i3000_edac.c 13.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/*
 * Intel 3000/3010 Memory Controller kernel module
 * Copyright (C) 2007 Akamai Technologies, Inc.
 * Shamelessly copied from:
 * 	Intel D82875P Memory Controller kernel module
 * 	(C) 2003 Linux Networx (http://lnxi.com)
 *
 * This file may be distributed under the terms of the
 * GNU General Public License.
 */

#include <linux/module.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/pci_ids.h>
16
#include <linux/edac.h>
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
#include "edac_core.h"

#define I3000_REVISION		"1.1"

#define EDAC_MOD_STR		"i3000_edac"

#define I3000_RANKS		8
#define I3000_RANKS_PER_CHANNEL	4
#define I3000_CHANNELS		2

/* Intel 3000 register addresses - device 0 function 0 - DRAM Controller */

#define I3000_MCHBAR		0x44	/* MCH Memory Mapped Register BAR */
#define I3000_MCHBAR_MASK	0xffffc000
#define I3000_MMR_WINDOW_SIZE	16384

33 34 35 36 37 38 39 40 41 42 43 44
#define I3000_EDEAP	0x70	/* Extended DRAM Error Address Pointer (8b)
				 *
				 * 7:1   reserved
				 * 0     bit 32 of address
				 */
#define I3000_DEAP	0x58	/* DRAM Error Address Pointer (32b)
				 *
				 * 31:7  address
				 * 6:1   reserved
				 * 0     Error channel 0/1
				 */
#define I3000_DEAP_GRAIN 		(1 << 7)
45

46 47 48 49 50 51 52
/*
 * Helper functions to decode the DEAP/EDEAP hardware registers.
 *
 * The type promotion here is deliberate; we're deriving an
 * unsigned long pfn and offset from hardware regs which are u8/u32.
 */

53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
static inline unsigned long deap_pfn(u8 edeap, u32 deap)
{
	deap >>= PAGE_SHIFT;
	deap |= (edeap & 1) << (32 - PAGE_SHIFT);
	return deap;
}

static inline unsigned long deap_offset(u32 deap)
{
	return deap & ~(I3000_DEAP_GRAIN - 1) & ~PAGE_MASK;
}

static inline int deap_channel(u32 deap)
{
	return deap & 1;
}
69

70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
#define I3000_DERRSYN	0x5c	/* DRAM Error Syndrome (8b)
				 *
				 *  7:0  DRAM ECC Syndrome
				 */

#define I3000_ERRSTS	0xc8	/* Error Status Register (16b)
				 *
				 * 15:12 reserved
				 * 11    MCH Thermal Sensor Event
				 *         for SMI/SCI/SERR
				 * 10    reserved
				 *  9    LOCK to non-DRAM Memory Flag (LCKF)
				 *  8    Received Refresh Timeout Flag (RRTOF)
				 *  7:2  reserved
				 *  1    Multi-bit DRAM ECC Error Flag (DMERR)
				 *  0    Single-bit DRAM ECC Error Flag (DSERR)
				 */
87 88 89 90
#define I3000_ERRSTS_BITS	0x0b03	/* bits which indicate errors */
#define I3000_ERRSTS_UE		0x0002
#define I3000_ERRSTS_CE		0x0001

91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
#define I3000_ERRCMD	0xca	/* Error Command (16b)
				 *
				 * 15:12 reserved
				 * 11    SERR on MCH Thermal Sensor Event
				 *         (TSESERR)
				 * 10    reserved
				 *  9    SERR on LOCK to non-DRAM Memory
				 *         (LCKERR)
				 *  8    SERR on DRAM Refresh Timeout
				 *         (DRTOERR)
				 *  7:2  reserved
				 *  1    SERR Multi-Bit DRAM ECC Error
				 *         (DMERR)
				 *  0    SERR on Single-Bit ECC Error
				 *         (DSERR)
				 */
107 108 109 110 111

/* Intel  MMIO register space - device 0 function 0 - MMR space */

#define I3000_DRB_SHIFT 25	/* 32MiB grain */

112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
#define I3000_C0DRB	0x100	/* Channel 0 DRAM Rank Boundary (8b x 4)
				 *
				 * 7:0   Channel 0 DRAM Rank Boundary Address
				 */
#define I3000_C1DRB	0x180	/* Channel 1 DRAM Rank Boundary (8b x 4)
				 *
				 * 7:0   Channel 1 DRAM Rank Boundary Address
				 */

#define I3000_C0DRA	0x108	/* Channel 0 DRAM Rank Attribute (8b x 2)
				 *
				 * 7     reserved
				 * 6:4   DRAM odd Rank Attribute
				 * 3     reserved
				 * 2:0   DRAM even Rank Attribute
				 *
				 * Each attribute defines the page
				 * size of the corresponding rank:
				 *     000: unpopulated
				 *     001: reserved
				 *     010: 4 KB
				 *     011: 8 KB
				 *     100: 16 KB
				 *     Others: reserved
				 */
#define I3000_C1DRA	0x188	/* Channel 1 DRAM Rank Attribute (8b x 2) */
138 139 140 141 142 143 144 145 146 147

static inline unsigned char odd_rank_attrib(unsigned char dra)
{
	return (dra & 0x70) >> 4;
}

static inline unsigned char even_rank_attrib(unsigned char dra)
{
	return dra & 0x07;
}
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165

#define I3000_C0DRC0	0x120	/* DRAM Controller Mode 0 (32b)
				 *
				 * 31:30 reserved
				 * 29    Initialization Complete (IC)
				 * 28:11 reserved
				 * 10:8  Refresh Mode Select (RMS)
				 * 7     reserved
				 * 6:4   Mode Select (SMS)
				 * 3:2   reserved
				 * 1:0   DRAM Type (DT)
				 */

#define I3000_C0DRC1	0x124	/* DRAM Controller Mode 1 (32b)
				 *
				 * 31    Enhanced Addressing Enable (ENHADE)
				 * 30:0  reserved
				 */
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184

enum i3000p_chips {
	I3000 = 0,
};

struct i3000_dev_info {
	const char *ctl_name;
};

struct i3000_error_info {
	u16 errsts;
	u8 derrsyn;
	u8 edeap;
	u32 deap;
	u16 errsts2;
};

static const struct i3000_dev_info i3000_devs[] = {
	[I3000] = {
185
		.ctl_name = "i3000"},
186 187
};

188
static struct pci_dev *mci_pdev;
189
static int i3000_registered = 1;
190
static struct edac_pci_ctl_info *i3000_pci;
191 192

static void i3000_get_error_info(struct mem_ctl_info *mci,
D
Dave Jiang 已提交
193
				 struct i3000_error_info *info)
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
{
	struct pci_dev *pdev;

	pdev = to_pci_dev(mci->dev);

	/*
	 * This is a mess because there is no atomic way to read all the
	 * registers at once and the registers can transition from CE being
	 * overwritten by UE.
	 */
	pci_read_config_word(pdev, I3000_ERRSTS, &info->errsts);
	if (!(info->errsts & I3000_ERRSTS_BITS))
		return;
	pci_read_config_byte(pdev, I3000_EDEAP, &info->edeap);
	pci_read_config_dword(pdev, I3000_DEAP, &info->deap);
	pci_read_config_byte(pdev, I3000_DERRSYN, &info->derrsyn);
	pci_read_config_word(pdev, I3000_ERRSTS, &info->errsts2);

	/*
	 * If the error is the same for both reads then the first set
	 * of reads is valid.  If there is a change then there is a CE
	 * with no info and the second set of reads is valid and
	 * should be UE info.
	 */
	if ((info->errsts ^ info->errsts2) & I3000_ERRSTS_BITS) {
D
Dave Jiang 已提交
219 220 221
		pci_read_config_byte(pdev, I3000_EDEAP, &info->edeap);
		pci_read_config_dword(pdev, I3000_DEAP, &info->deap);
		pci_read_config_byte(pdev, I3000_DERRSYN, &info->derrsyn);
222 223
	}

224 225
	/*
	 * Clear any error bits.
226 227
	 * (Yes, we really clear bits by writing 1 to them.)
	 */
D
Dave Jiang 已提交
228 229
	pci_write_bits16(pdev, I3000_ERRSTS, I3000_ERRSTS_BITS,
			 I3000_ERRSTS_BITS);
230 231 232
}

static int i3000_process_error_info(struct mem_ctl_info *mci,
233 234
				struct i3000_error_info *info,
				int handle_errors)
235
{
236 237
	int row, multi_chan, channel;
	unsigned long pfn, offset;
238 239 240 241 242 243 244 245 246 247 248 249 250 251

	multi_chan = mci->csrows[0].nr_channels - 1;

	if (!(info->errsts & I3000_ERRSTS_BITS))
		return 0;

	if (!handle_errors)
		return 1;

	if ((info->errsts ^ info->errsts2) & I3000_ERRSTS_BITS) {
		edac_mc_handle_ce_no_info(mci, "UE overwrote CE");
		info->errsts = info->errsts2;
	}

252 253 254
	pfn = deap_pfn(info->edeap, info->deap);
	offset = deap_offset(info->deap);
	channel = deap_channel(info->deap);
255 256 257 258 259 260 261

	row = edac_mc_find_csrow_by_page(mci, pfn);

	if (info->errsts & I3000_ERRSTS_UE)
		edac_mc_handle_ue(mci, pfn, offset, row, "i3000 UE");
	else
		edac_mc_handle_ce(mci, pfn, offset, info->derrsyn, row,
262
				multi_chan ? channel : 0, "i3000 CE");
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282

	return 1;
}

static void i3000_check(struct mem_ctl_info *mci)
{
	struct i3000_error_info info;

	debugf1("MC%d: %s()\n", mci->mc_idx, __func__);
	i3000_get_error_info(mci, &info);
	i3000_process_error_info(mci, &info, 1);
}

static int i3000_is_interleaved(const unsigned char *c0dra,
				const unsigned char *c1dra,
				const unsigned char *c0drb,
				const unsigned char *c1drb)
{
	int i;

283 284
	/*
	 * If the channels aren't populated identically then
285 286 287
	 * we're not interleaved.
	 */
	for (i = 0; i < I3000_RANKS_PER_CHANNEL / 2; i++)
288 289 290
		if (odd_rank_attrib(c0dra[i]) != odd_rank_attrib(c1dra[i]) ||
			even_rank_attrib(c0dra[i]) !=
						even_rank_attrib(c1dra[i]))
291 292
			return 0;

293 294
	/*
	 * If the rank boundaries for the two channels are different
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
	 * then we're not interleaved.
	 */
	for (i = 0; i < I3000_RANKS_PER_CHANNEL; i++)
		if (c0drb[i] != c1drb[i])
			return 0;

	return 1;
}

static int i3000_probe1(struct pci_dev *pdev, int dev_idx)
{
	int rc;
	int i;
	struct mem_ctl_info *mci = NULL;
	unsigned long last_cumul_size;
	int interleaved, nr_channels;
	unsigned char dra[I3000_RANKS / 2], drb[I3000_RANKS];
	unsigned char *c0dra = dra, *c1dra = &dra[I3000_RANKS_PER_CHANNEL / 2];
	unsigned char *c0drb = drb, *c1drb = &drb[I3000_RANKS_PER_CHANNEL];
	unsigned long mchbar;
A
Al Viro 已提交
315
	void __iomem *window;
316 317 318

	debugf0("MC: %s()\n", __func__);

D
Dave Jiang 已提交
319
	pci_read_config_dword(pdev, I3000_MCHBAR, (u32 *) & mchbar);
320 321 322
	mchbar &= I3000_MCHBAR_MASK;
	window = ioremap_nocache(mchbar, I3000_MMR_WINDOW_SIZE);
	if (!window) {
D
Dave Jiang 已提交
323
		printk(KERN_ERR "i3000: cannot map mmio space at 0x%lx\n",
324
			mchbar);
325 326 327
		return -ENODEV;
	}

D
Dave Jiang 已提交
328 329 330 331
	c0dra[0] = readb(window + I3000_C0DRA + 0);	/* ranks 0,1 */
	c0dra[1] = readb(window + I3000_C0DRA + 1);	/* ranks 2,3 */
	c1dra[0] = readb(window + I3000_C1DRA + 0);	/* ranks 0,1 */
	c1dra[1] = readb(window + I3000_C1DRA + 1);	/* ranks 2,3 */
332 333 334 335 336 337 338 339

	for (i = 0; i < I3000_RANKS_PER_CHANNEL; i++) {
		c0drb[i] = readb(window + I3000_C0DRB + i);
		c1drb[i] = readb(window + I3000_C1DRB + i);
	}

	iounmap(window);

340 341
	/*
	 * Figure out how many channels we have.
342 343 344 345 346 347 348 349
	 *
	 * If we have what the datasheet calls "asymmetric channels"
	 * (essentially the same as what was called "virtual single
	 * channel mode" in the i82875) then it's a single channel as
	 * far as EDAC is concerned.
	 */
	interleaved = i3000_is_interleaved(c0dra, c1dra, c0drb, c1drb);
	nr_channels = interleaved ? 2 : 1;
350
	mci = edac_mc_alloc(0, I3000_RANKS / nr_channels, nr_channels, 0);
351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
	if (!mci)
		return -ENOMEM;

	debugf3("MC: %s(): init mci\n", __func__);

	mci->dev = &pdev->dev;
	mci->mtype_cap = MEM_FLAG_DDR2;

	mci->edac_ctl_cap = EDAC_FLAG_SECDED;
	mci->edac_cap = EDAC_FLAG_SECDED;

	mci->mod_name = EDAC_MOD_STR;
	mci->mod_ver = I3000_REVISION;
	mci->ctl_name = i3000_devs[dev_idx].ctl_name;
	mci->dev_name = pci_name(pdev);
	mci->edac_check = i3000_check;
	mci->ctl_page_to_phys = NULL;

	/*
	 * The dram rank boundary (DRB) reg values are boundary addresses
	 * for each DRAM rank with a granularity of 32MB.  DRB regs are
	 * cumulative; the last one will contain the total memory
	 * contained in all ranks.
	 *
	 * If we're in interleaved mode then we're only walking through
	 * the ranks of controller 0, so we double all the values we see.
	 */
	for (last_cumul_size = i = 0; i < mci->nr_csrows; i++) {
		u8 value;
		u32 cumul_size;
		struct csrow_info *csrow = &mci->csrows[i];

		value = drb[i];
		cumul_size = value << (I3000_DRB_SHIFT - PAGE_SHIFT);
		if (interleaved)
			cumul_size <<= 1;
		debugf3("MC: %s(): (%d) cumul_size 0x%x\n",
			__func__, i, cumul_size);
		if (cumul_size == last_cumul_size) {
			csrow->mtype = MEM_EMPTY;
			continue;
		}

		csrow->first_page = last_cumul_size;
		csrow->last_page = cumul_size - 1;
		csrow->nr_pages = cumul_size - last_cumul_size;
		last_cumul_size = cumul_size;
		csrow->grain = I3000_DEAP_GRAIN;
		csrow->mtype = MEM_DDR2;
		csrow->dtype = DEV_UNKNOWN;
		csrow->edac_mode = EDAC_UNKNOWN;
	}

404 405
	/*
	 * Clear any error bits.
406 407
	 * (Yes, we really clear bits by writing 1 to them.)
	 */
D
Dave Jiang 已提交
408 409
	pci_write_bits16(pdev, I3000_ERRSTS, I3000_ERRSTS_BITS,
			 I3000_ERRSTS_BITS);
410 411

	rc = -ENODEV;
412
	if (edac_mc_add_mc(mci)) {
413 414 415 416
		debugf3("MC: %s(): failed edac_mc_add_mc()\n", __func__);
		goto fail;
	}

417 418 419 420 421 422 423 424 425 426 427
	/* allocating generic PCI control info */
	i3000_pci = edac_pci_create_generic_ctl(&pdev->dev, EDAC_MOD_STR);
	if (!i3000_pci) {
		printk(KERN_WARNING
			"%s(): Unable to create PCI control\n",
			__func__);
		printk(KERN_WARNING
			"%s(): PCI error report via EDAC not setup\n",
			__func__);
	}

428 429 430 431
	/* get this far and it's successful */
	debugf3("MC: %s(): success\n", __func__);
	return 0;

432
fail:
433 434 435 436 437 438 439 440
	if (mci)
		edac_mc_free(mci);

	return rc;
}

/* returns count (>= 0), or negative on error */
static int __devinit i3000_init_one(struct pci_dev *pdev,
441
				const struct pci_device_id *ent)
442 443 444 445 446 447 448 449 450
{
	int rc;

	debugf0("MC: %s()\n", __func__);

	if (pci_enable_device(pdev) < 0)
		return -EIO;

	rc = i3000_probe1(pdev, ent->driver_data);
451
	if (!mci_pdev)
452 453 454 455 456 457 458 459 460 461 462
		mci_pdev = pci_dev_get(pdev);

	return rc;
}

static void __devexit i3000_remove_one(struct pci_dev *pdev)
{
	struct mem_ctl_info *mci;

	debugf0("%s()\n", __func__);

463 464 465
	if (i3000_pci)
		edac_pci_release_generic_ctl(i3000_pci);

466 467
	mci = edac_mc_del_mc(&pdev->dev);
	if (!mci)
468 469 470 471 472
		return;

	edac_mc_free(mci);
}

473
static DEFINE_PCI_DEVICE_TABLE(i3000_pci_tbl) = {
474
	{
D
Dave Jiang 已提交
475 476
	 PCI_VEND_DEV(INTEL, 3000_HB), PCI_ANY_ID, PCI_ANY_ID, 0, 0,
	 I3000},
477
	{
D
Dave Jiang 已提交
478 479
	 0,
	 }			/* 0 terminated list. */
480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
};

MODULE_DEVICE_TABLE(pci, i3000_pci_tbl);

static struct pci_driver i3000_driver = {
	.name = EDAC_MOD_STR,
	.probe = i3000_init_one,
	.remove = __devexit_p(i3000_remove_one),
	.id_table = i3000_pci_tbl,
};

static int __init i3000_init(void)
{
	int pci_rc;

	debugf3("MC: %s()\n", __func__);
496 497 498 499

       /* Ensure that the OPSTATE is set correctly for POLL or NMI */
       opstate_init();

500 501 502 503
	pci_rc = pci_register_driver(&i3000_driver);
	if (pci_rc < 0)
		goto fail0;

504
	if (!mci_pdev) {
505 506
		i3000_registered = 0;
		mci_pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
507
					PCI_DEVICE_ID_INTEL_3000_HB, NULL);
508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
		if (!mci_pdev) {
			debugf0("i3000 pci_get_device fail\n");
			pci_rc = -ENODEV;
			goto fail1;
		}

		pci_rc = i3000_init_one(mci_pdev, i3000_pci_tbl);
		if (pci_rc < 0) {
			debugf0("i3000 init fail\n");
			pci_rc = -ENODEV;
			goto fail1;
		}
	}

	return 0;

524
fail1:
525 526
	pci_unregister_driver(&i3000_driver);

527
fail0:
528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
	if (mci_pdev)
		pci_dev_put(mci_pdev);

	return pci_rc;
}

static void __exit i3000_exit(void)
{
	debugf3("MC: %s()\n", __func__);

	pci_unregister_driver(&i3000_driver);
	if (!i3000_registered) {
		i3000_remove_one(mci_pdev);
		pci_dev_put(mci_pdev);
	}
}

module_init(i3000_init);
module_exit(i3000_exit);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Akamai Technologies Arthur Ulfeldt/Jason Uhlenkott");
MODULE_DESCRIPTION("MC support for Intel 3000 memory hub controllers");
551 552 553

module_param(edac_op_state, int, 0444);
MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");