fsl-quadspi.c 28.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/*
 * Freescale QuadSPI driver.
 *
 * Copyright (C) 2013 Freescale Semiconductor, Inc.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 */
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/errno.h>
#include <linux/platform_device.h>
#include <linux/sched.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/clk.h>
#include <linux/err.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/timer.h>
#include <linux/jiffies.h>
#include <linux/completion.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/partitions.h>
#include <linux/mtd/spi-nor.h>
29
#include <linux/mutex.h>
30
#include <linux/pm_qos.h>
31

32 33 34 35
/* Controller needs driver to swap endian */
#define QUADSPI_QUIRK_SWAP_ENDIAN	(1 << 0)
/* Controller needs 4x internal clock */
#define QUADSPI_QUIRK_4X_INT_CLK	(1 << 1)
36 37 38 39 40
/*
 * TKT253890, Controller needs driver to fill txfifo till 16 byte to
 * trigger data transfer even though extern data will not transferred.
 */
#define QUADSPI_QUIRK_TKT253890		(1 << 2)
41 42
/* Controller cannot wake up from wait mode, TKT245618 */
#define QUADSPI_QUIRK_TKT245618         (1 << 3)
43

44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
/* The registers */
#define QUADSPI_MCR			0x00
#define QUADSPI_MCR_RESERVED_SHIFT	16
#define QUADSPI_MCR_RESERVED_MASK	(0xF << QUADSPI_MCR_RESERVED_SHIFT)
#define QUADSPI_MCR_MDIS_SHIFT		14
#define QUADSPI_MCR_MDIS_MASK		(1 << QUADSPI_MCR_MDIS_SHIFT)
#define QUADSPI_MCR_CLR_TXF_SHIFT	11
#define QUADSPI_MCR_CLR_TXF_MASK	(1 << QUADSPI_MCR_CLR_TXF_SHIFT)
#define QUADSPI_MCR_CLR_RXF_SHIFT	10
#define QUADSPI_MCR_CLR_RXF_MASK	(1 << QUADSPI_MCR_CLR_RXF_SHIFT)
#define QUADSPI_MCR_DDR_EN_SHIFT	7
#define QUADSPI_MCR_DDR_EN_MASK		(1 << QUADSPI_MCR_DDR_EN_SHIFT)
#define QUADSPI_MCR_END_CFG_SHIFT	2
#define QUADSPI_MCR_END_CFG_MASK	(3 << QUADSPI_MCR_END_CFG_SHIFT)
#define QUADSPI_MCR_SWRSTHD_SHIFT	1
#define QUADSPI_MCR_SWRSTHD_MASK	(1 << QUADSPI_MCR_SWRSTHD_SHIFT)
#define QUADSPI_MCR_SWRSTSD_SHIFT	0
#define QUADSPI_MCR_SWRSTSD_MASK	(1 << QUADSPI_MCR_SWRSTSD_SHIFT)

#define QUADSPI_IPCR			0x08
#define QUADSPI_IPCR_SEQID_SHIFT	24
#define QUADSPI_IPCR_SEQID_MASK		(0xF << QUADSPI_IPCR_SEQID_SHIFT)

#define QUADSPI_BUF0CR			0x10
#define QUADSPI_BUF1CR			0x14
#define QUADSPI_BUF2CR			0x18
#define QUADSPI_BUFXCR_INVALID_MSTRID	0xe

#define QUADSPI_BUF3CR			0x1c
#define QUADSPI_BUF3CR_ALLMST_SHIFT	31
74 75 76
#define QUADSPI_BUF3CR_ALLMST_MASK	(1 << QUADSPI_BUF3CR_ALLMST_SHIFT)
#define QUADSPI_BUF3CR_ADATSZ_SHIFT		8
#define QUADSPI_BUF3CR_ADATSZ_MASK	(0xFF << QUADSPI_BUF3CR_ADATSZ_SHIFT)
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207

#define QUADSPI_BFGENCR			0x20
#define QUADSPI_BFGENCR_PAR_EN_SHIFT	16
#define QUADSPI_BFGENCR_PAR_EN_MASK	(1 << (QUADSPI_BFGENCR_PAR_EN_SHIFT))
#define QUADSPI_BFGENCR_SEQID_SHIFT	12
#define QUADSPI_BFGENCR_SEQID_MASK	(0xF << QUADSPI_BFGENCR_SEQID_SHIFT)

#define QUADSPI_BUF0IND			0x30
#define QUADSPI_BUF1IND			0x34
#define QUADSPI_BUF2IND			0x38
#define QUADSPI_SFAR			0x100

#define QUADSPI_SMPR			0x108
#define QUADSPI_SMPR_DDRSMP_SHIFT	16
#define QUADSPI_SMPR_DDRSMP_MASK	(7 << QUADSPI_SMPR_DDRSMP_SHIFT)
#define QUADSPI_SMPR_FSDLY_SHIFT	6
#define QUADSPI_SMPR_FSDLY_MASK		(1 << QUADSPI_SMPR_FSDLY_SHIFT)
#define QUADSPI_SMPR_FSPHS_SHIFT	5
#define QUADSPI_SMPR_FSPHS_MASK		(1 << QUADSPI_SMPR_FSPHS_SHIFT)
#define QUADSPI_SMPR_HSENA_SHIFT	0
#define QUADSPI_SMPR_HSENA_MASK		(1 << QUADSPI_SMPR_HSENA_SHIFT)

#define QUADSPI_RBSR			0x10c
#define QUADSPI_RBSR_RDBFL_SHIFT	8
#define QUADSPI_RBSR_RDBFL_MASK		(0x3F << QUADSPI_RBSR_RDBFL_SHIFT)

#define QUADSPI_RBCT			0x110
#define QUADSPI_RBCT_WMRK_MASK		0x1F
#define QUADSPI_RBCT_RXBRD_SHIFT	8
#define QUADSPI_RBCT_RXBRD_USEIPS	(0x1 << QUADSPI_RBCT_RXBRD_SHIFT)

#define QUADSPI_TBSR			0x150
#define QUADSPI_TBDR			0x154
#define QUADSPI_SR			0x15c
#define QUADSPI_SR_IP_ACC_SHIFT		1
#define QUADSPI_SR_IP_ACC_MASK		(0x1 << QUADSPI_SR_IP_ACC_SHIFT)
#define QUADSPI_SR_AHB_ACC_SHIFT	2
#define QUADSPI_SR_AHB_ACC_MASK		(0x1 << QUADSPI_SR_AHB_ACC_SHIFT)

#define QUADSPI_FR			0x160
#define QUADSPI_FR_TFF_MASK		0x1

#define QUADSPI_SFA1AD			0x180
#define QUADSPI_SFA2AD			0x184
#define QUADSPI_SFB1AD			0x188
#define QUADSPI_SFB2AD			0x18c
#define QUADSPI_RBDR			0x200

#define QUADSPI_LUTKEY			0x300
#define QUADSPI_LUTKEY_VALUE		0x5AF05AF0

#define QUADSPI_LCKCR			0x304
#define QUADSPI_LCKER_LOCK		0x1
#define QUADSPI_LCKER_UNLOCK		0x2

#define QUADSPI_RSER			0x164
#define QUADSPI_RSER_TFIE		(0x1 << 0)

#define QUADSPI_LUT_BASE		0x310

/*
 * The definition of the LUT register shows below:
 *
 *  ---------------------------------------------------
 *  | INSTR1 | PAD1 | OPRND1 | INSTR0 | PAD0 | OPRND0 |
 *  ---------------------------------------------------
 */
#define OPRND0_SHIFT		0
#define PAD0_SHIFT		8
#define INSTR0_SHIFT		10
#define OPRND1_SHIFT		16

/* Instruction set for the LUT register. */
#define LUT_STOP		0
#define LUT_CMD			1
#define LUT_ADDR		2
#define LUT_DUMMY		3
#define LUT_MODE		4
#define LUT_MODE2		5
#define LUT_MODE4		6
#define LUT_READ		7
#define LUT_WRITE		8
#define LUT_JMP_ON_CS		9
#define LUT_ADDR_DDR		10
#define LUT_MODE_DDR		11
#define LUT_MODE2_DDR		12
#define LUT_MODE4_DDR		13
#define LUT_READ_DDR		14
#define LUT_WRITE_DDR		15
#define LUT_DATA_LEARN		16

/*
 * The PAD definitions for LUT register.
 *
 * The pad stands for the lines number of IO[0:3].
 * For example, the Quad read need four IO lines, so you should
 * set LUT_PAD4 which means we use four IO lines.
 */
#define LUT_PAD1		0
#define LUT_PAD2		1
#define LUT_PAD4		2

/* Oprands for the LUT register. */
#define ADDR24BIT		0x18
#define ADDR32BIT		0x20

/* Macros for constructing the LUT register. */
#define LUT0(ins, pad, opr)						\
		(((opr) << OPRND0_SHIFT) | ((LUT_##pad) << PAD0_SHIFT) | \
		((LUT_##ins) << INSTR0_SHIFT))

#define LUT1(ins, pad, opr)	(LUT0(ins, pad, opr) << OPRND1_SHIFT)

/* other macros for LUT register. */
#define QUADSPI_LUT(x)          (QUADSPI_LUT_BASE + (x) * 4)
#define QUADSPI_LUT_NUM		64

/* SEQID -- we can have 16 seqids at most. */
#define SEQID_QUAD_READ		0
#define SEQID_WREN		1
#define SEQID_WRDI		2
#define SEQID_RDSR		3
#define SEQID_SE		4
#define SEQID_CHIP_ERASE	5
#define SEQID_PP		6
#define SEQID_RDID		7
#define SEQID_WRSR		8
#define SEQID_RDCR		9
#define SEQID_EN4B		10
#define SEQID_BRWR		11

208 209
#define QUADSPI_MIN_IOMAP SZ_4M

210 211 212
enum fsl_qspi_devtype {
	FSL_QUADSPI_VYBRID,
	FSL_QUADSPI_IMX6SX,
213
	FSL_QUADSPI_IMX7D,
214
	FSL_QUADSPI_IMX6UL,
215 216 217 218 219 220
};

struct fsl_qspi_devtype_data {
	enum fsl_qspi_devtype devtype;
	int rxfifo;
	int txfifo;
221
	int ahb_buf_size;
222
	int driver_data;
223 224 225 226 227
};

static struct fsl_qspi_devtype_data vybrid_data = {
	.devtype = FSL_QUADSPI_VYBRID,
	.rxfifo = 128,
228
	.txfifo = 64,
229 230
	.ahb_buf_size = 1024,
	.driver_data = QUADSPI_QUIRK_SWAP_ENDIAN,
231 232 233 234 235
};

static struct fsl_qspi_devtype_data imx6sx_data = {
	.devtype = FSL_QUADSPI_IMX6SX,
	.rxfifo = 128,
236
	.txfifo = 512,
237
	.ahb_buf_size = 1024,
238 239
	.driver_data = QUADSPI_QUIRK_4X_INT_CLK
		       | QUADSPI_QUIRK_TKT245618,
240 241
};

242 243 244 245 246 247 248 249 250
static struct fsl_qspi_devtype_data imx7d_data = {
	.devtype = FSL_QUADSPI_IMX7D,
	.rxfifo = 512,
	.txfifo = 512,
	.ahb_buf_size = 1024,
	.driver_data = QUADSPI_QUIRK_TKT253890
		       | QUADSPI_QUIRK_4X_INT_CLK,
};

251 252 253 254 255 256 257 258 259
static struct fsl_qspi_devtype_data imx6ul_data = {
	.devtype = FSL_QUADSPI_IMX6UL,
	.rxfifo = 128,
	.txfifo = 512,
	.ahb_buf_size = 1024,
	.driver_data = QUADSPI_QUIRK_TKT253890
		       | QUADSPI_QUIRK_4X_INT_CLK,
};

260 261 262 263
#define FSL_QSPI_MAX_CHIP	4
struct fsl_qspi {
	struct spi_nor nor[FSL_QSPI_MAX_CHIP];
	void __iomem *iobase;
264
	void __iomem *ahb_addr;
265
	u32 memmap_phy;
266 267
	u32 memmap_offs;
	u32 memmap_len;
268 269 270 271 272 273 274 275
	struct clk *clk, *clk_en;
	struct device *dev;
	struct completion c;
	struct fsl_qspi_devtype_data *devtype_data;
	u32 nor_size;
	u32 nor_num;
	u32 clk_rate;
	unsigned int chip_base_addr; /* We may support two chips. */
276
	bool has_second_chip;
277
	struct mutex lock;
278
	struct pm_qos_request pm_qos_req;
279 280
};

281
static inline int needs_swap_endian(struct fsl_qspi *q)
282
{
283
	return q->devtype_data->driver_data & QUADSPI_QUIRK_SWAP_ENDIAN;
284 285
}

286
static inline int needs_4x_clock(struct fsl_qspi *q)
287
{
288
	return q->devtype_data->driver_data & QUADSPI_QUIRK_4X_INT_CLK;
289 290
}

291 292 293 294 295
static inline int needs_fill_txfifo(struct fsl_qspi *q)
{
	return q->devtype_data->driver_data & QUADSPI_QUIRK_TKT253890;
}

296 297 298 299 300
static inline int needs_wakeup_wait_mode(struct fsl_qspi *q)
{
	return q->devtype_data->driver_data & QUADSPI_QUIRK_TKT245618;
}

301 302 303 304 305 306
/*
 * An IC bug makes us to re-arrange the 32-bit data.
 * The following chips, such as IMX6SLX, have fixed this bug.
 */
static inline u32 fsl_qspi_endian_xchg(struct fsl_qspi *q, u32 a)
{
307
	return needs_swap_endian(q) ? __swab32(a) : a;
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
}

static inline void fsl_qspi_unlock_lut(struct fsl_qspi *q)
{
	writel(QUADSPI_LUTKEY_VALUE, q->iobase + QUADSPI_LUTKEY);
	writel(QUADSPI_LCKER_UNLOCK, q->iobase + QUADSPI_LCKCR);
}

static inline void fsl_qspi_lock_lut(struct fsl_qspi *q)
{
	writel(QUADSPI_LUTKEY_VALUE, q->iobase + QUADSPI_LUTKEY);
	writel(QUADSPI_LCKER_LOCK, q->iobase + QUADSPI_LCKCR);
}

static irqreturn_t fsl_qspi_irq_handler(int irq, void *dev_id)
{
	struct fsl_qspi *q = dev_id;
	u32 reg;

	/* clear interrupt */
	reg = readl(q->iobase + QUADSPI_FR);
	writel(reg, q->iobase + QUADSPI_FR);

	if (reg & QUADSPI_FR_TFF_MASK)
		complete(&q->c);

	dev_dbg(q->dev, "QUADSPI_FR : 0x%.8x:0x%.8x\n", q->chip_base_addr, reg);
	return IRQ_HANDLED;
}

static void fsl_qspi_init_lut(struct fsl_qspi *q)
{
340
	void __iomem *base = q->iobase;
341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
	int rxfifo = q->devtype_data->rxfifo;
	u32 lut_base;
	u8 cmd, addrlen, dummy;
	int i;

	fsl_qspi_unlock_lut(q);

	/* Clear all the LUT table */
	for (i = 0; i < QUADSPI_LUT_NUM; i++)
		writel(0, base + QUADSPI_LUT_BASE + i * 4);

	/* Quad Read */
	lut_base = SEQID_QUAD_READ * 4;

	if (q->nor_size <= SZ_16M) {
356
		cmd = SPINOR_OP_READ_1_1_4;
357 358 359 360
		addrlen = ADDR24BIT;
		dummy = 8;
	} else {
		/* use the 4-byte address */
361
		cmd = SPINOR_OP_READ_1_1_4;
362 363 364 365 366 367 368 369 370 371 372
		addrlen = ADDR32BIT;
		dummy = 8;
	}

	writel(LUT0(CMD, PAD1, cmd) | LUT1(ADDR, PAD1, addrlen),
			base + QUADSPI_LUT(lut_base));
	writel(LUT0(DUMMY, PAD1, dummy) | LUT1(READ, PAD4, rxfifo),
			base + QUADSPI_LUT(lut_base + 1));

	/* Write enable */
	lut_base = SEQID_WREN * 4;
373
	writel(LUT0(CMD, PAD1, SPINOR_OP_WREN), base + QUADSPI_LUT(lut_base));
374 375 376 377 378

	/* Page Program */
	lut_base = SEQID_PP * 4;

	if (q->nor_size <= SZ_16M) {
379
		cmd = SPINOR_OP_PP;
380 381 382
		addrlen = ADDR24BIT;
	} else {
		/* use the 4-byte address */
383
		cmd = SPINOR_OP_PP;
384 385 386 387 388 389 390 391 392
		addrlen = ADDR32BIT;
	}

	writel(LUT0(CMD, PAD1, cmd) | LUT1(ADDR, PAD1, addrlen),
			base + QUADSPI_LUT(lut_base));
	writel(LUT0(WRITE, PAD1, 0), base + QUADSPI_LUT(lut_base + 1));

	/* Read Status */
	lut_base = SEQID_RDSR * 4;
393
	writel(LUT0(CMD, PAD1, SPINOR_OP_RDSR) | LUT1(READ, PAD1, 0x1),
394 395 396 397 398
			base + QUADSPI_LUT(lut_base));

	/* Erase a sector */
	lut_base = SEQID_SE * 4;

399 400
	cmd = q->nor[0].erase_opcode;
	addrlen = q->nor_size <= SZ_16M ? ADDR24BIT : ADDR32BIT;
401 402 403 404 405 406

	writel(LUT0(CMD, PAD1, cmd) | LUT1(ADDR, PAD1, addrlen),
			base + QUADSPI_LUT(lut_base));

	/* Erase the whole chip */
	lut_base = SEQID_CHIP_ERASE * 4;
407
	writel(LUT0(CMD, PAD1, SPINOR_OP_CHIP_ERASE),
408 409 410 411
			base + QUADSPI_LUT(lut_base));

	/* READ ID */
	lut_base = SEQID_RDID * 4;
412
	writel(LUT0(CMD, PAD1, SPINOR_OP_RDID) | LUT1(READ, PAD1, 0x8),
413 414 415 416
			base + QUADSPI_LUT(lut_base));

	/* Write Register */
	lut_base = SEQID_WRSR * 4;
417
	writel(LUT0(CMD, PAD1, SPINOR_OP_WRSR) | LUT1(WRITE, PAD1, 0x2),
418 419 420 421
			base + QUADSPI_LUT(lut_base));

	/* Read Configuration Register */
	lut_base = SEQID_RDCR * 4;
422
	writel(LUT0(CMD, PAD1, SPINOR_OP_RDCR) | LUT1(READ, PAD1, 0x1),
423 424 425 426
			base + QUADSPI_LUT(lut_base));

	/* Write disable */
	lut_base = SEQID_WRDI * 4;
427
	writel(LUT0(CMD, PAD1, SPINOR_OP_WRDI), base + QUADSPI_LUT(lut_base));
428 429 430

	/* Enter 4 Byte Mode (Micron) */
	lut_base = SEQID_EN4B * 4;
431
	writel(LUT0(CMD, PAD1, SPINOR_OP_EN4B), base + QUADSPI_LUT(lut_base));
432 433 434

	/* Enter 4 Byte Mode (Spansion) */
	lut_base = SEQID_BRWR * 4;
435
	writel(LUT0(CMD, PAD1, SPINOR_OP_BRWR), base + QUADSPI_LUT(lut_base));
436 437 438 439 440 441 442 443

	fsl_qspi_lock_lut(q);
}

/* Get the SEQID for the command */
static int fsl_qspi_get_seqid(struct fsl_qspi *q, u8 cmd)
{
	switch (cmd) {
444
	case SPINOR_OP_READ_1_1_4:
445
		return SEQID_QUAD_READ;
446
	case SPINOR_OP_WREN:
447
		return SEQID_WREN;
448
	case SPINOR_OP_WRDI:
449
		return SEQID_WRDI;
450
	case SPINOR_OP_RDSR:
451
		return SEQID_RDSR;
452
	case SPINOR_OP_SE:
453
		return SEQID_SE;
454
	case SPINOR_OP_CHIP_ERASE:
455
		return SEQID_CHIP_ERASE;
456
	case SPINOR_OP_PP:
457
		return SEQID_PP;
458
	case SPINOR_OP_RDID:
459
		return SEQID_RDID;
460
	case SPINOR_OP_WRSR:
461
		return SEQID_WRSR;
462
	case SPINOR_OP_RDCR:
463
		return SEQID_RDCR;
464
	case SPINOR_OP_EN4B:
465
		return SEQID_EN4B;
466
	case SPINOR_OP_BRWR:
467 468
		return SEQID_BRWR;
	default:
469 470
		if (cmd == q->nor[0].erase_opcode)
			return SEQID_SE;
471 472 473 474 475 476 477 478 479
		dev_err(q->dev, "Unsupported cmd 0x%.2x\n", cmd);
		break;
	}
	return -EINVAL;
}

static int
fsl_qspi_runcmd(struct fsl_qspi *q, u8 cmd, unsigned int addr, int len)
{
480
	void __iomem *base = q->iobase;
481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
	int seqid;
	u32 reg, reg2;
	int err;

	init_completion(&q->c);
	dev_dbg(q->dev, "to 0x%.8x:0x%.8x, len:%d, cmd:%.2x\n",
			q->chip_base_addr, addr, len, cmd);

	/* save the reg */
	reg = readl(base + QUADSPI_MCR);

	writel(q->memmap_phy + q->chip_base_addr + addr, base + QUADSPI_SFAR);
	writel(QUADSPI_RBCT_WMRK_MASK | QUADSPI_RBCT_RXBRD_USEIPS,
			base + QUADSPI_RBCT);
	writel(reg | QUADSPI_MCR_CLR_RXF_MASK, base + QUADSPI_MCR);

	do {
		reg2 = readl(base + QUADSPI_SR);
		if (reg2 & (QUADSPI_SR_IP_ACC_MASK | QUADSPI_SR_AHB_ACC_MASK)) {
			udelay(1);
			dev_dbg(q->dev, "The controller is busy, 0x%x\n", reg2);
			continue;
		}
		break;
	} while (1);

	/* trigger the LUT now */
	seqid = fsl_qspi_get_seqid(q, cmd);
	writel((seqid << QUADSPI_IPCR_SEQID_SHIFT) | len, base + QUADSPI_IPCR);

	/* Wait for the interrupt. */
512
	if (!wait_for_completion_timeout(&q->c, msecs_to_jiffies(1000))) {
513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588
		dev_err(q->dev,
			"cmd 0x%.2x timeout, addr@%.8x, FR:0x%.8x, SR:0x%.8x\n",
			cmd, addr, readl(base + QUADSPI_FR),
			readl(base + QUADSPI_SR));
		err = -ETIMEDOUT;
	} else {
		err = 0;
	}

	/* restore the MCR */
	writel(reg, base + QUADSPI_MCR);

	return err;
}

/* Read out the data from the QUADSPI_RBDR buffer registers. */
static void fsl_qspi_read_data(struct fsl_qspi *q, int len, u8 *rxbuf)
{
	u32 tmp;
	int i = 0;

	while (len > 0) {
		tmp = readl(q->iobase + QUADSPI_RBDR + i * 4);
		tmp = fsl_qspi_endian_xchg(q, tmp);
		dev_dbg(q->dev, "chip addr:0x%.8x, rcv:0x%.8x\n",
				q->chip_base_addr, tmp);

		if (len >= 4) {
			*((u32 *)rxbuf) = tmp;
			rxbuf += 4;
		} else {
			memcpy(rxbuf, &tmp, len);
			break;
		}

		len -= 4;
		i++;
	}
}

/*
 * If we have changed the content of the flash by writing or erasing,
 * we need to invalidate the AHB buffer. If we do not do so, we may read out
 * the wrong data. The spec tells us reset the AHB domain and Serial Flash
 * domain at the same time.
 */
static inline void fsl_qspi_invalid(struct fsl_qspi *q)
{
	u32 reg;

	reg = readl(q->iobase + QUADSPI_MCR);
	reg |= QUADSPI_MCR_SWRSTHD_MASK | QUADSPI_MCR_SWRSTSD_MASK;
	writel(reg, q->iobase + QUADSPI_MCR);

	/*
	 * The minimum delay : 1 AHB + 2 SFCK clocks.
	 * Delay 1 us is enough.
	 */
	udelay(1);

	reg &= ~(QUADSPI_MCR_SWRSTHD_MASK | QUADSPI_MCR_SWRSTSD_MASK);
	writel(reg, q->iobase + QUADSPI_MCR);
}

static int fsl_qspi_nor_write(struct fsl_qspi *q, struct spi_nor *nor,
				u8 opcode, unsigned int to, u32 *txbuf,
				unsigned count, size_t *retlen)
{
	int ret, i, j;
	u32 tmp;

	dev_dbg(q->dev, "to 0x%.8x:0x%.8x, len : %d\n",
		q->chip_base_addr, to, count);

	/* clear the TX FIFO. */
	tmp = readl(q->iobase + QUADSPI_MCR);
589
	writel(tmp | QUADSPI_MCR_CLR_TXF_MASK, q->iobase + QUADSPI_MCR);
590 591 592 593 594 595 596 597

	/* fill the TX data to the FIFO */
	for (j = 0, i = ((count + 3) / 4); j < i; j++) {
		tmp = fsl_qspi_endian_xchg(q, *txbuf);
		writel(tmp, q->iobase + QUADSPI_TBDR);
		txbuf++;
	}

598 599 600 601 602
	/* fill the TXFIFO upto 16 bytes for i.MX7d */
	if (needs_fill_txfifo(q))
		for (; i < 4; i++)
			writel(tmp, q->iobase + QUADSPI_TBDR);

603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644
	/* Trigger it */
	ret = fsl_qspi_runcmd(q, opcode, to, count);

	if (ret == 0 && retlen)
		*retlen += count;

	return ret;
}

static void fsl_qspi_set_map_addr(struct fsl_qspi *q)
{
	int nor_size = q->nor_size;
	void __iomem *base = q->iobase;

	writel(nor_size + q->memmap_phy, base + QUADSPI_SFA1AD);
	writel(nor_size * 2 + q->memmap_phy, base + QUADSPI_SFA2AD);
	writel(nor_size * 3 + q->memmap_phy, base + QUADSPI_SFB1AD);
	writel(nor_size * 4 + q->memmap_phy, base + QUADSPI_SFB2AD);
}

/*
 * There are two different ways to read out the data from the flash:
 *  the "IP Command Read" and the "AHB Command Read".
 *
 * The IC guy suggests we use the "AHB Command Read" which is faster
 * then the "IP Command Read". (What's more is that there is a bug in
 * the "IP Command Read" in the Vybrid.)
 *
 * After we set up the registers for the "AHB Command Read", we can use
 * the memcpy to read the data directly. A "missed" access to the buffer
 * causes the controller to clear the buffer, and use the sequence pointed
 * by the QUADSPI_BFGENCR[SEQID] to initiate a read from the flash.
 */
static void fsl_qspi_init_abh_read(struct fsl_qspi *q)
{
	void __iomem *base = q->iobase;
	int seqid;

	/* AHB configuration for access buffer 0/1/2 .*/
	writel(QUADSPI_BUFXCR_INVALID_MSTRID, base + QUADSPI_BUF0CR);
	writel(QUADSPI_BUFXCR_INVALID_MSTRID, base + QUADSPI_BUF1CR);
	writel(QUADSPI_BUFXCR_INVALID_MSTRID, base + QUADSPI_BUF2CR);
645 646 647 648 649 650
	/*
	 * Set ADATSZ with the maximum AHB buffer size to improve the
	 * read performance.
	 */
	writel(QUADSPI_BUF3CR_ALLMST_MASK | ((q->devtype_data->ahb_buf_size / 8)
			<< QUADSPI_BUF3CR_ADATSZ_SHIFT), base + QUADSPI_BUF3CR);
651 652 653 654 655 656 657 658 659 660 661 662

	/* We only use the buffer3 */
	writel(0, base + QUADSPI_BUF0IND);
	writel(0, base + QUADSPI_BUF1IND);
	writel(0, base + QUADSPI_BUF2IND);

	/* Set the default lut sequence for AHB Read. */
	seqid = fsl_qspi_get_seqid(q, q->nor[0].read_opcode);
	writel(seqid << QUADSPI_BFGENCR_SEQID_SHIFT,
		q->iobase + QUADSPI_BFGENCR);
}

663 664 665 666 667 668 669 670 671 672 673 674 675 676 677
/* This function was used to prepare and enable QSPI clock */
static int fsl_qspi_clk_prep_enable(struct fsl_qspi *q)
{
	int ret;

	ret = clk_prepare_enable(q->clk_en);
	if (ret)
		return ret;

	ret = clk_prepare_enable(q->clk);
	if (ret) {
		clk_disable_unprepare(q->clk_en);
		return ret;
	}

678 679 680
	if (needs_wakeup_wait_mode(q))
		pm_qos_add_request(&q->pm_qos_req, PM_QOS_CPU_DMA_LATENCY, 0);

681 682 683 684 685 686
	return 0;
}

/* This function was used to disable and unprepare QSPI clock */
static void fsl_qspi_clk_disable_unprep(struct fsl_qspi *q)
{
687 688 689
	if (needs_wakeup_wait_mode(q))
		pm_qos_remove_request(&q->pm_qos_req);

690 691 692 693 694
	clk_disable_unprepare(q->clk);
	clk_disable_unprepare(q->clk_en);

}

695 696 697 698 699 700 701
/* We use this function to do some basic init for spi_nor_scan(). */
static int fsl_qspi_nor_setup(struct fsl_qspi *q)
{
	void __iomem *base = q->iobase;
	u32 reg;
	int ret;

702 703 704 705
	/* disable and unprepare clock to avoid glitch pass to controller */
	fsl_qspi_clk_disable_unprep(q);

	/* the default frequency, we will change it in the future. */
706 707 708 709
	ret = clk_set_rate(q->clk, 66000000);
	if (ret)
		return ret;

710 711 712 713
	ret = fsl_qspi_clk_prep_enable(q);
	if (ret)
		return ret;

714 715 716 717 718
	/* Reset the module */
	writel(QUADSPI_MCR_SWRSTSD_MASK | QUADSPI_MCR_SWRSTHD_MASK,
		base + QUADSPI_MCR);
	udelay(1);

719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735
	/* Init the LUT table. */
	fsl_qspi_init_lut(q);

	/* Disable the module */
	writel(QUADSPI_MCR_MDIS_MASK | QUADSPI_MCR_RESERVED_MASK,
			base + QUADSPI_MCR);

	reg = readl(base + QUADSPI_SMPR);
	writel(reg & ~(QUADSPI_SMPR_FSDLY_MASK
			| QUADSPI_SMPR_FSPHS_MASK
			| QUADSPI_SMPR_HSENA_MASK
			| QUADSPI_SMPR_DDRSMP_MASK), base + QUADSPI_SMPR);

	/* Enable the module */
	writel(QUADSPI_MCR_RESERVED_MASK | QUADSPI_MCR_END_CFG_MASK,
			base + QUADSPI_MCR);

736 737 738
	/* clear all interrupt status */
	writel(0xffffffff, q->iobase + QUADSPI_FR);

739 740 741 742 743 744 745 746 747 748 749
	/* enable the interrupt */
	writel(QUADSPI_RSER_TFIE, q->iobase + QUADSPI_RSER);

	return 0;
}

static int fsl_qspi_nor_setup_last(struct fsl_qspi *q)
{
	unsigned long rate = q->clk_rate;
	int ret;

750
	if (needs_4x_clock(q))
751 752
		rate *= 4;

753 754 755
	/* disable and unprepare clock to avoid glitch pass to controller */
	fsl_qspi_clk_disable_unprep(q);

756 757 758 759
	ret = clk_set_rate(q->clk, rate);
	if (ret)
		return ret;

760 761 762 763
	ret = fsl_qspi_clk_prep_enable(q);
	if (ret)
		return ret;

764 765 766 767 768 769 770 771 772
	/* Init the LUT table again. */
	fsl_qspi_init_lut(q);

	/* Init for AHB read */
	fsl_qspi_init_abh_read(q);

	return 0;
}

773
static const struct of_device_id fsl_qspi_dt_ids[] = {
774 775
	{ .compatible = "fsl,vf610-qspi", .data = (void *)&vybrid_data, },
	{ .compatible = "fsl,imx6sx-qspi", .data = (void *)&imx6sx_data, },
776
	{ .compatible = "fsl,imx7d-qspi", .data = (void *)&imx7d_data, },
777
	{ .compatible = "fsl,imx6ul-qspi", .data = (void *)&imx6ul_data, },
778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810
	{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, fsl_qspi_dt_ids);

static void fsl_qspi_set_base_addr(struct fsl_qspi *q, struct spi_nor *nor)
{
	q->chip_base_addr = q->nor_size * (nor - q->nor);
}

static int fsl_qspi_read_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len)
{
	int ret;
	struct fsl_qspi *q = nor->priv;

	ret = fsl_qspi_runcmd(q, opcode, 0, len);
	if (ret)
		return ret;

	fsl_qspi_read_data(q, len, buf);
	return 0;
}

static int fsl_qspi_write_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len,
			int write_enable)
{
	struct fsl_qspi *q = nor->priv;
	int ret;

	if (!buf) {
		ret = fsl_qspi_runcmd(q, opcode, 0, 1);
		if (ret)
			return ret;

811
		if (opcode == SPINOR_OP_CHIP_ERASE)
812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842
			fsl_qspi_invalid(q);

	} else if (len > 0) {
		ret = fsl_qspi_nor_write(q, nor, opcode, 0,
					(u32 *)buf, len, NULL);
	} else {
		dev_err(q->dev, "invalid cmd %d\n", opcode);
		ret = -EINVAL;
	}

	return ret;
}

static void fsl_qspi_write(struct spi_nor *nor, loff_t to,
		size_t len, size_t *retlen, const u_char *buf)
{
	struct fsl_qspi *q = nor->priv;

	fsl_qspi_nor_write(q, nor, nor->program_opcode, to,
				(u32 *)buf, len, retlen);

	/* invalid the data in the AHB buffer. */
	fsl_qspi_invalid(q);
}

static int fsl_qspi_read(struct spi_nor *nor, loff_t from,
		size_t len, size_t *retlen, u_char *buf)
{
	struct fsl_qspi *q = nor->priv;
	u8 cmd = nor->read_opcode;

843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874
	/* if necessary,ioremap buffer before AHB read, */
	if (!q->ahb_addr) {
		q->memmap_offs = q->chip_base_addr + from;
		q->memmap_len = len > QUADSPI_MIN_IOMAP ? len : QUADSPI_MIN_IOMAP;

		q->ahb_addr = ioremap_nocache(
				q->memmap_phy + q->memmap_offs,
				q->memmap_len);
		if (!q->ahb_addr) {
			dev_err(q->dev, "ioremap failed\n");
			return -ENOMEM;
		}
	/* ioremap if the data requested is out of range */
	} else if (q->chip_base_addr + from < q->memmap_offs
			|| q->chip_base_addr + from + len >
			q->memmap_offs + q->memmap_len) {
		iounmap(q->ahb_addr);

		q->memmap_offs = q->chip_base_addr + from;
		q->memmap_len = len > QUADSPI_MIN_IOMAP ? len : QUADSPI_MIN_IOMAP;
		q->ahb_addr = ioremap_nocache(
				q->memmap_phy + q->memmap_offs,
				q->memmap_len);
		if (!q->ahb_addr) {
			dev_err(q->dev, "ioremap failed\n");
			return -ENOMEM;
		}
	}

	dev_dbg(q->dev, "cmd [%x],read from 0x%p, len:%d\n",
		cmd, q->ahb_addr + q->chip_base_addr + from - q->memmap_offs,
		len);
875 876

	/* Read out the data directly from the AHB buffer.*/
877 878
	memcpy(buf, q->ahb_addr + q->chip_base_addr + from - q->memmap_offs,
		len);
879 880 881 882 883 884 885 886 887 888 889

	*retlen += len;
	return 0;
}

static int fsl_qspi_erase(struct spi_nor *nor, loff_t offs)
{
	struct fsl_qspi *q = nor->priv;
	int ret;

	dev_dbg(nor->dev, "%dKiB at 0x%08x:0x%08x\n",
890
		nor->mtd.erasesize / 1024, q->chip_base_addr, (u32)offs);
891 892 893 894 895 896 897 898 899 900 901 902 903 904

	ret = fsl_qspi_runcmd(q, nor->erase_opcode, offs, 0);
	if (ret)
		return ret;

	fsl_qspi_invalid(q);
	return 0;
}

static int fsl_qspi_prep(struct spi_nor *nor, enum spi_nor_ops ops)
{
	struct fsl_qspi *q = nor->priv;
	int ret;

905
	mutex_lock(&q->lock);
906

907
	ret = fsl_qspi_clk_prep_enable(q);
908
	if (ret)
909
		goto err_mutex;
910 911 912

	fsl_qspi_set_base_addr(q, nor);
	return 0;
913 914 915 916

err_mutex:
	mutex_unlock(&q->lock);
	return ret;
917 918 919 920 921 922
}

static void fsl_qspi_unprep(struct spi_nor *nor, enum spi_nor_ops ops)
{
	struct fsl_qspi *q = nor->priv;

923
	fsl_qspi_clk_disable_unprep(q);
924
	mutex_unlock(&q->lock);
925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947
}

static int fsl_qspi_probe(struct platform_device *pdev)
{
	struct device_node *np = pdev->dev.of_node;
	struct mtd_part_parser_data ppdata;
	struct device *dev = &pdev->dev;
	struct fsl_qspi *q;
	struct resource *res;
	struct spi_nor *nor;
	struct mtd_info *mtd;
	int ret, i = 0;
	const struct of_device_id *of_id =
			of_match_device(fsl_qspi_dt_ids, &pdev->dev);

	q = devm_kzalloc(dev, sizeof(*q), GFP_KERNEL);
	if (!q)
		return -ENOMEM;

	q->nor_num = of_get_child_count(dev->of_node);
	if (!q->nor_num || q->nor_num > FSL_QSPI_MAX_CHIP)
		return -ENODEV;

948 949 950 951
	q->dev = dev;
	q->devtype_data = (struct fsl_qspi_devtype_data *)of_id->data;
	platform_set_drvdata(pdev, q);

952 953 954
	/* find the resources */
	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "QuadSPI");
	q->iobase = devm_ioremap_resource(dev, res);
955 956
	if (IS_ERR(q->iobase))
		return PTR_ERR(q->iobase);
957 958 959

	res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
					"QuadSPI-memory");
960 961 962 963 964
	if (!devm_request_mem_region(dev, res->start, resource_size(res),
				     res->name)) {
		dev_err(dev, "can't request region for resource %pR\n", res);
		return -EBUSY;
	}
965

966 967 968 969
	q->memmap_phy = res->start;

	/* find the clocks */
	q->clk_en = devm_clk_get(dev, "qspi_en");
970 971
	if (IS_ERR(q->clk_en))
		return PTR_ERR(q->clk_en);
972 973

	q->clk = devm_clk_get(dev, "qspi");
974 975
	if (IS_ERR(q->clk))
		return PTR_ERR(q->clk);
976

977
	ret = fsl_qspi_clk_prep_enable(q);
978
	if (ret) {
979
		dev_err(dev, "can not enable the clock\n");
980
		goto clk_failed;
981 982 983 984 985
	}

	/* find the irq */
	ret = platform_get_irq(pdev, 0);
	if (ret < 0) {
986
		dev_err(dev, "failed to get the irq: %d\n", ret);
987 988 989 990 991 992
		goto irq_failed;
	}

	ret = devm_request_irq(dev, ret,
			fsl_qspi_irq_handler, 0, pdev->name, q);
	if (ret) {
993
		dev_err(dev, "failed to request irq: %d\n", ret);
994 995 996 997 998 999 1000 1001
		goto irq_failed;
	}

	ret = fsl_qspi_nor_setup(q);
	if (ret)
		goto irq_failed;

	if (of_get_property(np, "fsl,qspi-has-second-chip", NULL))
1002
		q->has_second_chip = true;
1003

1004 1005
	mutex_init(&q->lock);

1006 1007 1008
	/* iterate the subnodes. */
	for_each_available_child_of_node(dev->of_node, np) {
		/* skip the holes */
1009
		if (!q->has_second_chip)
1010 1011 1012
			i *= 2;

		nor = &q->nor[i];
1013
		mtd = &nor->mtd;
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030

		nor->dev = dev;
		nor->priv = q;

		/* fill the hooks */
		nor->read_reg = fsl_qspi_read_reg;
		nor->write_reg = fsl_qspi_write_reg;
		nor->read = fsl_qspi_read;
		nor->write = fsl_qspi_write;
		nor->erase = fsl_qspi_erase;

		nor->prepare = fsl_qspi_prep;
		nor->unprepare = fsl_qspi_unprep;

		ret = of_property_read_u32(np, "spi-max-frequency",
				&q->clk_rate);
		if (ret < 0)
1031
			goto mutex_failed;
1032 1033 1034 1035

		/* set the chip address for READID */
		fsl_qspi_set_base_addr(q, nor);

1036
		ret = spi_nor_scan(nor, NULL, SPI_NOR_QUAD);
1037
		if (ret)
1038
			goto mutex_failed;
1039 1040 1041 1042

		ppdata.of_node = np;
		ret = mtd_device_parse_register(mtd, NULL, &ppdata, NULL, 0);
		if (ret)
1043
			goto mutex_failed;
1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072

		/* Set the correct NOR size now. */
		if (q->nor_size == 0) {
			q->nor_size = mtd->size;

			/* Map the SPI NOR to accessiable address */
			fsl_qspi_set_map_addr(q);
		}

		/*
		 * The TX FIFO is 64 bytes in the Vybrid, but the Page Program
		 * may writes 265 bytes per time. The write is working in the
		 * unit of the TX FIFO, not in the unit of the SPI NOR's page
		 * size.
		 *
		 * So shrink the spi_nor->page_size if it is larger then the
		 * TX FIFO.
		 */
		if (nor->page_size > q->devtype_data->txfifo)
			nor->page_size = q->devtype_data->txfifo;

		i++;
	}

	/* finish the rest init. */
	ret = fsl_qspi_nor_setup_last(q);
	if (ret)
		goto last_init_failed;

1073
	fsl_qspi_clk_disable_unprep(q);
1074 1075 1076
	return 0;

last_init_failed:
1077 1078 1079 1080
	for (i = 0; i < q->nor_num; i++) {
		/* skip the holes */
		if (!q->has_second_chip)
			i *= 2;
1081
		mtd_device_unregister(&q->nor[i].mtd);
1082
	}
1083 1084
mutex_failed:
	mutex_destroy(&q->lock);
1085
irq_failed:
1086
	fsl_qspi_clk_disable_unprep(q);
1087
clk_failed:
1088
	dev_err(dev, "Freescale QuadSPI probe failed\n");
1089 1090 1091 1092 1093 1094 1095 1096
	return ret;
}

static int fsl_qspi_remove(struct platform_device *pdev)
{
	struct fsl_qspi *q = platform_get_drvdata(pdev);
	int i;

1097 1098 1099 1100
	for (i = 0; i < q->nor_num; i++) {
		/* skip the holes */
		if (!q->has_second_chip)
			i *= 2;
1101
		mtd_device_unregister(&q->nor[i].mtd);
1102
	}
1103 1104 1105 1106 1107

	/* disable the hardware */
	writel(QUADSPI_MCR_MDIS_MASK, q->iobase + QUADSPI_MCR);
	writel(0x0, q->iobase + QUADSPI_RSER);

1108
	mutex_destroy(&q->lock);
1109 1110 1111 1112

	if (q->ahb_addr)
		iounmap(q->ahb_addr);

1113 1114 1115
	return 0;
}

1116 1117 1118 1119 1120 1121 1122
static int fsl_qspi_suspend(struct platform_device *pdev, pm_message_t state)
{
	return 0;
}

static int fsl_qspi_resume(struct platform_device *pdev)
{
1123
	int ret;
1124 1125
	struct fsl_qspi *q = platform_get_drvdata(pdev);

1126 1127 1128 1129
	ret = fsl_qspi_clk_prep_enable(q);
	if (ret)
		return ret;

1130 1131 1132 1133
	fsl_qspi_nor_setup(q);
	fsl_qspi_set_map_addr(q);
	fsl_qspi_nor_setup_last(q);

1134 1135
	fsl_qspi_clk_disable_unprep(q);

1136 1137 1138
	return 0;
}

1139 1140 1141 1142 1143 1144 1145 1146
static struct platform_driver fsl_qspi_driver = {
	.driver = {
		.name	= "fsl-quadspi",
		.bus	= &platform_bus_type,
		.of_match_table = fsl_qspi_dt_ids,
	},
	.probe          = fsl_qspi_probe,
	.remove		= fsl_qspi_remove,
1147 1148
	.suspend	= fsl_qspi_suspend,
	.resume		= fsl_qspi_resume,
1149 1150 1151 1152 1153 1154
};
module_platform_driver(fsl_qspi_driver);

MODULE_DESCRIPTION("Freescale QuadSPI Controller Driver");
MODULE_AUTHOR("Freescale Semiconductor Inc.");
MODULE_LICENSE("GPL v2");