sge.c 79.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
/*
 * This file is part of the Chelsio T4 Ethernet driver for Linux.
 *
 * Copyright (c) 2003-2010 Chelsio Communications, Inc. All rights reserved.
 *
 * This software is available to you under a choice of one of two
 * licenses.  You may choose to be licensed under the terms of the GNU
 * General Public License (GPL) Version 2, available from the file
 * COPYING in the main directory of this source tree, or the
 * OpenIB.org BSD license below:
 *
 *     Redistribution and use in source and binary forms, with or
 *     without modification, are permitted provided that the following
 *     conditions are met:
 *
 *      - Redistributions of source code must retain the above
 *        copyright notice, this list of conditions and the following
 *        disclaimer.
 *
 *      - Redistributions in binary form must reproduce the above
 *        copyright notice, this list of conditions and the following
 *        disclaimer in the documentation and/or other materials
 *        provided with the distribution.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */

#include <linux/skbuff.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/if_vlan.h>
#include <linux/ip.h>
#include <linux/dma-mapping.h>
#include <linux/jiffies.h>
42
#include <linux/prefetch.h>
43
#include <linux/export.h>
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
#include <net/ipv6.h>
#include <net/tcp.h>
#include "cxgb4.h"
#include "t4_regs.h"
#include "t4_msg.h"
#include "t4fw_api.h"

/*
 * Rx buffer size.  We use largish buffers if possible but settle for single
 * pages under memory shortage.
 */
#if PAGE_SHIFT >= 16
# define FL_PG_ORDER 0
#else
# define FL_PG_ORDER (16 - PAGE_SHIFT)
#endif

/* RX_PULL_LEN should be <= RX_COPY_THRES */
#define RX_COPY_THRES    256
#define RX_PULL_LEN      128

/*
 * Main body length for sk_buffs used for Rx Ethernet packets with fragments.
 * Should be >= RX_PULL_LEN but possibly bigger to give pskb_may_pull some room.
 */
#define RX_PKT_SKB_LEN   512

/*
 * Max number of Tx descriptors we clean up at a time.  Should be modest as
 * freeing skbs isn't cheap and it happens while holding locks.  We just need
 * to free packets faster than they arrive, we eventually catch up and keep
 * the amortized cost reasonable.  Must be >= 2 * TXQ_STOP_THRES.
 */
#define MAX_TX_RECLAIM 16

/*
 * Max number of Rx buffers we replenish at a time.  Again keep this modest,
 * allocating buffers isn't cheap either.
 */
#define MAX_RX_REFILL 16U

/*
 * Period of the Rx queue check timer.  This timer is infrequent as it has
 * something to do only when the system experiences severe memory shortage.
 */
#define RX_QCHECK_PERIOD (HZ / 2)

/*
 * Period of the Tx queue check timer.
 */
#define TX_QCHECK_PERIOD (HZ / 2)

96 97 98 99 100 101 102 103 104 105
/* SGE Hung Ingress DMA Threshold Warning time (in Hz) and Warning Repeat Rate
 * (in RX_QCHECK_PERIOD multiples).  If we find one of the SGE Ingress DMA
 * State Machines in the same state for this amount of time (in HZ) then we'll
 * issue a warning about a potential hang.  We'll repeat the warning as the
 * SGE Ingress DMA Channel appears to be hung every N RX_QCHECK_PERIODs till
 * the situation clears.  If the situation clears, we'll note that as well.
 */
#define SGE_IDMA_WARN_THRESH (1 * HZ)
#define SGE_IDMA_WARN_REPEAT (20 * RX_QCHECK_PERIOD)

106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
/*
 * Max number of Tx descriptors to be reclaimed by the Tx timer.
 */
#define MAX_TIMER_TX_RECLAIM 100

/*
 * Timer index used when backing off due to memory shortage.
 */
#define NOMEM_TMR_IDX (SGE_NTIMERS - 1)

/*
 * An FL with <= FL_STARVE_THRES buffers is starving and a periodic timer will
 * attempt to refill it.
 */
#define FL_STARVE_THRES 4

/*
 * Suspend an Ethernet Tx queue with fewer available descriptors than this.
 * This is the same as calc_tx_descs() for a TSO packet with
 * nr_frags == MAX_SKB_FRAGS.
 */
#define ETHTXQ_STOP_THRES \
	(1 + DIV_ROUND_UP((3 * MAX_SKB_FRAGS) / 2 + (MAX_SKB_FRAGS & 1), 8))

/*
 * Suspension threshold for non-Ethernet Tx queues.  We require enough room
 * for a full sized WR.
 */
#define TXQ_STOP_THRES (SGE_MAX_WR_LEN / sizeof(struct tx_desc))

/*
 * Max Tx descriptor space we allow for an Ethernet packet to be inlined
 * into a WR.
 */
#define MAX_IMM_TX_PKT_LEN 128

/*
 * Max size of a WR sent through a control Tx queue.
 */
#define MAX_CTRL_WR_LEN SGE_MAX_WR_LEN

struct tx_sw_desc {                /* SW state per Tx descriptor */
	struct sk_buff *skb;
	struct ulptx_sgl *sgl;
};

struct rx_sw_desc {                /* SW state per Rx descriptor */
	struct page *page;
	dma_addr_t dma_addr;
};

/*
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
 * Rx buffer sizes for "useskbs" Free List buffers (one ingress packet pe skb
 * buffer).  We currently only support two sizes for 1500- and 9000-byte MTUs.
 * We could easily support more but there doesn't seem to be much need for
 * that ...
 */
#define FL_MTU_SMALL 1500
#define FL_MTU_LARGE 9000

static inline unsigned int fl_mtu_bufsize(struct adapter *adapter,
					  unsigned int mtu)
{
	struct sge *s = &adapter->sge;

	return ALIGN(s->pktshift + ETH_HLEN + VLAN_HLEN + mtu, s->fl_align);
}

#define FL_MTU_SMALL_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_SMALL)
#define FL_MTU_LARGE_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_LARGE)

/*
 * Bits 0..3 of rx_sw_desc.dma_addr have special meaning.  The hardware uses
 * these to specify the buffer size as an index into the SGE Free List Buffer
 * Size register array.  We also use bit 4, when the buffer has been unmapped
 * for DMA, but this is of course never sent to the hardware and is only used
 * to prevent double unmappings.  All of the above requires that the Free List
 * Buffers which we allocate have the bottom 5 bits free (0) -- i.e. are
 * 32-byte or or a power of 2 greater in alignment.  Since the SGE's minimal
 * Free List Buffer alignment is 32 bytes, this works out for us ...
186 187
 */
enum {
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
	RX_BUF_FLAGS     = 0x1f,   /* bottom five bits are special */
	RX_BUF_SIZE      = 0x0f,   /* bottom three bits are for buf sizes */
	RX_UNMAPPED_BUF  = 0x10,   /* buffer is not mapped */

	/*
	 * XXX We shouldn't depend on being able to use these indices.
	 * XXX Especially when some other Master PF has initialized the
	 * XXX adapter or we use the Firmware Configuration File.  We
	 * XXX should really search through the Host Buffer Size register
	 * XXX array for the appropriately sized buffer indices.
	 */
	RX_SMALL_PG_BUF  = 0x0,   /* small (PAGE_SIZE) page buffer */
	RX_LARGE_PG_BUF  = 0x1,   /* buffer large (FL_PG_ORDER) page buffer */

	RX_SMALL_MTU_BUF = 0x2,   /* small MTU buffer */
	RX_LARGE_MTU_BUF = 0x3,   /* large MTU buffer */
204 205 206 207
};

static inline dma_addr_t get_buf_addr(const struct rx_sw_desc *d)
{
208
	return d->dma_addr & ~(dma_addr_t)RX_BUF_FLAGS;
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
}

static inline bool is_buf_mapped(const struct rx_sw_desc *d)
{
	return !(d->dma_addr & RX_UNMAPPED_BUF);
}

/**
 *	txq_avail - return the number of available slots in a Tx queue
 *	@q: the Tx queue
 *
 *	Returns the number of descriptors in a Tx queue available to write new
 *	packets.
 */
static inline unsigned int txq_avail(const struct sge_txq *q)
{
	return q->size - 1 - q->in_use;
}

/**
 *	fl_cap - return the capacity of a free-buffer list
 *	@fl: the FL
 *
 *	Returns the capacity of a free-buffer list.  The capacity is less than
 *	the size because one descriptor needs to be left unpopulated, otherwise
 *	HW will think the FL is empty.
 */
static inline unsigned int fl_cap(const struct sge_fl *fl)
{
	return fl->size - 8;   /* 1 descriptor = 8 buffers */
}

static inline bool fl_starving(const struct sge_fl *fl)
{
	return fl->avail - fl->pend_cred <= FL_STARVE_THRES;
}

static int map_skb(struct device *dev, const struct sk_buff *skb,
		   dma_addr_t *addr)
{
	const skb_frag_t *fp, *end;
	const struct skb_shared_info *si;

	*addr = dma_map_single(dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE);
	if (dma_mapping_error(dev, *addr))
		goto out_err;

	si = skb_shinfo(skb);
	end = &si->frags[si->nr_frags];

	for (fp = si->frags; fp < end; fp++) {
260 261
		*++addr = skb_frag_dma_map(dev, fp, 0, skb_frag_size(fp),
					   DMA_TO_DEVICE);
262 263 264 265 266 267 268
		if (dma_mapping_error(dev, *addr))
			goto unwind;
	}
	return 0;

unwind:
	while (fp-- > si->frags)
E
Eric Dumazet 已提交
269
		dma_unmap_page(dev, *--addr, skb_frag_size(fp), DMA_TO_DEVICE);
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287

	dma_unmap_single(dev, addr[-1], skb_headlen(skb), DMA_TO_DEVICE);
out_err:
	return -ENOMEM;
}

#ifdef CONFIG_NEED_DMA_MAP_STATE
static void unmap_skb(struct device *dev, const struct sk_buff *skb,
		      const dma_addr_t *addr)
{
	const skb_frag_t *fp, *end;
	const struct skb_shared_info *si;

	dma_unmap_single(dev, *addr++, skb_headlen(skb), DMA_TO_DEVICE);

	si = skb_shinfo(skb);
	end = &si->frags[si->nr_frags];
	for (fp = si->frags; fp < end; fp++)
E
Eric Dumazet 已提交
288
		dma_unmap_page(dev, *addr++, skb_frag_size(fp), DMA_TO_DEVICE);
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
}

/**
 *	deferred_unmap_destructor - unmap a packet when it is freed
 *	@skb: the packet
 *
 *	This is the packet destructor used for Tx packets that need to remain
 *	mapped until they are freed rather than until their Tx descriptors are
 *	freed.
 */
static void deferred_unmap_destructor(struct sk_buff *skb)
{
	unmap_skb(skb->dev->dev.parent, skb, (dma_addr_t *)skb->head);
}
#endif

static void unmap_sgl(struct device *dev, const struct sk_buff *skb,
		      const struct ulptx_sgl *sgl, const struct sge_txq *q)
{
	const struct ulptx_sge_pair *p;
	unsigned int nfrags = skb_shinfo(skb)->nr_frags;

	if (likely(skb_headlen(skb)))
		dma_unmap_single(dev, be64_to_cpu(sgl->addr0), ntohl(sgl->len0),
				 DMA_TO_DEVICE);
	else {
		dma_unmap_page(dev, be64_to_cpu(sgl->addr0), ntohl(sgl->len0),
			       DMA_TO_DEVICE);
		nfrags--;
	}

	/*
	 * the complexity below is because of the possibility of a wrap-around
	 * in the middle of an SGL
	 */
	for (p = sgl->sge; nfrags >= 2; nfrags -= 2) {
		if (likely((u8 *)(p + 1) <= (u8 *)q->stat)) {
unmap:			dma_unmap_page(dev, be64_to_cpu(p->addr[0]),
				       ntohl(p->len[0]), DMA_TO_DEVICE);
			dma_unmap_page(dev, be64_to_cpu(p->addr[1]),
				       ntohl(p->len[1]), DMA_TO_DEVICE);
			p++;
		} else if ((u8 *)p == (u8 *)q->stat) {
			p = (const struct ulptx_sge_pair *)q->desc;
			goto unmap;
		} else if ((u8 *)p + 8 == (u8 *)q->stat) {
			const __be64 *addr = (const __be64 *)q->desc;

			dma_unmap_page(dev, be64_to_cpu(addr[0]),
				       ntohl(p->len[0]), DMA_TO_DEVICE);
			dma_unmap_page(dev, be64_to_cpu(addr[1]),
				       ntohl(p->len[1]), DMA_TO_DEVICE);
			p = (const struct ulptx_sge_pair *)&addr[2];
		} else {
			const __be64 *addr = (const __be64 *)q->desc;

			dma_unmap_page(dev, be64_to_cpu(p->addr[0]),
				       ntohl(p->len[0]), DMA_TO_DEVICE);
			dma_unmap_page(dev, be64_to_cpu(addr[0]),
				       ntohl(p->len[1]), DMA_TO_DEVICE);
			p = (const struct ulptx_sge_pair *)&addr[1];
		}
	}
	if (nfrags) {
		__be64 addr;

		if ((u8 *)p == (u8 *)q->stat)
			p = (const struct ulptx_sge_pair *)q->desc;
		addr = (u8 *)p + 16 <= (u8 *)q->stat ? p->addr[0] :
						       *(const __be64 *)q->desc;
		dma_unmap_page(dev, be64_to_cpu(addr), ntohl(p->len[0]),
			       DMA_TO_DEVICE);
	}
}

/**
 *	free_tx_desc - reclaims Tx descriptors and their buffers
 *	@adapter: the adapter
 *	@q: the Tx queue to reclaim descriptors from
 *	@n: the number of descriptors to reclaim
 *	@unmap: whether the buffers should be unmapped for DMA
 *
 *	Reclaims Tx descriptors from an SGE Tx queue and frees the associated
 *	Tx buffers.  Called with the Tx queue lock held.
 */
static void free_tx_desc(struct adapter *adap, struct sge_txq *q,
			 unsigned int n, bool unmap)
{
	struct tx_sw_desc *d;
	unsigned int cidx = q->cidx;
	struct device *dev = adap->pdev_dev;

	d = &q->sdesc[cidx];
	while (n--) {
		if (d->skb) {                       /* an SGL is present */
			if (unmap)
				unmap_sgl(dev, d->skb, d->sgl, q);
386
			dev_consume_skb_any(d->skb);
387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
			d->skb = NULL;
		}
		++d;
		if (++cidx == q->size) {
			cidx = 0;
			d = q->sdesc;
		}
	}
	q->cidx = cidx;
}

/*
 * Return the number of reclaimable descriptors in a Tx queue.
 */
static inline int reclaimable(const struct sge_txq *q)
{
	int hw_cidx = ntohs(q->stat->cidx);
	hw_cidx -= q->cidx;
	return hw_cidx < 0 ? hw_cidx + q->size : hw_cidx;
}

/**
 *	reclaim_completed_tx - reclaims completed Tx descriptors
 *	@adap: the adapter
 *	@q: the Tx queue to reclaim completed descriptors from
 *	@unmap: whether the buffers should be unmapped for DMA
 *
 *	Reclaims Tx descriptors that the SGE has indicated it has processed,
 *	and frees the associated buffers if possible.  Called with the Tx
 *	queue locked.
 */
static inline void reclaim_completed_tx(struct adapter *adap, struct sge_txq *q,
					bool unmap)
{
	int avail = reclaimable(q);

	if (avail) {
		/*
		 * Limit the amount of clean up work we do at a time to keep
		 * the Tx lock hold time O(1).
		 */
		if (avail > MAX_TX_RECLAIM)
			avail = MAX_TX_RECLAIM;

		free_tx_desc(adap, q, avail, unmap);
		q->in_use -= avail;
	}
}

436 437
static inline int get_buf_size(struct adapter *adapter,
			       const struct rx_sw_desc *d)
438
{
439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
	struct sge *s = &adapter->sge;
	unsigned int rx_buf_size_idx = d->dma_addr & RX_BUF_SIZE;
	int buf_size;

	switch (rx_buf_size_idx) {
	case RX_SMALL_PG_BUF:
		buf_size = PAGE_SIZE;
		break;

	case RX_LARGE_PG_BUF:
		buf_size = PAGE_SIZE << s->fl_pg_order;
		break;

	case RX_SMALL_MTU_BUF:
		buf_size = FL_MTU_SMALL_BUFSIZE(adapter);
		break;

	case RX_LARGE_MTU_BUF:
		buf_size = FL_MTU_LARGE_BUFSIZE(adapter);
		break;

	default:
		BUG_ON(1);
	}

	return buf_size;
465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
}

/**
 *	free_rx_bufs - free the Rx buffers on an SGE free list
 *	@adap: the adapter
 *	@q: the SGE free list to free buffers from
 *	@n: how many buffers to free
 *
 *	Release the next @n buffers on an SGE free-buffer Rx queue.   The
 *	buffers must be made inaccessible to HW before calling this function.
 */
static void free_rx_bufs(struct adapter *adap, struct sge_fl *q, int n)
{
	while (n--) {
		struct rx_sw_desc *d = &q->sdesc[q->cidx];

		if (is_buf_mapped(d))
			dma_unmap_page(adap->pdev_dev, get_buf_addr(d),
483 484
				       get_buf_size(adap, d),
				       PCI_DMA_FROMDEVICE);
485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
		put_page(d->page);
		d->page = NULL;
		if (++q->cidx == q->size)
			q->cidx = 0;
		q->avail--;
	}
}

/**
 *	unmap_rx_buf - unmap the current Rx buffer on an SGE free list
 *	@adap: the adapter
 *	@q: the SGE free list
 *
 *	Unmap the current buffer on an SGE free-buffer Rx queue.   The
 *	buffer must be made inaccessible to HW before calling this function.
 *
 *	This is similar to @free_rx_bufs above but does not free the buffer.
 *	Do note that the FL still loses any further access to the buffer.
 */
static void unmap_rx_buf(struct adapter *adap, struct sge_fl *q)
{
	struct rx_sw_desc *d = &q->sdesc[q->cidx];

	if (is_buf_mapped(d))
		dma_unmap_page(adap->pdev_dev, get_buf_addr(d),
510
			       get_buf_size(adap, d), PCI_DMA_FROMDEVICE);
511 512 513 514 515 516 517 518
	d->page = NULL;
	if (++q->cidx == q->size)
		q->cidx = 0;
	q->avail--;
}

static inline void ring_fl_db(struct adapter *adap, struct sge_fl *q)
{
S
Santosh Rastapur 已提交
519
	u32 val;
520
	if (q->pend_cred >= 8) {
S
Santosh Rastapur 已提交
521
		val = PIDX(q->pend_cred / 8);
522
		if (!is_t4(adap->params.chip))
S
Santosh Rastapur 已提交
523
			val |= DBTYPE(1);
524
		wmb();
525
		t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL), DBPRIO(1) |
S
Santosh Rastapur 已提交
526
			     QID(q->cntxt_id) | val);
527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554
		q->pend_cred &= 7;
	}
}

static inline void set_rx_sw_desc(struct rx_sw_desc *sd, struct page *pg,
				  dma_addr_t mapping)
{
	sd->page = pg;
	sd->dma_addr = mapping;      /* includes size low bits */
}

/**
 *	refill_fl - refill an SGE Rx buffer ring
 *	@adap: the adapter
 *	@q: the ring to refill
 *	@n: the number of new buffers to allocate
 *	@gfp: the gfp flags for the allocations
 *
 *	(Re)populate an SGE free-buffer queue with up to @n new packet buffers,
 *	allocated with the supplied gfp flags.  The caller must assure that
 *	@n does not exceed the queue's capacity.  If afterwards the queue is
 *	found critically low mark it as starving in the bitmap of starving FLs.
 *
 *	Returns the number of buffers allocated.
 */
static unsigned int refill_fl(struct adapter *adap, struct sge_fl *q, int n,
			      gfp_t gfp)
{
555
	struct sge *s = &adap->sge;
556 557 558 559 560 561
	struct page *pg;
	dma_addr_t mapping;
	unsigned int cred = q->avail;
	__be64 *d = &q->desc[q->pidx];
	struct rx_sw_desc *sd = &q->sdesc[q->pidx];

562
	gfp |= __GFP_NOWARN | __GFP_COLD;
563

564 565 566
	if (s->fl_pg_order == 0)
		goto alloc_small_pages;

567 568 569 570
	/*
	 * Prefer large buffers
	 */
	while (n) {
571
		pg = alloc_pages(gfp | __GFP_COMP, s->fl_pg_order);
572 573 574 575 576 577
		if (unlikely(!pg)) {
			q->large_alloc_failed++;
			break;       /* fall back to single pages */
		}

		mapping = dma_map_page(adap->pdev_dev, pg, 0,
578
				       PAGE_SIZE << s->fl_pg_order,
579 580
				       PCI_DMA_FROMDEVICE);
		if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) {
581
			__free_pages(pg, s->fl_pg_order);
582 583
			goto out;   /* do not try small pages for this error */
		}
584
		mapping |= RX_LARGE_PG_BUF;
585 586 587 588 589 590 591 592 593 594 595 596 597 598
		*d++ = cpu_to_be64(mapping);

		set_rx_sw_desc(sd, pg, mapping);
		sd++;

		q->avail++;
		if (++q->pidx == q->size) {
			q->pidx = 0;
			sd = q->sdesc;
			d = q->desc;
		}
		n--;
	}

599
alloc_small_pages:
600
	while (n--) {
601
		pg = __skb_alloc_page(gfp, NULL);
602 603 604 605 606 607 608 609
		if (unlikely(!pg)) {
			q->alloc_failed++;
			break;
		}

		mapping = dma_map_page(adap->pdev_dev, pg, 0, PAGE_SIZE,
				       PCI_DMA_FROMDEVICE);
		if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) {
610
			put_page(pg);
611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631
			goto out;
		}
		*d++ = cpu_to_be64(mapping);

		set_rx_sw_desc(sd, pg, mapping);
		sd++;

		q->avail++;
		if (++q->pidx == q->size) {
			q->pidx = 0;
			sd = q->sdesc;
			d = q->desc;
		}
	}

out:	cred = q->avail - cred;
	q->pend_cred += cred;
	ring_fl_db(adap, q);

	if (unlikely(fl_starving(q))) {
		smp_wmb();
632 633
		set_bit(q->cntxt_id - adap->sge.egr_start,
			adap->sge.starving_fl);
634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
	}

	return cred;
}

static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl)
{
	refill_fl(adap, fl, min(MAX_RX_REFILL, fl_cap(fl) - fl->avail),
		  GFP_ATOMIC);
}

/**
 *	alloc_ring - allocate resources for an SGE descriptor ring
 *	@dev: the PCI device's core device
 *	@nelem: the number of descriptors
 *	@elem_size: the size of each descriptor
 *	@sw_size: the size of the SW state associated with each ring element
 *	@phys: the physical address of the allocated ring
 *	@metadata: address of the array holding the SW state for the ring
 *	@stat_size: extra space in HW ring for status information
654
 *	@node: preferred node for memory allocations
655 656 657 658 659 660 661 662 663 664 665
 *
 *	Allocates resources for an SGE descriptor ring, such as Tx queues,
 *	free buffer lists, or response queues.  Each SGE ring requires
 *	space for its HW descriptors plus, optionally, space for the SW state
 *	associated with each HW entry (the metadata).  The function returns
 *	three values: the virtual address for the HW ring (the return value
 *	of the function), the bus address of the HW ring, and the address
 *	of the SW ring.
 */
static void *alloc_ring(struct device *dev, size_t nelem, size_t elem_size,
			size_t sw_size, dma_addr_t *phys, void *metadata,
666
			size_t stat_size, int node)
667 668 669 670 671 672 673 674
{
	size_t len = nelem * elem_size + stat_size;
	void *s = NULL;
	void *p = dma_alloc_coherent(dev, len, phys, GFP_KERNEL);

	if (!p)
		return NULL;
	if (sw_size) {
675
		s = kzalloc_node(nelem * sw_size, GFP_KERNEL, node);
676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718

		if (!s) {
			dma_free_coherent(dev, len, p, *phys);
			return NULL;
		}
	}
	if (metadata)
		*(void **)metadata = s;
	memset(p, 0, len);
	return p;
}

/**
 *	sgl_len - calculates the size of an SGL of the given capacity
 *	@n: the number of SGL entries
 *
 *	Calculates the number of flits needed for a scatter/gather list that
 *	can hold the given number of entries.
 */
static inline unsigned int sgl_len(unsigned int n)
{
	n--;
	return (3 * n) / 2 + (n & 1) + 2;
}

/**
 *	flits_to_desc - returns the num of Tx descriptors for the given flits
 *	@n: the number of flits
 *
 *	Returns the number of Tx descriptors needed for the supplied number
 *	of flits.
 */
static inline unsigned int flits_to_desc(unsigned int n)
{
	BUG_ON(n > SGE_MAX_WR_LEN / 8);
	return DIV_ROUND_UP(n, 8);
}

/**
 *	is_eth_imm - can an Ethernet packet be sent as immediate data?
 *	@skb: the packet
 *
 *	Returns whether an Ethernet packet is small enough to fit as
719
 *	immediate data. Return value corresponds to headroom required.
720 721 722
 */
static inline int is_eth_imm(const struct sk_buff *skb)
{
723 724 725 726 727 728 729
	int hdrlen = skb_shinfo(skb)->gso_size ?
			sizeof(struct cpl_tx_pkt_lso_core) : 0;

	hdrlen += sizeof(struct cpl_tx_pkt);
	if (skb->len <= MAX_IMM_TX_PKT_LEN - hdrlen)
		return hdrlen;
	return 0;
730 731 732 733 734 735 736 737 738 739 740 741
}

/**
 *	calc_tx_flits - calculate the number of flits for a packet Tx WR
 *	@skb: the packet
 *
 *	Returns the number of flits needed for a Tx WR for the given Ethernet
 *	packet, including the needed WR and CPL headers.
 */
static inline unsigned int calc_tx_flits(const struct sk_buff *skb)
{
	unsigned int flits;
742
	int hdrlen = is_eth_imm(skb);
743

744 745
	if (hdrlen)
		return DIV_ROUND_UP(skb->len + hdrlen, sizeof(__be64));
746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797

	flits = sgl_len(skb_shinfo(skb)->nr_frags + 1) + 4;
	if (skb_shinfo(skb)->gso_size)
		flits += 2;
	return flits;
}

/**
 *	calc_tx_descs - calculate the number of Tx descriptors for a packet
 *	@skb: the packet
 *
 *	Returns the number of Tx descriptors needed for the given Ethernet
 *	packet, including the needed WR and CPL headers.
 */
static inline unsigned int calc_tx_descs(const struct sk_buff *skb)
{
	return flits_to_desc(calc_tx_flits(skb));
}

/**
 *	write_sgl - populate a scatter/gather list for a packet
 *	@skb: the packet
 *	@q: the Tx queue we are writing into
 *	@sgl: starting location for writing the SGL
 *	@end: points right after the end of the SGL
 *	@start: start offset into skb main-body data to include in the SGL
 *	@addr: the list of bus addresses for the SGL elements
 *
 *	Generates a gather list for the buffers that make up a packet.
 *	The caller must provide adequate space for the SGL that will be written.
 *	The SGL includes all of the packet's page fragments and the data in its
 *	main body except for the first @start bytes.  @sgl must be 16-byte
 *	aligned and within a Tx descriptor with available space.  @end points
 *	right after the end of the SGL but does not account for any potential
 *	wrap around, i.e., @end > @sgl.
 */
static void write_sgl(const struct sk_buff *skb, struct sge_txq *q,
		      struct ulptx_sgl *sgl, u64 *end, unsigned int start,
		      const dma_addr_t *addr)
{
	unsigned int i, len;
	struct ulptx_sge_pair *to;
	const struct skb_shared_info *si = skb_shinfo(skb);
	unsigned int nfrags = si->nr_frags;
	struct ulptx_sge_pair buf[MAX_SKB_FRAGS / 2 + 1];

	len = skb_headlen(skb) - start;
	if (likely(len)) {
		sgl->len0 = htonl(len);
		sgl->addr0 = cpu_to_be64(addr[0] + start);
		nfrags++;
	} else {
E
Eric Dumazet 已提交
798
		sgl->len0 = htonl(skb_frag_size(&si->frags[0]));
799 800 801 802 803 804 805 806 807 808 809 810 811 812
		sgl->addr0 = cpu_to_be64(addr[1]);
	}

	sgl->cmd_nsge = htonl(ULPTX_CMD(ULP_TX_SC_DSGL) | ULPTX_NSGE(nfrags));
	if (likely(--nfrags == 0))
		return;
	/*
	 * Most of the complexity below deals with the possibility we hit the
	 * end of the queue in the middle of writing the SGL.  For this case
	 * only we create the SGL in a temporary buffer and then copy it.
	 */
	to = (u8 *)end > (u8 *)q->stat ? buf : sgl->sge;

	for (i = (nfrags != si->nr_frags); nfrags >= 2; nfrags -= 2, to++) {
E
Eric Dumazet 已提交
813 814
		to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i]));
		to->len[1] = cpu_to_be32(skb_frag_size(&si->frags[++i]));
815 816 817 818
		to->addr[0] = cpu_to_be64(addr[i]);
		to->addr[1] = cpu_to_be64(addr[++i]);
	}
	if (nfrags) {
E
Eric Dumazet 已提交
819
		to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i]));
820 821 822 823 824 825 826 827 828 829 830 831 832
		to->len[1] = cpu_to_be32(0);
		to->addr[0] = cpu_to_be64(addr[i + 1]);
	}
	if (unlikely((u8 *)end > (u8 *)q->stat)) {
		unsigned int part0 = (u8 *)q->stat - (u8 *)sgl->sge, part1;

		if (likely(part0))
			memcpy(sgl->sge, buf, part0);
		part1 = (u8 *)end - (u8 *)q->stat;
		memcpy(q->desc, (u8 *)buf + part0, part1);
		end = (void *)q->desc + part1;
	}
	if ((uintptr_t)end & 8)           /* 0-pad to multiple of 16 */
833
		*end = 0;
834 835
}

836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851
/* This function copies 64 byte coalesced work request to
 * memory mapped BAR2 space(user space writes).
 * For coalesced WR SGE, fetches data from the FIFO instead of from Host.
 */
static void cxgb_pio_copy(u64 __iomem *dst, u64 *src)
{
	int count = 8;

	while (count) {
		writeq(*src, dst);
		src++;
		dst++;
		count--;
	}
}

852 853 854 855 856 857 858 859 860 861
/**
 *	ring_tx_db - check and potentially ring a Tx queue's doorbell
 *	@adap: the adapter
 *	@q: the Tx queue
 *	@n: number of new descriptors to give to HW
 *
 *	Ring the doorbel for a Tx queue.
 */
static inline void ring_tx_db(struct adapter *adap, struct sge_txq *q, int n)
{
862
	unsigned int *wr, index;
863
	unsigned long flags;
864

865
	wmb();            /* write descriptors before telling HW */
866
	spin_lock_irqsave(&q->db_lock, flags);
867
	if (!q->db_disabled) {
868
		if (is_t4(adap->params.chip)) {
869 870 871 872 873 874 875 876 877 878 879 880 881
			t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL),
				     QID(q->cntxt_id) | PIDX(n));
		} else {
			if (n == 1) {
				index = q->pidx ? (q->pidx - 1) : (q->size - 1);
				wr = (unsigned int *)&q->desc[index];
				cxgb_pio_copy((u64 __iomem *)
					      (adap->bar2 + q->udb + 64),
					      (u64 *)wr);
			} else
				writel(n,  adap->bar2 + q->udb + 8);
			wmb();
		}
882 883
	} else
		q->db_pidx_inc += n;
884
	q->db_pidx = q->pidx;
885
	spin_unlock_irqrestore(&q->db_lock, flags);
886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992
}

/**
 *	inline_tx_skb - inline a packet's data into Tx descriptors
 *	@skb: the packet
 *	@q: the Tx queue where the packet will be inlined
 *	@pos: starting position in the Tx queue where to inline the packet
 *
 *	Inline a packet's contents directly into Tx descriptors, starting at
 *	the given position within the Tx DMA ring.
 *	Most of the complexity of this operation is dealing with wrap arounds
 *	in the middle of the packet we want to inline.
 */
static void inline_tx_skb(const struct sk_buff *skb, const struct sge_txq *q,
			  void *pos)
{
	u64 *p;
	int left = (void *)q->stat - pos;

	if (likely(skb->len <= left)) {
		if (likely(!skb->data_len))
			skb_copy_from_linear_data(skb, pos, skb->len);
		else
			skb_copy_bits(skb, 0, pos, skb->len);
		pos += skb->len;
	} else {
		skb_copy_bits(skb, 0, pos, left);
		skb_copy_bits(skb, left, q->desc, skb->len - left);
		pos = (void *)q->desc + (skb->len - left);
	}

	/* 0-pad to multiple of 16 */
	p = PTR_ALIGN(pos, 8);
	if ((uintptr_t)p & 8)
		*p = 0;
}

/*
 * Figure out what HW csum a packet wants and return the appropriate control
 * bits.
 */
static u64 hwcsum(const struct sk_buff *skb)
{
	int csum_type;
	const struct iphdr *iph = ip_hdr(skb);

	if (iph->version == 4) {
		if (iph->protocol == IPPROTO_TCP)
			csum_type = TX_CSUM_TCPIP;
		else if (iph->protocol == IPPROTO_UDP)
			csum_type = TX_CSUM_UDPIP;
		else {
nocsum:			/*
			 * unknown protocol, disable HW csum
			 * and hope a bad packet is detected
			 */
			return TXPKT_L4CSUM_DIS;
		}
	} else {
		/*
		 * this doesn't work with extension headers
		 */
		const struct ipv6hdr *ip6h = (const struct ipv6hdr *)iph;

		if (ip6h->nexthdr == IPPROTO_TCP)
			csum_type = TX_CSUM_TCPIP6;
		else if (ip6h->nexthdr == IPPROTO_UDP)
			csum_type = TX_CSUM_UDPIP6;
		else
			goto nocsum;
	}

	if (likely(csum_type >= TX_CSUM_TCPIP))
		return TXPKT_CSUM_TYPE(csum_type) |
			TXPKT_IPHDR_LEN(skb_network_header_len(skb)) |
			TXPKT_ETHHDR_LEN(skb_network_offset(skb) - ETH_HLEN);
	else {
		int start = skb_transport_offset(skb);

		return TXPKT_CSUM_TYPE(csum_type) | TXPKT_CSUM_START(start) |
			TXPKT_CSUM_LOC(start + skb->csum_offset);
	}
}

static void eth_txq_stop(struct sge_eth_txq *q)
{
	netif_tx_stop_queue(q->txq);
	q->q.stops++;
}

static inline void txq_advance(struct sge_txq *q, unsigned int n)
{
	q->in_use += n;
	q->pidx += n;
	if (q->pidx >= q->size)
		q->pidx -= q->size;
}

/**
 *	t4_eth_xmit - add a packet to an Ethernet Tx queue
 *	@skb: the packet
 *	@dev: the egress net device
 *
 *	Add a packet to an SGE Ethernet Tx queue.  Runs with softirqs disabled.
 */
netdev_tx_t t4_eth_xmit(struct sk_buff *skb, struct net_device *dev)
{
993
	int len;
994 995 996 997 998 999 1000 1001 1002 1003 1004
	u32 wr_mid;
	u64 cntrl, *end;
	int qidx, credits;
	unsigned int flits, ndesc;
	struct adapter *adap;
	struct sge_eth_txq *q;
	const struct port_info *pi;
	struct fw_eth_tx_pkt_wr *wr;
	struct cpl_tx_pkt_core *cpl;
	const struct skb_shared_info *ssi;
	dma_addr_t addr[MAX_SKB_FRAGS + 1];
1005
	bool immediate = false;
1006 1007 1008 1009 1010 1011

	/*
	 * The chip min packet length is 10 octets but play safe and reject
	 * anything shorter than an Ethernet header.
	 */
	if (unlikely(skb->len < ETH_HLEN)) {
1012
out_free:	dev_kfree_skb_any(skb);
1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
		return NETDEV_TX_OK;
	}

	pi = netdev_priv(dev);
	adap = pi->adapter;
	qidx = skb_get_queue_mapping(skb);
	q = &adap->sge.ethtxq[qidx + pi->first_qset];

	reclaim_completed_tx(adap, &q->q, true);

	flits = calc_tx_flits(skb);
	ndesc = flits_to_desc(flits);
	credits = txq_avail(&q->q) - ndesc;

	if (unlikely(credits < 0)) {
		eth_txq_stop(q);
		dev_err(adap->pdev_dev,
			"%s: Tx ring %u full while queue awake!\n",
			dev->name, qidx);
		return NETDEV_TX_BUSY;
	}

1035 1036 1037 1038
	if (is_eth_imm(skb))
		immediate = true;

	if (!immediate &&
1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
	    unlikely(map_skb(adap->pdev_dev, skb, addr) < 0)) {
		q->mapping_err++;
		goto out_free;
	}

	wr_mid = FW_WR_LEN16(DIV_ROUND_UP(flits, 2));
	if (unlikely(credits < ETHTXQ_STOP_THRES)) {
		eth_txq_stop(q);
		wr_mid |= FW_WR_EQUEQ | FW_WR_EQUIQ;
	}

	wr = (void *)&q->q.desc[q->q.pidx];
	wr->equiq_to_len16 = htonl(wr_mid);
	wr->r3 = cpu_to_be64(0);
	end = (u64 *)wr + flits;

1055
	len = immediate ? skb->len : 0;
1056 1057
	ssi = skb_shinfo(skb);
	if (ssi->gso_size) {
1058
		struct cpl_tx_pkt_lso *lso = (void *)wr;
1059 1060 1061 1062
		bool v6 = (ssi->gso_type & SKB_GSO_TCPV6) != 0;
		int l3hdr_len = skb_network_header_len(skb);
		int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN;

1063
		len += sizeof(*lso);
1064
		wr->op_immdlen = htonl(FW_WR_OP(FW_ETH_TX_PKT_WR) |
1065
				       FW_WR_IMMDLEN(len));
1066 1067 1068 1069 1070 1071 1072 1073 1074 1075
		lso->c.lso_ctrl = htonl(LSO_OPCODE(CPL_TX_PKT_LSO) |
					LSO_FIRST_SLICE | LSO_LAST_SLICE |
					LSO_IPV6(v6) |
					LSO_ETHHDR_LEN(eth_xtra_len / 4) |
					LSO_IPHDR_LEN(l3hdr_len / 4) |
					LSO_TCPHDR_LEN(tcp_hdr(skb)->doff));
		lso->c.ipid_ofst = htons(0);
		lso->c.mss = htons(ssi->gso_size);
		lso->c.seqno_offset = htonl(0);
		lso->c.len = htonl(skb->len);
1076 1077 1078 1079 1080 1081 1082
		cpl = (void *)(lso + 1);
		cntrl = TXPKT_CSUM_TYPE(v6 ? TX_CSUM_TCPIP6 : TX_CSUM_TCPIP) |
			TXPKT_IPHDR_LEN(l3hdr_len) |
			TXPKT_ETHHDR_LEN(eth_xtra_len);
		q->tso++;
		q->tx_cso += ssi->gso_segs;
	} else {
1083
		len += sizeof(*cpl);
1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
		wr->op_immdlen = htonl(FW_WR_OP(FW_ETH_TX_PKT_WR) |
				       FW_WR_IMMDLEN(len));
		cpl = (void *)(wr + 1);
		if (skb->ip_summed == CHECKSUM_PARTIAL) {
			cntrl = hwcsum(skb) | TXPKT_IPCSUM_DIS;
			q->tx_cso++;
		} else
			cntrl = TXPKT_L4CSUM_DIS | TXPKT_IPCSUM_DIS;
	}

	if (vlan_tx_tag_present(skb)) {
		q->vlan_ins++;
		cntrl |= TXPKT_VLAN_VLD | TXPKT_VLAN(vlan_tx_tag_get(skb));
	}

	cpl->ctrl0 = htonl(TXPKT_OPCODE(CPL_TX_PKT_XT) |
1100
			   TXPKT_INTF(pi->tx_chan) | TXPKT_PF(adap->fn));
1101 1102 1103 1104
	cpl->pack = htons(0);
	cpl->len = htons(skb->len);
	cpl->ctrl1 = cpu_to_be64(cntrl);

1105
	if (immediate) {
1106
		inline_tx_skb(skb, &q->q, cpl + 1);
1107
		dev_consume_skb_any(skb);
1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320
	} else {
		int last_desc;

		write_sgl(skb, &q->q, (struct ulptx_sgl *)(cpl + 1), end, 0,
			  addr);
		skb_orphan(skb);

		last_desc = q->q.pidx + ndesc - 1;
		if (last_desc >= q->q.size)
			last_desc -= q->q.size;
		q->q.sdesc[last_desc].skb = skb;
		q->q.sdesc[last_desc].sgl = (struct ulptx_sgl *)(cpl + 1);
	}

	txq_advance(&q->q, ndesc);

	ring_tx_db(adap, &q->q, ndesc);
	return NETDEV_TX_OK;
}

/**
 *	reclaim_completed_tx_imm - reclaim completed control-queue Tx descs
 *	@q: the SGE control Tx queue
 *
 *	This is a variant of reclaim_completed_tx() that is used for Tx queues
 *	that send only immediate data (presently just the control queues) and
 *	thus do not have any sk_buffs to release.
 */
static inline void reclaim_completed_tx_imm(struct sge_txq *q)
{
	int hw_cidx = ntohs(q->stat->cidx);
	int reclaim = hw_cidx - q->cidx;

	if (reclaim < 0)
		reclaim += q->size;

	q->in_use -= reclaim;
	q->cidx = hw_cidx;
}

/**
 *	is_imm - check whether a packet can be sent as immediate data
 *	@skb: the packet
 *
 *	Returns true if a packet can be sent as a WR with immediate data.
 */
static inline int is_imm(const struct sk_buff *skb)
{
	return skb->len <= MAX_CTRL_WR_LEN;
}

/**
 *	ctrlq_check_stop - check if a control queue is full and should stop
 *	@q: the queue
 *	@wr: most recent WR written to the queue
 *
 *	Check if a control queue has become full and should be stopped.
 *	We clean up control queue descriptors very lazily, only when we are out.
 *	If the queue is still full after reclaiming any completed descriptors
 *	we suspend it and have the last WR wake it up.
 */
static void ctrlq_check_stop(struct sge_ctrl_txq *q, struct fw_wr_hdr *wr)
{
	reclaim_completed_tx_imm(&q->q);
	if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) {
		wr->lo |= htonl(FW_WR_EQUEQ | FW_WR_EQUIQ);
		q->q.stops++;
		q->full = 1;
	}
}

/**
 *	ctrl_xmit - send a packet through an SGE control Tx queue
 *	@q: the control queue
 *	@skb: the packet
 *
 *	Send a packet through an SGE control Tx queue.  Packets sent through
 *	a control queue must fit entirely as immediate data.
 */
static int ctrl_xmit(struct sge_ctrl_txq *q, struct sk_buff *skb)
{
	unsigned int ndesc;
	struct fw_wr_hdr *wr;

	if (unlikely(!is_imm(skb))) {
		WARN_ON(1);
		dev_kfree_skb(skb);
		return NET_XMIT_DROP;
	}

	ndesc = DIV_ROUND_UP(skb->len, sizeof(struct tx_desc));
	spin_lock(&q->sendq.lock);

	if (unlikely(q->full)) {
		skb->priority = ndesc;                  /* save for restart */
		__skb_queue_tail(&q->sendq, skb);
		spin_unlock(&q->sendq.lock);
		return NET_XMIT_CN;
	}

	wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx];
	inline_tx_skb(skb, &q->q, wr);

	txq_advance(&q->q, ndesc);
	if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES))
		ctrlq_check_stop(q, wr);

	ring_tx_db(q->adap, &q->q, ndesc);
	spin_unlock(&q->sendq.lock);

	kfree_skb(skb);
	return NET_XMIT_SUCCESS;
}

/**
 *	restart_ctrlq - restart a suspended control queue
 *	@data: the control queue to restart
 *
 *	Resumes transmission on a suspended Tx control queue.
 */
static void restart_ctrlq(unsigned long data)
{
	struct sk_buff *skb;
	unsigned int written = 0;
	struct sge_ctrl_txq *q = (struct sge_ctrl_txq *)data;

	spin_lock(&q->sendq.lock);
	reclaim_completed_tx_imm(&q->q);
	BUG_ON(txq_avail(&q->q) < TXQ_STOP_THRES);  /* q should be empty */

	while ((skb = __skb_dequeue(&q->sendq)) != NULL) {
		struct fw_wr_hdr *wr;
		unsigned int ndesc = skb->priority;     /* previously saved */

		/*
		 * Write descriptors and free skbs outside the lock to limit
		 * wait times.  q->full is still set so new skbs will be queued.
		 */
		spin_unlock(&q->sendq.lock);

		wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx];
		inline_tx_skb(skb, &q->q, wr);
		kfree_skb(skb);

		written += ndesc;
		txq_advance(&q->q, ndesc);
		if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) {
			unsigned long old = q->q.stops;

			ctrlq_check_stop(q, wr);
			if (q->q.stops != old) {          /* suspended anew */
				spin_lock(&q->sendq.lock);
				goto ringdb;
			}
		}
		if (written > 16) {
			ring_tx_db(q->adap, &q->q, written);
			written = 0;
		}
		spin_lock(&q->sendq.lock);
	}
	q->full = 0;
ringdb: if (written)
		ring_tx_db(q->adap, &q->q, written);
	spin_unlock(&q->sendq.lock);
}

/**
 *	t4_mgmt_tx - send a management message
 *	@adap: the adapter
 *	@skb: the packet containing the management message
 *
 *	Send a management message through control queue 0.
 */
int t4_mgmt_tx(struct adapter *adap, struct sk_buff *skb)
{
	int ret;

	local_bh_disable();
	ret = ctrl_xmit(&adap->sge.ctrlq[0], skb);
	local_bh_enable();
	return ret;
}

/**
 *	is_ofld_imm - check whether a packet can be sent as immediate data
 *	@skb: the packet
 *
 *	Returns true if a packet can be sent as an offload WR with immediate
 *	data.  We currently use the same limit as for Ethernet packets.
 */
static inline int is_ofld_imm(const struct sk_buff *skb)
{
	return skb->len <= MAX_IMM_TX_PKT_LEN;
}

/**
 *	calc_tx_flits_ofld - calculate # of flits for an offload packet
 *	@skb: the packet
 *
 *	Returns the number of flits needed for the given offload packet.
 *	These packets are already fully constructed and no additional headers
 *	will be added.
 */
static inline unsigned int calc_tx_flits_ofld(const struct sk_buff *skb)
{
	unsigned int flits, cnt;

	if (is_ofld_imm(skb))
		return DIV_ROUND_UP(skb->len, 8);

	flits = skb_transport_offset(skb) / 8U;   /* headers */
	cnt = skb_shinfo(skb)->nr_frags;
1321
	if (skb_tail_pointer(skb) != skb_transport_header(skb))
1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338
		cnt++;
	return flits + sgl_len(cnt);
}

/**
 *	txq_stop_maperr - stop a Tx queue due to I/O MMU exhaustion
 *	@adap: the adapter
 *	@q: the queue to stop
 *
 *	Mark a Tx queue stopped due to I/O MMU exhaustion and resulting
 *	inability to map packets.  A periodic timer attempts to restart
 *	queues so marked.
 */
static void txq_stop_maperr(struct sge_ofld_txq *q)
{
	q->mapping_err++;
	q->q.stops++;
1339 1340
	set_bit(q->q.cntxt_id - q->adap->sge.egr_start,
		q->adap->sge.txq_maperr);
1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493
}

/**
 *	ofldtxq_stop - stop an offload Tx queue that has become full
 *	@q: the queue to stop
 *	@skb: the packet causing the queue to become full
 *
 *	Stops an offload Tx queue that has become full and modifies the packet
 *	being written to request a wakeup.
 */
static void ofldtxq_stop(struct sge_ofld_txq *q, struct sk_buff *skb)
{
	struct fw_wr_hdr *wr = (struct fw_wr_hdr *)skb->data;

	wr->lo |= htonl(FW_WR_EQUEQ | FW_WR_EQUIQ);
	q->q.stops++;
	q->full = 1;
}

/**
 *	service_ofldq - restart a suspended offload queue
 *	@q: the offload queue
 *
 *	Services an offload Tx queue by moving packets from its packet queue
 *	to the HW Tx ring.  The function starts and ends with the queue locked.
 */
static void service_ofldq(struct sge_ofld_txq *q)
{
	u64 *pos;
	int credits;
	struct sk_buff *skb;
	unsigned int written = 0;
	unsigned int flits, ndesc;

	while ((skb = skb_peek(&q->sendq)) != NULL && !q->full) {
		/*
		 * We drop the lock but leave skb on sendq, thus retaining
		 * exclusive access to the state of the queue.
		 */
		spin_unlock(&q->sendq.lock);

		reclaim_completed_tx(q->adap, &q->q, false);

		flits = skb->priority;                /* previously saved */
		ndesc = flits_to_desc(flits);
		credits = txq_avail(&q->q) - ndesc;
		BUG_ON(credits < 0);
		if (unlikely(credits < TXQ_STOP_THRES))
			ofldtxq_stop(q, skb);

		pos = (u64 *)&q->q.desc[q->q.pidx];
		if (is_ofld_imm(skb))
			inline_tx_skb(skb, &q->q, pos);
		else if (map_skb(q->adap->pdev_dev, skb,
				 (dma_addr_t *)skb->head)) {
			txq_stop_maperr(q);
			spin_lock(&q->sendq.lock);
			break;
		} else {
			int last_desc, hdr_len = skb_transport_offset(skb);

			memcpy(pos, skb->data, hdr_len);
			write_sgl(skb, &q->q, (void *)pos + hdr_len,
				  pos + flits, hdr_len,
				  (dma_addr_t *)skb->head);
#ifdef CONFIG_NEED_DMA_MAP_STATE
			skb->dev = q->adap->port[0];
			skb->destructor = deferred_unmap_destructor;
#endif
			last_desc = q->q.pidx + ndesc - 1;
			if (last_desc >= q->q.size)
				last_desc -= q->q.size;
			q->q.sdesc[last_desc].skb = skb;
		}

		txq_advance(&q->q, ndesc);
		written += ndesc;
		if (unlikely(written > 32)) {
			ring_tx_db(q->adap, &q->q, written);
			written = 0;
		}

		spin_lock(&q->sendq.lock);
		__skb_unlink(skb, &q->sendq);
		if (is_ofld_imm(skb))
			kfree_skb(skb);
	}
	if (likely(written))
		ring_tx_db(q->adap, &q->q, written);
}

/**
 *	ofld_xmit - send a packet through an offload queue
 *	@q: the Tx offload queue
 *	@skb: the packet
 *
 *	Send an offload packet through an SGE offload queue.
 */
static int ofld_xmit(struct sge_ofld_txq *q, struct sk_buff *skb)
{
	skb->priority = calc_tx_flits_ofld(skb);       /* save for restart */
	spin_lock(&q->sendq.lock);
	__skb_queue_tail(&q->sendq, skb);
	if (q->sendq.qlen == 1)
		service_ofldq(q);
	spin_unlock(&q->sendq.lock);
	return NET_XMIT_SUCCESS;
}

/**
 *	restart_ofldq - restart a suspended offload queue
 *	@data: the offload queue to restart
 *
 *	Resumes transmission on a suspended Tx offload queue.
 */
static void restart_ofldq(unsigned long data)
{
	struct sge_ofld_txq *q = (struct sge_ofld_txq *)data;

	spin_lock(&q->sendq.lock);
	q->full = 0;            /* the queue actually is completely empty now */
	service_ofldq(q);
	spin_unlock(&q->sendq.lock);
}

/**
 *	skb_txq - return the Tx queue an offload packet should use
 *	@skb: the packet
 *
 *	Returns the Tx queue an offload packet should use as indicated by bits
 *	1-15 in the packet's queue_mapping.
 */
static inline unsigned int skb_txq(const struct sk_buff *skb)
{
	return skb->queue_mapping >> 1;
}

/**
 *	is_ctrl_pkt - return whether an offload packet is a control packet
 *	@skb: the packet
 *
 *	Returns whether an offload packet should use an OFLD or a CTRL
 *	Tx queue as indicated by bit 0 in the packet's queue_mapping.
 */
static inline unsigned int is_ctrl_pkt(const struct sk_buff *skb)
{
	return skb->queue_mapping & 1;
}

static inline int ofld_send(struct adapter *adap, struct sk_buff *skb)
{
	unsigned int idx = skb_txq(skb);

1494 1495 1496 1497
	if (unlikely(is_ctrl_pkt(skb))) {
		/* Single ctrl queue is a requirement for LE workaround path */
		if (adap->tids.nsftids)
			idx = 0;
1498
		return ctrl_xmit(&adap->sge.ctrlq[idx], skb);
1499
	}
1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535
	return ofld_xmit(&adap->sge.ofldtxq[idx], skb);
}

/**
 *	t4_ofld_send - send an offload packet
 *	@adap: the adapter
 *	@skb: the packet
 *
 *	Sends an offload packet.  We use the packet queue_mapping to select the
 *	appropriate Tx queue as follows: bit 0 indicates whether the packet
 *	should be sent as regular or control, bits 1-15 select the queue.
 */
int t4_ofld_send(struct adapter *adap, struct sk_buff *skb)
{
	int ret;

	local_bh_disable();
	ret = ofld_send(adap, skb);
	local_bh_enable();
	return ret;
}

/**
 *	cxgb4_ofld_send - send an offload packet
 *	@dev: the net device
 *	@skb: the packet
 *
 *	Sends an offload packet.  This is an exported version of @t4_ofld_send,
 *	intended for ULDs.
 */
int cxgb4_ofld_send(struct net_device *dev, struct sk_buff *skb)
{
	return t4_ofld_send(netdev2adap(dev), skb);
}
EXPORT_SYMBOL(cxgb4_ofld_send);

1536
static inline void copy_frags(struct sk_buff *skb,
1537 1538
			      const struct pkt_gl *gl, unsigned int offset)
{
1539
	int i;
1540 1541

	/* usually there's just one frag */
1542 1543 1544 1545 1546 1547 1548 1549
	__skb_fill_page_desc(skb, 0, gl->frags[0].page,
			     gl->frags[0].offset + offset,
			     gl->frags[0].size - offset);
	skb_shinfo(skb)->nr_frags = gl->nfrags;
	for (i = 1; i < gl->nfrags; i++)
		__skb_fill_page_desc(skb, i, gl->frags[i].page,
				     gl->frags[i].offset,
				     gl->frags[i].size);
1550 1551

	/* get a reference to the last page, we don't own it */
1552
	get_page(gl->frags[gl->nfrags - 1].page);
1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586
}

/**
 *	cxgb4_pktgl_to_skb - build an sk_buff from a packet gather list
 *	@gl: the gather list
 *	@skb_len: size of sk_buff main body if it carries fragments
 *	@pull_len: amount of data to move to the sk_buff's main body
 *
 *	Builds an sk_buff from the given packet gather list.  Returns the
 *	sk_buff or %NULL if sk_buff allocation failed.
 */
struct sk_buff *cxgb4_pktgl_to_skb(const struct pkt_gl *gl,
				   unsigned int skb_len, unsigned int pull_len)
{
	struct sk_buff *skb;

	/*
	 * Below we rely on RX_COPY_THRES being less than the smallest Rx buffer
	 * size, which is expected since buffers are at least PAGE_SIZEd.
	 * In this case packets up to RX_COPY_THRES have only one fragment.
	 */
	if (gl->tot_len <= RX_COPY_THRES) {
		skb = dev_alloc_skb(gl->tot_len);
		if (unlikely(!skb))
			goto out;
		__skb_put(skb, gl->tot_len);
		skb_copy_to_linear_data(skb, gl->va, gl->tot_len);
	} else {
		skb = dev_alloc_skb(skb_len);
		if (unlikely(!skb))
			goto out;
		__skb_put(skb, pull_len);
		skb_copy_to_linear_data(skb, gl->va, pull_len);

1587
		copy_frags(skb, gl, pull_len);
1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602
		skb->len = gl->tot_len;
		skb->data_len = skb->len - pull_len;
		skb->truesize += skb->data_len;
	}
out:	return skb;
}
EXPORT_SYMBOL(cxgb4_pktgl_to_skb);

/**
 *	t4_pktgl_free - free a packet gather list
 *	@gl: the gather list
 *
 *	Releases the pages of a packet gather list.  We do not own the last
 *	page on the list and do not free it.
 */
1603
static void t4_pktgl_free(const struct pkt_gl *gl)
1604 1605
{
	int n;
1606
	const struct page_frag *p;
1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626

	for (p = gl->frags, n = gl->nfrags - 1; n--; p++)
		put_page(p->page);
}

/*
 * Process an MPS trace packet.  Give it an unused protocol number so it won't
 * be delivered to anyone and send it to the stack for capture.
 */
static noinline int handle_trace_pkt(struct adapter *adap,
				     const struct pkt_gl *gl)
{
	struct sk_buff *skb;

	skb = cxgb4_pktgl_to_skb(gl, RX_PULL_LEN, RX_PULL_LEN);
	if (unlikely(!skb)) {
		t4_pktgl_free(gl);
		return 0;
	}

1627
	if (is_t4(adap->params.chip))
S
Santosh Rastapur 已提交
1628 1629 1630 1631
		__skb_pull(skb, sizeof(struct cpl_trace_pkt));
	else
		__skb_pull(skb, sizeof(struct cpl_t5_trace_pkt));

1632 1633 1634 1635 1636 1637 1638 1639 1640 1641
	skb_reset_mac_header(skb);
	skb->protocol = htons(0xffff);
	skb->dev = adap->port[0];
	netif_receive_skb(skb);
	return 0;
}

static void do_gro(struct sge_eth_rxq *rxq, const struct pkt_gl *gl,
		   const struct cpl_rx_pkt *pkt)
{
1642 1643
	struct adapter *adapter = rxq->rspq.adap;
	struct sge *s = &adapter->sge;
1644 1645 1646 1647 1648 1649 1650 1651 1652 1653
	int ret;
	struct sk_buff *skb;

	skb = napi_get_frags(&rxq->rspq.napi);
	if (unlikely(!skb)) {
		t4_pktgl_free(gl);
		rxq->stats.rx_drops++;
		return;
	}

1654 1655
	copy_frags(skb, gl, s->pktshift);
	skb->len = gl->tot_len - s->pktshift;
1656 1657 1658 1659
	skb->data_len = skb->len;
	skb->truesize += skb->data_len;
	skb->ip_summed = CHECKSUM_UNNECESSARY;
	skb_record_rx_queue(skb, rxq->rspq.idx);
D
Dimitris Michailidis 已提交
1660
	if (rxq->rspq.netdev->features & NETIF_F_RXHASH)
T
Tom Herbert 已提交
1661 1662
		skb_set_hash(skb, (__force u32)pkt->rsshdr.hash_val,
			     PKT_HASH_TYPE_L3);
1663 1664

	if (unlikely(pkt->vlan_ex)) {
1665
		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(pkt->vlan));
1666 1667 1668
		rxq->stats.vlan_ex++;
	}
	ret = napi_gro_frags(&rxq->rspq.napi);
1669
	if (ret == GRO_HELD)
1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691
		rxq->stats.lro_pkts++;
	else if (ret == GRO_MERGED || ret == GRO_MERGED_FREE)
		rxq->stats.lro_merged++;
	rxq->stats.pkts++;
	rxq->stats.rx_cso++;
}

/**
 *	t4_ethrx_handler - process an ingress ethernet packet
 *	@q: the response queue that received the packet
 *	@rsp: the response queue descriptor holding the RX_PKT message
 *	@si: the gather list of packet fragments
 *
 *	Process an ingress ethernet packet and deliver it to the stack.
 */
int t4_ethrx_handler(struct sge_rspq *q, const __be64 *rsp,
		     const struct pkt_gl *si)
{
	bool csum_ok;
	struct sk_buff *skb;
	const struct cpl_rx_pkt *pkt;
	struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq);
1692
	struct sge *s = &q->adap->sge;
1693
	int cpl_trace_pkt = is_t4(q->adap->params.chip) ?
S
Santosh Rastapur 已提交
1694
			    CPL_TRACE_PKT : CPL_TRACE_PKT_T5;
1695

S
Santosh Rastapur 已提交
1696
	if (unlikely(*(u8 *)rsp == cpl_trace_pkt))
1697 1698
		return handle_trace_pkt(q->adap, si);

D
Dimitris Michailidis 已提交
1699
	pkt = (const struct cpl_rx_pkt *)rsp;
1700 1701
	csum_ok = pkt->csum_calc && !pkt->err_vec &&
		  (q->netdev->features & NETIF_F_RXCSUM);
1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714
	if ((pkt->l2info & htonl(RXF_TCP)) &&
	    (q->netdev->features & NETIF_F_GRO) && csum_ok && !pkt->ip_frag) {
		do_gro(rxq, si, pkt);
		return 0;
	}

	skb = cxgb4_pktgl_to_skb(si, RX_PKT_SKB_LEN, RX_PULL_LEN);
	if (unlikely(!skb)) {
		t4_pktgl_free(si);
		rxq->stats.rx_drops++;
		return 0;
	}

1715
	__skb_pull(skb, s->pktshift);      /* remove ethernet header padding */
1716 1717
	skb->protocol = eth_type_trans(skb, q->netdev);
	skb_record_rx_queue(skb, q->idx);
D
Dimitris Michailidis 已提交
1718
	if (skb->dev->features & NETIF_F_RXHASH)
T
Tom Herbert 已提交
1719 1720
		skb_set_hash(skb, (__force u32)pkt->rsshdr.hash_val,
			     PKT_HASH_TYPE_L3);
D
Dimitris Michailidis 已提交
1721

1722 1723
	rxq->stats.pkts++;

1724
	if (csum_ok && (pkt->l2info & htonl(RXF_UDP | RXF_TCP))) {
1725
		if (!pkt->ip_frag) {
1726
			skb->ip_summed = CHECKSUM_UNNECESSARY;
1727 1728
			rxq->stats.rx_cso++;
		} else if (pkt->l2info & htonl(RXF_IP)) {
1729 1730 1731
			__sum16 c = (__force __sum16)pkt->csum;
			skb->csum = csum_unfold(c);
			skb->ip_summed = CHECKSUM_COMPLETE;
1732
			rxq->stats.rx_cso++;
1733 1734
		}
	} else
1735
		skb_checksum_none_assert(skb);
1736 1737

	if (unlikely(pkt->vlan_ex)) {
1738
		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(pkt->vlan));
1739
		rxq->stats.vlan_ex++;
1740 1741
	}
	netif_receive_skb(skb);
1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825
	return 0;
}

/**
 *	restore_rx_bufs - put back a packet's Rx buffers
 *	@si: the packet gather list
 *	@q: the SGE free list
 *	@frags: number of FL buffers to restore
 *
 *	Puts back on an FL the Rx buffers associated with @si.  The buffers
 *	have already been unmapped and are left unmapped, we mark them so to
 *	prevent further unmapping attempts.
 *
 *	This function undoes a series of @unmap_rx_buf calls when we find out
 *	that the current packet can't be processed right away afterall and we
 *	need to come back to it later.  This is a very rare event and there's
 *	no effort to make this particularly efficient.
 */
static void restore_rx_bufs(const struct pkt_gl *si, struct sge_fl *q,
			    int frags)
{
	struct rx_sw_desc *d;

	while (frags--) {
		if (q->cidx == 0)
			q->cidx = q->size - 1;
		else
			q->cidx--;
		d = &q->sdesc[q->cidx];
		d->page = si->frags[frags].page;
		d->dma_addr |= RX_UNMAPPED_BUF;
		q->avail++;
	}
}

/**
 *	is_new_response - check if a response is newly written
 *	@r: the response descriptor
 *	@q: the response queue
 *
 *	Returns true if a response descriptor contains a yet unprocessed
 *	response.
 */
static inline bool is_new_response(const struct rsp_ctrl *r,
				   const struct sge_rspq *q)
{
	return RSPD_GEN(r->type_gen) == q->gen;
}

/**
 *	rspq_next - advance to the next entry in a response queue
 *	@q: the queue
 *
 *	Updates the state of a response queue to advance it to the next entry.
 */
static inline void rspq_next(struct sge_rspq *q)
{
	q->cur_desc = (void *)q->cur_desc + q->iqe_len;
	if (unlikely(++q->cidx == q->size)) {
		q->cidx = 0;
		q->gen ^= 1;
		q->cur_desc = q->desc;
	}
}

/**
 *	process_responses - process responses from an SGE response queue
 *	@q: the ingress queue to process
 *	@budget: how many responses can be processed in this round
 *
 *	Process responses from an SGE response queue up to the supplied budget.
 *	Responses include received packets as well as control messages from FW
 *	or HW.
 *
 *	Additionally choose the interrupt holdoff time for the next interrupt
 *	on this queue.  If the system is under memory shortage use a fairly
 *	long delay to help recovery.
 */
static int process_responses(struct sge_rspq *q, int budget)
{
	int ret, rsp_type;
	int budget_left = budget;
	const struct rsp_ctrl *rc;
	struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq);
1826 1827
	struct adapter *adapter = q->adap;
	struct sge *s = &adapter->sge;
1828 1829 1830 1831 1832 1833 1834 1835 1836

	while (likely(budget_left)) {
		rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc));
		if (!is_new_response(rc, q))
			break;

		rmb();
		rsp_type = RSPD_TYPE(rc->type_gen);
		if (likely(rsp_type == RSP_TYPE_FLBUF)) {
1837
			struct page_frag *fp;
1838 1839 1840 1841 1842 1843 1844 1845 1846
			struct pkt_gl si;
			const struct rx_sw_desc *rsd;
			u32 len = ntohl(rc->pldbuflen_qid), bufsz, frags;

			if (len & RSPD_NEWBUF) {
				if (likely(q->offset > 0)) {
					free_rx_bufs(q->adap, &rxq->fl, 1);
					q->offset = 0;
				}
1847
				len = RSPD_LEN(len);
1848 1849 1850 1851 1852 1853
			}
			si.tot_len = len;

			/* gather packet fragments */
			for (frags = 0, fp = si.frags; ; frags++, fp++) {
				rsd = &rxq->fl.sdesc[rxq->fl.cidx];
1854
				bufsz = get_buf_size(adapter, rsd);
1855
				fp->page = rsd->page;
1856 1857 1858
				fp->offset = q->offset;
				fp->size = min(bufsz, len);
				len -= fp->size;
1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869
				if (!len)
					break;
				unmap_rx_buf(q->adap, &rxq->fl);
			}

			/*
			 * Last buffer remains mapped so explicitly make it
			 * coherent for CPU access.
			 */
			dma_sync_single_for_cpu(q->adap->pdev_dev,
						get_buf_addr(rsd),
1870
						fp->size, DMA_FROM_DEVICE);
1871 1872

			si.va = page_address(si.frags[0].page) +
1873
				si.frags[0].offset;
1874 1875 1876 1877 1878
			prefetch(si.va);

			si.nfrags = frags + 1;
			ret = q->handler(q, q->cur_desc, &si);
			if (likely(ret == 0))
1879
				q->offset += ALIGN(fp->size, s->fl_align);
1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962
			else
				restore_rx_bufs(&si, &rxq->fl, frags);
		} else if (likely(rsp_type == RSP_TYPE_CPL)) {
			ret = q->handler(q, q->cur_desc, NULL);
		} else {
			ret = q->handler(q, (const __be64 *)rc, CXGB4_MSG_AN);
		}

		if (unlikely(ret)) {
			/* couldn't process descriptor, back off for recovery */
			q->next_intr_params = QINTR_TIMER_IDX(NOMEM_TMR_IDX);
			break;
		}

		rspq_next(q);
		budget_left--;
	}

	if (q->offset >= 0 && rxq->fl.size - rxq->fl.avail >= 16)
		__refill_fl(q->adap, &rxq->fl);
	return budget - budget_left;
}

/**
 *	napi_rx_handler - the NAPI handler for Rx processing
 *	@napi: the napi instance
 *	@budget: how many packets we can process in this round
 *
 *	Handler for new data events when using NAPI.  This does not need any
 *	locking or protection from interrupts as data interrupts are off at
 *	this point and other adapter interrupts do not interfere (the latter
 *	in not a concern at all with MSI-X as non-data interrupts then have
 *	a separate handler).
 */
static int napi_rx_handler(struct napi_struct *napi, int budget)
{
	unsigned int params;
	struct sge_rspq *q = container_of(napi, struct sge_rspq, napi);
	int work_done = process_responses(q, budget);

	if (likely(work_done < budget)) {
		napi_complete(napi);
		params = q->next_intr_params;
		q->next_intr_params = q->intr_params;
	} else
		params = QINTR_TIMER_IDX(7);

	t4_write_reg(q->adap, MYPF_REG(SGE_PF_GTS), CIDXINC(work_done) |
		     INGRESSQID((u32)q->cntxt_id) | SEINTARM(params));
	return work_done;
}

/*
 * The MSI-X interrupt handler for an SGE response queue.
 */
irqreturn_t t4_sge_intr_msix(int irq, void *cookie)
{
	struct sge_rspq *q = cookie;

	napi_schedule(&q->napi);
	return IRQ_HANDLED;
}

/*
 * Process the indirect interrupt entries in the interrupt queue and kick off
 * NAPI for each queue that has generated an entry.
 */
static unsigned int process_intrq(struct adapter *adap)
{
	unsigned int credits;
	const struct rsp_ctrl *rc;
	struct sge_rspq *q = &adap->sge.intrq;

	spin_lock(&adap->sge.intrq_lock);
	for (credits = 0; ; credits++) {
		rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc));
		if (!is_new_response(rc, q))
			break;

		rmb();
		if (RSPD_TYPE(rc->type_gen) == RSP_TYPE_INTR) {
			unsigned int qid = ntohl(rc->pldbuflen_qid);

1963
			qid -= adap->sge.ingr_start;
1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
			napi_schedule(&adap->sge.ingr_map[qid]->napi);
		}

		rspq_next(q);
	}

	t4_write_reg(adap, MYPF_REG(SGE_PF_GTS), CIDXINC(credits) |
		     INGRESSQID(q->cntxt_id) | SEINTARM(q->intr_params));
	spin_unlock(&adap->sge.intrq_lock);
	return credits;
}

/*
 * The MSI interrupt handler, which handles data events from SGE response queues
 * as well as error and other async events as they all use the same MSI vector.
 */
static irqreturn_t t4_intr_msi(int irq, void *cookie)
{
	struct adapter *adap = cookie;

	t4_slow_intr_handler(adap);
	process_intrq(adap);
	return IRQ_HANDLED;
}

/*
 * Interrupt handler for legacy INTx interrupts.
 * Handles data events from SGE response queues as well as error and other
 * async events as they all use the same interrupt line.
 */
static irqreturn_t t4_intr_intx(int irq, void *cookie)
{
	struct adapter *adap = cookie;

	t4_write_reg(adap, MYPF_REG(PCIE_PF_CLI), 0);
	if (t4_slow_intr_handler(adap) | process_intrq(adap))
		return IRQ_HANDLED;
	return IRQ_NONE;             /* probably shared interrupt */
}

/**
 *	t4_intr_handler - select the top-level interrupt handler
 *	@adap: the adapter
 *
 *	Selects the top-level interrupt handler based on the type of interrupts
 *	(MSI-X, MSI, or INTx).
 */
irq_handler_t t4_intr_handler(struct adapter *adap)
{
	if (adap->flags & USING_MSIX)
		return t4_sge_intr_msix;
	if (adap->flags & USING_MSI)
		return t4_intr_msi;
	return t4_intr_intx;
}

static void sge_rx_timer_cb(unsigned long data)
{
	unsigned long m;
2023
	unsigned int i, idma_same_state_cnt[2];
2024 2025 2026 2027 2028 2029 2030 2031 2032 2033
	struct adapter *adap = (struct adapter *)data;
	struct sge *s = &adap->sge;

	for (i = 0; i < ARRAY_SIZE(s->starving_fl); i++)
		for (m = s->starving_fl[i]; m; m &= m - 1) {
			struct sge_eth_rxq *rxq;
			unsigned int id = __ffs(m) + i * BITS_PER_LONG;
			struct sge_fl *fl = s->egr_map[id];

			clear_bit(id, s->starving_fl);
2034
			smp_mb__after_atomic();
2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045

			if (fl_starving(fl)) {
				rxq = container_of(fl, struct sge_eth_rxq, fl);
				if (napi_reschedule(&rxq->rspq.napi))
					fl->starving++;
				else
					set_bit(id, s->starving_fl);
			}
		}

	t4_write_reg(adap, SGE_DEBUG_INDEX, 13);
2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103
	idma_same_state_cnt[0] = t4_read_reg(adap, SGE_DEBUG_DATA_HIGH);
	idma_same_state_cnt[1] = t4_read_reg(adap, SGE_DEBUG_DATA_LOW);

	for (i = 0; i < 2; i++) {
		u32 debug0, debug11;

		/* If the Ingress DMA Same State Counter ("timer") is less
		 * than 1s, then we can reset our synthesized Stall Timer and
		 * continue.  If we have previously emitted warnings about a
		 * potential stalled Ingress Queue, issue a note indicating
		 * that the Ingress Queue has resumed forward progress.
		 */
		if (idma_same_state_cnt[i] < s->idma_1s_thresh) {
			if (s->idma_stalled[i] >= SGE_IDMA_WARN_THRESH)
				CH_WARN(adap, "SGE idma%d, queue%u,resumed after %d sec\n",
					i, s->idma_qid[i],
					s->idma_stalled[i]/HZ);
			s->idma_stalled[i] = 0;
			continue;
		}

		/* Synthesize an SGE Ingress DMA Same State Timer in the Hz
		 * domain.  The first time we get here it'll be because we
		 * passed the 1s Threshold; each additional time it'll be
		 * because the RX Timer Callback is being fired on its regular
		 * schedule.
		 *
		 * If the stall is below our Potential Hung Ingress Queue
		 * Warning Threshold, continue.
		 */
		if (s->idma_stalled[i] == 0)
			s->idma_stalled[i] = HZ;
		else
			s->idma_stalled[i] += RX_QCHECK_PERIOD;

		if (s->idma_stalled[i] < SGE_IDMA_WARN_THRESH)
			continue;

		/* We'll issue a warning every SGE_IDMA_WARN_REPEAT Hz */
		if (((s->idma_stalled[i] - HZ) % SGE_IDMA_WARN_REPEAT) != 0)
			continue;

		/* Read and save the SGE IDMA State and Queue ID information.
		 * We do this every time in case it changes across time ...
		 */
		t4_write_reg(adap, SGE_DEBUG_INDEX, 0);
		debug0 = t4_read_reg(adap, SGE_DEBUG_DATA_LOW);
		s->idma_state[i] = (debug0 >> (i * 9)) & 0x3f;

		t4_write_reg(adap, SGE_DEBUG_INDEX, 11);
		debug11 = t4_read_reg(adap, SGE_DEBUG_DATA_LOW);
		s->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff;

		CH_WARN(adap, "SGE idma%u, queue%u, maybe stuck state%u %dsecs (debug0=%#x, debug11=%#x)\n",
			i, s->idma_qid[i], s->idma_state[i],
			s->idma_stalled[i]/HZ, debug0, debug11);
		t4_sge_decode_idma_state(adap, s->idma_state[i]);
	}
2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157

	mod_timer(&s->rx_timer, jiffies + RX_QCHECK_PERIOD);
}

static void sge_tx_timer_cb(unsigned long data)
{
	unsigned long m;
	unsigned int i, budget;
	struct adapter *adap = (struct adapter *)data;
	struct sge *s = &adap->sge;

	for (i = 0; i < ARRAY_SIZE(s->txq_maperr); i++)
		for (m = s->txq_maperr[i]; m; m &= m - 1) {
			unsigned long id = __ffs(m) + i * BITS_PER_LONG;
			struct sge_ofld_txq *txq = s->egr_map[id];

			clear_bit(id, s->txq_maperr);
			tasklet_schedule(&txq->qresume_tsk);
		}

	budget = MAX_TIMER_TX_RECLAIM;
	i = s->ethtxq_rover;
	do {
		struct sge_eth_txq *q = &s->ethtxq[i];

		if (q->q.in_use &&
		    time_after_eq(jiffies, q->txq->trans_start + HZ / 100) &&
		    __netif_tx_trylock(q->txq)) {
			int avail = reclaimable(&q->q);

			if (avail) {
				if (avail > budget)
					avail = budget;

				free_tx_desc(adap, &q->q, avail, true);
				q->q.in_use -= avail;
				budget -= avail;
			}
			__netif_tx_unlock(q->txq);
		}

		if (++i >= s->ethqsets)
			i = 0;
	} while (budget && i != s->ethtxq_rover);
	s->ethtxq_rover = i;
	mod_timer(&s->tx_timer, jiffies + (budget ? TX_QCHECK_PERIOD : 2));
}

int t4_sge_alloc_rxq(struct adapter *adap, struct sge_rspq *iq, bool fwevtq,
		     struct net_device *dev, int intr_idx,
		     struct sge_fl *fl, rspq_handler_t hnd)
{
	int ret, flsz = 0;
	struct fw_iq_cmd c;
2158
	struct sge *s = &adap->sge;
2159 2160 2161 2162 2163 2164
	struct port_info *pi = netdev_priv(dev);

	/* Size needs to be multiple of 16, including status entry. */
	iq->size = roundup(iq->size, 16);

	iq->desc = alloc_ring(adap->pdev_dev, iq->size, iq->iqe_len, 0,
2165
			      &iq->phys_addr, NULL, 0, NUMA_NO_NODE);
2166 2167 2168 2169 2170 2171
	if (!iq->desc)
		return -ENOMEM;

	memset(&c, 0, sizeof(c));
	c.op_to_vfn = htonl(FW_CMD_OP(FW_IQ_CMD) | FW_CMD_REQUEST |
			    FW_CMD_WRITE | FW_CMD_EXEC |
2172
			    FW_IQ_CMD_PFN(adap->fn) | FW_IQ_CMD_VFN(0));
2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190
	c.alloc_to_len16 = htonl(FW_IQ_CMD_ALLOC | FW_IQ_CMD_IQSTART(1) |
				 FW_LEN16(c));
	c.type_to_iqandstindex = htonl(FW_IQ_CMD_TYPE(FW_IQ_TYPE_FL_INT_CAP) |
		FW_IQ_CMD_IQASYNCH(fwevtq) | FW_IQ_CMD_VIID(pi->viid) |
		FW_IQ_CMD_IQANDST(intr_idx < 0) | FW_IQ_CMD_IQANUD(1) |
		FW_IQ_CMD_IQANDSTINDEX(intr_idx >= 0 ? intr_idx :
							-intr_idx - 1));
	c.iqdroprss_to_iqesize = htons(FW_IQ_CMD_IQPCIECH(pi->tx_chan) |
		FW_IQ_CMD_IQGTSMODE |
		FW_IQ_CMD_IQINTCNTTHRESH(iq->pktcnt_idx) |
		FW_IQ_CMD_IQESIZE(ilog2(iq->iqe_len) - 4));
	c.iqsize = htons(iq->size);
	c.iqaddr = cpu_to_be64(iq->phys_addr);

	if (fl) {
		fl->size = roundup(fl->size, 8);
		fl->desc = alloc_ring(adap->pdev_dev, fl->size, sizeof(__be64),
				      sizeof(struct rx_sw_desc), &fl->addr,
2191
				      &fl->sdesc, s->stat_len, NUMA_NO_NODE);
2192 2193 2194
		if (!fl->desc)
			goto fl_nomem;

2195
		flsz = fl->size / 8 + s->stat_len / sizeof(struct tx_desc);
2196
		c.iqns_to_fl0congen = htonl(FW_IQ_CMD_FL0PACKEN(1) |
2197 2198
					    FW_IQ_CMD_FL0FETCHRO(1) |
					    FW_IQ_CMD_FL0DATARO(1) |
2199
					    FW_IQ_CMD_FL0PADEN(1));
2200 2201 2202 2203 2204 2205
		c.fl0dcaen_to_fl0cidxfthresh = htons(FW_IQ_CMD_FL0FBMIN(2) |
				FW_IQ_CMD_FL0FBMAX(3));
		c.fl0size = htons(flsz);
		c.fl0addr = cpu_to_be64(fl->addr);
	}

2206
	ret = t4_wr_mbox(adap, adap->fn, &c, sizeof(c), &c);
2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223
	if (ret)
		goto err;

	netif_napi_add(dev, &iq->napi, napi_rx_handler, 64);
	iq->cur_desc = iq->desc;
	iq->cidx = 0;
	iq->gen = 1;
	iq->next_intr_params = iq->intr_params;
	iq->cntxt_id = ntohs(c.iqid);
	iq->abs_id = ntohs(c.physiqid);
	iq->size--;                           /* subtract status entry */
	iq->netdev = dev;
	iq->handler = hnd;

	/* set offset to -1 to distinguish ingress queues without FL */
	iq->offset = fl ? 0 : -1;

2224
	adap->sge.ingr_map[iq->cntxt_id - adap->sge.ingr_start] = iq;
2225 2226

	if (fl) {
2227
		fl->cntxt_id = ntohs(c.fl0id);
2228 2229 2230
		fl->avail = fl->pend_cred = 0;
		fl->pidx = fl->cidx = 0;
		fl->alloc_failed = fl->large_alloc_failed = fl->starving = 0;
2231
		adap->sge.egr_map[fl->cntxt_id - adap->sge.egr_start] = fl;
2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255
		refill_fl(adap, fl, fl_cap(fl), GFP_KERNEL);
	}
	return 0;

fl_nomem:
	ret = -ENOMEM;
err:
	if (iq->desc) {
		dma_free_coherent(adap->pdev_dev, iq->size * iq->iqe_len,
				  iq->desc, iq->phys_addr);
		iq->desc = NULL;
	}
	if (fl && fl->desc) {
		kfree(fl->sdesc);
		fl->sdesc = NULL;
		dma_free_coherent(adap->pdev_dev, flsz * sizeof(struct tx_desc),
				  fl->desc, fl->addr);
		fl->desc = NULL;
	}
	return ret;
}

static void init_txq(struct adapter *adap, struct sge_txq *q, unsigned int id)
{
2256
	q->cntxt_id = id;
2257
	if (!is_t4(adap->params.chip)) {
2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272
		unsigned int s_qpp;
		unsigned short udb_density;
		unsigned long qpshift;
		int page;

		s_qpp = QUEUESPERPAGEPF1 * adap->fn;
		udb_density = 1 << QUEUESPERPAGEPF0_GET((t4_read_reg(adap,
				SGE_EGRESS_QUEUES_PER_PAGE_PF) >> s_qpp));
		qpshift = PAGE_SHIFT - ilog2(udb_density);
		q->udb = q->cntxt_id << qpshift;
		q->udb &= PAGE_MASK;
		page = q->udb / PAGE_SIZE;
		q->udb += (q->cntxt_id - (page * udb_density)) * 128;
	}

2273 2274 2275 2276
	q->in_use = 0;
	q->cidx = q->pidx = 0;
	q->stops = q->restarts = 0;
	q->stat = (void *)&q->desc[q->size];
2277
	spin_lock_init(&q->db_lock);
2278
	adap->sge.egr_map[id - adap->sge.egr_start] = q;
2279 2280 2281 2282 2283 2284 2285 2286
}

int t4_sge_alloc_eth_txq(struct adapter *adap, struct sge_eth_txq *txq,
			 struct net_device *dev, struct netdev_queue *netdevq,
			 unsigned int iqid)
{
	int ret, nentries;
	struct fw_eq_eth_cmd c;
2287
	struct sge *s = &adap->sge;
2288 2289 2290
	struct port_info *pi = netdev_priv(dev);

	/* Add status entries */
2291
	nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
2292 2293 2294

	txq->q.desc = alloc_ring(adap->pdev_dev, txq->q.size,
			sizeof(struct tx_desc), sizeof(struct tx_sw_desc),
2295
			&txq->q.phys_addr, &txq->q.sdesc, s->stat_len,
2296
			netdev_queue_numa_node_read(netdevq));
2297 2298 2299 2300 2301 2302
	if (!txq->q.desc)
		return -ENOMEM;

	memset(&c, 0, sizeof(c));
	c.op_to_vfn = htonl(FW_CMD_OP(FW_EQ_ETH_CMD) | FW_CMD_REQUEST |
			    FW_CMD_WRITE | FW_CMD_EXEC |
2303
			    FW_EQ_ETH_CMD_PFN(adap->fn) | FW_EQ_ETH_CMD_VFN(0));
2304 2305 2306 2307 2308
	c.alloc_to_len16 = htonl(FW_EQ_ETH_CMD_ALLOC |
				 FW_EQ_ETH_CMD_EQSTART | FW_LEN16(c));
	c.viid_pkd = htonl(FW_EQ_ETH_CMD_VIID(pi->viid));
	c.fetchszm_to_iqid = htonl(FW_EQ_ETH_CMD_HOSTFCMODE(2) |
				   FW_EQ_ETH_CMD_PCIECHN(pi->tx_chan) |
2309
				   FW_EQ_ETH_CMD_FETCHRO(1) |
2310 2311 2312 2313 2314 2315 2316
				   FW_EQ_ETH_CMD_IQID(iqid));
	c.dcaen_to_eqsize = htonl(FW_EQ_ETH_CMD_FBMIN(2) |
				  FW_EQ_ETH_CMD_FBMAX(3) |
				  FW_EQ_ETH_CMD_CIDXFTHRESH(5) |
				  FW_EQ_ETH_CMD_EQSIZE(nentries));
	c.eqaddr = cpu_to_be64(txq->q.phys_addr);

2317
	ret = t4_wr_mbox(adap, adap->fn, &c, sizeof(c), &c);
2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340
	if (ret) {
		kfree(txq->q.sdesc);
		txq->q.sdesc = NULL;
		dma_free_coherent(adap->pdev_dev,
				  nentries * sizeof(struct tx_desc),
				  txq->q.desc, txq->q.phys_addr);
		txq->q.desc = NULL;
		return ret;
	}

	init_txq(adap, &txq->q, FW_EQ_ETH_CMD_EQID_GET(ntohl(c.eqid_pkd)));
	txq->txq = netdevq;
	txq->tso = txq->tx_cso = txq->vlan_ins = 0;
	txq->mapping_err = 0;
	return 0;
}

int t4_sge_alloc_ctrl_txq(struct adapter *adap, struct sge_ctrl_txq *txq,
			  struct net_device *dev, unsigned int iqid,
			  unsigned int cmplqid)
{
	int ret, nentries;
	struct fw_eq_ctrl_cmd c;
2341
	struct sge *s = &adap->sge;
2342 2343 2344
	struct port_info *pi = netdev_priv(dev);

	/* Add status entries */
2345
	nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
2346 2347 2348

	txq->q.desc = alloc_ring(adap->pdev_dev, nentries,
				 sizeof(struct tx_desc), 0, &txq->q.phys_addr,
2349
				 NULL, 0, NUMA_NO_NODE);
2350 2351 2352 2353 2354
	if (!txq->q.desc)
		return -ENOMEM;

	c.op_to_vfn = htonl(FW_CMD_OP(FW_EQ_CTRL_CMD) | FW_CMD_REQUEST |
			    FW_CMD_WRITE | FW_CMD_EXEC |
2355 2356
			    FW_EQ_CTRL_CMD_PFN(adap->fn) |
			    FW_EQ_CTRL_CMD_VFN(0));
2357 2358 2359 2360 2361 2362
	c.alloc_to_len16 = htonl(FW_EQ_CTRL_CMD_ALLOC |
				 FW_EQ_CTRL_CMD_EQSTART | FW_LEN16(c));
	c.cmpliqid_eqid = htonl(FW_EQ_CTRL_CMD_CMPLIQID(cmplqid));
	c.physeqid_pkd = htonl(0);
	c.fetchszm_to_iqid = htonl(FW_EQ_CTRL_CMD_HOSTFCMODE(2) |
				   FW_EQ_CTRL_CMD_PCIECHN(pi->tx_chan) |
2363
				   FW_EQ_CTRL_CMD_FETCHRO |
2364 2365 2366 2367 2368 2369 2370
				   FW_EQ_CTRL_CMD_IQID(iqid));
	c.dcaen_to_eqsize = htonl(FW_EQ_CTRL_CMD_FBMIN(2) |
				  FW_EQ_CTRL_CMD_FBMAX(3) |
				  FW_EQ_CTRL_CMD_CIDXFTHRESH(5) |
				  FW_EQ_CTRL_CMD_EQSIZE(nentries));
	c.eqaddr = cpu_to_be64(txq->q.phys_addr);

2371
	ret = t4_wr_mbox(adap, adap->fn, &c, sizeof(c), &c);
2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392
	if (ret) {
		dma_free_coherent(adap->pdev_dev,
				  nentries * sizeof(struct tx_desc),
				  txq->q.desc, txq->q.phys_addr);
		txq->q.desc = NULL;
		return ret;
	}

	init_txq(adap, &txq->q, FW_EQ_CTRL_CMD_EQID_GET(ntohl(c.cmpliqid_eqid)));
	txq->adap = adap;
	skb_queue_head_init(&txq->sendq);
	tasklet_init(&txq->qresume_tsk, restart_ctrlq, (unsigned long)txq);
	txq->full = 0;
	return 0;
}

int t4_sge_alloc_ofld_txq(struct adapter *adap, struct sge_ofld_txq *txq,
			  struct net_device *dev, unsigned int iqid)
{
	int ret, nentries;
	struct fw_eq_ofld_cmd c;
2393
	struct sge *s = &adap->sge;
2394 2395 2396
	struct port_info *pi = netdev_priv(dev);

	/* Add status entries */
2397
	nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
2398 2399 2400

	txq->q.desc = alloc_ring(adap->pdev_dev, txq->q.size,
			sizeof(struct tx_desc), sizeof(struct tx_sw_desc),
2401
			&txq->q.phys_addr, &txq->q.sdesc, s->stat_len,
2402
			NUMA_NO_NODE);
2403 2404 2405 2406 2407 2408
	if (!txq->q.desc)
		return -ENOMEM;

	memset(&c, 0, sizeof(c));
	c.op_to_vfn = htonl(FW_CMD_OP(FW_EQ_OFLD_CMD) | FW_CMD_REQUEST |
			    FW_CMD_WRITE | FW_CMD_EXEC |
2409 2410
			    FW_EQ_OFLD_CMD_PFN(adap->fn) |
			    FW_EQ_OFLD_CMD_VFN(0));
2411 2412 2413 2414
	c.alloc_to_len16 = htonl(FW_EQ_OFLD_CMD_ALLOC |
				 FW_EQ_OFLD_CMD_EQSTART | FW_LEN16(c));
	c.fetchszm_to_iqid = htonl(FW_EQ_OFLD_CMD_HOSTFCMODE(2) |
				   FW_EQ_OFLD_CMD_PCIECHN(pi->tx_chan) |
2415
				   FW_EQ_OFLD_CMD_FETCHRO(1) |
2416 2417 2418 2419 2420 2421 2422
				   FW_EQ_OFLD_CMD_IQID(iqid));
	c.dcaen_to_eqsize = htonl(FW_EQ_OFLD_CMD_FBMIN(2) |
				  FW_EQ_OFLD_CMD_FBMAX(3) |
				  FW_EQ_OFLD_CMD_CIDXFTHRESH(5) |
				  FW_EQ_OFLD_CMD_EQSIZE(nentries));
	c.eqaddr = cpu_to_be64(txq->q.phys_addr);

2423
	ret = t4_wr_mbox(adap, adap->fn, &c, sizeof(c), &c);
2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444
	if (ret) {
		kfree(txq->q.sdesc);
		txq->q.sdesc = NULL;
		dma_free_coherent(adap->pdev_dev,
				  nentries * sizeof(struct tx_desc),
				  txq->q.desc, txq->q.phys_addr);
		txq->q.desc = NULL;
		return ret;
	}

	init_txq(adap, &txq->q, FW_EQ_OFLD_CMD_EQID_GET(ntohl(c.eqid_pkd)));
	txq->adap = adap;
	skb_queue_head_init(&txq->sendq);
	tasklet_init(&txq->qresume_tsk, restart_ofldq, (unsigned long)txq);
	txq->full = 0;
	txq->mapping_err = 0;
	return 0;
}

static void free_txq(struct adapter *adap, struct sge_txq *q)
{
2445 2446
	struct sge *s = &adap->sge;

2447
	dma_free_coherent(adap->pdev_dev,
2448
			  q->size * sizeof(struct tx_desc) + s->stat_len,
2449 2450 2451 2452 2453 2454 2455 2456 2457
			  q->desc, q->phys_addr);
	q->cntxt_id = 0;
	q->sdesc = NULL;
	q->desc = NULL;
}

static void free_rspq_fl(struct adapter *adap, struct sge_rspq *rq,
			 struct sge_fl *fl)
{
2458
	struct sge *s = &adap->sge;
2459 2460
	unsigned int fl_id = fl ? fl->cntxt_id : 0xffff;

2461
	adap->sge.ingr_map[rq->cntxt_id - adap->sge.ingr_start] = NULL;
2462 2463
	t4_iq_free(adap, adap->fn, adap->fn, 0, FW_IQ_TYPE_FL_INT_CAP,
		   rq->cntxt_id, fl_id, 0xffff);
2464 2465 2466 2467 2468 2469 2470 2471 2472
	dma_free_coherent(adap->pdev_dev, (rq->size + 1) * rq->iqe_len,
			  rq->desc, rq->phys_addr);
	netif_napi_del(&rq->napi);
	rq->netdev = NULL;
	rq->cntxt_id = rq->abs_id = 0;
	rq->desc = NULL;

	if (fl) {
		free_rx_bufs(adap, fl, fl->avail);
2473
		dma_free_coherent(adap->pdev_dev, fl->size * 8 + s->stat_len,
2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499
				  fl->desc, fl->addr);
		kfree(fl->sdesc);
		fl->sdesc = NULL;
		fl->cntxt_id = 0;
		fl->desc = NULL;
	}
}

/**
 *	t4_free_sge_resources - free SGE resources
 *	@adap: the adapter
 *
 *	Frees resources used by the SGE queue sets.
 */
void t4_free_sge_resources(struct adapter *adap)
{
	int i;
	struct sge_eth_rxq *eq = adap->sge.ethrxq;
	struct sge_eth_txq *etq = adap->sge.ethtxq;
	struct sge_ofld_rxq *oq = adap->sge.ofldrxq;

	/* clean up Ethernet Tx/Rx queues */
	for (i = 0; i < adap->sge.ethqsets; i++, eq++, etq++) {
		if (eq->rspq.desc)
			free_rspq_fl(adap, &eq->rspq, &eq->fl);
		if (etq->q.desc) {
2500 2501
			t4_eth_eq_free(adap, adap->fn, adap->fn, 0,
				       etq->q.cntxt_id);
2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516
			free_tx_desc(adap, &etq->q, etq->q.in_use, true);
			kfree(etq->q.sdesc);
			free_txq(adap, &etq->q);
		}
	}

	/* clean up RDMA and iSCSI Rx queues */
	for (i = 0; i < adap->sge.ofldqsets; i++, oq++) {
		if (oq->rspq.desc)
			free_rspq_fl(adap, &oq->rspq, &oq->fl);
	}
	for (i = 0, oq = adap->sge.rdmarxq; i < adap->sge.rdmaqs; i++, oq++) {
		if (oq->rspq.desc)
			free_rspq_fl(adap, &oq->rspq, &oq->fl);
	}
2517 2518 2519 2520
	for (i = 0, oq = adap->sge.rdmaciq; i < adap->sge.rdmaciqs; i++, oq++) {
		if (oq->rspq.desc)
			free_rspq_fl(adap, &oq->rspq, &oq->fl);
	}
2521 2522 2523 2524 2525 2526 2527

	/* clean up offload Tx queues */
	for (i = 0; i < ARRAY_SIZE(adap->sge.ofldtxq); i++) {
		struct sge_ofld_txq *q = &adap->sge.ofldtxq[i];

		if (q->q.desc) {
			tasklet_kill(&q->qresume_tsk);
2528 2529
			t4_ofld_eq_free(adap, adap->fn, adap->fn, 0,
					q->q.cntxt_id);
2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542
			free_tx_desc(adap, &q->q, q->q.in_use, false);
			kfree(q->q.sdesc);
			__skb_queue_purge(&q->sendq);
			free_txq(adap, &q->q);
		}
	}

	/* clean up control Tx queues */
	for (i = 0; i < ARRAY_SIZE(adap->sge.ctrlq); i++) {
		struct sge_ctrl_txq *cq = &adap->sge.ctrlq[i];

		if (cq->q.desc) {
			tasklet_kill(&cq->qresume_tsk);
2543 2544
			t4_ctrl_eq_free(adap, adap->fn, adap->fn, 0,
					cq->q.cntxt_id);
2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608
			__skb_queue_purge(&cq->sendq);
			free_txq(adap, &cq->q);
		}
	}

	if (adap->sge.fw_evtq.desc)
		free_rspq_fl(adap, &adap->sge.fw_evtq, NULL);

	if (adap->sge.intrq.desc)
		free_rspq_fl(adap, &adap->sge.intrq, NULL);

	/* clear the reverse egress queue map */
	memset(adap->sge.egr_map, 0, sizeof(adap->sge.egr_map));
}

void t4_sge_start(struct adapter *adap)
{
	adap->sge.ethtxq_rover = 0;
	mod_timer(&adap->sge.rx_timer, jiffies + RX_QCHECK_PERIOD);
	mod_timer(&adap->sge.tx_timer, jiffies + TX_QCHECK_PERIOD);
}

/**
 *	t4_sge_stop - disable SGE operation
 *	@adap: the adapter
 *
 *	Stop tasklets and timers associated with the DMA engine.  Note that
 *	this is effective only if measures have been taken to disable any HW
 *	events that may restart them.
 */
void t4_sge_stop(struct adapter *adap)
{
	int i;
	struct sge *s = &adap->sge;

	if (in_interrupt())  /* actions below require waiting */
		return;

	if (s->rx_timer.function)
		del_timer_sync(&s->rx_timer);
	if (s->tx_timer.function)
		del_timer_sync(&s->tx_timer);

	for (i = 0; i < ARRAY_SIZE(s->ofldtxq); i++) {
		struct sge_ofld_txq *q = &s->ofldtxq[i];

		if (q->q.desc)
			tasklet_kill(&q->qresume_tsk);
	}
	for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++) {
		struct sge_ctrl_txq *cq = &s->ctrlq[i];

		if (cq->q.desc)
			tasklet_kill(&cq->qresume_tsk);
	}
}

/**
 *	t4_sge_init - initialize SGE
 *	@adap: the adapter
 *
 *	Performs SGE initialization needed every time after a chip reset.
 *	We do not initialize any of the queues here, instead the driver
 *	top-level must request them individually.
2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620
 *
 *	Called in two different modes:
 *
 *	 1. Perform actual hardware initialization and record hard-coded
 *	    parameters which were used.  This gets used when we're the
 *	    Master PF and the Firmware Configuration File support didn't
 *	    work for some reason.
 *
 *	 2. We're not the Master PF or initialization was performed with
 *	    a Firmware Configuration File.  In this case we need to grab
 *	    any of the SGE operating parameters that we need to have in
 *	    order to do our job and make sure we can live with them ...
2621
 */
2622 2623

static int t4_sge_init_soft(struct adapter *adap)
2624 2625
{
	struct sge *s = &adap->sge;
2626 2627 2628
	u32 fl_small_pg, fl_large_pg, fl_small_mtu, fl_large_mtu;
	u32 timer_value_0_and_1, timer_value_2_and_3, timer_value_4_and_5;
	u32 ingress_rx_threshold;
2629

2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656
	/*
	 * Verify that CPL messages are going to the Ingress Queue for
	 * process_responses() and that only packet data is going to the
	 * Free Lists.
	 */
	if ((t4_read_reg(adap, SGE_CONTROL) & RXPKTCPLMODE_MASK) !=
	    RXPKTCPLMODE(X_RXPKTCPLMODE_SPLIT)) {
		dev_err(adap->pdev_dev, "bad SGE CPL MODE\n");
		return -EINVAL;
	}

	/*
	 * Validate the Host Buffer Register Array indices that we want to
	 * use ...
	 *
	 * XXX Note that we should really read through the Host Buffer Size
	 * XXX register array and find the indices of the Buffer Sizes which
	 * XXX meet our needs!
	 */
	#define READ_FL_BUF(x) \
		t4_read_reg(adap, SGE_FL_BUFFER_SIZE0+(x)*sizeof(u32))

	fl_small_pg = READ_FL_BUF(RX_SMALL_PG_BUF);
	fl_large_pg = READ_FL_BUF(RX_LARGE_PG_BUF);
	fl_small_mtu = READ_FL_BUF(RX_SMALL_MTU_BUF);
	fl_large_mtu = READ_FL_BUF(RX_LARGE_MTU_BUF);

2657 2658 2659 2660 2661 2662
	/* We only bother using the Large Page logic if the Large Page Buffer
	 * is larger than our Page Size Buffer.
	 */
	if (fl_large_pg <= fl_small_pg)
		fl_large_pg = 0;

2663 2664
	#undef READ_FL_BUF

2665 2666 2667
	/* The Page Size Buffer must be exactly equal to our Page Size and the
	 * Large Page Size Buffer should be 0 (per above) or a power of 2.
	 */
2668
	if (fl_small_pg != PAGE_SIZE ||
2669
	    (fl_large_pg & (fl_large_pg-1)) != 0) {
2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722
		dev_err(adap->pdev_dev, "bad SGE FL page buffer sizes [%d, %d]\n",
			fl_small_pg, fl_large_pg);
		return -EINVAL;
	}
	if (fl_large_pg)
		s->fl_pg_order = ilog2(fl_large_pg) - PAGE_SHIFT;

	if (fl_small_mtu < FL_MTU_SMALL_BUFSIZE(adap) ||
	    fl_large_mtu < FL_MTU_LARGE_BUFSIZE(adap)) {
		dev_err(adap->pdev_dev, "bad SGE FL MTU sizes [%d, %d]\n",
			fl_small_mtu, fl_large_mtu);
		return -EINVAL;
	}

	/*
	 * Retrieve our RX interrupt holdoff timer values and counter
	 * threshold values from the SGE parameters.
	 */
	timer_value_0_and_1 = t4_read_reg(adap, SGE_TIMER_VALUE_0_AND_1);
	timer_value_2_and_3 = t4_read_reg(adap, SGE_TIMER_VALUE_2_AND_3);
	timer_value_4_and_5 = t4_read_reg(adap, SGE_TIMER_VALUE_4_AND_5);
	s->timer_val[0] = core_ticks_to_us(adap,
		TIMERVALUE0_GET(timer_value_0_and_1));
	s->timer_val[1] = core_ticks_to_us(adap,
		TIMERVALUE1_GET(timer_value_0_and_1));
	s->timer_val[2] = core_ticks_to_us(adap,
		TIMERVALUE2_GET(timer_value_2_and_3));
	s->timer_val[3] = core_ticks_to_us(adap,
		TIMERVALUE3_GET(timer_value_2_and_3));
	s->timer_val[4] = core_ticks_to_us(adap,
		TIMERVALUE4_GET(timer_value_4_and_5));
	s->timer_val[5] = core_ticks_to_us(adap,
		TIMERVALUE5_GET(timer_value_4_and_5));

	ingress_rx_threshold = t4_read_reg(adap, SGE_INGRESS_RX_THRESHOLD);
	s->counter_val[0] = THRESHOLD_0_GET(ingress_rx_threshold);
	s->counter_val[1] = THRESHOLD_1_GET(ingress_rx_threshold);
	s->counter_val[2] = THRESHOLD_2_GET(ingress_rx_threshold);
	s->counter_val[3] = THRESHOLD_3_GET(ingress_rx_threshold);

	return 0;
}

static int t4_sge_init_hard(struct adapter *adap)
{
	struct sge *s = &adap->sge;

	/*
	 * Set up our basic SGE mode to deliver CPL messages to our Ingress
	 * Queue and Packet Date to the Free List.
	 */
	t4_set_reg_field(adap, SGE_CONTROL, RXPKTCPLMODE_MASK,
			 RXPKTCPLMODE_MASK);
2723

2724 2725 2726 2727
	/*
	 * Set up to drop DOORBELL writes when the DOORBELL FIFO overflows
	 * and generate an interrupt when this occurs so we can recover.
	 */
2728
	if (is_t4(adap->params.chip)) {
S
Santosh Rastapur 已提交
2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741
		t4_set_reg_field(adap, A_SGE_DBFIFO_STATUS,
				 V_HP_INT_THRESH(M_HP_INT_THRESH) |
				 V_LP_INT_THRESH(M_LP_INT_THRESH),
				 V_HP_INT_THRESH(dbfifo_int_thresh) |
				 V_LP_INT_THRESH(dbfifo_int_thresh));
	} else {
		t4_set_reg_field(adap, A_SGE_DBFIFO_STATUS,
				 V_LP_INT_THRESH_T5(M_LP_INT_THRESH_T5),
				 V_LP_INT_THRESH_T5(dbfifo_int_thresh));
		t4_set_reg_field(adap, SGE_DBFIFO_STATUS2,
				 V_HP_INT_THRESH_T5(M_HP_INT_THRESH_T5),
				 V_HP_INT_THRESH_T5(dbfifo_int_thresh));
	}
2742 2743 2744
	t4_set_reg_field(adap, A_SGE_DOORBELL_CONTROL, F_ENABLE_DROP,
			F_ENABLE_DROP);

2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762
	/*
	 * SGE_FL_BUFFER_SIZE0 (RX_SMALL_PG_BUF) is set up by
	 * t4_fixup_host_params().
	 */
	s->fl_pg_order = FL_PG_ORDER;
	if (s->fl_pg_order)
		t4_write_reg(adap,
			     SGE_FL_BUFFER_SIZE0+RX_LARGE_PG_BUF*sizeof(u32),
			     PAGE_SIZE << FL_PG_ORDER);
	t4_write_reg(adap, SGE_FL_BUFFER_SIZE0+RX_SMALL_MTU_BUF*sizeof(u32),
		     FL_MTU_SMALL_BUFSIZE(adap));
	t4_write_reg(adap, SGE_FL_BUFFER_SIZE0+RX_LARGE_MTU_BUF*sizeof(u32),
		     FL_MTU_LARGE_BUFSIZE(adap));

	/*
	 * Note that the SGE Ingress Packet Count Interrupt Threshold and
	 * Timer Holdoff values must be supplied by our caller.
	 */
2763 2764 2765 2766 2767 2768 2769 2770 2771
	t4_write_reg(adap, SGE_INGRESS_RX_THRESHOLD,
		     THRESHOLD_0(s->counter_val[0]) |
		     THRESHOLD_1(s->counter_val[1]) |
		     THRESHOLD_2(s->counter_val[2]) |
		     THRESHOLD_3(s->counter_val[3]));
	t4_write_reg(adap, SGE_TIMER_VALUE_0_AND_1,
		     TIMERVALUE0(us_to_core_ticks(adap, s->timer_val[0])) |
		     TIMERVALUE1(us_to_core_ticks(adap, s->timer_val[1])));
	t4_write_reg(adap, SGE_TIMER_VALUE_2_AND_3,
2772 2773
		     TIMERVALUE2(us_to_core_ticks(adap, s->timer_val[2])) |
		     TIMERVALUE3(us_to_core_ticks(adap, s->timer_val[3])));
2774
	t4_write_reg(adap, SGE_TIMER_VALUE_4_AND_5,
2775 2776 2777 2778 2779 2780 2781 2782 2783
		     TIMERVALUE4(us_to_core_ticks(adap, s->timer_val[4])) |
		     TIMERVALUE5(us_to_core_ticks(adap, s->timer_val[5])));

	return 0;
}

int t4_sge_init(struct adapter *adap)
{
	struct sge *s = &adap->sge;
2784 2785
	u32 sge_control, sge_conm_ctrl;
	int ret, egress_threshold;
2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809

	/*
	 * Ingress Padding Boundary and Egress Status Page Size are set up by
	 * t4_fixup_host_params().
	 */
	sge_control = t4_read_reg(adap, SGE_CONTROL);
	s->pktshift = PKTSHIFT_GET(sge_control);
	s->stat_len = (sge_control & EGRSTATUSPAGESIZE_MASK) ? 128 : 64;
	s->fl_align = 1 << (INGPADBOUNDARY_GET(sge_control) +
			    X_INGPADBOUNDARY_SHIFT);

	if (adap->flags & USING_SOFT_PARAMS)
		ret = t4_sge_init_soft(adap);
	else
		ret = t4_sge_init_hard(adap);
	if (ret < 0)
		return ret;

	/*
	 * A FL with <= fl_starve_thres buffers is starving and a periodic
	 * timer will attempt to refill it.  This needs to be larger than the
	 * SGE's Egress Congestion Threshold.  If it isn't, then we can get
	 * stuck waiting for new packets while the SGE is waiting for us to
	 * give it more Free List entries.  (Note that the SGE's Egress
2810 2811 2812 2813 2814
	 * Congestion Threshold is in units of 2 Free List pointers.) For T4,
	 * there was only a single field to control this.  For T5 there's the
	 * original field which now only applies to Unpacked Mode Free List
	 * buffers and a new field which only applies to Packed Mode Free List
	 * buffers.
2815
	 */
2816 2817 2818 2819 2820 2821
	sge_conm_ctrl = t4_read_reg(adap, SGE_CONM_CTRL);
	if (is_t4(adap->params.chip))
		egress_threshold = EGRTHRESHOLD_GET(sge_conm_ctrl);
	else
		egress_threshold = EGRTHRESHOLDPACKING_GET(sge_conm_ctrl);
	s->fl_starve_thres = 2*egress_threshold + 1;
2822

2823 2824
	setup_timer(&s->rx_timer, sge_rx_timer_cb, (unsigned long)adap);
	setup_timer(&s->tx_timer, sge_tx_timer_cb, (unsigned long)adap);
2825 2826 2827
	s->idma_1s_thresh = core_ticks_per_usec(adap) * 1000000;  /* 1 s */
	s->idma_stalled[0] = 0;
	s->idma_stalled[1] = 0;
2828
	spin_lock_init(&s->intrq_lock);
2829 2830

	return 0;
2831
}