sge.c 88.1 KB
Newer Older
1 2 3
/*
 * This file is part of the Chelsio T4 Ethernet driver for Linux.
 *
4
 * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
 *
 * This software is available to you under a choice of one of two
 * licenses.  You may choose to be licensed under the terms of the GNU
 * General Public License (GPL) Version 2, available from the file
 * COPYING in the main directory of this source tree, or the
 * OpenIB.org BSD license below:
 *
 *     Redistribution and use in source and binary forms, with or
 *     without modification, are permitted provided that the following
 *     conditions are met:
 *
 *      - Redistributions of source code must retain the above
 *        copyright notice, this list of conditions and the following
 *        disclaimer.
 *
 *      - Redistributions in binary form must reproduce the above
 *        copyright notice, this list of conditions and the following
 *        disclaimer in the documentation and/or other materials
 *        provided with the distribution.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */

#include <linux/skbuff.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/if_vlan.h>
#include <linux/ip.h>
#include <linux/dma-mapping.h>
#include <linux/jiffies.h>
42
#include <linux/prefetch.h>
43
#include <linux/export.h>
44 45
#include <net/ipv6.h>
#include <net/tcp.h>
46 47 48
#ifdef CONFIG_NET_RX_BUSY_POLL
#include <net/busy_poll.h>
#endif /* CONFIG_NET_RX_BUSY_POLL */
V
Varun Prakash 已提交
49 50 51
#ifdef CONFIG_CHELSIO_T4_FCOE
#include <scsi/fc/fc_fcoe.h>
#endif /* CONFIG_CHELSIO_T4_FCOE */
52 53
#include "cxgb4.h"
#include "t4_regs.h"
54
#include "t4_values.h"
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
#include "t4_msg.h"
#include "t4fw_api.h"

/*
 * Rx buffer size.  We use largish buffers if possible but settle for single
 * pages under memory shortage.
 */
#if PAGE_SHIFT >= 16
# define FL_PG_ORDER 0
#else
# define FL_PG_ORDER (16 - PAGE_SHIFT)
#endif

/* RX_PULL_LEN should be <= RX_COPY_THRES */
#define RX_COPY_THRES    256
#define RX_PULL_LEN      128

/*
 * Main body length for sk_buffs used for Rx Ethernet packets with fragments.
 * Should be >= RX_PULL_LEN but possibly bigger to give pskb_may_pull some room.
 */
#define RX_PKT_SKB_LEN   512

/*
 * Max number of Tx descriptors we clean up at a time.  Should be modest as
 * freeing skbs isn't cheap and it happens while holding locks.  We just need
 * to free packets faster than they arrive, we eventually catch up and keep
 * the amortized cost reasonable.  Must be >= 2 * TXQ_STOP_THRES.
 */
#define MAX_TX_RECLAIM 16

/*
 * Max number of Rx buffers we replenish at a time.  Again keep this modest,
 * allocating buffers isn't cheap either.
 */
#define MAX_RX_REFILL 16U

/*
 * Period of the Rx queue check timer.  This timer is infrequent as it has
 * something to do only when the system experiences severe memory shortage.
 */
#define RX_QCHECK_PERIOD (HZ / 2)

/*
 * Period of the Tx queue check timer.
 */
#define TX_QCHECK_PERIOD (HZ / 2)

/*
 * Max number of Tx descriptors to be reclaimed by the Tx timer.
 */
#define MAX_TIMER_TX_RECLAIM 100

/*
 * Timer index used when backing off due to memory shortage.
 */
#define NOMEM_TMR_IDX (SGE_NTIMERS - 1)

/*
 * Suspend an Ethernet Tx queue with fewer available descriptors than this.
 * This is the same as calc_tx_descs() for a TSO packet with
 * nr_frags == MAX_SKB_FRAGS.
 */
#define ETHTXQ_STOP_THRES \
	(1 + DIV_ROUND_UP((3 * MAX_SKB_FRAGS) / 2 + (MAX_SKB_FRAGS & 1), 8))

/*
 * Suspension threshold for non-Ethernet Tx queues.  We require enough room
 * for a full sized WR.
 */
#define TXQ_STOP_THRES (SGE_MAX_WR_LEN / sizeof(struct tx_desc))

/*
 * Max Tx descriptor space we allow for an Ethernet packet to be inlined
 * into a WR.
 */
131
#define MAX_IMM_TX_PKT_LEN 256
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148

/*
 * Max size of a WR sent through a control Tx queue.
 */
#define MAX_CTRL_WR_LEN SGE_MAX_WR_LEN

struct tx_sw_desc {                /* SW state per Tx descriptor */
	struct sk_buff *skb;
	struct ulptx_sgl *sgl;
};

struct rx_sw_desc {                /* SW state per Rx descriptor */
	struct page *page;
	dma_addr_t dma_addr;
};

/*
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
 * Rx buffer sizes for "useskbs" Free List buffers (one ingress packet pe skb
 * buffer).  We currently only support two sizes for 1500- and 9000-byte MTUs.
 * We could easily support more but there doesn't seem to be much need for
 * that ...
 */
#define FL_MTU_SMALL 1500
#define FL_MTU_LARGE 9000

static inline unsigned int fl_mtu_bufsize(struct adapter *adapter,
					  unsigned int mtu)
{
	struct sge *s = &adapter->sge;

	return ALIGN(s->pktshift + ETH_HLEN + VLAN_HLEN + mtu, s->fl_align);
}

#define FL_MTU_SMALL_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_SMALL)
#define FL_MTU_LARGE_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_LARGE)

/*
 * Bits 0..3 of rx_sw_desc.dma_addr have special meaning.  The hardware uses
 * these to specify the buffer size as an index into the SGE Free List Buffer
 * Size register array.  We also use bit 4, when the buffer has been unmapped
 * for DMA, but this is of course never sent to the hardware and is only used
 * to prevent double unmappings.  All of the above requires that the Free List
 * Buffers which we allocate have the bottom 5 bits free (0) -- i.e. are
 * 32-byte or or a power of 2 greater in alignment.  Since the SGE's minimal
 * Free List Buffer alignment is 32 bytes, this works out for us ...
177 178
 */
enum {
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
	RX_BUF_FLAGS     = 0x1f,   /* bottom five bits are special */
	RX_BUF_SIZE      = 0x0f,   /* bottom three bits are for buf sizes */
	RX_UNMAPPED_BUF  = 0x10,   /* buffer is not mapped */

	/*
	 * XXX We shouldn't depend on being able to use these indices.
	 * XXX Especially when some other Master PF has initialized the
	 * XXX adapter or we use the Firmware Configuration File.  We
	 * XXX should really search through the Host Buffer Size register
	 * XXX array for the appropriately sized buffer indices.
	 */
	RX_SMALL_PG_BUF  = 0x0,   /* small (PAGE_SIZE) page buffer */
	RX_LARGE_PG_BUF  = 0x1,   /* buffer large (FL_PG_ORDER) page buffer */

	RX_SMALL_MTU_BUF = 0x2,   /* small MTU buffer */
	RX_LARGE_MTU_BUF = 0x3,   /* large MTU buffer */
195 196
};

197 198 199
static int timer_pkt_quota[] = {1, 1, 2, 3, 4, 5};
#define MIN_NAPI_WORK  1

200 201
static inline dma_addr_t get_buf_addr(const struct rx_sw_desc *d)
{
202
	return d->dma_addr & ~(dma_addr_t)RX_BUF_FLAGS;
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
}

static inline bool is_buf_mapped(const struct rx_sw_desc *d)
{
	return !(d->dma_addr & RX_UNMAPPED_BUF);
}

/**
 *	txq_avail - return the number of available slots in a Tx queue
 *	@q: the Tx queue
 *
 *	Returns the number of descriptors in a Tx queue available to write new
 *	packets.
 */
static inline unsigned int txq_avail(const struct sge_txq *q)
{
	return q->size - 1 - q->in_use;
}

/**
 *	fl_cap - return the capacity of a free-buffer list
 *	@fl: the FL
 *
 *	Returns the capacity of a free-buffer list.  The capacity is less than
 *	the size because one descriptor needs to be left unpopulated, otherwise
 *	HW will think the FL is empty.
 */
static inline unsigned int fl_cap(const struct sge_fl *fl)
{
	return fl->size - 8;   /* 1 descriptor = 8 buffers */
}

235 236 237 238 239 240 241 242 243 244 245
/**
 *	fl_starving - return whether a Free List is starving.
 *	@adapter: pointer to the adapter
 *	@fl: the Free List
 *
 *	Tests specified Free List to see whether the number of buffers
 *	available to the hardware has falled below our "starvation"
 *	threshold.
 */
static inline bool fl_starving(const struct adapter *adapter,
			       const struct sge_fl *fl)
246
{
247 248 249
	const struct sge *s = &adapter->sge;

	return fl->avail - fl->pend_cred <= s->fl_starve_thres;
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
}

static int map_skb(struct device *dev, const struct sk_buff *skb,
		   dma_addr_t *addr)
{
	const skb_frag_t *fp, *end;
	const struct skb_shared_info *si;

	*addr = dma_map_single(dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE);
	if (dma_mapping_error(dev, *addr))
		goto out_err;

	si = skb_shinfo(skb);
	end = &si->frags[si->nr_frags];

	for (fp = si->frags; fp < end; fp++) {
266 267
		*++addr = skb_frag_dma_map(dev, fp, 0, skb_frag_size(fp),
					   DMA_TO_DEVICE);
268 269 270 271 272 273 274
		if (dma_mapping_error(dev, *addr))
			goto unwind;
	}
	return 0;

unwind:
	while (fp-- > si->frags)
E
Eric Dumazet 已提交
275
		dma_unmap_page(dev, *--addr, skb_frag_size(fp), DMA_TO_DEVICE);
276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293

	dma_unmap_single(dev, addr[-1], skb_headlen(skb), DMA_TO_DEVICE);
out_err:
	return -ENOMEM;
}

#ifdef CONFIG_NEED_DMA_MAP_STATE
static void unmap_skb(struct device *dev, const struct sk_buff *skb,
		      const dma_addr_t *addr)
{
	const skb_frag_t *fp, *end;
	const struct skb_shared_info *si;

	dma_unmap_single(dev, *addr++, skb_headlen(skb), DMA_TO_DEVICE);

	si = skb_shinfo(skb);
	end = &si->frags[si->nr_frags];
	for (fp = si->frags; fp < end; fp++)
E
Eric Dumazet 已提交
294
		dma_unmap_page(dev, *addr++, skb_frag_size(fp), DMA_TO_DEVICE);
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
}

/**
 *	deferred_unmap_destructor - unmap a packet when it is freed
 *	@skb: the packet
 *
 *	This is the packet destructor used for Tx packets that need to remain
 *	mapped until they are freed rather than until their Tx descriptors are
 *	freed.
 */
static void deferred_unmap_destructor(struct sk_buff *skb)
{
	unmap_skb(skb->dev->dev.parent, skb, (dma_addr_t *)skb->head);
}
#endif

static void unmap_sgl(struct device *dev, const struct sk_buff *skb,
		      const struct ulptx_sgl *sgl, const struct sge_txq *q)
{
	const struct ulptx_sge_pair *p;
	unsigned int nfrags = skb_shinfo(skb)->nr_frags;

	if (likely(skb_headlen(skb)))
		dma_unmap_single(dev, be64_to_cpu(sgl->addr0), ntohl(sgl->len0),
				 DMA_TO_DEVICE);
	else {
		dma_unmap_page(dev, be64_to_cpu(sgl->addr0), ntohl(sgl->len0),
			       DMA_TO_DEVICE);
		nfrags--;
	}

	/*
	 * the complexity below is because of the possibility of a wrap-around
	 * in the middle of an SGL
	 */
	for (p = sgl->sge; nfrags >= 2; nfrags -= 2) {
		if (likely((u8 *)(p + 1) <= (u8 *)q->stat)) {
unmap:			dma_unmap_page(dev, be64_to_cpu(p->addr[0]),
				       ntohl(p->len[0]), DMA_TO_DEVICE);
			dma_unmap_page(dev, be64_to_cpu(p->addr[1]),
				       ntohl(p->len[1]), DMA_TO_DEVICE);
			p++;
		} else if ((u8 *)p == (u8 *)q->stat) {
			p = (const struct ulptx_sge_pair *)q->desc;
			goto unmap;
		} else if ((u8 *)p + 8 == (u8 *)q->stat) {
			const __be64 *addr = (const __be64 *)q->desc;

			dma_unmap_page(dev, be64_to_cpu(addr[0]),
				       ntohl(p->len[0]), DMA_TO_DEVICE);
			dma_unmap_page(dev, be64_to_cpu(addr[1]),
				       ntohl(p->len[1]), DMA_TO_DEVICE);
			p = (const struct ulptx_sge_pair *)&addr[2];
		} else {
			const __be64 *addr = (const __be64 *)q->desc;

			dma_unmap_page(dev, be64_to_cpu(p->addr[0]),
				       ntohl(p->len[0]), DMA_TO_DEVICE);
			dma_unmap_page(dev, be64_to_cpu(addr[0]),
				       ntohl(p->len[1]), DMA_TO_DEVICE);
			p = (const struct ulptx_sge_pair *)&addr[1];
		}
	}
	if (nfrags) {
		__be64 addr;

		if ((u8 *)p == (u8 *)q->stat)
			p = (const struct ulptx_sge_pair *)q->desc;
		addr = (u8 *)p + 16 <= (u8 *)q->stat ? p->addr[0] :
						       *(const __be64 *)q->desc;
		dma_unmap_page(dev, be64_to_cpu(addr), ntohl(p->len[0]),
			       DMA_TO_DEVICE);
	}
}

/**
 *	free_tx_desc - reclaims Tx descriptors and their buffers
 *	@adapter: the adapter
 *	@q: the Tx queue to reclaim descriptors from
 *	@n: the number of descriptors to reclaim
 *	@unmap: whether the buffers should be unmapped for DMA
 *
 *	Reclaims Tx descriptors from an SGE Tx queue and frees the associated
 *	Tx buffers.  Called with the Tx queue lock held.
 */
static void free_tx_desc(struct adapter *adap, struct sge_txq *q,
			 unsigned int n, bool unmap)
{
	struct tx_sw_desc *d;
	unsigned int cidx = q->cidx;
	struct device *dev = adap->pdev_dev;

	d = &q->sdesc[cidx];
	while (n--) {
		if (d->skb) {                       /* an SGL is present */
			if (unmap)
				unmap_sgl(dev, d->skb, d->sgl, q);
392
			dev_consume_skb_any(d->skb);
393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
			d->skb = NULL;
		}
		++d;
		if (++cidx == q->size) {
			cidx = 0;
			d = q->sdesc;
		}
	}
	q->cidx = cidx;
}

/*
 * Return the number of reclaimable descriptors in a Tx queue.
 */
static inline int reclaimable(const struct sge_txq *q)
{
	int hw_cidx = ntohs(q->stat->cidx);
	hw_cidx -= q->cidx;
	return hw_cidx < 0 ? hw_cidx + q->size : hw_cidx;
}

/**
 *	reclaim_completed_tx - reclaims completed Tx descriptors
 *	@adap: the adapter
 *	@q: the Tx queue to reclaim completed descriptors from
 *	@unmap: whether the buffers should be unmapped for DMA
 *
 *	Reclaims Tx descriptors that the SGE has indicated it has processed,
 *	and frees the associated buffers if possible.  Called with the Tx
 *	queue locked.
 */
static inline void reclaim_completed_tx(struct adapter *adap, struct sge_txq *q,
					bool unmap)
{
	int avail = reclaimable(q);

	if (avail) {
		/*
		 * Limit the amount of clean up work we do at a time to keep
		 * the Tx lock hold time O(1).
		 */
		if (avail > MAX_TX_RECLAIM)
			avail = MAX_TX_RECLAIM;

		free_tx_desc(adap, q, avail, unmap);
		q->in_use -= avail;
	}
}

442 443
static inline int get_buf_size(struct adapter *adapter,
			       const struct rx_sw_desc *d)
444
{
445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
	struct sge *s = &adapter->sge;
	unsigned int rx_buf_size_idx = d->dma_addr & RX_BUF_SIZE;
	int buf_size;

	switch (rx_buf_size_idx) {
	case RX_SMALL_PG_BUF:
		buf_size = PAGE_SIZE;
		break;

	case RX_LARGE_PG_BUF:
		buf_size = PAGE_SIZE << s->fl_pg_order;
		break;

	case RX_SMALL_MTU_BUF:
		buf_size = FL_MTU_SMALL_BUFSIZE(adapter);
		break;

	case RX_LARGE_MTU_BUF:
		buf_size = FL_MTU_LARGE_BUFSIZE(adapter);
		break;

	default:
		BUG_ON(1);
	}

	return buf_size;
471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
}

/**
 *	free_rx_bufs - free the Rx buffers on an SGE free list
 *	@adap: the adapter
 *	@q: the SGE free list to free buffers from
 *	@n: how many buffers to free
 *
 *	Release the next @n buffers on an SGE free-buffer Rx queue.   The
 *	buffers must be made inaccessible to HW before calling this function.
 */
static void free_rx_bufs(struct adapter *adap, struct sge_fl *q, int n)
{
	while (n--) {
		struct rx_sw_desc *d = &q->sdesc[q->cidx];

		if (is_buf_mapped(d))
			dma_unmap_page(adap->pdev_dev, get_buf_addr(d),
489 490
				       get_buf_size(adap, d),
				       PCI_DMA_FROMDEVICE);
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
		put_page(d->page);
		d->page = NULL;
		if (++q->cidx == q->size)
			q->cidx = 0;
		q->avail--;
	}
}

/**
 *	unmap_rx_buf - unmap the current Rx buffer on an SGE free list
 *	@adap: the adapter
 *	@q: the SGE free list
 *
 *	Unmap the current buffer on an SGE free-buffer Rx queue.   The
 *	buffer must be made inaccessible to HW before calling this function.
 *
 *	This is similar to @free_rx_bufs above but does not free the buffer.
 *	Do note that the FL still loses any further access to the buffer.
 */
static void unmap_rx_buf(struct adapter *adap, struct sge_fl *q)
{
	struct rx_sw_desc *d = &q->sdesc[q->cidx];

	if (is_buf_mapped(d))
		dma_unmap_page(adap->pdev_dev, get_buf_addr(d),
516
			       get_buf_size(adap, d), PCI_DMA_FROMDEVICE);
517 518 519 520 521 522 523 524 525
	d->page = NULL;
	if (++q->cidx == q->size)
		q->cidx = 0;
	q->avail--;
}

static inline void ring_fl_db(struct adapter *adap, struct sge_fl *q)
{
	if (q->pend_cred >= 8) {
526 527
		u32 val = adap->params.arch.sge_fl_db;

528
		if (is_t4(adap->params.chip))
529
			val |= PIDX_V(q->pend_cred / 8);
530
		else
531
			val |= PIDX_T5_V(q->pend_cred / 8);
532 533 534 535

		/* Make sure all memory writes to the Free List queue are
		 * committed before we tell the hardware about them.
		 */
536
		wmb();
537

538 539 540
		/* If we don't have access to the new User Doorbell (T5+), use
		 * the old doorbell mechanism; otherwise use the new BAR2
		 * mechanism.
541
		 */
542
		if (unlikely(q->bar2_addr == NULL)) {
543 544
			t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
				     val | QID_V(q->cntxt_id));
545
		} else {
546
			writel(val | QID_V(q->bar2_qid),
547
			       q->bar2_addr + SGE_UDB_KDOORBELL);
548 549 550 551 552 553

			/* This Write memory Barrier will force the write to
			 * the User Doorbell area to be flushed.
			 */
			wmb();
		}
554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581
		q->pend_cred &= 7;
	}
}

static inline void set_rx_sw_desc(struct rx_sw_desc *sd, struct page *pg,
				  dma_addr_t mapping)
{
	sd->page = pg;
	sd->dma_addr = mapping;      /* includes size low bits */
}

/**
 *	refill_fl - refill an SGE Rx buffer ring
 *	@adap: the adapter
 *	@q: the ring to refill
 *	@n: the number of new buffers to allocate
 *	@gfp: the gfp flags for the allocations
 *
 *	(Re)populate an SGE free-buffer queue with up to @n new packet buffers,
 *	allocated with the supplied gfp flags.  The caller must assure that
 *	@n does not exceed the queue's capacity.  If afterwards the queue is
 *	found critically low mark it as starving in the bitmap of starving FLs.
 *
 *	Returns the number of buffers allocated.
 */
static unsigned int refill_fl(struct adapter *adap, struct sge_fl *q, int n,
			      gfp_t gfp)
{
582
	struct sge *s = &adap->sge;
583 584 585 586 587
	struct page *pg;
	dma_addr_t mapping;
	unsigned int cred = q->avail;
	__be64 *d = &q->desc[q->pidx];
	struct rx_sw_desc *sd = &q->sdesc[q->pidx];
588
	int node;
589

590 591 592 593 594
#ifdef CONFIG_DEBUG_FS
	if (test_bit(q->cntxt_id - adap->sge.egr_start, adap->sge.blocked_fl))
		goto out;
#endif

595
	gfp |= __GFP_NOWARN;
596
	node = dev_to_node(adap->pdev_dev);
597

598 599 600
	if (s->fl_pg_order == 0)
		goto alloc_small_pages;

601 602 603 604
	/*
	 * Prefer large buffers
	 */
	while (n) {
605
		pg = alloc_pages_node(node, gfp | __GFP_COMP, s->fl_pg_order);
606 607 608 609 610 611
		if (unlikely(!pg)) {
			q->large_alloc_failed++;
			break;       /* fall back to single pages */
		}

		mapping = dma_map_page(adap->pdev_dev, pg, 0,
612
				       PAGE_SIZE << s->fl_pg_order,
613 614
				       PCI_DMA_FROMDEVICE);
		if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) {
615
			__free_pages(pg, s->fl_pg_order);
616 617
			goto out;   /* do not try small pages for this error */
		}
618
		mapping |= RX_LARGE_PG_BUF;
619 620 621 622 623 624 625 626 627 628 629 630 631 632
		*d++ = cpu_to_be64(mapping);

		set_rx_sw_desc(sd, pg, mapping);
		sd++;

		q->avail++;
		if (++q->pidx == q->size) {
			q->pidx = 0;
			sd = q->sdesc;
			d = q->desc;
		}
		n--;
	}

633
alloc_small_pages:
634
	while (n--) {
635
		pg = alloc_pages_node(node, gfp, 0);
636 637 638 639 640 641 642 643
		if (unlikely(!pg)) {
			q->alloc_failed++;
			break;
		}

		mapping = dma_map_page(adap->pdev_dev, pg, 0, PAGE_SIZE,
				       PCI_DMA_FROMDEVICE);
		if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) {
644
			put_page(pg);
645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663
			goto out;
		}
		*d++ = cpu_to_be64(mapping);

		set_rx_sw_desc(sd, pg, mapping);
		sd++;

		q->avail++;
		if (++q->pidx == q->size) {
			q->pidx = 0;
			sd = q->sdesc;
			d = q->desc;
		}
	}

out:	cred = q->avail - cred;
	q->pend_cred += cred;
	ring_fl_db(adap, q);

664
	if (unlikely(fl_starving(adap, q))) {
665
		smp_wmb();
666 667
		set_bit(q->cntxt_id - adap->sge.egr_start,
			adap->sge.starving_fl);
668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687
	}

	return cred;
}

static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl)
{
	refill_fl(adap, fl, min(MAX_RX_REFILL, fl_cap(fl) - fl->avail),
		  GFP_ATOMIC);
}

/**
 *	alloc_ring - allocate resources for an SGE descriptor ring
 *	@dev: the PCI device's core device
 *	@nelem: the number of descriptors
 *	@elem_size: the size of each descriptor
 *	@sw_size: the size of the SW state associated with each ring element
 *	@phys: the physical address of the allocated ring
 *	@metadata: address of the array holding the SW state for the ring
 *	@stat_size: extra space in HW ring for status information
688
 *	@node: preferred node for memory allocations
689 690 691 692 693 694 695 696 697 698 699
 *
 *	Allocates resources for an SGE descriptor ring, such as Tx queues,
 *	free buffer lists, or response queues.  Each SGE ring requires
 *	space for its HW descriptors plus, optionally, space for the SW state
 *	associated with each HW entry (the metadata).  The function returns
 *	three values: the virtual address for the HW ring (the return value
 *	of the function), the bus address of the HW ring, and the address
 *	of the SW ring.
 */
static void *alloc_ring(struct device *dev, size_t nelem, size_t elem_size,
			size_t sw_size, dma_addr_t *phys, void *metadata,
700
			size_t stat_size, int node)
701 702 703 704 705 706 707 708
{
	size_t len = nelem * elem_size + stat_size;
	void *s = NULL;
	void *p = dma_alloc_coherent(dev, len, phys, GFP_KERNEL);

	if (!p)
		return NULL;
	if (sw_size) {
709
		s = kzalloc_node(nelem * sw_size, GFP_KERNEL, node);
710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730

		if (!s) {
			dma_free_coherent(dev, len, p, *phys);
			return NULL;
		}
	}
	if (metadata)
		*(void **)metadata = s;
	memset(p, 0, len);
	return p;
}

/**
 *	sgl_len - calculates the size of an SGL of the given capacity
 *	@n: the number of SGL entries
 *
 *	Calculates the number of flits needed for a scatter/gather list that
 *	can hold the given number of entries.
 */
static inline unsigned int sgl_len(unsigned int n)
{
731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746
	/* A Direct Scatter Gather List uses 32-bit lengths and 64-bit PCI DMA
	 * addresses.  The DSGL Work Request starts off with a 32-bit DSGL
	 * ULPTX header, then Length0, then Address0, then, for 1 <= i <= N,
	 * repeated sequences of { Length[i], Length[i+1], Address[i],
	 * Address[i+1] } (this ensures that all addresses are on 64-bit
	 * boundaries).  If N is even, then Length[N+1] should be set to 0 and
	 * Address[N+1] is omitted.
	 *
	 * The following calculation incorporates all of the above.  It's
	 * somewhat hard to follow but, briefly: the "+2" accounts for the
	 * first two flits which include the DSGL header, Length0 and
	 * Address0; the "(3*(n-1))/2" covers the main body of list entries (3
	 * flits for every pair of the remaining N) +1 if (n-1) is odd; and
	 * finally the "+((n-1)&1)" adds the one remaining flit needed if
	 * (n-1) is odd ...
	 */
747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768
	n--;
	return (3 * n) / 2 + (n & 1) + 2;
}

/**
 *	flits_to_desc - returns the num of Tx descriptors for the given flits
 *	@n: the number of flits
 *
 *	Returns the number of Tx descriptors needed for the supplied number
 *	of flits.
 */
static inline unsigned int flits_to_desc(unsigned int n)
{
	BUG_ON(n > SGE_MAX_WR_LEN / 8);
	return DIV_ROUND_UP(n, 8);
}

/**
 *	is_eth_imm - can an Ethernet packet be sent as immediate data?
 *	@skb: the packet
 *
 *	Returns whether an Ethernet packet is small enough to fit as
769
 *	immediate data. Return value corresponds to headroom required.
770 771 772
 */
static inline int is_eth_imm(const struct sk_buff *skb)
{
773 774 775 776 777 778 779
	int hdrlen = skb_shinfo(skb)->gso_size ?
			sizeof(struct cpl_tx_pkt_lso_core) : 0;

	hdrlen += sizeof(struct cpl_tx_pkt);
	if (skb->len <= MAX_IMM_TX_PKT_LEN - hdrlen)
		return hdrlen;
	return 0;
780 781 782 783 784 785 786 787 788 789 790 791
}

/**
 *	calc_tx_flits - calculate the number of flits for a packet Tx WR
 *	@skb: the packet
 *
 *	Returns the number of flits needed for a Tx WR for the given Ethernet
 *	packet, including the needed WR and CPL headers.
 */
static inline unsigned int calc_tx_flits(const struct sk_buff *skb)
{
	unsigned int flits;
792
	int hdrlen = is_eth_imm(skb);
793

794 795 796 797 798
	/* If the skb is small enough, we can pump it out as a work request
	 * with only immediate data.  In that case we just have to have the
	 * TX Packet header plus the skb data in the Work Request.
	 */

799 800
	if (hdrlen)
		return DIV_ROUND_UP(skb->len + hdrlen, sizeof(__be64));
801

802 803 804 805 806 807 808 809
	/* Otherwise, we're going to have to construct a Scatter gather list
	 * of the skb body and fragments.  We also include the flits necessary
	 * for the TX Packet Work Request and CPL.  We always have a firmware
	 * Write Header (incorporated as part of the cpl_tx_pkt_lso and
	 * cpl_tx_pkt structures), followed by either a TX Packet Write CPL
	 * message or, if we're doing a Large Send Offload, an LSO CPL message
	 * with an embedded TX Packet Write CPL message.
	 */
810
	flits = sgl_len(skb_shinfo(skb)->nr_frags + 1);
811
	if (skb_shinfo(skb)->gso_size)
812 813 814 815 816 817
		flits += (sizeof(struct fw_eth_tx_pkt_wr) +
			  sizeof(struct cpl_tx_pkt_lso_core) +
			  sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
	else
		flits += (sizeof(struct fw_eth_tx_pkt_wr) +
			  sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865
	return flits;
}

/**
 *	calc_tx_descs - calculate the number of Tx descriptors for a packet
 *	@skb: the packet
 *
 *	Returns the number of Tx descriptors needed for the given Ethernet
 *	packet, including the needed WR and CPL headers.
 */
static inline unsigned int calc_tx_descs(const struct sk_buff *skb)
{
	return flits_to_desc(calc_tx_flits(skb));
}

/**
 *	write_sgl - populate a scatter/gather list for a packet
 *	@skb: the packet
 *	@q: the Tx queue we are writing into
 *	@sgl: starting location for writing the SGL
 *	@end: points right after the end of the SGL
 *	@start: start offset into skb main-body data to include in the SGL
 *	@addr: the list of bus addresses for the SGL elements
 *
 *	Generates a gather list for the buffers that make up a packet.
 *	The caller must provide adequate space for the SGL that will be written.
 *	The SGL includes all of the packet's page fragments and the data in its
 *	main body except for the first @start bytes.  @sgl must be 16-byte
 *	aligned and within a Tx descriptor with available space.  @end points
 *	right after the end of the SGL but does not account for any potential
 *	wrap around, i.e., @end > @sgl.
 */
static void write_sgl(const struct sk_buff *skb, struct sge_txq *q,
		      struct ulptx_sgl *sgl, u64 *end, unsigned int start,
		      const dma_addr_t *addr)
{
	unsigned int i, len;
	struct ulptx_sge_pair *to;
	const struct skb_shared_info *si = skb_shinfo(skb);
	unsigned int nfrags = si->nr_frags;
	struct ulptx_sge_pair buf[MAX_SKB_FRAGS / 2 + 1];

	len = skb_headlen(skb) - start;
	if (likely(len)) {
		sgl->len0 = htonl(len);
		sgl->addr0 = cpu_to_be64(addr[0] + start);
		nfrags++;
	} else {
E
Eric Dumazet 已提交
866
		sgl->len0 = htonl(skb_frag_size(&si->frags[0]));
867 868 869
		sgl->addr0 = cpu_to_be64(addr[1]);
	}

870 871
	sgl->cmd_nsge = htonl(ULPTX_CMD_V(ULP_TX_SC_DSGL) |
			      ULPTX_NSGE_V(nfrags));
872 873 874 875 876 877 878 879 880 881
	if (likely(--nfrags == 0))
		return;
	/*
	 * Most of the complexity below deals with the possibility we hit the
	 * end of the queue in the middle of writing the SGL.  For this case
	 * only we create the SGL in a temporary buffer and then copy it.
	 */
	to = (u8 *)end > (u8 *)q->stat ? buf : sgl->sge;

	for (i = (nfrags != si->nr_frags); nfrags >= 2; nfrags -= 2, to++) {
E
Eric Dumazet 已提交
882 883
		to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i]));
		to->len[1] = cpu_to_be32(skb_frag_size(&si->frags[++i]));
884 885 886 887
		to->addr[0] = cpu_to_be64(addr[i]);
		to->addr[1] = cpu_to_be64(addr[++i]);
	}
	if (nfrags) {
E
Eric Dumazet 已提交
888
		to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i]));
889 890 891 892 893 894 895 896 897 898 899 900 901
		to->len[1] = cpu_to_be32(0);
		to->addr[0] = cpu_to_be64(addr[i + 1]);
	}
	if (unlikely((u8 *)end > (u8 *)q->stat)) {
		unsigned int part0 = (u8 *)q->stat - (u8 *)sgl->sge, part1;

		if (likely(part0))
			memcpy(sgl->sge, buf, part0);
		part1 = (u8 *)end - (u8 *)q->stat;
		memcpy(q->desc, (u8 *)buf + part0, part1);
		end = (void *)q->desc + part1;
	}
	if ((uintptr_t)end & 8)           /* 0-pad to multiple of 16 */
902
		*end = 0;
903 904
}

905 906 907
/* This function copies 64 byte coalesced work request to
 * memory mapped BAR2 space. For coalesced WR SGE fetches
 * data from the FIFO instead of from Host.
908
 */
909
static void cxgb_pio_copy(u64 __iomem *dst, u64 *src)
910
{
911
	int count = 8;
912 913 914 915 916 917 918 919 920

	while (count) {
		writeq(*src, dst);
		src++;
		dst++;
		count--;
	}
}

921 922 923 924 925 926 927 928 929 930
/**
 *	ring_tx_db - check and potentially ring a Tx queue's doorbell
 *	@adap: the adapter
 *	@q: the Tx queue
 *	@n: number of new descriptors to give to HW
 *
 *	Ring the doorbel for a Tx queue.
 */
static inline void ring_tx_db(struct adapter *adap, struct sge_txq *q, int n)
{
931 932 933 934
	/* Make sure that all writes to the TX Descriptors are committed
	 * before we tell the hardware about them.
	 */
	wmb();
935

936 937 938 939
	/* If we don't have access to the new User Doorbell (T5+), use the old
	 * doorbell mechanism; otherwise use the new BAR2 mechanism.
	 */
	if (unlikely(q->bar2_addr == NULL)) {
940
		u32 val = PIDX_V(n);
941 942 943 944 945 946 947
		unsigned long flags;

		/* For T4 we need to participate in the Doorbell Recovery
		 * mechanism.
		 */
		spin_lock_irqsave(&q->db_lock, flags);
		if (!q->db_disabled)
948 949
			t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
				     QID_V(q->cntxt_id) | val);
950 951 952 953 954
		else
			q->db_pidx_inc += n;
		q->db_pidx = q->pidx;
		spin_unlock_irqrestore(&q->db_lock, flags);
	} else {
955
		u32 val = PIDX_T5_V(n);
956 957 958 959 960 961 962

		/* T4 and later chips share the same PIDX field offset within
		 * the doorbell, but T5 and later shrank the field in order to
		 * gain a bit for Doorbell Priority.  The field was absurdly
		 * large in the first place (14 bits) so we just use the T5
		 * and later limits and warn if a Queue ID is too large.
		 */
963
		WARN_ON(val & DBPRIO_F);
964

965 966 967
		/* If we're only writing a single TX Descriptor and we can use
		 * Inferred QID registers, we can use the Write Combining
		 * Gather Buffer; otherwise we use the simple doorbell.
968
		 */
969
		if (n == 1 && q->bar2_qid == 0) {
970 971 972
			int index = (q->pidx
				     ? (q->pidx - 1)
				     : (q->size - 1));
973
			u64 *wr = (u64 *)&q->desc[index];
974

975 976 977
			cxgb_pio_copy((u64 __iomem *)
				      (q->bar2_addr + SGE_UDB_WCDOORBELL),
				      wr);
978
		} else {
979
			writel(val | QID_V(q->bar2_qid),
980
			       q->bar2_addr + SGE_UDB_KDOORBELL);
981
		}
982 983 984 985 986 987 988 989 990 991 992 993 994

		/* This Write Memory Barrier will force the write to the User
		 * Doorbell area to be flushed.  This is needed to prevent
		 * writes on different CPUs for the same queue from hitting
		 * the adapter out of order.  This is required when some Work
		 * Requests take the Write Combine Gather Buffer path (user
		 * doorbell area offset [SGE_UDB_WCDOORBELL..+63]) and some
		 * take the traditional path where we simply increment the
		 * PIDX (User Doorbell area SGE_UDB_KDOORBELL) and have the
		 * hardware DMA read the actual Work Request.
		 */
		wmb();
	}
995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
}

/**
 *	inline_tx_skb - inline a packet's data into Tx descriptors
 *	@skb: the packet
 *	@q: the Tx queue where the packet will be inlined
 *	@pos: starting position in the Tx queue where to inline the packet
 *
 *	Inline a packet's contents directly into Tx descriptors, starting at
 *	the given position within the Tx DMA ring.
 *	Most of the complexity of this operation is dealing with wrap arounds
 *	in the middle of the packet we want to inline.
 */
static void inline_tx_skb(const struct sk_buff *skb, const struct sge_txq *q,
			  void *pos)
{
	u64 *p;
	int left = (void *)q->stat - pos;

	if (likely(skb->len <= left)) {
		if (likely(!skb->data_len))
			skb_copy_from_linear_data(skb, pos, skb->len);
		else
			skb_copy_bits(skb, 0, pos, skb->len);
		pos += skb->len;
	} else {
		skb_copy_bits(skb, 0, pos, left);
		skb_copy_bits(skb, left, q->desc, skb->len - left);
		pos = (void *)q->desc + (skb->len - left);
	}

	/* 0-pad to multiple of 16 */
	p = PTR_ALIGN(pos, 8);
	if ((uintptr_t)p & 8)
		*p = 0;
}

/*
 * Figure out what HW csum a packet wants and return the appropriate control
 * bits.
 */
1036
static u64 hwcsum(enum chip_type chip, const struct sk_buff *skb)
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
{
	int csum_type;
	const struct iphdr *iph = ip_hdr(skb);

	if (iph->version == 4) {
		if (iph->protocol == IPPROTO_TCP)
			csum_type = TX_CSUM_TCPIP;
		else if (iph->protocol == IPPROTO_UDP)
			csum_type = TX_CSUM_UDPIP;
		else {
nocsum:			/*
			 * unknown protocol, disable HW csum
			 * and hope a bad packet is detected
			 */
1051
			return TXPKT_L4CSUM_DIS_F;
1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
		}
	} else {
		/*
		 * this doesn't work with extension headers
		 */
		const struct ipv6hdr *ip6h = (const struct ipv6hdr *)iph;

		if (ip6h->nexthdr == IPPROTO_TCP)
			csum_type = TX_CSUM_TCPIP6;
		else if (ip6h->nexthdr == IPPROTO_UDP)
			csum_type = TX_CSUM_UDPIP6;
		else
			goto nocsum;
	}

1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
	if (likely(csum_type >= TX_CSUM_TCPIP)) {
		u64 hdr_len = TXPKT_IPHDR_LEN_V(skb_network_header_len(skb));
		int eth_hdr_len = skb_network_offset(skb) - ETH_HLEN;

		if (CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5)
			hdr_len |= TXPKT_ETHHDR_LEN_V(eth_hdr_len);
		else
			hdr_len |= T6_TXPKT_ETHHDR_LEN_V(eth_hdr_len);
		return TXPKT_CSUM_TYPE_V(csum_type) | hdr_len;
	} else {
1077 1078
		int start = skb_transport_offset(skb);

1079 1080 1081
		return TXPKT_CSUM_TYPE_V(csum_type) |
			TXPKT_CSUM_START_V(start) |
			TXPKT_CSUM_LOC_V(start + skb->csum_offset);
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098
	}
}

static void eth_txq_stop(struct sge_eth_txq *q)
{
	netif_tx_stop_queue(q->txq);
	q->q.stops++;
}

static inline void txq_advance(struct sge_txq *q, unsigned int n)
{
	q->in_use += n;
	q->pidx += n;
	if (q->pidx >= q->size)
		q->pidx -= q->size;
}

V
Varun Prakash 已提交
1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
#ifdef CONFIG_CHELSIO_T4_FCOE
static inline int
cxgb_fcoe_offload(struct sk_buff *skb, struct adapter *adap,
		  const struct port_info *pi, u64 *cntrl)
{
	const struct cxgb_fcoe *fcoe = &pi->fcoe;

	if (!(fcoe->flags & CXGB_FCOE_ENABLED))
		return 0;

	if (skb->protocol != htons(ETH_P_FCOE))
		return 0;

	skb_reset_mac_header(skb);
	skb->mac_len = sizeof(struct ethhdr);

	skb_set_network_header(skb, skb->mac_len);
	skb_set_transport_header(skb, skb->mac_len + sizeof(struct fcoe_hdr));

	if (!cxgb_fcoe_sof_eof_supported(adap, skb))
		return -ENOTSUPP;

	/* FC CRC offload */
1122 1123 1124 1125 1126
	*cntrl = TXPKT_CSUM_TYPE_V(TX_CSUM_FCOE) |
		     TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F |
		     TXPKT_CSUM_START_V(CXGB_FCOE_TXPKT_CSUM_START) |
		     TXPKT_CSUM_END_V(CXGB_FCOE_TXPKT_CSUM_END) |
		     TXPKT_CSUM_LOC_V(CXGB_FCOE_TXPKT_CSUM_END);
V
Varun Prakash 已提交
1127 1128 1129 1130
	return 0;
}
#endif /* CONFIG_CHELSIO_T4_FCOE */

1131 1132 1133 1134 1135 1136 1137 1138 1139
/**
 *	t4_eth_xmit - add a packet to an Ethernet Tx queue
 *	@skb: the packet
 *	@dev: the egress net device
 *
 *	Add a packet to an SGE Ethernet Tx queue.  Runs with softirqs disabled.
 */
netdev_tx_t t4_eth_xmit(struct sk_buff *skb, struct net_device *dev)
{
1140
	u32 wr_mid, ctrl0;
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
	u64 cntrl, *end;
	int qidx, credits;
	unsigned int flits, ndesc;
	struct adapter *adap;
	struct sge_eth_txq *q;
	const struct port_info *pi;
	struct fw_eth_tx_pkt_wr *wr;
	struct cpl_tx_pkt_core *cpl;
	const struct skb_shared_info *ssi;
	dma_addr_t addr[MAX_SKB_FRAGS + 1];
1151
	bool immediate = false;
1152
	int len, max_pkt_len;
V
Varun Prakash 已提交
1153 1154 1155
#ifdef CONFIG_CHELSIO_T4_FCOE
	int err;
#endif /* CONFIG_CHELSIO_T4_FCOE */
1156 1157 1158 1159 1160 1161

	/*
	 * The chip min packet length is 10 octets but play safe and reject
	 * anything shorter than an Ethernet header.
	 */
	if (unlikely(skb->len < ETH_HLEN)) {
1162
out_free:	dev_kfree_skb_any(skb);
1163 1164 1165
		return NETDEV_TX_OK;
	}

1166 1167 1168 1169 1170 1171 1172
	/* Discard the packet if the length is greater than mtu */
	max_pkt_len = ETH_HLEN + dev->mtu;
	if (skb_vlan_tag_present(skb))
		max_pkt_len += VLAN_HLEN;
	if (!skb_shinfo(skb)->gso_size && (unlikely(skb->len > max_pkt_len)))
		goto out_free;

1173 1174 1175 1176 1177 1178
	pi = netdev_priv(dev);
	adap = pi->adapter;
	qidx = skb_get_queue_mapping(skb);
	q = &adap->sge.ethtxq[qidx + pi->first_qset];

	reclaim_completed_tx(adap, &q->q, true);
1179
	cntrl = TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F;
V
Varun Prakash 已提交
1180 1181 1182 1183 1184 1185

#ifdef CONFIG_CHELSIO_T4_FCOE
	err = cxgb_fcoe_offload(skb, adap, pi, &cntrl);
	if (unlikely(err == -ENOTSUPP))
		goto out_free;
#endif /* CONFIG_CHELSIO_T4_FCOE */
1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198

	flits = calc_tx_flits(skb);
	ndesc = flits_to_desc(flits);
	credits = txq_avail(&q->q) - ndesc;

	if (unlikely(credits < 0)) {
		eth_txq_stop(q);
		dev_err(adap->pdev_dev,
			"%s: Tx ring %u full while queue awake!\n",
			dev->name, qidx);
		return NETDEV_TX_BUSY;
	}

1199 1200 1201 1202
	if (is_eth_imm(skb))
		immediate = true;

	if (!immediate &&
1203 1204 1205 1206 1207
	    unlikely(map_skb(adap->pdev_dev, skb, addr) < 0)) {
		q->mapping_err++;
		goto out_free;
	}

1208
	wr_mid = FW_WR_LEN16_V(DIV_ROUND_UP(flits, 2));
1209 1210
	if (unlikely(credits < ETHTXQ_STOP_THRES)) {
		eth_txq_stop(q);
1211
		wr_mid |= FW_WR_EQUEQ_F | FW_WR_EQUIQ_F;
1212 1213 1214 1215 1216 1217 1218
	}

	wr = (void *)&q->q.desc[q->q.pidx];
	wr->equiq_to_len16 = htonl(wr_mid);
	wr->r3 = cpu_to_be64(0);
	end = (u64 *)wr + flits;

1219
	len = immediate ? skb->len : 0;
1220 1221
	ssi = skb_shinfo(skb);
	if (ssi->gso_size) {
1222
		struct cpl_tx_pkt_lso *lso = (void *)wr;
1223 1224 1225 1226
		bool v6 = (ssi->gso_type & SKB_GSO_TCPV6) != 0;
		int l3hdr_len = skb_network_header_len(skb);
		int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN;

1227
		len += sizeof(*lso);
1228 1229
		wr->op_immdlen = htonl(FW_WR_OP_V(FW_ETH_TX_PKT_WR) |
				       FW_WR_IMMDLEN_V(len));
1230 1231 1232 1233 1234 1235
		lso->c.lso_ctrl = htonl(LSO_OPCODE_V(CPL_TX_PKT_LSO) |
					LSO_FIRST_SLICE_F | LSO_LAST_SLICE_F |
					LSO_IPV6_V(v6) |
					LSO_ETHHDR_LEN_V(eth_xtra_len / 4) |
					LSO_IPHDR_LEN_V(l3hdr_len / 4) |
					LSO_TCPHDR_LEN_V(tcp_hdr(skb)->doff));
1236 1237 1238
		lso->c.ipid_ofst = htons(0);
		lso->c.mss = htons(ssi->gso_size);
		lso->c.seqno_offset = htonl(0);
1239 1240 1241
		if (is_t4(adap->params.chip))
			lso->c.len = htonl(skb->len);
		else
1242
			lso->c.len = htonl(LSO_T5_XFER_SIZE_V(skb->len));
1243
		cpl = (void *)(lso + 1);
1244 1245 1246 1247 1248 1249 1250 1251 1252

		if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
			cntrl =	TXPKT_ETHHDR_LEN_V(eth_xtra_len);
		else
			cntrl = T6_TXPKT_ETHHDR_LEN_V(eth_xtra_len);

		cntrl |= TXPKT_CSUM_TYPE_V(v6 ?
					   TX_CSUM_TCPIP6 : TX_CSUM_TCPIP) |
			 TXPKT_IPHDR_LEN_V(l3hdr_len);
1253 1254 1255
		q->tso++;
		q->tx_cso += ssi->gso_segs;
	} else {
1256
		len += sizeof(*cpl);
1257 1258
		wr->op_immdlen = htonl(FW_WR_OP_V(FW_ETH_TX_PKT_WR) |
				       FW_WR_IMMDLEN_V(len));
1259 1260
		cpl = (void *)(wr + 1);
		if (skb->ip_summed == CHECKSUM_PARTIAL) {
1261 1262
			cntrl = hwcsum(adap->params.chip, skb) |
				TXPKT_IPCSUM_DIS_F;
1263
			q->tx_cso++;
V
Varun Prakash 已提交
1264
		}
1265 1266
	}

1267
	if (skb_vlan_tag_present(skb)) {
1268
		q->vlan_ins++;
1269
		cntrl |= TXPKT_VLAN_VLD_F | TXPKT_VLAN_V(skb_vlan_tag_get(skb));
V
Varun Prakash 已提交
1270 1271
#ifdef CONFIG_CHELSIO_T4_FCOE
		if (skb->protocol == htons(ETH_P_FCOE))
1272
			cntrl |= TXPKT_VLAN_V(
V
Varun Prakash 已提交
1273 1274
				 ((skb->priority & 0x7) << VLAN_PRIO_SHIFT));
#endif /* CONFIG_CHELSIO_T4_FCOE */
1275 1276
	}

1277 1278 1279 1280 1281 1282 1283 1284 1285
	ctrl0 = TXPKT_OPCODE_V(CPL_TX_PKT_XT) | TXPKT_INTF_V(pi->tx_chan) |
		TXPKT_PF_V(adap->pf);
#ifdef CONFIG_CHELSIO_T4_DCB
	if (is_t4(adap->params.chip))
		ctrl0 |= TXPKT_OVLAN_IDX_V(q->dcb_prio);
	else
		ctrl0 |= TXPKT_T5_OVLAN_IDX_V(q->dcb_prio);
#endif
	cpl->ctrl0 = htonl(ctrl0);
1286 1287 1288 1289
	cpl->pack = htons(0);
	cpl->len = htons(skb->len);
	cpl->ctrl1 = cpu_to_be64(cntrl);

1290
	if (immediate) {
1291
		inline_tx_skb(skb, &q->q, cpl + 1);
1292
		dev_consume_skb_any(skb);
1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357
	} else {
		int last_desc;

		write_sgl(skb, &q->q, (struct ulptx_sgl *)(cpl + 1), end, 0,
			  addr);
		skb_orphan(skb);

		last_desc = q->q.pidx + ndesc - 1;
		if (last_desc >= q->q.size)
			last_desc -= q->q.size;
		q->q.sdesc[last_desc].skb = skb;
		q->q.sdesc[last_desc].sgl = (struct ulptx_sgl *)(cpl + 1);
	}

	txq_advance(&q->q, ndesc);

	ring_tx_db(adap, &q->q, ndesc);
	return NETDEV_TX_OK;
}

/**
 *	reclaim_completed_tx_imm - reclaim completed control-queue Tx descs
 *	@q: the SGE control Tx queue
 *
 *	This is a variant of reclaim_completed_tx() that is used for Tx queues
 *	that send only immediate data (presently just the control queues) and
 *	thus do not have any sk_buffs to release.
 */
static inline void reclaim_completed_tx_imm(struct sge_txq *q)
{
	int hw_cidx = ntohs(q->stat->cidx);
	int reclaim = hw_cidx - q->cidx;

	if (reclaim < 0)
		reclaim += q->size;

	q->in_use -= reclaim;
	q->cidx = hw_cidx;
}

/**
 *	is_imm - check whether a packet can be sent as immediate data
 *	@skb: the packet
 *
 *	Returns true if a packet can be sent as a WR with immediate data.
 */
static inline int is_imm(const struct sk_buff *skb)
{
	return skb->len <= MAX_CTRL_WR_LEN;
}

/**
 *	ctrlq_check_stop - check if a control queue is full and should stop
 *	@q: the queue
 *	@wr: most recent WR written to the queue
 *
 *	Check if a control queue has become full and should be stopped.
 *	We clean up control queue descriptors very lazily, only when we are out.
 *	If the queue is still full after reclaiming any completed descriptors
 *	we suspend it and have the last WR wake it up.
 */
static void ctrlq_check_stop(struct sge_ctrl_txq *q, struct fw_wr_hdr *wr)
{
	reclaim_completed_tx_imm(&q->q);
	if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) {
1358
		wr->lo |= htonl(FW_WR_EQUEQ_F | FW_WR_EQUIQ_F);
1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426
		q->q.stops++;
		q->full = 1;
	}
}

/**
 *	ctrl_xmit - send a packet through an SGE control Tx queue
 *	@q: the control queue
 *	@skb: the packet
 *
 *	Send a packet through an SGE control Tx queue.  Packets sent through
 *	a control queue must fit entirely as immediate data.
 */
static int ctrl_xmit(struct sge_ctrl_txq *q, struct sk_buff *skb)
{
	unsigned int ndesc;
	struct fw_wr_hdr *wr;

	if (unlikely(!is_imm(skb))) {
		WARN_ON(1);
		dev_kfree_skb(skb);
		return NET_XMIT_DROP;
	}

	ndesc = DIV_ROUND_UP(skb->len, sizeof(struct tx_desc));
	spin_lock(&q->sendq.lock);

	if (unlikely(q->full)) {
		skb->priority = ndesc;                  /* save for restart */
		__skb_queue_tail(&q->sendq, skb);
		spin_unlock(&q->sendq.lock);
		return NET_XMIT_CN;
	}

	wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx];
	inline_tx_skb(skb, &q->q, wr);

	txq_advance(&q->q, ndesc);
	if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES))
		ctrlq_check_stop(q, wr);

	ring_tx_db(q->adap, &q->q, ndesc);
	spin_unlock(&q->sendq.lock);

	kfree_skb(skb);
	return NET_XMIT_SUCCESS;
}

/**
 *	restart_ctrlq - restart a suspended control queue
 *	@data: the control queue to restart
 *
 *	Resumes transmission on a suspended Tx control queue.
 */
static void restart_ctrlq(unsigned long data)
{
	struct sk_buff *skb;
	unsigned int written = 0;
	struct sge_ctrl_txq *q = (struct sge_ctrl_txq *)data;

	spin_lock(&q->sendq.lock);
	reclaim_completed_tx_imm(&q->q);
	BUG_ON(txq_avail(&q->q) < TXQ_STOP_THRES);  /* q should be empty */

	while ((skb = __skb_dequeue(&q->sendq)) != NULL) {
		struct fw_wr_hdr *wr;
		unsigned int ndesc = skb->priority;     /* previously saved */

1427 1428
		written += ndesc;
		/* Write descriptors and free skbs outside the lock to limit
1429 1430
		 * wait times.  q->full is still set so new skbs will be queued.
		 */
1431 1432
		wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx];
		txq_advance(&q->q, ndesc);
1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504
		spin_unlock(&q->sendq.lock);

		inline_tx_skb(skb, &q->q, wr);
		kfree_skb(skb);

		if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) {
			unsigned long old = q->q.stops;

			ctrlq_check_stop(q, wr);
			if (q->q.stops != old) {          /* suspended anew */
				spin_lock(&q->sendq.lock);
				goto ringdb;
			}
		}
		if (written > 16) {
			ring_tx_db(q->adap, &q->q, written);
			written = 0;
		}
		spin_lock(&q->sendq.lock);
	}
	q->full = 0;
ringdb: if (written)
		ring_tx_db(q->adap, &q->q, written);
	spin_unlock(&q->sendq.lock);
}

/**
 *	t4_mgmt_tx - send a management message
 *	@adap: the adapter
 *	@skb: the packet containing the management message
 *
 *	Send a management message through control queue 0.
 */
int t4_mgmt_tx(struct adapter *adap, struct sk_buff *skb)
{
	int ret;

	local_bh_disable();
	ret = ctrl_xmit(&adap->sge.ctrlq[0], skb);
	local_bh_enable();
	return ret;
}

/**
 *	is_ofld_imm - check whether a packet can be sent as immediate data
 *	@skb: the packet
 *
 *	Returns true if a packet can be sent as an offload WR with immediate
 *	data.  We currently use the same limit as for Ethernet packets.
 */
static inline int is_ofld_imm(const struct sk_buff *skb)
{
	return skb->len <= MAX_IMM_TX_PKT_LEN;
}

/**
 *	calc_tx_flits_ofld - calculate # of flits for an offload packet
 *	@skb: the packet
 *
 *	Returns the number of flits needed for the given offload packet.
 *	These packets are already fully constructed and no additional headers
 *	will be added.
 */
static inline unsigned int calc_tx_flits_ofld(const struct sk_buff *skb)
{
	unsigned int flits, cnt;

	if (is_ofld_imm(skb))
		return DIV_ROUND_UP(skb->len, 8);

	flits = skb_transport_offset(skb) / 8U;   /* headers */
	cnt = skb_shinfo(skb)->nr_frags;
1505
	if (skb_tail_pointer(skb) != skb_transport_header(skb))
1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522
		cnt++;
	return flits + sgl_len(cnt);
}

/**
 *	txq_stop_maperr - stop a Tx queue due to I/O MMU exhaustion
 *	@adap: the adapter
 *	@q: the queue to stop
 *
 *	Mark a Tx queue stopped due to I/O MMU exhaustion and resulting
 *	inability to map packets.  A periodic timer attempts to restart
 *	queues so marked.
 */
static void txq_stop_maperr(struct sge_ofld_txq *q)
{
	q->mapping_err++;
	q->q.stops++;
1523 1524
	set_bit(q->q.cntxt_id - q->adap->sge.egr_start,
		q->adap->sge.txq_maperr);
1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538
}

/**
 *	ofldtxq_stop - stop an offload Tx queue that has become full
 *	@q: the queue to stop
 *	@skb: the packet causing the queue to become full
 *
 *	Stops an offload Tx queue that has become full and modifies the packet
 *	being written to request a wakeup.
 */
static void ofldtxq_stop(struct sge_ofld_txq *q, struct sk_buff *skb)
{
	struct fw_wr_hdr *wr = (struct fw_wr_hdr *)skb->data;

1539
	wr->lo |= htonl(FW_WR_EQUEQ_F | FW_WR_EQUIQ_F);
1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677
	q->q.stops++;
	q->full = 1;
}

/**
 *	service_ofldq - restart a suspended offload queue
 *	@q: the offload queue
 *
 *	Services an offload Tx queue by moving packets from its packet queue
 *	to the HW Tx ring.  The function starts and ends with the queue locked.
 */
static void service_ofldq(struct sge_ofld_txq *q)
{
	u64 *pos;
	int credits;
	struct sk_buff *skb;
	unsigned int written = 0;
	unsigned int flits, ndesc;

	while ((skb = skb_peek(&q->sendq)) != NULL && !q->full) {
		/*
		 * We drop the lock but leave skb on sendq, thus retaining
		 * exclusive access to the state of the queue.
		 */
		spin_unlock(&q->sendq.lock);

		reclaim_completed_tx(q->adap, &q->q, false);

		flits = skb->priority;                /* previously saved */
		ndesc = flits_to_desc(flits);
		credits = txq_avail(&q->q) - ndesc;
		BUG_ON(credits < 0);
		if (unlikely(credits < TXQ_STOP_THRES))
			ofldtxq_stop(q, skb);

		pos = (u64 *)&q->q.desc[q->q.pidx];
		if (is_ofld_imm(skb))
			inline_tx_skb(skb, &q->q, pos);
		else if (map_skb(q->adap->pdev_dev, skb,
				 (dma_addr_t *)skb->head)) {
			txq_stop_maperr(q);
			spin_lock(&q->sendq.lock);
			break;
		} else {
			int last_desc, hdr_len = skb_transport_offset(skb);

			memcpy(pos, skb->data, hdr_len);
			write_sgl(skb, &q->q, (void *)pos + hdr_len,
				  pos + flits, hdr_len,
				  (dma_addr_t *)skb->head);
#ifdef CONFIG_NEED_DMA_MAP_STATE
			skb->dev = q->adap->port[0];
			skb->destructor = deferred_unmap_destructor;
#endif
			last_desc = q->q.pidx + ndesc - 1;
			if (last_desc >= q->q.size)
				last_desc -= q->q.size;
			q->q.sdesc[last_desc].skb = skb;
		}

		txq_advance(&q->q, ndesc);
		written += ndesc;
		if (unlikely(written > 32)) {
			ring_tx_db(q->adap, &q->q, written);
			written = 0;
		}

		spin_lock(&q->sendq.lock);
		__skb_unlink(skb, &q->sendq);
		if (is_ofld_imm(skb))
			kfree_skb(skb);
	}
	if (likely(written))
		ring_tx_db(q->adap, &q->q, written);
}

/**
 *	ofld_xmit - send a packet through an offload queue
 *	@q: the Tx offload queue
 *	@skb: the packet
 *
 *	Send an offload packet through an SGE offload queue.
 */
static int ofld_xmit(struct sge_ofld_txq *q, struct sk_buff *skb)
{
	skb->priority = calc_tx_flits_ofld(skb);       /* save for restart */
	spin_lock(&q->sendq.lock);
	__skb_queue_tail(&q->sendq, skb);
	if (q->sendq.qlen == 1)
		service_ofldq(q);
	spin_unlock(&q->sendq.lock);
	return NET_XMIT_SUCCESS;
}

/**
 *	restart_ofldq - restart a suspended offload queue
 *	@data: the offload queue to restart
 *
 *	Resumes transmission on a suspended Tx offload queue.
 */
static void restart_ofldq(unsigned long data)
{
	struct sge_ofld_txq *q = (struct sge_ofld_txq *)data;

	spin_lock(&q->sendq.lock);
	q->full = 0;            /* the queue actually is completely empty now */
	service_ofldq(q);
	spin_unlock(&q->sendq.lock);
}

/**
 *	skb_txq - return the Tx queue an offload packet should use
 *	@skb: the packet
 *
 *	Returns the Tx queue an offload packet should use as indicated by bits
 *	1-15 in the packet's queue_mapping.
 */
static inline unsigned int skb_txq(const struct sk_buff *skb)
{
	return skb->queue_mapping >> 1;
}

/**
 *	is_ctrl_pkt - return whether an offload packet is a control packet
 *	@skb: the packet
 *
 *	Returns whether an offload packet should use an OFLD or a CTRL
 *	Tx queue as indicated by bit 0 in the packet's queue_mapping.
 */
static inline unsigned int is_ctrl_pkt(const struct sk_buff *skb)
{
	return skb->queue_mapping & 1;
}

static inline int ofld_send(struct adapter *adap, struct sk_buff *skb)
{
	unsigned int idx = skb_txq(skb);

1678 1679 1680 1681
	if (unlikely(is_ctrl_pkt(skb))) {
		/* Single ctrl queue is a requirement for LE workaround path */
		if (adap->tids.nsftids)
			idx = 0;
1682
		return ctrl_xmit(&adap->sge.ctrlq[idx], skb);
1683
	}
1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719
	return ofld_xmit(&adap->sge.ofldtxq[idx], skb);
}

/**
 *	t4_ofld_send - send an offload packet
 *	@adap: the adapter
 *	@skb: the packet
 *
 *	Sends an offload packet.  We use the packet queue_mapping to select the
 *	appropriate Tx queue as follows: bit 0 indicates whether the packet
 *	should be sent as regular or control, bits 1-15 select the queue.
 */
int t4_ofld_send(struct adapter *adap, struct sk_buff *skb)
{
	int ret;

	local_bh_disable();
	ret = ofld_send(adap, skb);
	local_bh_enable();
	return ret;
}

/**
 *	cxgb4_ofld_send - send an offload packet
 *	@dev: the net device
 *	@skb: the packet
 *
 *	Sends an offload packet.  This is an exported version of @t4_ofld_send,
 *	intended for ULDs.
 */
int cxgb4_ofld_send(struct net_device *dev, struct sk_buff *skb)
{
	return t4_ofld_send(netdev2adap(dev), skb);
}
EXPORT_SYMBOL(cxgb4_ofld_send);

1720
static inline void copy_frags(struct sk_buff *skb,
1721 1722
			      const struct pkt_gl *gl, unsigned int offset)
{
1723
	int i;
1724 1725

	/* usually there's just one frag */
1726 1727 1728 1729 1730 1731 1732 1733
	__skb_fill_page_desc(skb, 0, gl->frags[0].page,
			     gl->frags[0].offset + offset,
			     gl->frags[0].size - offset);
	skb_shinfo(skb)->nr_frags = gl->nfrags;
	for (i = 1; i < gl->nfrags; i++)
		__skb_fill_page_desc(skb, i, gl->frags[i].page,
				     gl->frags[i].offset,
				     gl->frags[i].size);
1734 1735

	/* get a reference to the last page, we don't own it */
1736
	get_page(gl->frags[gl->nfrags - 1].page);
1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770
}

/**
 *	cxgb4_pktgl_to_skb - build an sk_buff from a packet gather list
 *	@gl: the gather list
 *	@skb_len: size of sk_buff main body if it carries fragments
 *	@pull_len: amount of data to move to the sk_buff's main body
 *
 *	Builds an sk_buff from the given packet gather list.  Returns the
 *	sk_buff or %NULL if sk_buff allocation failed.
 */
struct sk_buff *cxgb4_pktgl_to_skb(const struct pkt_gl *gl,
				   unsigned int skb_len, unsigned int pull_len)
{
	struct sk_buff *skb;

	/*
	 * Below we rely on RX_COPY_THRES being less than the smallest Rx buffer
	 * size, which is expected since buffers are at least PAGE_SIZEd.
	 * In this case packets up to RX_COPY_THRES have only one fragment.
	 */
	if (gl->tot_len <= RX_COPY_THRES) {
		skb = dev_alloc_skb(gl->tot_len);
		if (unlikely(!skb))
			goto out;
		__skb_put(skb, gl->tot_len);
		skb_copy_to_linear_data(skb, gl->va, gl->tot_len);
	} else {
		skb = dev_alloc_skb(skb_len);
		if (unlikely(!skb))
			goto out;
		__skb_put(skb, pull_len);
		skb_copy_to_linear_data(skb, gl->va, pull_len);

1771
		copy_frags(skb, gl, pull_len);
1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786
		skb->len = gl->tot_len;
		skb->data_len = skb->len - pull_len;
		skb->truesize += skb->data_len;
	}
out:	return skb;
}
EXPORT_SYMBOL(cxgb4_pktgl_to_skb);

/**
 *	t4_pktgl_free - free a packet gather list
 *	@gl: the gather list
 *
 *	Releases the pages of a packet gather list.  We do not own the last
 *	page on the list and do not free it.
 */
1787
static void t4_pktgl_free(const struct pkt_gl *gl)
1788 1789
{
	int n;
1790
	const struct page_frag *p;
1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810

	for (p = gl->frags, n = gl->nfrags - 1; n--; p++)
		put_page(p->page);
}

/*
 * Process an MPS trace packet.  Give it an unused protocol number so it won't
 * be delivered to anyone and send it to the stack for capture.
 */
static noinline int handle_trace_pkt(struct adapter *adap,
				     const struct pkt_gl *gl)
{
	struct sk_buff *skb;

	skb = cxgb4_pktgl_to_skb(gl, RX_PULL_LEN, RX_PULL_LEN);
	if (unlikely(!skb)) {
		t4_pktgl_free(gl);
		return 0;
	}

1811
	if (is_t4(adap->params.chip))
S
Santosh Rastapur 已提交
1812 1813 1814 1815
		__skb_pull(skb, sizeof(struct cpl_trace_pkt));
	else
		__skb_pull(skb, sizeof(struct cpl_t5_trace_pkt));

1816 1817 1818 1819 1820 1821 1822 1823 1824 1825
	skb_reset_mac_header(skb);
	skb->protocol = htons(0xffff);
	skb->dev = adap->port[0];
	netif_receive_skb(skb);
	return 0;
}

static void do_gro(struct sge_eth_rxq *rxq, const struct pkt_gl *gl,
		   const struct cpl_rx_pkt *pkt)
{
1826 1827
	struct adapter *adapter = rxq->rspq.adap;
	struct sge *s = &adapter->sge;
1828 1829 1830 1831 1832 1833 1834 1835 1836 1837
	int ret;
	struct sk_buff *skb;

	skb = napi_get_frags(&rxq->rspq.napi);
	if (unlikely(!skb)) {
		t4_pktgl_free(gl);
		rxq->stats.rx_drops++;
		return;
	}

1838 1839
	copy_frags(skb, gl, s->pktshift);
	skb->len = gl->tot_len - s->pktshift;
1840 1841 1842 1843
	skb->data_len = skb->len;
	skb->truesize += skb->data_len;
	skb->ip_summed = CHECKSUM_UNNECESSARY;
	skb_record_rx_queue(skb, rxq->rspq.idx);
1844
	skb_mark_napi_id(skb, &rxq->rspq.napi);
D
Dimitris Michailidis 已提交
1845
	if (rxq->rspq.netdev->features & NETIF_F_RXHASH)
T
Tom Herbert 已提交
1846 1847
		skb_set_hash(skb, (__force u32)pkt->rsshdr.hash_val,
			     PKT_HASH_TYPE_L3);
1848 1849

	if (unlikely(pkt->vlan_ex)) {
1850
		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(pkt->vlan));
1851 1852 1853
		rxq->stats.vlan_ex++;
	}
	ret = napi_gro_frags(&rxq->rspq.napi);
1854
	if (ret == GRO_HELD)
1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876
		rxq->stats.lro_pkts++;
	else if (ret == GRO_MERGED || ret == GRO_MERGED_FREE)
		rxq->stats.lro_merged++;
	rxq->stats.pkts++;
	rxq->stats.rx_cso++;
}

/**
 *	t4_ethrx_handler - process an ingress ethernet packet
 *	@q: the response queue that received the packet
 *	@rsp: the response queue descriptor holding the RX_PKT message
 *	@si: the gather list of packet fragments
 *
 *	Process an ingress ethernet packet and deliver it to the stack.
 */
int t4_ethrx_handler(struct sge_rspq *q, const __be64 *rsp,
		     const struct pkt_gl *si)
{
	bool csum_ok;
	struct sk_buff *skb;
	const struct cpl_rx_pkt *pkt;
	struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq);
1877
	struct sge *s = &q->adap->sge;
1878
	int cpl_trace_pkt = is_t4(q->adap->params.chip) ?
S
Santosh Rastapur 已提交
1879
			    CPL_TRACE_PKT : CPL_TRACE_PKT_T5;
V
Varun Prakash 已提交
1880 1881 1882
#ifdef CONFIG_CHELSIO_T4_FCOE
	struct port_info *pi;
#endif
1883

S
Santosh Rastapur 已提交
1884
	if (unlikely(*(u8 *)rsp == cpl_trace_pkt))
1885 1886
		return handle_trace_pkt(q->adap, si);

D
Dimitris Michailidis 已提交
1887
	pkt = (const struct cpl_rx_pkt *)rsp;
1888 1889
	csum_ok = pkt->csum_calc && !pkt->err_vec &&
		  (q->netdev->features & NETIF_F_RXCSUM);
1890
	if ((pkt->l2info & htonl(RXF_TCP_F)) &&
1891
	    !(cxgb_poll_busy_polling(q)) &&
1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903
	    (q->netdev->features & NETIF_F_GRO) && csum_ok && !pkt->ip_frag) {
		do_gro(rxq, si, pkt);
		return 0;
	}

	skb = cxgb4_pktgl_to_skb(si, RX_PKT_SKB_LEN, RX_PULL_LEN);
	if (unlikely(!skb)) {
		t4_pktgl_free(si);
		rxq->stats.rx_drops++;
		return 0;
	}

1904
	__skb_pull(skb, s->pktshift);      /* remove ethernet header padding */
1905 1906
	skb->protocol = eth_type_trans(skb, q->netdev);
	skb_record_rx_queue(skb, q->idx);
D
Dimitris Michailidis 已提交
1907
	if (skb->dev->features & NETIF_F_RXHASH)
T
Tom Herbert 已提交
1908 1909
		skb_set_hash(skb, (__force u32)pkt->rsshdr.hash_val,
			     PKT_HASH_TYPE_L3);
D
Dimitris Michailidis 已提交
1910

1911 1912
	rxq->stats.pkts++;

1913
	if (csum_ok && (pkt->l2info & htonl(RXF_UDP_F | RXF_TCP_F))) {
1914
		if (!pkt->ip_frag) {
1915
			skb->ip_summed = CHECKSUM_UNNECESSARY;
1916
			rxq->stats.rx_cso++;
1917
		} else if (pkt->l2info & htonl(RXF_IP_F)) {
1918 1919 1920
			__sum16 c = (__force __sum16)pkt->csum;
			skb->csum = csum_unfold(c);
			skb->ip_summed = CHECKSUM_COMPLETE;
1921
			rxq->stats.rx_cso++;
1922
		}
V
Varun Prakash 已提交
1923
	} else {
1924
		skb_checksum_none_assert(skb);
V
Varun Prakash 已提交
1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940
#ifdef CONFIG_CHELSIO_T4_FCOE
#define CPL_RX_PKT_FLAGS (RXF_PSH_F | RXF_SYN_F | RXF_UDP_F | \
			  RXF_TCP_F | RXF_IP_F | RXF_IP6_F | RXF_LRO_F)

		pi = netdev_priv(skb->dev);
		if (!(pkt->l2info & cpu_to_be32(CPL_RX_PKT_FLAGS))) {
			if ((pkt->l2info & cpu_to_be32(RXF_FCOE_F)) &&
			    (pi->fcoe.flags & CXGB_FCOE_ENABLED)) {
				if (!(pkt->err_vec & cpu_to_be16(RXERR_CSUM_F)))
					skb->ip_summed = CHECKSUM_UNNECESSARY;
			}
		}

#undef CPL_RX_PKT_FLAGS
#endif /* CONFIG_CHELSIO_T4_FCOE */
	}
1941 1942

	if (unlikely(pkt->vlan_ex)) {
1943
		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(pkt->vlan));
1944
		rxq->stats.vlan_ex++;
1945
	}
1946
	skb_mark_napi_id(skb, &q->napi);
1947
	netif_receive_skb(skb);
1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993
	return 0;
}

/**
 *	restore_rx_bufs - put back a packet's Rx buffers
 *	@si: the packet gather list
 *	@q: the SGE free list
 *	@frags: number of FL buffers to restore
 *
 *	Puts back on an FL the Rx buffers associated with @si.  The buffers
 *	have already been unmapped and are left unmapped, we mark them so to
 *	prevent further unmapping attempts.
 *
 *	This function undoes a series of @unmap_rx_buf calls when we find out
 *	that the current packet can't be processed right away afterall and we
 *	need to come back to it later.  This is a very rare event and there's
 *	no effort to make this particularly efficient.
 */
static void restore_rx_bufs(const struct pkt_gl *si, struct sge_fl *q,
			    int frags)
{
	struct rx_sw_desc *d;

	while (frags--) {
		if (q->cidx == 0)
			q->cidx = q->size - 1;
		else
			q->cidx--;
		d = &q->sdesc[q->cidx];
		d->page = si->frags[frags].page;
		d->dma_addr |= RX_UNMAPPED_BUF;
		q->avail++;
	}
}

/**
 *	is_new_response - check if a response is newly written
 *	@r: the response descriptor
 *	@q: the response queue
 *
 *	Returns true if a response descriptor contains a yet unprocessed
 *	response.
 */
static inline bool is_new_response(const struct rsp_ctrl *r,
				   const struct sge_rspq *q)
{
1994
	return (r->type_gen >> RSPD_GEN_S) == q->gen;
1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031
}

/**
 *	rspq_next - advance to the next entry in a response queue
 *	@q: the queue
 *
 *	Updates the state of a response queue to advance it to the next entry.
 */
static inline void rspq_next(struct sge_rspq *q)
{
	q->cur_desc = (void *)q->cur_desc + q->iqe_len;
	if (unlikely(++q->cidx == q->size)) {
		q->cidx = 0;
		q->gen ^= 1;
		q->cur_desc = q->desc;
	}
}

/**
 *	process_responses - process responses from an SGE response queue
 *	@q: the ingress queue to process
 *	@budget: how many responses can be processed in this round
 *
 *	Process responses from an SGE response queue up to the supplied budget.
 *	Responses include received packets as well as control messages from FW
 *	or HW.
 *
 *	Additionally choose the interrupt holdoff time for the next interrupt
 *	on this queue.  If the system is under memory shortage use a fairly
 *	long delay to help recovery.
 */
static int process_responses(struct sge_rspq *q, int budget)
{
	int ret, rsp_type;
	int budget_left = budget;
	const struct rsp_ctrl *rc;
	struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq);
2032 2033
	struct adapter *adapter = q->adap;
	struct sge *s = &adapter->sge;
2034 2035 2036 2037 2038 2039

	while (likely(budget_left)) {
		rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc));
		if (!is_new_response(rc, q))
			break;

2040
		dma_rmb();
2041 2042
		rsp_type = RSPD_TYPE_G(rc->type_gen);
		if (likely(rsp_type == RSPD_TYPE_FLBUF_X)) {
2043
			struct page_frag *fp;
2044 2045 2046 2047
			struct pkt_gl si;
			const struct rx_sw_desc *rsd;
			u32 len = ntohl(rc->pldbuflen_qid), bufsz, frags;

2048
			if (len & RSPD_NEWBUF_F) {
2049 2050 2051 2052
				if (likely(q->offset > 0)) {
					free_rx_bufs(q->adap, &rxq->fl, 1);
					q->offset = 0;
				}
2053
				len = RSPD_LEN_G(len);
2054 2055 2056 2057 2058 2059
			}
			si.tot_len = len;

			/* gather packet fragments */
			for (frags = 0, fp = si.frags; ; frags++, fp++) {
				rsd = &rxq->fl.sdesc[rxq->fl.cidx];
2060
				bufsz = get_buf_size(adapter, rsd);
2061
				fp->page = rsd->page;
2062 2063 2064
				fp->offset = q->offset;
				fp->size = min(bufsz, len);
				len -= fp->size;
2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075
				if (!len)
					break;
				unmap_rx_buf(q->adap, &rxq->fl);
			}

			/*
			 * Last buffer remains mapped so explicitly make it
			 * coherent for CPU access.
			 */
			dma_sync_single_for_cpu(q->adap->pdev_dev,
						get_buf_addr(rsd),
2076
						fp->size, DMA_FROM_DEVICE);
2077 2078

			si.va = page_address(si.frags[0].page) +
2079
				si.frags[0].offset;
2080 2081 2082 2083 2084
			prefetch(si.va);

			si.nfrags = frags + 1;
			ret = q->handler(q, q->cur_desc, &si);
			if (likely(ret == 0))
2085
				q->offset += ALIGN(fp->size, s->fl_align);
2086 2087
			else
				restore_rx_bufs(&si, &rxq->fl, frags);
2088
		} else if (likely(rsp_type == RSPD_TYPE_CPL_X)) {
2089 2090 2091 2092 2093 2094 2095
			ret = q->handler(q, q->cur_desc, NULL);
		} else {
			ret = q->handler(q, (const __be64 *)rc, CXGB4_MSG_AN);
		}

		if (unlikely(ret)) {
			/* couldn't process descriptor, back off for recovery */
2096
			q->next_intr_params = QINTR_TIMER_IDX_V(NOMEM_TMR_IDX);
2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108
			break;
		}

		rspq_next(q);
		budget_left--;
	}

	if (q->offset >= 0 && rxq->fl.size - rxq->fl.avail >= 16)
		__refill_fl(q->adap, &rxq->fl);
	return budget - budget_left;
}

2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119
#ifdef CONFIG_NET_RX_BUSY_POLL
int cxgb_busy_poll(struct napi_struct *napi)
{
	struct sge_rspq *q = container_of(napi, struct sge_rspq, napi);
	unsigned int params, work_done;
	u32 val;

	if (!cxgb_poll_lock_poll(q))
		return LL_FLUSH_BUSY;

	work_done = process_responses(q, 4);
2120
	params = QINTR_TIMER_IDX_V(TIMERREG_COUNTER0_X) | QINTR_CNT_EN_V(1);
2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140
	q->next_intr_params = params;
	val = CIDXINC_V(work_done) | SEINTARM_V(params);

	/* If we don't have access to the new User GTS (T5+), use the old
	 * doorbell mechanism; otherwise use the new BAR2 mechanism.
	 */
	if (unlikely(!q->bar2_addr))
		t4_write_reg(q->adap, MYPF_REG(SGE_PF_GTS_A),
			     val | INGRESSQID_V((u32)q->cntxt_id));
	else {
		writel(val | INGRESSQID_V(q->bar2_qid),
		       q->bar2_addr + SGE_UDB_GTS);
		wmb();
	}

	cxgb_poll_unlock_poll(q);
	return work_done;
}
#endif /* CONFIG_NET_RX_BUSY_POLL */

2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155
/**
 *	napi_rx_handler - the NAPI handler for Rx processing
 *	@napi: the napi instance
 *	@budget: how many packets we can process in this round
 *
 *	Handler for new data events when using NAPI.  This does not need any
 *	locking or protection from interrupts as data interrupts are off at
 *	this point and other adapter interrupts do not interfere (the latter
 *	in not a concern at all with MSI-X as non-data interrupts then have
 *	a separate handler).
 */
static int napi_rx_handler(struct napi_struct *napi, int budget)
{
	unsigned int params;
	struct sge_rspq *q = container_of(napi, struct sge_rspq, napi);
2156
	int work_done;
2157
	u32 val;
2158

2159 2160 2161 2162
	if (!cxgb_poll_lock_napi(q))
		return budget;

	work_done = process_responses(q, budget);
2163
	if (likely(work_done < budget)) {
2164 2165
		int timer_index;

2166
		napi_complete(napi);
2167
		timer_index = QINTR_TIMER_IDX_G(q->next_intr_params);
2168 2169 2170 2171 2172 2173 2174 2175 2176

		if (q->adaptive_rx) {
			if (work_done > max(timer_pkt_quota[timer_index],
					    MIN_NAPI_WORK))
				timer_index = (timer_index + 1);
			else
				timer_index = timer_index - 1;

			timer_index = clamp(timer_index, 0, SGE_TIMERREGS - 1);
2177 2178 2179
			q->next_intr_params =
					QINTR_TIMER_IDX_V(timer_index) |
					QINTR_CNT_EN_V(0);
2180 2181 2182 2183 2184
			params = q->next_intr_params;
		} else {
			params = q->next_intr_params;
			q->next_intr_params = q->intr_params;
		}
2185
	} else
2186
		params = QINTR_TIMER_IDX_V(7);
2187

2188
	val = CIDXINC_V(work_done) | SEINTARM_V(params);
2189 2190 2191 2192 2193

	/* If we don't have access to the new User GTS (T5+), use the old
	 * doorbell mechanism; otherwise use the new BAR2 mechanism.
	 */
	if (unlikely(q->bar2_addr == NULL)) {
2194 2195
		t4_write_reg(q->adap, MYPF_REG(SGE_PF_GTS_A),
			     val | INGRESSQID_V((u32)q->cntxt_id));
2196
	} else {
2197
		writel(val | INGRESSQID_V(q->bar2_qid),
2198
		       q->bar2_addr + SGE_UDB_GTS);
2199 2200
		wmb();
	}
2201
	cxgb_poll_unlock_napi(q);
2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224
	return work_done;
}

/*
 * The MSI-X interrupt handler for an SGE response queue.
 */
irqreturn_t t4_sge_intr_msix(int irq, void *cookie)
{
	struct sge_rspq *q = cookie;

	napi_schedule(&q->napi);
	return IRQ_HANDLED;
}

/*
 * Process the indirect interrupt entries in the interrupt queue and kick off
 * NAPI for each queue that has generated an entry.
 */
static unsigned int process_intrq(struct adapter *adap)
{
	unsigned int credits;
	const struct rsp_ctrl *rc;
	struct sge_rspq *q = &adap->sge.intrq;
2225
	u32 val;
2226 2227 2228 2229 2230 2231 2232

	spin_lock(&adap->sge.intrq_lock);
	for (credits = 0; ; credits++) {
		rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc));
		if (!is_new_response(rc, q))
			break;

2233
		dma_rmb();
2234
		if (RSPD_TYPE_G(rc->type_gen) == RSPD_TYPE_INTR_X) {
2235 2236
			unsigned int qid = ntohl(rc->pldbuflen_qid);

2237
			qid -= adap->sge.ingr_start;
2238 2239 2240 2241 2242 2243
			napi_schedule(&adap->sge.ingr_map[qid]->napi);
		}

		rspq_next(q);
	}

2244
	val =  CIDXINC_V(credits) | SEINTARM_V(q->intr_params);
2245 2246 2247 2248 2249

	/* If we don't have access to the new User GTS (T5+), use the old
	 * doorbell mechanism; otherwise use the new BAR2 mechanism.
	 */
	if (unlikely(q->bar2_addr == NULL)) {
2250 2251
		t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A),
			     val | INGRESSQID_V(q->cntxt_id));
2252
	} else {
2253
		writel(val | INGRESSQID_V(q->bar2_qid),
2254
		       q->bar2_addr + SGE_UDB_GTS);
2255 2256
		wmb();
	}
2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268
	spin_unlock(&adap->sge.intrq_lock);
	return credits;
}

/*
 * The MSI interrupt handler, which handles data events from SGE response queues
 * as well as error and other async events as they all use the same MSI vector.
 */
static irqreturn_t t4_intr_msi(int irq, void *cookie)
{
	struct adapter *adap = cookie;

2269 2270
	if (adap->flags & MASTER_PF)
		t4_slow_intr_handler(adap);
2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283
	process_intrq(adap);
	return IRQ_HANDLED;
}

/*
 * Interrupt handler for legacy INTx interrupts.
 * Handles data events from SGE response queues as well as error and other
 * async events as they all use the same interrupt line.
 */
static irqreturn_t t4_intr_intx(int irq, void *cookie)
{
	struct adapter *adap = cookie;

2284
	t4_write_reg(adap, MYPF_REG(PCIE_PF_CLI_A), 0);
2285 2286
	if (((adap->flags & MASTER_PF) && t4_slow_intr_handler(adap)) |
	    process_intrq(adap))
2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309
		return IRQ_HANDLED;
	return IRQ_NONE;             /* probably shared interrupt */
}

/**
 *	t4_intr_handler - select the top-level interrupt handler
 *	@adap: the adapter
 *
 *	Selects the top-level interrupt handler based on the type of interrupts
 *	(MSI-X, MSI, or INTx).
 */
irq_handler_t t4_intr_handler(struct adapter *adap)
{
	if (adap->flags & USING_MSIX)
		return t4_sge_intr_msix;
	if (adap->flags & USING_MSI)
		return t4_intr_msi;
	return t4_intr_intx;
}

static void sge_rx_timer_cb(unsigned long data)
{
	unsigned long m;
2310
	unsigned int i;
2311 2312 2313
	struct adapter *adap = (struct adapter *)data;
	struct sge *s = &adap->sge;

2314
	for (i = 0; i < BITS_TO_LONGS(s->egr_sz); i++)
2315 2316 2317 2318 2319 2320
		for (m = s->starving_fl[i]; m; m &= m - 1) {
			struct sge_eth_rxq *rxq;
			unsigned int id = __ffs(m) + i * BITS_PER_LONG;
			struct sge_fl *fl = s->egr_map[id];

			clear_bit(id, s->starving_fl);
2321
			smp_mb__after_atomic();
2322

2323
			if (fl_starving(adap, fl)) {
2324 2325 2326 2327 2328 2329 2330
				rxq = container_of(fl, struct sge_eth_rxq, fl);
				if (napi_reschedule(&rxq->rspq.napi))
					fl->starving++;
				else
					set_bit(id, s->starving_fl);
			}
		}
2331 2332 2333 2334 2335 2336
	/* The remainder of the SGE RX Timer Callback routine is dedicated to
	 * global Master PF activities like checking for chip ingress stalls,
	 * etc.
	 */
	if (!(adap->flags & MASTER_PF))
		goto done;
2337

2338
	t4_idma_monitor(adap, &s->idma_monitor, HZ, RX_QCHECK_PERIOD);
2339

2340
done:
2341 2342 2343 2344 2345 2346 2347 2348 2349 2350
	mod_timer(&s->rx_timer, jiffies + RX_QCHECK_PERIOD);
}

static void sge_tx_timer_cb(unsigned long data)
{
	unsigned long m;
	unsigned int i, budget;
	struct adapter *adap = (struct adapter *)data;
	struct sge *s = &adap->sge;

2351
	for (i = 0; i < BITS_TO_LONGS(s->egr_sz); i++)
2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387
		for (m = s->txq_maperr[i]; m; m &= m - 1) {
			unsigned long id = __ffs(m) + i * BITS_PER_LONG;
			struct sge_ofld_txq *txq = s->egr_map[id];

			clear_bit(id, s->txq_maperr);
			tasklet_schedule(&txq->qresume_tsk);
		}

	budget = MAX_TIMER_TX_RECLAIM;
	i = s->ethtxq_rover;
	do {
		struct sge_eth_txq *q = &s->ethtxq[i];

		if (q->q.in_use &&
		    time_after_eq(jiffies, q->txq->trans_start + HZ / 100) &&
		    __netif_tx_trylock(q->txq)) {
			int avail = reclaimable(&q->q);

			if (avail) {
				if (avail > budget)
					avail = budget;

				free_tx_desc(adap, &q->q, avail, true);
				q->q.in_use -= avail;
				budget -= avail;
			}
			__netif_tx_unlock(q->txq);
		}

		if (++i >= s->ethqsets)
			i = 0;
	} while (budget && i != s->ethtxq_rover);
	s->ethtxq_rover = i;
	mod_timer(&s->tx_timer, jiffies + (budget ? TX_QCHECK_PERIOD : 2));
}

2388
/**
2389 2390 2391 2392 2393
 *	bar2_address - return the BAR2 address for an SGE Queue's Registers
 *	@adapter: the adapter
 *	@qid: the SGE Queue ID
 *	@qtype: the SGE Queue Type (Egress or Ingress)
 *	@pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
2394
 *
2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407
 *	Returns the BAR2 address for the SGE Queue Registers associated with
 *	@qid.  If BAR2 SGE Registers aren't available, returns NULL.  Also
 *	returns the BAR2 Queue ID to be used with writes to the BAR2 SGE
 *	Queue Registers.  If the BAR2 Queue ID is 0, then "Inferred Queue ID"
 *	Registers are supported (e.g. the Write Combining Doorbell Buffer).
 */
static void __iomem *bar2_address(struct adapter *adapter,
				  unsigned int qid,
				  enum t4_bar2_qtype qtype,
				  unsigned int *pbar2_qid)
{
	u64 bar2_qoffset;
	int ret;
2408

2409
	ret = t4_bar2_sge_qregs(adapter, qid, qtype, 0,
2410 2411 2412
				&bar2_qoffset, pbar2_qid);
	if (ret)
		return NULL;
2413

2414
	return adapter->bar2 + bar2_qoffset;
2415 2416
}

2417 2418 2419
/* @intr_idx: MSI/MSI-X vector if >=0, -(absolute qid + 1) if < 0
 * @cong: < 0 -> no congestion feedback, >= 0 -> congestion channel map
 */
2420 2421
int t4_sge_alloc_rxq(struct adapter *adap, struct sge_rspq *iq, bool fwevtq,
		     struct net_device *dev, int intr_idx,
2422
		     struct sge_fl *fl, rspq_handler_t hnd, int cong)
2423 2424 2425
{
	int ret, flsz = 0;
	struct fw_iq_cmd c;
2426
	struct sge *s = &adap->sge;
2427 2428 2429 2430 2431 2432
	struct port_info *pi = netdev_priv(dev);

	/* Size needs to be multiple of 16, including status entry. */
	iq->size = roundup(iq->size, 16);

	iq->desc = alloc_ring(adap->pdev_dev, iq->size, iq->iqe_len, 0,
2433
			      &iq->phys_addr, NULL, 0, NUMA_NO_NODE);
2434 2435 2436 2437
	if (!iq->desc)
		return -ENOMEM;

	memset(&c, 0, sizeof(c));
2438 2439
	c.op_to_vfn = htonl(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
			    FW_CMD_WRITE_F | FW_CMD_EXEC_F |
2440
			    FW_IQ_CMD_PFN_V(adap->pf) | FW_IQ_CMD_VFN_V(0));
2441
	c.alloc_to_len16 = htonl(FW_IQ_CMD_ALLOC_F | FW_IQ_CMD_IQSTART_F |
2442
				 FW_LEN16(c));
2443 2444
	c.type_to_iqandstindex = htonl(FW_IQ_CMD_TYPE_V(FW_IQ_TYPE_FL_INT_CAP) |
		FW_IQ_CMD_IQASYNCH_V(fwevtq) | FW_IQ_CMD_VIID_V(pi->viid) |
2445 2446
		FW_IQ_CMD_IQANDST_V(intr_idx < 0) |
		FW_IQ_CMD_IQANUD_V(UPDATEDELIVERY_INTERRUPT_X) |
2447
		FW_IQ_CMD_IQANDSTINDEX_V(intr_idx >= 0 ? intr_idx :
2448
							-intr_idx - 1));
2449 2450 2451 2452
	c.iqdroprss_to_iqesize = htons(FW_IQ_CMD_IQPCIECH_V(pi->tx_chan) |
		FW_IQ_CMD_IQGTSMODE_F |
		FW_IQ_CMD_IQINTCNTTHRESH_V(iq->pktcnt_idx) |
		FW_IQ_CMD_IQESIZE_V(ilog2(iq->iqe_len) - 4));
2453 2454
	c.iqsize = htons(iq->size);
	c.iqaddr = cpu_to_be64(iq->phys_addr);
2455 2456
	if (cong >= 0)
		c.iqns_to_fl0congen = htonl(FW_IQ_CMD_IQFLINTCONGEN_F);
2457 2458

	if (fl) {
2459 2460
		enum chip_type chip = CHELSIO_CHIP_VERSION(adap->params.chip);

2461 2462 2463 2464 2465 2466 2467 2468 2469
		/* Allocate the ring for the hardware free list (with space
		 * for its status page) along with the associated software
		 * descriptor ring.  The free list size needs to be a multiple
		 * of the Egress Queue Unit and at least 2 Egress Units larger
		 * than the SGE's Egress Congrestion Threshold
		 * (fl_starve_thres - 1).
		 */
		if (fl->size < s->fl_starve_thres - 1 + 2 * 8)
			fl->size = s->fl_starve_thres - 1 + 2 * 8;
2470 2471 2472
		fl->size = roundup(fl->size, 8);
		fl->desc = alloc_ring(adap->pdev_dev, fl->size, sizeof(__be64),
				      sizeof(struct rx_sw_desc), &fl->addr,
2473
				      &fl->sdesc, s->stat_len, NUMA_NO_NODE);
2474 2475 2476
		if (!fl->desc)
			goto fl_nomem;

2477
		flsz = fl->size / 8 + s->stat_len / sizeof(struct tx_desc);
2478 2479 2480 2481 2482 2483 2484 2485 2486
		c.iqns_to_fl0congen |= htonl(FW_IQ_CMD_FL0PACKEN_F |
					     FW_IQ_CMD_FL0FETCHRO_F |
					     FW_IQ_CMD_FL0DATARO_F |
					     FW_IQ_CMD_FL0PADEN_F);
		if (cong >= 0)
			c.iqns_to_fl0congen |=
				htonl(FW_IQ_CMD_FL0CNGCHMAP_V(cong) |
				      FW_IQ_CMD_FL0CONGCIF_F |
				      FW_IQ_CMD_FL0CONGEN_F);
2487 2488
		c.fl0dcaen_to_fl0cidxfthresh =
			htons(FW_IQ_CMD_FL0FBMIN_V(FETCHBURSTMIN_64B_X) |
2489 2490 2491
			      FW_IQ_CMD_FL0FBMAX_V((chip <= CHELSIO_T5) ?
						   FETCHBURSTMAX_512B_X :
						   FETCHBURSTMAX_256B_X));
2492 2493 2494 2495
		c.fl0size = htons(flsz);
		c.fl0addr = cpu_to_be64(fl->addr);
	}

2496
	ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
2497 2498 2499 2500
	if (ret)
		goto err;

	netif_napi_add(dev, &iq->napi, napi_rx_handler, 64);
2501
	napi_hash_add(&iq->napi);
2502 2503 2504 2505 2506 2507
	iq->cur_desc = iq->desc;
	iq->cidx = 0;
	iq->gen = 1;
	iq->next_intr_params = iq->intr_params;
	iq->cntxt_id = ntohs(c.iqid);
	iq->abs_id = ntohs(c.physiqid);
2508 2509 2510 2511
	iq->bar2_addr = bar2_address(adap,
				     iq->cntxt_id,
				     T4_BAR2_QTYPE_INGRESS,
				     &iq->bar2_qid);
2512 2513 2514 2515 2516 2517 2518
	iq->size--;                           /* subtract status entry */
	iq->netdev = dev;
	iq->handler = hnd;

	/* set offset to -1 to distinguish ingress queues without FL */
	iq->offset = fl ? 0 : -1;

2519
	adap->sge.ingr_map[iq->cntxt_id - adap->sge.ingr_start] = iq;
2520 2521

	if (fl) {
2522
		fl->cntxt_id = ntohs(c.fl0id);
2523 2524 2525
		fl->avail = fl->pend_cred = 0;
		fl->pidx = fl->cidx = 0;
		fl->alloc_failed = fl->large_alloc_failed = fl->starving = 0;
2526
		adap->sge.egr_map[fl->cntxt_id - adap->sge.egr_start] = fl;
2527

2528 2529
		/* Note, we must initialize the BAR2 Free List User Doorbell
		 * information before refilling the Free List!
2530
		 */
2531 2532 2533 2534
		fl->bar2_addr = bar2_address(adap,
					     fl->cntxt_id,
					     T4_BAR2_QTYPE_EGRESS,
					     &fl->bar2_qid);
2535 2536
		refill_fl(adap, fl, fl_cap(fl), GFP_KERNEL);
	}
2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563

	/* For T5 and later we attempt to set up the Congestion Manager values
	 * of the new RX Ethernet Queue.  This should really be handled by
	 * firmware because it's more complex than any host driver wants to
	 * get involved with and it's different per chip and this is almost
	 * certainly wrong.  Firmware would be wrong as well, but it would be
	 * a lot easier to fix in one place ...  For now we do something very
	 * simple (and hopefully less wrong).
	 */
	if (!is_t4(adap->params.chip) && cong >= 0) {
		u32 param, val;
		int i;

		param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
			 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DMAQ_CONM_CTXT) |
			 FW_PARAMS_PARAM_YZ_V(iq->cntxt_id));
		if (cong == 0) {
			val = CONMCTXT_CNGTPMODE_V(CONMCTXT_CNGTPMODE_QUEUE_X);
		} else {
			val =
			    CONMCTXT_CNGTPMODE_V(CONMCTXT_CNGTPMODE_CHANNEL_X);
			for (i = 0; i < 4; i++) {
				if (cong & (1 << i))
					val |=
					     CONMCTXT_CNGCHMAP_V(1 << (i << 2));
			}
		}
2564
		ret = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
2565 2566 2567 2568 2569 2570 2571
				    &param, &val);
		if (ret)
			dev_warn(adap->pdev_dev, "Failed to set Congestion"
				 " Manager Context for Ingress Queue %d: %d\n",
				 iq->cntxt_id, -ret);
	}

2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593
	return 0;

fl_nomem:
	ret = -ENOMEM;
err:
	if (iq->desc) {
		dma_free_coherent(adap->pdev_dev, iq->size * iq->iqe_len,
				  iq->desc, iq->phys_addr);
		iq->desc = NULL;
	}
	if (fl && fl->desc) {
		kfree(fl->sdesc);
		fl->sdesc = NULL;
		dma_free_coherent(adap->pdev_dev, flsz * sizeof(struct tx_desc),
				  fl->desc, fl->addr);
		fl->desc = NULL;
	}
	return ret;
}

static void init_txq(struct adapter *adap, struct sge_txq *q, unsigned int id)
{
2594
	q->cntxt_id = id;
2595 2596 2597 2598
	q->bar2_addr = bar2_address(adap,
				    q->cntxt_id,
				    T4_BAR2_QTYPE_EGRESS,
				    &q->bar2_qid);
2599 2600 2601 2602
	q->in_use = 0;
	q->cidx = q->pidx = 0;
	q->stops = q->restarts = 0;
	q->stat = (void *)&q->desc[q->size];
2603
	spin_lock_init(&q->db_lock);
2604
	adap->sge.egr_map[id - adap->sge.egr_start] = q;
2605 2606 2607 2608 2609 2610 2611 2612
}

int t4_sge_alloc_eth_txq(struct adapter *adap, struct sge_eth_txq *txq,
			 struct net_device *dev, struct netdev_queue *netdevq,
			 unsigned int iqid)
{
	int ret, nentries;
	struct fw_eq_eth_cmd c;
2613
	struct sge *s = &adap->sge;
2614 2615 2616
	struct port_info *pi = netdev_priv(dev);

	/* Add status entries */
2617
	nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
2618 2619 2620

	txq->q.desc = alloc_ring(adap->pdev_dev, txq->q.size,
			sizeof(struct tx_desc), sizeof(struct tx_sw_desc),
2621
			&txq->q.phys_addr, &txq->q.sdesc, s->stat_len,
2622
			netdev_queue_numa_node_read(netdevq));
2623 2624 2625 2626
	if (!txq->q.desc)
		return -ENOMEM;

	memset(&c, 0, sizeof(c));
2627 2628
	c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_ETH_CMD) | FW_CMD_REQUEST_F |
			    FW_CMD_WRITE_F | FW_CMD_EXEC_F |
2629
			    FW_EQ_ETH_CMD_PFN_V(adap->pf) |
2630 2631 2632 2633 2634
			    FW_EQ_ETH_CMD_VFN_V(0));
	c.alloc_to_len16 = htonl(FW_EQ_ETH_CMD_ALLOC_F |
				 FW_EQ_ETH_CMD_EQSTART_F | FW_LEN16(c));
	c.viid_pkd = htonl(FW_EQ_ETH_CMD_AUTOEQUEQE_F |
			   FW_EQ_ETH_CMD_VIID_V(pi->viid));
2635 2636 2637 2638 2639 2640 2641 2642 2643
	c.fetchszm_to_iqid =
		htonl(FW_EQ_ETH_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X) |
		      FW_EQ_ETH_CMD_PCIECHN_V(pi->tx_chan) |
		      FW_EQ_ETH_CMD_FETCHRO_F | FW_EQ_ETH_CMD_IQID_V(iqid));
	c.dcaen_to_eqsize =
		htonl(FW_EQ_ETH_CMD_FBMIN_V(FETCHBURSTMIN_64B_X) |
		      FW_EQ_ETH_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) |
		      FW_EQ_ETH_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) |
		      FW_EQ_ETH_CMD_EQSIZE_V(nentries));
2644 2645
	c.eqaddr = cpu_to_be64(txq->q.phys_addr);

2646
	ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
2647 2648 2649 2650 2651 2652 2653 2654 2655 2656
	if (ret) {
		kfree(txq->q.sdesc);
		txq->q.sdesc = NULL;
		dma_free_coherent(adap->pdev_dev,
				  nentries * sizeof(struct tx_desc),
				  txq->q.desc, txq->q.phys_addr);
		txq->q.desc = NULL;
		return ret;
	}

2657
	init_txq(adap, &txq->q, FW_EQ_ETH_CMD_EQID_G(ntohl(c.eqid_pkd)));
2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669
	txq->txq = netdevq;
	txq->tso = txq->tx_cso = txq->vlan_ins = 0;
	txq->mapping_err = 0;
	return 0;
}

int t4_sge_alloc_ctrl_txq(struct adapter *adap, struct sge_ctrl_txq *txq,
			  struct net_device *dev, unsigned int iqid,
			  unsigned int cmplqid)
{
	int ret, nentries;
	struct fw_eq_ctrl_cmd c;
2670
	struct sge *s = &adap->sge;
2671 2672 2673
	struct port_info *pi = netdev_priv(dev);

	/* Add status entries */
2674
	nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
2675 2676 2677

	txq->q.desc = alloc_ring(adap->pdev_dev, nentries,
				 sizeof(struct tx_desc), 0, &txq->q.phys_addr,
2678
				 NULL, 0, dev_to_node(adap->pdev_dev));
2679 2680 2681
	if (!txq->q.desc)
		return -ENOMEM;

2682 2683
	c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_CTRL_CMD) | FW_CMD_REQUEST_F |
			    FW_CMD_WRITE_F | FW_CMD_EXEC_F |
2684
			    FW_EQ_CTRL_CMD_PFN_V(adap->pf) |
2685 2686 2687 2688
			    FW_EQ_CTRL_CMD_VFN_V(0));
	c.alloc_to_len16 = htonl(FW_EQ_CTRL_CMD_ALLOC_F |
				 FW_EQ_CTRL_CMD_EQSTART_F | FW_LEN16(c));
	c.cmpliqid_eqid = htonl(FW_EQ_CTRL_CMD_CMPLIQID_V(cmplqid));
2689
	c.physeqid_pkd = htonl(0);
2690 2691 2692 2693 2694 2695 2696 2697 2698
	c.fetchszm_to_iqid =
		htonl(FW_EQ_CTRL_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X) |
		      FW_EQ_CTRL_CMD_PCIECHN_V(pi->tx_chan) |
		      FW_EQ_CTRL_CMD_FETCHRO_F | FW_EQ_CTRL_CMD_IQID_V(iqid));
	c.dcaen_to_eqsize =
		htonl(FW_EQ_CTRL_CMD_FBMIN_V(FETCHBURSTMIN_64B_X) |
		      FW_EQ_CTRL_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) |
		      FW_EQ_CTRL_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) |
		      FW_EQ_CTRL_CMD_EQSIZE_V(nentries));
2699 2700
	c.eqaddr = cpu_to_be64(txq->q.phys_addr);

2701
	ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
2702 2703 2704 2705 2706 2707 2708 2709
	if (ret) {
		dma_free_coherent(adap->pdev_dev,
				  nentries * sizeof(struct tx_desc),
				  txq->q.desc, txq->q.phys_addr);
		txq->q.desc = NULL;
		return ret;
	}

2710
	init_txq(adap, &txq->q, FW_EQ_CTRL_CMD_EQID_G(ntohl(c.cmpliqid_eqid)));
2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722
	txq->adap = adap;
	skb_queue_head_init(&txq->sendq);
	tasklet_init(&txq->qresume_tsk, restart_ctrlq, (unsigned long)txq);
	txq->full = 0;
	return 0;
}

int t4_sge_alloc_ofld_txq(struct adapter *adap, struct sge_ofld_txq *txq,
			  struct net_device *dev, unsigned int iqid)
{
	int ret, nentries;
	struct fw_eq_ofld_cmd c;
2723
	struct sge *s = &adap->sge;
2724 2725 2726
	struct port_info *pi = netdev_priv(dev);

	/* Add status entries */
2727
	nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
2728 2729 2730

	txq->q.desc = alloc_ring(adap->pdev_dev, txq->q.size,
			sizeof(struct tx_desc), sizeof(struct tx_sw_desc),
2731
			&txq->q.phys_addr, &txq->q.sdesc, s->stat_len,
2732
			NUMA_NO_NODE);
2733 2734 2735 2736
	if (!txq->q.desc)
		return -ENOMEM;

	memset(&c, 0, sizeof(c));
2737 2738
	c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_OFLD_CMD) | FW_CMD_REQUEST_F |
			    FW_CMD_WRITE_F | FW_CMD_EXEC_F |
2739
			    FW_EQ_OFLD_CMD_PFN_V(adap->pf) |
2740 2741 2742
			    FW_EQ_OFLD_CMD_VFN_V(0));
	c.alloc_to_len16 = htonl(FW_EQ_OFLD_CMD_ALLOC_F |
				 FW_EQ_OFLD_CMD_EQSTART_F | FW_LEN16(c));
2743 2744 2745 2746 2747 2748 2749 2750 2751
	c.fetchszm_to_iqid =
		htonl(FW_EQ_OFLD_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X) |
		      FW_EQ_OFLD_CMD_PCIECHN_V(pi->tx_chan) |
		      FW_EQ_OFLD_CMD_FETCHRO_F | FW_EQ_OFLD_CMD_IQID_V(iqid));
	c.dcaen_to_eqsize =
		htonl(FW_EQ_OFLD_CMD_FBMIN_V(FETCHBURSTMIN_64B_X) |
		      FW_EQ_OFLD_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) |
		      FW_EQ_OFLD_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) |
		      FW_EQ_OFLD_CMD_EQSIZE_V(nentries));
2752 2753
	c.eqaddr = cpu_to_be64(txq->q.phys_addr);

2754
	ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
2755 2756 2757 2758 2759 2760 2761 2762 2763 2764
	if (ret) {
		kfree(txq->q.sdesc);
		txq->q.sdesc = NULL;
		dma_free_coherent(adap->pdev_dev,
				  nentries * sizeof(struct tx_desc),
				  txq->q.desc, txq->q.phys_addr);
		txq->q.desc = NULL;
		return ret;
	}

2765
	init_txq(adap, &txq->q, FW_EQ_OFLD_CMD_EQID_G(ntohl(c.eqid_pkd)));
2766 2767 2768 2769 2770 2771 2772 2773 2774 2775
	txq->adap = adap;
	skb_queue_head_init(&txq->sendq);
	tasklet_init(&txq->qresume_tsk, restart_ofldq, (unsigned long)txq);
	txq->full = 0;
	txq->mapping_err = 0;
	return 0;
}

static void free_txq(struct adapter *adap, struct sge_txq *q)
{
2776 2777
	struct sge *s = &adap->sge;

2778
	dma_free_coherent(adap->pdev_dev,
2779
			  q->size * sizeof(struct tx_desc) + s->stat_len,
2780 2781 2782 2783 2784 2785 2786 2787 2788
			  q->desc, q->phys_addr);
	q->cntxt_id = 0;
	q->sdesc = NULL;
	q->desc = NULL;
}

static void free_rspq_fl(struct adapter *adap, struct sge_rspq *rq,
			 struct sge_fl *fl)
{
2789
	struct sge *s = &adap->sge;
2790 2791
	unsigned int fl_id = fl ? fl->cntxt_id : 0xffff;

2792
	adap->sge.ingr_map[rq->cntxt_id - adap->sge.ingr_start] = NULL;
2793
	t4_iq_free(adap, adap->mbox, adap->pf, 0, FW_IQ_TYPE_FL_INT_CAP,
2794
		   rq->cntxt_id, fl_id, 0xffff);
2795 2796
	dma_free_coherent(adap->pdev_dev, (rq->size + 1) * rq->iqe_len,
			  rq->desc, rq->phys_addr);
2797
	napi_hash_del(&rq->napi);
2798 2799 2800 2801 2802 2803 2804
	netif_napi_del(&rq->napi);
	rq->netdev = NULL;
	rq->cntxt_id = rq->abs_id = 0;
	rq->desc = NULL;

	if (fl) {
		free_rx_bufs(adap, fl, fl->avail);
2805
		dma_free_coherent(adap->pdev_dev, fl->size * 8 + s->stat_len,
2806 2807 2808 2809 2810 2811 2812 2813
				  fl->desc, fl->addr);
		kfree(fl->sdesc);
		fl->sdesc = NULL;
		fl->cntxt_id = 0;
		fl->desc = NULL;
	}
}

2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829
/**
 *      t4_free_ofld_rxqs - free a block of consecutive Rx queues
 *      @adap: the adapter
 *      @n: number of queues
 *      @q: pointer to first queue
 *
 *      Release the resources of a consecutive block of offload Rx queues.
 */
void t4_free_ofld_rxqs(struct adapter *adap, int n, struct sge_ofld_rxq *q)
{
	for ( ; n; n--, q++)
		if (q->rspq.desc)
			free_rspq_fl(adap, &q->rspq,
				     q->fl.size ? &q->fl : NULL);
}

2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844
/**
 *	t4_free_sge_resources - free SGE resources
 *	@adap: the adapter
 *
 *	Frees resources used by the SGE queue sets.
 */
void t4_free_sge_resources(struct adapter *adap)
{
	int i;
	struct sge_eth_rxq *eq = adap->sge.ethrxq;
	struct sge_eth_txq *etq = adap->sge.ethtxq;

	/* clean up Ethernet Tx/Rx queues */
	for (i = 0; i < adap->sge.ethqsets; i++, eq++, etq++) {
		if (eq->rspq.desc)
2845 2846
			free_rspq_fl(adap, &eq->rspq,
				     eq->fl.size ? &eq->fl : NULL);
2847
		if (etq->q.desc) {
2848
			t4_eth_eq_free(adap, adap->mbox, adap->pf, 0,
2849
				       etq->q.cntxt_id);
2850 2851 2852 2853 2854 2855 2856
			free_tx_desc(adap, &etq->q, etq->q.in_use, true);
			kfree(etq->q.sdesc);
			free_txq(adap, &etq->q);
		}
	}

	/* clean up RDMA and iSCSI Rx queues */
2857 2858 2859
	t4_free_ofld_rxqs(adap, adap->sge.ofldqsets, adap->sge.ofldrxq);
	t4_free_ofld_rxqs(adap, adap->sge.rdmaqs, adap->sge.rdmarxq);
	t4_free_ofld_rxqs(adap, adap->sge.rdmaciqs, adap->sge.rdmaciq);
2860 2861 2862 2863 2864 2865 2866

	/* clean up offload Tx queues */
	for (i = 0; i < ARRAY_SIZE(adap->sge.ofldtxq); i++) {
		struct sge_ofld_txq *q = &adap->sge.ofldtxq[i];

		if (q->q.desc) {
			tasklet_kill(&q->qresume_tsk);
2867
			t4_ofld_eq_free(adap, adap->mbox, adap->pf, 0,
2868
					q->q.cntxt_id);
2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881
			free_tx_desc(adap, &q->q, q->q.in_use, false);
			kfree(q->q.sdesc);
			__skb_queue_purge(&q->sendq);
			free_txq(adap, &q->q);
		}
	}

	/* clean up control Tx queues */
	for (i = 0; i < ARRAY_SIZE(adap->sge.ctrlq); i++) {
		struct sge_ctrl_txq *cq = &adap->sge.ctrlq[i];

		if (cq->q.desc) {
			tasklet_kill(&cq->qresume_tsk);
2882
			t4_ctrl_eq_free(adap, adap->mbox, adap->pf, 0,
2883
					cq->q.cntxt_id);
2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895
			__skb_queue_purge(&cq->sendq);
			free_txq(adap, &cq->q);
		}
	}

	if (adap->sge.fw_evtq.desc)
		free_rspq_fl(adap, &adap->sge.fw_evtq, NULL);

	if (adap->sge.intrq.desc)
		free_rspq_fl(adap, &adap->sge.intrq, NULL);

	/* clear the reverse egress queue map */
2896 2897
	memset(adap->sge.egr_map, 0,
	       adap->sge.egr_sz * sizeof(*adap->sge.egr_map));
2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942
}

void t4_sge_start(struct adapter *adap)
{
	adap->sge.ethtxq_rover = 0;
	mod_timer(&adap->sge.rx_timer, jiffies + RX_QCHECK_PERIOD);
	mod_timer(&adap->sge.tx_timer, jiffies + TX_QCHECK_PERIOD);
}

/**
 *	t4_sge_stop - disable SGE operation
 *	@adap: the adapter
 *
 *	Stop tasklets and timers associated with the DMA engine.  Note that
 *	this is effective only if measures have been taken to disable any HW
 *	events that may restart them.
 */
void t4_sge_stop(struct adapter *adap)
{
	int i;
	struct sge *s = &adap->sge;

	if (in_interrupt())  /* actions below require waiting */
		return;

	if (s->rx_timer.function)
		del_timer_sync(&s->rx_timer);
	if (s->tx_timer.function)
		del_timer_sync(&s->tx_timer);

	for (i = 0; i < ARRAY_SIZE(s->ofldtxq); i++) {
		struct sge_ofld_txq *q = &s->ofldtxq[i];

		if (q->q.desc)
			tasklet_kill(&q->qresume_tsk);
	}
	for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++) {
		struct sge_ctrl_txq *cq = &s->ctrlq[i];

		if (cq->q.desc)
			tasklet_kill(&cq->qresume_tsk);
	}
}

/**
2943
 *	t4_sge_init_soft - grab core SGE values needed by SGE code
2944 2945
 *	@adap: the adapter
 *
2946 2947
 *	We need to grab the SGE operating parameters that we need to have
 *	in order to do our job and make sure we can live with them.
2948
 */
2949 2950

static int t4_sge_init_soft(struct adapter *adap)
2951 2952
{
	struct sge *s = &adap->sge;
2953 2954 2955
	u32 fl_small_pg, fl_large_pg, fl_small_mtu, fl_large_mtu;
	u32 timer_value_0_and_1, timer_value_2_and_3, timer_value_4_and_5;
	u32 ingress_rx_threshold;
2956

2957 2958 2959 2960 2961
	/*
	 * Verify that CPL messages are going to the Ingress Queue for
	 * process_responses() and that only packet data is going to the
	 * Free Lists.
	 */
2962 2963
	if ((t4_read_reg(adap, SGE_CONTROL_A) & RXPKTCPLMODE_F) !=
	    RXPKTCPLMODE_V(RXPKTCPLMODE_SPLIT_X)) {
2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976
		dev_err(adap->pdev_dev, "bad SGE CPL MODE\n");
		return -EINVAL;
	}

	/*
	 * Validate the Host Buffer Register Array indices that we want to
	 * use ...
	 *
	 * XXX Note that we should really read through the Host Buffer Size
	 * XXX register array and find the indices of the Buffer Sizes which
	 * XXX meet our needs!
	 */
	#define READ_FL_BUF(x) \
2977
		t4_read_reg(adap, SGE_FL_BUFFER_SIZE0_A+(x)*sizeof(u32))
2978 2979 2980 2981 2982 2983

	fl_small_pg = READ_FL_BUF(RX_SMALL_PG_BUF);
	fl_large_pg = READ_FL_BUF(RX_LARGE_PG_BUF);
	fl_small_mtu = READ_FL_BUF(RX_SMALL_MTU_BUF);
	fl_large_mtu = READ_FL_BUF(RX_LARGE_MTU_BUF);

2984 2985 2986 2987 2988 2989
	/* We only bother using the Large Page logic if the Large Page Buffer
	 * is larger than our Page Size Buffer.
	 */
	if (fl_large_pg <= fl_small_pg)
		fl_large_pg = 0;

2990 2991
	#undef READ_FL_BUF

2992 2993 2994
	/* The Page Size Buffer must be exactly equal to our Page Size and the
	 * Large Page Size Buffer should be 0 (per above) or a power of 2.
	 */
2995
	if (fl_small_pg != PAGE_SIZE ||
2996
	    (fl_large_pg & (fl_large_pg-1)) != 0) {
2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014
		dev_err(adap->pdev_dev, "bad SGE FL page buffer sizes [%d, %d]\n",
			fl_small_pg, fl_large_pg);
		return -EINVAL;
	}
	if (fl_large_pg)
		s->fl_pg_order = ilog2(fl_large_pg) - PAGE_SHIFT;

	if (fl_small_mtu < FL_MTU_SMALL_BUFSIZE(adap) ||
	    fl_large_mtu < FL_MTU_LARGE_BUFSIZE(adap)) {
		dev_err(adap->pdev_dev, "bad SGE FL MTU sizes [%d, %d]\n",
			fl_small_mtu, fl_large_mtu);
		return -EINVAL;
	}

	/*
	 * Retrieve our RX interrupt holdoff timer values and counter
	 * threshold values from the SGE parameters.
	 */
3015 3016 3017
	timer_value_0_and_1 = t4_read_reg(adap, SGE_TIMER_VALUE_0_AND_1_A);
	timer_value_2_and_3 = t4_read_reg(adap, SGE_TIMER_VALUE_2_AND_3_A);
	timer_value_4_and_5 = t4_read_reg(adap, SGE_TIMER_VALUE_4_AND_5_A);
3018
	s->timer_val[0] = core_ticks_to_us(adap,
3019
		TIMERVALUE0_G(timer_value_0_and_1));
3020
	s->timer_val[1] = core_ticks_to_us(adap,
3021
		TIMERVALUE1_G(timer_value_0_and_1));
3022
	s->timer_val[2] = core_ticks_to_us(adap,
3023
		TIMERVALUE2_G(timer_value_2_and_3));
3024
	s->timer_val[3] = core_ticks_to_us(adap,
3025
		TIMERVALUE3_G(timer_value_2_and_3));
3026
	s->timer_val[4] = core_ticks_to_us(adap,
3027
		TIMERVALUE4_G(timer_value_4_and_5));
3028
	s->timer_val[5] = core_ticks_to_us(adap,
3029
		TIMERVALUE5_G(timer_value_4_and_5));
3030

3031 3032 3033 3034 3035
	ingress_rx_threshold = t4_read_reg(adap, SGE_INGRESS_RX_THRESHOLD_A);
	s->counter_val[0] = THRESHOLD_0_G(ingress_rx_threshold);
	s->counter_val[1] = THRESHOLD_1_G(ingress_rx_threshold);
	s->counter_val[2] = THRESHOLD_2_G(ingress_rx_threshold);
	s->counter_val[3] = THRESHOLD_3_G(ingress_rx_threshold);
3036 3037 3038 3039

	return 0;
}

3040 3041 3042 3043 3044 3045 3046
/**
 *     t4_sge_init - initialize SGE
 *     @adap: the adapter
 *
 *     Perform low-level SGE code initialization needed every time after a
 *     chip reset.
 */
3047 3048 3049
int t4_sge_init(struct adapter *adap)
{
	struct sge *s = &adap->sge;
3050 3051
	u32 sge_control, sge_control2, sge_conm_ctrl;
	unsigned int ingpadboundary, ingpackboundary;
3052
	int ret, egress_threshold;
3053 3054 3055 3056 3057

	/*
	 * Ingress Padding Boundary and Egress Status Page Size are set up by
	 * t4_fixup_host_params().
	 */
3058 3059 3060
	sge_control = t4_read_reg(adap, SGE_CONTROL_A);
	s->pktshift = PKTSHIFT_G(sge_control);
	s->stat_len = (sge_control & EGRSTATUSPAGESIZE_F) ? 128 : 64;
3061 3062 3063 3064 3065

	/* T4 uses a single control field to specify both the PCIe Padding and
	 * Packing Boundary.  T5 introduced the ability to specify these
	 * separately.  The actual Ingress Packet Data alignment boundary
	 * within Packed Buffer Mode is the maximum of these two
3066 3067 3068 3069 3070
	 * specifications.  (Note that it makes no real practical sense to
	 * have the Pading Boudary be larger than the Packing Boundary but you
	 * could set the chip up that way and, in fact, legacy T4 code would
	 * end doing this because it would initialize the Padding Boundary and
	 * leave the Packing Boundary initialized to 0 (16 bytes).)
3071
	 */
3072 3073
	ingpadboundary = 1 << (INGPADBOUNDARY_G(sge_control) +
			       INGPADBOUNDARY_SHIFT_X);
3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089
	if (is_t4(adap->params.chip)) {
		s->fl_align = ingpadboundary;
	} else {
		/* T5 has a different interpretation of one of the PCIe Packing
		 * Boundary values.
		 */
		sge_control2 = t4_read_reg(adap, SGE_CONTROL2_A);
		ingpackboundary = INGPACKBOUNDARY_G(sge_control2);
		if (ingpackboundary == INGPACKBOUNDARY_16B_X)
			ingpackboundary = 16;
		else
			ingpackboundary = 1 << (ingpackboundary +
						INGPACKBOUNDARY_SHIFT_X);

		s->fl_align = max(ingpadboundary, ingpackboundary);
	}
3090

3091
	ret = t4_sge_init_soft(adap);
3092 3093 3094 3095 3096 3097 3098 3099 3100
	if (ret < 0)
		return ret;

	/*
	 * A FL with <= fl_starve_thres buffers is starving and a periodic
	 * timer will attempt to refill it.  This needs to be larger than the
	 * SGE's Egress Congestion Threshold.  If it isn't, then we can get
	 * stuck waiting for new packets while the SGE is waiting for us to
	 * give it more Free List entries.  (Note that the SGE's Egress
3101 3102 3103 3104 3105
	 * Congestion Threshold is in units of 2 Free List pointers.) For T4,
	 * there was only a single field to control this.  For T5 there's the
	 * original field which now only applies to Unpacked Mode Free List
	 * buffers and a new field which only applies to Packed Mode Free List
	 * buffers.
3106
	 */
3107
	sge_conm_ctrl = t4_read_reg(adap, SGE_CONM_CTRL_A);
3108
	if (is_t4(adap->params.chip))
3109
		egress_threshold = EGRTHRESHOLD_G(sge_conm_ctrl);
3110
	else
3111
		egress_threshold = EGRTHRESHOLDPACKING_G(sge_conm_ctrl);
3112
	s->fl_starve_thres = 2*egress_threshold + 1;
3113

3114 3115
	t4_idma_monitor_init(adap, &s->idma_monitor);

3116 3117 3118
	/* Set up timers used for recuring callbacks to process RX and TX
	 * administrative tasks.
	 */
3119 3120
	setup_timer(&s->rx_timer, sge_rx_timer_cb, (unsigned long)adap);
	setup_timer(&s->tx_timer, sge_tx_timer_cb, (unsigned long)adap);
3121

3122
	spin_lock_init(&s->intrq_lock);
3123 3124

	return 0;
3125
}