sched_policy.c 9.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
/*
 * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 *
 * Authors:
 *    Anhua Xu
 *    Kevin Tian <kevin.tian@intel.com>
 *
 * Contributors:
 *    Min He <min.he@intel.com>
 *    Bing Niu <bing.niu@intel.com>
 *    Zhi Wang <zhi.a.wang@intel.com>
 *
 */

#include "i915_drv.h"
35
#include "gvt.h"
36 37 38

static bool vgpu_has_pending_workload(struct intel_vgpu *vgpu)
{
39 40
	enum intel_engine_id i;
	struct intel_engine_cs *engine;
41

42
	for_each_engine(engine, vgpu->gvt->dev_priv, i) {
43 44 45 46 47 48 49
		if (!list_empty(workload_q_head(vgpu, i)))
			return true;
	}

	return false;
}

50
struct vgpu_sched_data {
51
	struct list_head lru_list;
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
	struct intel_vgpu *vgpu;

	ktime_t sched_in_time;
	ktime_t sched_out_time;
	ktime_t sched_time;
	ktime_t left_ts;
	ktime_t allocated_ts;

	struct vgpu_sched_ctl sched_ctl;
};

struct gvt_sched_data {
	struct intel_gvt *gvt;
	struct hrtimer timer;
	unsigned long period;
67
	struct list_head lru_runq_head;
68 69
};

70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
static void vgpu_update_timeslice(struct intel_vgpu *pre_vgpu)
{
	ktime_t delta_ts;
	struct vgpu_sched_data *vgpu_data = pre_vgpu->sched_data;

	delta_ts = vgpu_data->sched_out_time - vgpu_data->sched_in_time;

	vgpu_data->sched_time += delta_ts;
	vgpu_data->left_ts -= delta_ts;
}

#define GVT_TS_BALANCE_PERIOD_MS 100
#define GVT_TS_BALANCE_STAGE_NUM 10

static void gvt_balance_timeslice(struct gvt_sched_data *sched_data)
{
	struct vgpu_sched_data *vgpu_data;
	struct list_head *pos;
	static uint64_t stage_check;
	int stage = stage_check++ % GVT_TS_BALANCE_STAGE_NUM;

	/* The timeslice accumulation reset at stage 0, which is
	 * allocated again without adding previous debt.
	 */
	if (stage == 0) {
		int total_weight = 0;
		ktime_t fair_timeslice;

		list_for_each(pos, &sched_data->lru_runq_head) {
			vgpu_data = container_of(pos, struct vgpu_sched_data, lru_list);
			total_weight += vgpu_data->sched_ctl.weight;
		}

		list_for_each(pos, &sched_data->lru_runq_head) {
			vgpu_data = container_of(pos, struct vgpu_sched_data, lru_list);
			fair_timeslice = ms_to_ktime(GVT_TS_BALANCE_PERIOD_MS) *
						vgpu_data->sched_ctl.weight /
						total_weight;

			vgpu_data->allocated_ts = fair_timeslice;
			vgpu_data->left_ts = vgpu_data->allocated_ts;
		}
	} else {
		list_for_each(pos, &sched_data->lru_runq_head) {
			vgpu_data = container_of(pos, struct vgpu_sched_data, lru_list);

			/* timeslice for next 100ms should add the left/debt
			 * slice of previous stages.
			 */
			vgpu_data->left_ts += vgpu_data->allocated_ts;
		}
	}
}

124 125 126
static void try_to_schedule_next_vgpu(struct intel_gvt *gvt)
{
	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
127 128
	enum intel_engine_id i;
	struct intel_engine_cs *engine;
129 130
	struct vgpu_sched_data *vgpu_data;
	ktime_t cur_time;
131 132 133 134 135 136 137 138 139 140 141 142

	/* no target to schedule */
	if (!scheduler->next_vgpu)
		return;

	/*
	 * after the flag is set, workload dispatch thread will
	 * stop dispatching workload for current vgpu
	 */
	scheduler->need_reschedule = true;

	/* still have uncompleted workload? */
143
	for_each_engine(engine, gvt->dev_priv, i) {
144
		if (scheduler->current_workload[i])
145 146 147
			return;
	}

148 149 150 151
	cur_time = ktime_get();
	if (scheduler->current_vgpu) {
		vgpu_data = scheduler->current_vgpu->sched_data;
		vgpu_data->sched_out_time = cur_time;
152
		vgpu_update_timeslice(scheduler->current_vgpu);
153 154 155 156
	}
	vgpu_data = scheduler->next_vgpu->sched_data;
	vgpu_data->sched_in_time = cur_time;

157 158 159 160 161 162 163
	/* switch current vgpu */
	scheduler->current_vgpu = scheduler->next_vgpu;
	scheduler->next_vgpu = NULL;

	scheduler->need_reschedule = false;

	/* wake up workload dispatch thread */
164
	for_each_engine(engine, gvt->dev_priv, i)
165 166 167
		wake_up(&scheduler->waitq[i]);
}

168
static struct intel_vgpu *find_busy_vgpu(struct gvt_sched_data *sched_data)
169
{
170
	struct vgpu_sched_data *vgpu_data;
171
	struct intel_vgpu *vgpu = NULL;
172 173
	struct list_head *head = &sched_data->lru_runq_head;
	struct list_head *pos;
174 175 176 177

	/* search a vgpu with pending workload */
	list_for_each(pos, head) {

178
		vgpu_data = container_of(pos, struct vgpu_sched_data, lru_list);
179 180 181
		if (!vgpu_has_pending_workload(vgpu_data->vgpu))
			continue;

182 183 184 185 186
		/* Return the vGPU only if it has time slice left */
		if (vgpu_data->left_ts > 0) {
			vgpu = vgpu_data->vgpu;
			break;
		}
187 188
	}

189 190 191 192 193 194 195 196 197 198 199 200
	return vgpu;
}

/* in nanosecond */
#define GVT_DEFAULT_TIME_SLICE 1000000

static void tbs_sched_func(struct gvt_sched_data *sched_data)
{
	struct intel_gvt *gvt = sched_data->gvt;
	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
	struct vgpu_sched_data *vgpu_data;
	struct intel_vgpu *vgpu = NULL;
201 202 203 204
	static uint64_t timer_check;

	if (!(timer_check++ % GVT_TS_BALANCE_PERIOD_MS))
		gvt_balance_timeslice(sched_data);
205 206 207 208 209 210

	/* no active vgpu or has already had a target */
	if (list_empty(&sched_data->lru_runq_head) || scheduler->next_vgpu)
		goto out;

	vgpu = find_busy_vgpu(sched_data);
211 212
	if (vgpu) {
		scheduler->next_vgpu = vgpu;
213 214 215 216 217 218

		/* Move the last used vGPU to the tail of lru_list */
		vgpu_data = vgpu->sched_data;
		list_del_init(&vgpu_data->lru_list);
		list_add_tail(&vgpu_data->lru_list,
				&sched_data->lru_runq_head);
219 220
	} else {
		scheduler->next_vgpu = gvt->idle_vgpu;
221 222
	}
out:
223
	if (scheduler->next_vgpu)
224
		try_to_schedule_next_vgpu(gvt);
225
}
226

227 228
void intel_gvt_schedule(struct intel_gvt *gvt)
{
229
	struct gvt_sched_data *sched_data = gvt->scheduler.sched_data;
230

231 232
	mutex_lock(&gvt->lock);
	tbs_sched_func(sched_data);
233 234 235
	mutex_unlock(&gvt->lock);
}

236 237
static enum hrtimer_restart tbs_timer_fn(struct hrtimer *timer_data)
{
238
	struct gvt_sched_data *data;
239

240
	data = container_of(timer_data, struct gvt_sched_data, timer);
241 242 243 244 245 246 247 248

	intel_gvt_request_service(data->gvt, INTEL_GVT_REQUEST_SCHED);

	hrtimer_add_expires_ns(&data->timer, data->period);

	return HRTIMER_RESTART;
}

249 250 251 252 253
static int tbs_sched_init(struct intel_gvt *gvt)
{
	struct intel_gvt_workload_scheduler *scheduler =
		&gvt->scheduler;

254
	struct gvt_sched_data *data;
255 256 257 258 259

	data = kzalloc(sizeof(*data), GFP_KERNEL);
	if (!data)
		return -ENOMEM;

260
	INIT_LIST_HEAD(&data->lru_runq_head);
261 262
	hrtimer_init(&data->timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
	data->timer.function = tbs_timer_fn;
263 264 265 266
	data->period = GVT_DEFAULT_TIME_SLICE;
	data->gvt = gvt;

	scheduler->sched_data = data;
267

268 269 270 271 272 273 274
	return 0;
}

static void tbs_sched_clean(struct intel_gvt *gvt)
{
	struct intel_gvt_workload_scheduler *scheduler =
		&gvt->scheduler;
275
	struct gvt_sched_data *data = scheduler->sched_data;
276

277 278
	hrtimer_cancel(&data->timer);

279 280 281 282 283 284
	kfree(data);
	scheduler->sched_data = NULL;
}

static int tbs_sched_init_vgpu(struct intel_vgpu *vgpu)
{
285
	struct vgpu_sched_data *data;
286 287 288 289 290

	data = kzalloc(sizeof(*data), GFP_KERNEL);
	if (!data)
		return -ENOMEM;

291
	data->sched_ctl.weight = vgpu->sched_ctl.weight;
292
	data->vgpu = vgpu;
293
	INIT_LIST_HEAD(&data->lru_list);
294 295

	vgpu->sched_data = data;
296

297 298 299 300 301 302 303 304 305 306 307
	return 0;
}

static void tbs_sched_clean_vgpu(struct intel_vgpu *vgpu)
{
	kfree(vgpu->sched_data);
	vgpu->sched_data = NULL;
}

static void tbs_sched_start_schedule(struct intel_vgpu *vgpu)
{
308 309
	struct gvt_sched_data *sched_data = vgpu->gvt->scheduler.sched_data;
	struct vgpu_sched_data *vgpu_data = vgpu->sched_data;
310

311
	if (!list_empty(&vgpu_data->lru_list))
312 313
		return;

314
	list_add_tail(&vgpu_data->lru_list, &sched_data->lru_runq_head);
315 316 317 318

	if (!hrtimer_active(&sched_data->timer))
		hrtimer_start(&sched_data->timer, ktime_add_ns(ktime_get(),
			sched_data->period), HRTIMER_MODE_ABS);
319 320 321 322
}

static void tbs_sched_stop_schedule(struct intel_vgpu *vgpu)
{
323
	struct vgpu_sched_data *vgpu_data = vgpu->sched_data;
324

325
	list_del_init(&vgpu_data->lru_list);
326 327
}

328
static struct intel_gvt_sched_policy_ops tbs_schedule_ops = {
329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
	.init = tbs_sched_init,
	.clean = tbs_sched_clean,
	.init_vgpu = tbs_sched_init_vgpu,
	.clean_vgpu = tbs_sched_clean_vgpu,
	.start_schedule = tbs_sched_start_schedule,
	.stop_schedule = tbs_sched_stop_schedule,
};

int intel_gvt_init_sched_policy(struct intel_gvt *gvt)
{
	gvt->scheduler.sched_ops = &tbs_schedule_ops;

	return gvt->scheduler.sched_ops->init(gvt);
}

void intel_gvt_clean_sched_policy(struct intel_gvt *gvt)
{
	gvt->scheduler.sched_ops->clean(gvt);
}

int intel_vgpu_init_sched_policy(struct intel_vgpu *vgpu)
{
	return vgpu->gvt->scheduler.sched_ops->init_vgpu(vgpu);
}

void intel_vgpu_clean_sched_policy(struct intel_vgpu *vgpu)
{
	vgpu->gvt->scheduler.sched_ops->clean_vgpu(vgpu);
}

void intel_vgpu_start_schedule(struct intel_vgpu *vgpu)
{
	gvt_dbg_core("vgpu%d: start schedule\n", vgpu->id);

	vgpu->gvt->scheduler.sched_ops->start_schedule(vgpu);
}

void intel_vgpu_stop_schedule(struct intel_vgpu *vgpu)
{
	struct intel_gvt_workload_scheduler *scheduler =
		&vgpu->gvt->scheduler;

	gvt_dbg_core("vgpu%d: stop schedule\n", vgpu->id);

	scheduler->sched_ops->stop_schedule(vgpu);

	if (scheduler->next_vgpu == vgpu)
		scheduler->next_vgpu = NULL;

	if (scheduler->current_vgpu == vgpu) {
		/* stop workload dispatching */
		scheduler->need_reschedule = true;
		scheduler->current_vgpu = NULL;
	}
}