layers[0].is_virt_csrow = true;
	layers[1].type = EDAC_MC_LAYER_CHANNEL;
	layers[1].size = nr_channels;
	layers[1].is_virt_csrow = false;
365
	mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers, 0);
366 367 368 369 370
	if (!mci)
		return -ENOMEM;

	debugf3("MC: %s(): init mci\n", __func__);

371
	mci->pdev = &pdev->dev;
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
	mci->mtype_cap = MEM_FLAG_DDR2;

	mci->edac_ctl_cap = EDAC_FLAG_SECDED;
	mci->edac_cap = EDAC_FLAG_SECDED;

	mci->mod_name = EDAC_MOD_STR;
	mci->mod_ver = I3000_REVISION;
	mci->ctl_name = i3000_devs[dev_idx].ctl_name;
	mci->dev_name = pci_name(pdev);
	mci->edac_check = i3000_check;
	mci->ctl_page_to_phys = NULL;

	/*
	 * The dram rank boundary (DRB) reg values are boundary addresses
	 * for each DRAM rank with a granularity of 32MB.  DRB regs are
	 * cumulative; the last one will contain the total memory
	 * contained in all ranks.
	 *
	 * If we're in interleaved mode then we're only walking through
	 * the ranks of controller 0, so we double all the values we see.
	 */
	for (last_cumul_size = i = 0; i < mci->nr_csrows; i++) {
		u8 value;
		u32 cumul_size;
		struct csrow_info *csrow = &mci->csrows[i];

		value = drb[i];
		cumul_size = value << (I3000_DRB_SHIFT - PAGE_SHIFT);
		if (interleaved)
			cumul_size <<= 1;
		debugf3("MC: %s(): (%d) cumul_size 0x%x\n",
			__func__, i, cumul_size);
404
		if (cumul_size == last_cumul_size)
405 406 407 408
			continue;

		csrow->first_page = last_cumul_size;
		csrow->last_page = cumul_size - 1;
409
		nr_pages = cumul_size - last_cumul_size;
410
		last_cumul_size = cumul_size;
411 412 413

		for (j = 0; j < nr_channels; j++) {
			struct dimm_info *dimm = csrow->channels[j].dimm;
414 415

			dimm->nr_pages = nr_pages / nr_channels;
416 417 418 419 420
			dimm->grain = I3000_DEAP_GRAIN;
			dimm->mtype = MEM_DDR2;
			dimm->dtype = DEV_UNKNOWN;
			dimm->edac_mode = EDAC_UNKNOWN;
		}
421 422
	}

423 424
	/*
	 * Clear any error bits.
425 426
	 * (Yes, we really clear bits by writing 1 to them.)
	 */
D
Dave Jiang 已提交
427 428
	pci_write_bits16(pdev, I3000_ERRSTS, I3000_ERRSTS_BITS,
			 I3000_ERRSTS_BITS);
429 430

	rc = -ENODEV;
431
	if (edac_mc_add_mc(mci)) {
432 433 434 435
		debugf3("MC: %s(): failed edac_mc_add_mc()\n", __func__);
		goto fail;
	}

436 437 438 439 440 441 442 443 444 445 446
	/* allocating generic PCI control info */
	i3000_pci = edac_pci_create_generic_ctl(&pdev->dev, EDAC_MOD_STR);
	if (!i3000_pci) {
		printk(KERN_WARNING
			"%s(): Unable to create PCI control\n",
			__func__);
		printk(KERN_WARNING
			"%s(): PCI error report via EDAC not setup\n",
			__func__);
	}

447 448 449 450
	/* get this far and it's successful */
	debugf3("MC: %s(): success\n", __func__);
	return 0;

451
fail:
452 453 454 455 456 457 458 459
	if (mci)
		edac_mc_free(mci);

	return rc;
}

/* returns count (>= 0), or negative on error */
static int __devinit i3000_init_one(struct pci_dev *pdev,
460
				const struct pci_device_id *ent)
461 462 463 464 465 466 467 468 469
{
	int rc;

	debugf0("MC: %s()\n", __func__);

	if (pci_enable_device(pdev) < 0)
		return -EIO;

	rc = i3000_probe1(pdev, ent->driver_data);
470
	if (!mci_pdev)
471 472 473 474 475 476 477 478 479 480 481
		mci_pdev = pci_dev_get(pdev);

	return rc;
}

static void __devexit i3000_remove_one(struct pci_dev *pdev)
{
	struct mem_ctl_info *mci;

	debugf0("%s()\n", __func__);

482 483 484
	if (i3000_pci)
		edac_pci_release_generic_ctl(i3000_pci);

485 486
	mci = edac_mc_del_mc(&pdev->dev);
	if (!mci)
487 488 489 490 491
		return;

	edac_mc_free(mci);
}

492
static DEFINE_PCI_DEVICE_TABLE(i3000_pci_tbl) = {
493
	{
D
Dave Jiang 已提交
494 495
	 PCI_VEND_DEV(INTEL, 3000_HB), PCI_ANY_ID, PCI_ANY_ID, 0, 0,
	 I3000},
496
	{
D
Dave Jiang 已提交
497 498
	 0,
	 }			/* 0 terminated list. */
499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
};

MODULE_DEVICE_TABLE(pci, i3000_pci_tbl);

static struct pci_driver i3000_driver = {
	.name = EDAC_MOD_STR,
	.probe = i3000_init_one,
	.remove = __devexit_p(i3000_remove_one),
	.id_table = i3000_pci_tbl,
};

static int __init i3000_init(void)
{
	int pci_rc;

	debugf3("MC: %s()\n", __func__);
515 516 517 518

       /* Ensure that the OPSTATE is set correctly for POLL or NMI */
       opstate_init();

519 520 521 522
	pci_rc = pci_register_driver(&i3000_driver);
	if (pci_rc < 0)
		goto fail0;

523
	if (!mci_pdev) {
524 525
		i3000_registered = 0;
		mci_pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
526
					PCI_DEVICE_ID_INTEL_3000_HB, NULL);
527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
		if (!mci_pdev) {
			debugf0("i3000 pci_get_device fail\n");
			pci_rc = -ENODEV;
			goto fail1;
		}

		pci_rc = i3000_init_one(mci_pdev, i3000_pci_tbl);
		if (pci_rc < 0) {
			debugf0("i3000 init fail\n");
			pci_rc = -ENODEV;
			goto fail1;
		}
	}

	return 0;

543
fail1:
544 545
	pci_unregister_driver(&i3000_driver);

546
fail0:
547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569
	if (mci_pdev)
		pci_dev_put(mci_pdev);

	return pci_rc;
}

static void __exit i3000_exit(void)
{
	debugf3("MC: %s()\n", __func__);

	pci_unregister_driver(&i3000_driver);
	if (!i3000_registered) {
		i3000_remove_one(mci_pdev);
		pci_dev_put(mci_pdev);
	}
}

module_init(i3000_init);
module_exit(i3000_exit);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Akamai Technologies Arthur Ulfeldt/Jason Uhlenkott");
MODULE_DESCRIPTION("MC support for Intel 3000 memory hub controllers");
570 571 572

module_param(edac_op_state, int, 0444);
MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");