sched_policy.c 9.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
/*
 * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 *
 * Authors:
 *    Anhua Xu
 *    Kevin Tian <kevin.tian@intel.com>
 *
 * Contributors:
 *    Min He <min.he@intel.com>
 *    Bing Niu <bing.niu@intel.com>
 *    Zhi Wang <zhi.a.wang@intel.com>
 *
 */

#include "i915_drv.h"
35
#include "gvt.h"
36 37 38

static bool vgpu_has_pending_workload(struct intel_vgpu *vgpu)
{
39 40
	enum intel_engine_id i;
	struct intel_engine_cs *engine;
41

42
	for_each_engine(engine, vgpu->gvt->dev_priv, i) {
43 44 45 46 47 48 49
		if (!list_empty(workload_q_head(vgpu, i)))
			return true;
	}

	return false;
}

50
struct vgpu_sched_data {
51
	struct list_head lru_list;
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
	struct intel_vgpu *vgpu;

	ktime_t sched_in_time;
	ktime_t sched_out_time;
	ktime_t sched_time;
	ktime_t left_ts;
	ktime_t allocated_ts;

	struct vgpu_sched_ctl sched_ctl;
};

struct gvt_sched_data {
	struct intel_gvt *gvt;
	struct hrtimer timer;
	unsigned long period;
67
	struct list_head lru_runq_head;
68 69
};

70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
static void vgpu_update_timeslice(struct intel_vgpu *pre_vgpu)
{
	ktime_t delta_ts;
	struct vgpu_sched_data *vgpu_data = pre_vgpu->sched_data;

	delta_ts = vgpu_data->sched_out_time - vgpu_data->sched_in_time;

	vgpu_data->sched_time += delta_ts;
	vgpu_data->left_ts -= delta_ts;
}

#define GVT_TS_BALANCE_PERIOD_MS 100
#define GVT_TS_BALANCE_STAGE_NUM 10

static void gvt_balance_timeslice(struct gvt_sched_data *sched_data)
{
	struct vgpu_sched_data *vgpu_data;
	struct list_head *pos;
	static uint64_t stage_check;
	int stage = stage_check++ % GVT_TS_BALANCE_STAGE_NUM;

	/* The timeslice accumulation reset at stage 0, which is
	 * allocated again without adding previous debt.
	 */
	if (stage == 0) {
		int total_weight = 0;
		ktime_t fair_timeslice;

		list_for_each(pos, &sched_data->lru_runq_head) {
			vgpu_data = container_of(pos, struct vgpu_sched_data, lru_list);
			total_weight += vgpu_data->sched_ctl.weight;
		}

		list_for_each(pos, &sched_data->lru_runq_head) {
			vgpu_data = container_of(pos, struct vgpu_sched_data, lru_list);
			fair_timeslice = ms_to_ktime(GVT_TS_BALANCE_PERIOD_MS) *
						vgpu_data->sched_ctl.weight /
						total_weight;

			vgpu_data->allocated_ts = fair_timeslice;
			vgpu_data->left_ts = vgpu_data->allocated_ts;
		}
	} else {
		list_for_each(pos, &sched_data->lru_runq_head) {
			vgpu_data = container_of(pos, struct vgpu_sched_data, lru_list);

			/* timeslice for next 100ms should add the left/debt
			 * slice of previous stages.
			 */
			vgpu_data->left_ts += vgpu_data->allocated_ts;
		}
	}
}

124 125 126
static void try_to_schedule_next_vgpu(struct intel_gvt *gvt)
{
	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
127 128
	enum intel_engine_id i;
	struct intel_engine_cs *engine;
129 130
	struct vgpu_sched_data *vgpu_data;
	ktime_t cur_time;
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145

	/* no target to schedule */
	if (!scheduler->next_vgpu)
		return;

	gvt_dbg_sched("try to schedule next vgpu %d\n",
			scheduler->next_vgpu->id);

	/*
	 * after the flag is set, workload dispatch thread will
	 * stop dispatching workload for current vgpu
	 */
	scheduler->need_reschedule = true;

	/* still have uncompleted workload? */
146
	for_each_engine(engine, gvt->dev_priv, i) {
147 148 149 150 151 152
		if (scheduler->current_workload[i]) {
			gvt_dbg_sched("still have running workload\n");
			return;
		}
	}

153 154 155 156
	cur_time = ktime_get();
	if (scheduler->current_vgpu) {
		vgpu_data = scheduler->current_vgpu->sched_data;
		vgpu_data->sched_out_time = cur_time;
157
		vgpu_update_timeslice(scheduler->current_vgpu);
158 159 160 161
	}
	vgpu_data = scheduler->next_vgpu->sched_data;
	vgpu_data->sched_in_time = cur_time;

162 163 164 165 166 167 168
	/* switch current vgpu */
	scheduler->current_vgpu = scheduler->next_vgpu;
	scheduler->next_vgpu = NULL;

	scheduler->need_reschedule = false;

	/* wake up workload dispatch thread */
169
	for_each_engine(engine, gvt->dev_priv, i)
170 171 172
		wake_up(&scheduler->waitq[i]);
}

173
static struct intel_vgpu *find_busy_vgpu(struct gvt_sched_data *sched_data)
174
{
175
	struct vgpu_sched_data *vgpu_data;
176
	struct intel_vgpu *vgpu = NULL;
177 178
	struct list_head *head = &sched_data->lru_runq_head;
	struct list_head *pos;
179 180 181 182

	/* search a vgpu with pending workload */
	list_for_each(pos, head) {

183
		vgpu_data = container_of(pos, struct vgpu_sched_data, lru_list);
184 185 186
		if (!vgpu_has_pending_workload(vgpu_data->vgpu))
			continue;

187 188 189 190 191
		/* Return the vGPU only if it has time slice left */
		if (vgpu_data->left_ts > 0) {
			vgpu = vgpu_data->vgpu;
			break;
		}
192 193
	}

194 195 196 197 198 199 200 201 202 203 204 205
	return vgpu;
}

/* in nanosecond */
#define GVT_DEFAULT_TIME_SLICE 1000000

static void tbs_sched_func(struct gvt_sched_data *sched_data)
{
	struct intel_gvt *gvt = sched_data->gvt;
	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
	struct vgpu_sched_data *vgpu_data;
	struct intel_vgpu *vgpu = NULL;
206 207 208 209
	static uint64_t timer_check;

	if (!(timer_check++ % GVT_TS_BALANCE_PERIOD_MS))
		gvt_balance_timeslice(sched_data);
210 211 212 213 214 215

	/* no active vgpu or has already had a target */
	if (list_empty(&sched_data->lru_runq_head) || scheduler->next_vgpu)
		goto out;

	vgpu = find_busy_vgpu(sched_data);
216 217
	if (vgpu) {
		scheduler->next_vgpu = vgpu;
218 219 220 221 222 223

		/* Move the last used vGPU to the tail of lru_list */
		vgpu_data = vgpu->sched_data;
		list_del_init(&vgpu_data->lru_list);
		list_add_tail(&vgpu_data->lru_list,
				&sched_data->lru_runq_head);
224 225
	} else {
		scheduler->next_vgpu = gvt->idle_vgpu;
226 227
	}
out:
228
	if (scheduler->next_vgpu)
229
		try_to_schedule_next_vgpu(gvt);
230
}
231

232 233
void intel_gvt_schedule(struct intel_gvt *gvt)
{
234
	struct gvt_sched_data *sched_data = gvt->scheduler.sched_data;
235

236 237
	mutex_lock(&gvt->lock);
	tbs_sched_func(sched_data);
238 239 240
	mutex_unlock(&gvt->lock);
}

241 242
static enum hrtimer_restart tbs_timer_fn(struct hrtimer *timer_data)
{
243
	struct gvt_sched_data *data;
244

245
	data = container_of(timer_data, struct gvt_sched_data, timer);
246 247 248 249 250 251 252 253

	intel_gvt_request_service(data->gvt, INTEL_GVT_REQUEST_SCHED);

	hrtimer_add_expires_ns(&data->timer, data->period);

	return HRTIMER_RESTART;
}

254 255 256 257 258
static int tbs_sched_init(struct intel_gvt *gvt)
{
	struct intel_gvt_workload_scheduler *scheduler =
		&gvt->scheduler;

259
	struct gvt_sched_data *data;
260 261 262 263 264

	data = kzalloc(sizeof(*data), GFP_KERNEL);
	if (!data)
		return -ENOMEM;

265
	INIT_LIST_HEAD(&data->lru_runq_head);
266 267
	hrtimer_init(&data->timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
	data->timer.function = tbs_timer_fn;
268 269 270 271
	data->period = GVT_DEFAULT_TIME_SLICE;
	data->gvt = gvt;

	scheduler->sched_data = data;
272

273 274 275 276 277 278 279
	return 0;
}

static void tbs_sched_clean(struct intel_gvt *gvt)
{
	struct intel_gvt_workload_scheduler *scheduler =
		&gvt->scheduler;
280
	struct gvt_sched_data *data = scheduler->sched_data;
281

282 283
	hrtimer_cancel(&data->timer);

284 285 286 287 288 289
	kfree(data);
	scheduler->sched_data = NULL;
}

static int tbs_sched_init_vgpu(struct intel_vgpu *vgpu)
{
290
	struct vgpu_sched_data *data;
291 292 293 294 295

	data = kzalloc(sizeof(*data), GFP_KERNEL);
	if (!data)
		return -ENOMEM;

296
	data->sched_ctl.weight = vgpu->sched_ctl.weight;
297
	data->vgpu = vgpu;
298
	INIT_LIST_HEAD(&data->lru_list);
299 300

	vgpu->sched_data = data;
301

302 303 304 305 306 307 308 309 310 311 312
	return 0;
}

static void tbs_sched_clean_vgpu(struct intel_vgpu *vgpu)
{
	kfree(vgpu->sched_data);
	vgpu->sched_data = NULL;
}

static void tbs_sched_start_schedule(struct intel_vgpu *vgpu)
{
313 314
	struct gvt_sched_data *sched_data = vgpu->gvt->scheduler.sched_data;
	struct vgpu_sched_data *vgpu_data = vgpu->sched_data;
315

316
	if (!list_empty(&vgpu_data->lru_list))
317 318
		return;

319
	list_add_tail(&vgpu_data->lru_list, &sched_data->lru_runq_head);
320 321 322 323

	if (!hrtimer_active(&sched_data->timer))
		hrtimer_start(&sched_data->timer, ktime_add_ns(ktime_get(),
			sched_data->period), HRTIMER_MODE_ABS);
324 325 326 327
}

static void tbs_sched_stop_schedule(struct intel_vgpu *vgpu)
{
328
	struct vgpu_sched_data *vgpu_data = vgpu->sched_data;
329

330
	list_del_init(&vgpu_data->lru_list);
331 332
}

333
static struct intel_gvt_sched_policy_ops tbs_schedule_ops = {
334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
	.init = tbs_sched_init,
	.clean = tbs_sched_clean,
	.init_vgpu = tbs_sched_init_vgpu,
	.clean_vgpu = tbs_sched_clean_vgpu,
	.start_schedule = tbs_sched_start_schedule,
	.stop_schedule = tbs_sched_stop_schedule,
};

int intel_gvt_init_sched_policy(struct intel_gvt *gvt)
{
	gvt->scheduler.sched_ops = &tbs_schedule_ops;

	return gvt->scheduler.sched_ops->init(gvt);
}

void intel_gvt_clean_sched_policy(struct intel_gvt *gvt)
{
	gvt->scheduler.sched_ops->clean(gvt);
}

int intel_vgpu_init_sched_policy(struct intel_vgpu *vgpu)
{
	return vgpu->gvt->scheduler.sched_ops->init_vgpu(vgpu);
}

void intel_vgpu_clean_sched_policy(struct intel_vgpu *vgpu)
{
	vgpu->gvt->scheduler.sched_ops->clean_vgpu(vgpu);
}

void intel_vgpu_start_schedule(struct intel_vgpu *vgpu)
{
	gvt_dbg_core("vgpu%d: start schedule\n", vgpu->id);

	vgpu->gvt->scheduler.sched_ops->start_schedule(vgpu);
}

void intel_vgpu_stop_schedule(struct intel_vgpu *vgpu)
{
	struct intel_gvt_workload_scheduler *scheduler =
		&vgpu->gvt->scheduler;

	gvt_dbg_core("vgpu%d: stop schedule\n", vgpu->id);

	scheduler->sched_ops->stop_schedule(vgpu);

	if (scheduler->next_vgpu == vgpu)
		scheduler->next_vgpu = NULL;

	if (scheduler->current_vgpu == vgpu) {
		/* stop workload dispatching */
		scheduler->need_reschedule = true;
		scheduler->current_vgpu = NULL;
	}
}