slab_common.c 34.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
/*
 * Slab allocator functions that are independent of the allocator strategy
 *
 * (C) 2012 Christoph Lameter <cl@linux.com>
 */
#include <linux/slab.h>

#include <linux/mm.h>
#include <linux/poison.h>
#include <linux/interrupt.h>
#include <linux/memory.h>
#include <linux/compiler.h>
#include <linux/module.h>
14 15
#include <linux/cpu.h>
#include <linux/uaccess.h>
16 17
#include <linux/seq_file.h>
#include <linux/proc_fs.h>
18 19 20
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
#include <asm/page.h>
21
#include <linux/memcontrol.h>
22 23

#define CREATE_TRACE_POINTS
24
#include <trace/events/kmem.h>
25

26 27 28
#include "slab.h"

enum slab_state slab_state;
29 30
LIST_HEAD(slab_caches);
DEFINE_MUTEX(slab_mutex);
31
struct kmem_cache *kmem_cache;
32

33 34 35 36 37
static LIST_HEAD(slab_caches_to_rcu_destroy);
static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work);
static DECLARE_WORK(slab_caches_to_rcu_destroy_work,
		    slab_caches_to_rcu_destroy_workfn);

38 39 40 41
/*
 * Set of flags that will prevent slab merging
 */
#define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
42
		SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \
A
Alexander Potapenko 已提交
43
		SLAB_FAILSLAB | SLAB_KASAN)
44

V
Vladimir Davydov 已提交
45 46
#define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
			 SLAB_NOTRACK | SLAB_ACCOUNT)
47 48 49 50

/*
 * Merge control. If this is set then no merging of slab caches will occur.
 */
51
static bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT);
52 53 54

static int __init setup_slab_nomerge(char *str)
{
55
	slab_nomerge = true;
56 57 58 59 60 61 62 63 64
	return 1;
}

#ifdef CONFIG_SLUB
__setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
#endif

__setup("slab_nomerge", setup_slab_nomerge);

65 66 67 68 69 70 71 72 73
/*
 * Determine the size of a slab object
 */
unsigned int kmem_cache_size(struct kmem_cache *s)
{
	return s->object_size;
}
EXPORT_SYMBOL(kmem_cache_size);

74
#ifdef CONFIG_DEBUG_VM
75
static int kmem_cache_sanity_check(const char *name, size_t size)
76 77 78 79 80
{
	struct kmem_cache *s = NULL;

	if (!name || in_interrupt() || size < sizeof(void *) ||
		size > KMALLOC_MAX_SIZE) {
81 82
		pr_err("kmem_cache_create(%s) integrity check failed\n", name);
		return -EINVAL;
83
	}
84

85 86 87 88 89 90 91 92 93 94 95
	list_for_each_entry(s, &slab_caches, list) {
		char tmp;
		int res;

		/*
		 * This happens when the module gets unloaded and doesn't
		 * destroy its slab cache and no-one else reuses the vmalloc
		 * area of the module.  Print a warning.
		 */
		res = probe_kernel_address(s->name, tmp);
		if (res) {
96
			pr_err("Slab cache with size %d has lost its name\n",
97 98 99 100 101 102
			       s->object_size);
			continue;
		}
	}

	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
103 104 105
	return 0;
}
#else
106
static inline int kmem_cache_sanity_check(const char *name, size_t size)
107 108 109
{
	return 0;
}
110 111
#endif

112 113 114 115
void __kmem_cache_free_bulk(struct kmem_cache *s, size_t nr, void **p)
{
	size_t i;

116 117 118 119 120 121
	for (i = 0; i < nr; i++) {
		if (s)
			kmem_cache_free(s, p[i]);
		else
			kfree(p[i]);
	}
122 123
}

124
int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t nr,
125 126 127 128 129 130 131 132
								void **p)
{
	size_t i;

	for (i = 0; i < nr; i++) {
		void *x = p[i] = kmem_cache_alloc(s, flags);
		if (!x) {
			__kmem_cache_free_bulk(s, i, p);
133
			return 0;
134 135
		}
	}
136
	return i;
137 138
}

139
#if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
140 141 142

LIST_HEAD(slab_root_caches);

143
void slab_init_memcg_params(struct kmem_cache *s)
144
{
T
Tejun Heo 已提交
145
	s->memcg_params.root_cache = NULL;
146
	RCU_INIT_POINTER(s->memcg_params.memcg_caches, NULL);
T
Tejun Heo 已提交
147
	INIT_LIST_HEAD(&s->memcg_params.children);
148 149 150 151 152 153
}

static int init_memcg_params(struct kmem_cache *s,
		struct mem_cgroup *memcg, struct kmem_cache *root_cache)
{
	struct memcg_cache_array *arr;
154

T
Tejun Heo 已提交
155
	if (root_cache) {
156
		s->memcg_params.root_cache = root_cache;
T
Tejun Heo 已提交
157 158
		s->memcg_params.memcg = memcg;
		INIT_LIST_HEAD(&s->memcg_params.children_node);
159
		INIT_LIST_HEAD(&s->memcg_params.kmem_caches_node);
160
		return 0;
161
	}
162

163
	slab_init_memcg_params(s);
164

165 166
	if (!memcg_nr_cache_ids)
		return 0;
167

168 169 170
	arr = kvzalloc(sizeof(struct memcg_cache_array) +
		       memcg_nr_cache_ids * sizeof(void *),
		       GFP_KERNEL);
171 172
	if (!arr)
		return -ENOMEM;
173

174
	RCU_INIT_POINTER(s->memcg_params.memcg_caches, arr);
175 176 177
	return 0;
}

178
static void destroy_memcg_params(struct kmem_cache *s)
179
{
180
	if (is_root_cache(s))
181 182 183 184 185 186 187 188 189
		kvfree(rcu_access_pointer(s->memcg_params.memcg_caches));
}

static void free_memcg_params(struct rcu_head *rcu)
{
	struct memcg_cache_array *old;

	old = container_of(rcu, struct memcg_cache_array, rcu);
	kvfree(old);
190 191
}

192
static int update_memcg_params(struct kmem_cache *s, int new_array_size)
193
{
194
	struct memcg_cache_array *old, *new;
195

196 197
	new = kvzalloc(sizeof(struct memcg_cache_array) +
		       new_array_size * sizeof(void *), GFP_KERNEL);
198
	if (!new)
199 200
		return -ENOMEM;

201 202 203 204 205
	old = rcu_dereference_protected(s->memcg_params.memcg_caches,
					lockdep_is_held(&slab_mutex));
	if (old)
		memcpy(new->entries, old->entries,
		       memcg_nr_cache_ids * sizeof(void *));
206

207 208
	rcu_assign_pointer(s->memcg_params.memcg_caches, new);
	if (old)
209
		call_rcu(&old->rcu, free_memcg_params);
210 211 212
	return 0;
}

213 214 215 216 217
int memcg_update_all_caches(int num_memcgs)
{
	struct kmem_cache *s;
	int ret = 0;

218
	mutex_lock(&slab_mutex);
219
	list_for_each_entry(s, &slab_root_caches, root_caches_node) {
220
		ret = update_memcg_params(s, num_memcgs);
221 222 223 224 225
		/*
		 * Instead of freeing the memory, we'll just leave the caches
		 * up to this point in an updated state.
		 */
		if (ret)
226
			break;
227 228 229 230
	}
	mutex_unlock(&slab_mutex);
	return ret;
}
231

232
void memcg_link_cache(struct kmem_cache *s)
233
{
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
	if (is_root_cache(s)) {
		list_add(&s->root_caches_node, &slab_root_caches);
	} else {
		list_add(&s->memcg_params.children_node,
			 &s->memcg_params.root_cache->memcg_params.children);
		list_add(&s->memcg_params.kmem_caches_node,
			 &s->memcg_params.memcg->kmem_caches);
	}
}

static void memcg_unlink_cache(struct kmem_cache *s)
{
	if (is_root_cache(s)) {
		list_del(&s->root_caches_node);
	} else {
		list_del(&s->memcg_params.children_node);
		list_del(&s->memcg_params.kmem_caches_node);
	}
252
}
253
#else
254 255
static inline int init_memcg_params(struct kmem_cache *s,
		struct mem_cgroup *memcg, struct kmem_cache *root_cache)
256 257 258 259
{
	return 0;
}

260
static inline void destroy_memcg_params(struct kmem_cache *s)
261 262
{
}
263

264
static inline void memcg_unlink_cache(struct kmem_cache *s)
265 266
{
}
267
#endif /* CONFIG_MEMCG && !CONFIG_SLOB */
268

269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
/*
 * Find a mergeable slab cache
 */
int slab_unmergeable(struct kmem_cache *s)
{
	if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
		return 1;

	if (!is_root_cache(s))
		return 1;

	if (s->ctor)
		return 1;

	/*
	 * We may have set a slab to be unmergeable during bootstrap.
	 */
	if (s->refcount < 0)
		return 1;

	return 0;
}

struct kmem_cache *find_mergeable(size_t size, size_t align,
		unsigned long flags, const char *name, void (*ctor)(void *))
{
	struct kmem_cache *s;

297
	if (slab_nomerge)
298 299 300 301 302 303 304 305 306 307
		return NULL;

	if (ctor)
		return NULL;

	size = ALIGN(size, sizeof(void *));
	align = calculate_alignment(flags, align, size);
	size = ALIGN(size, align);
	flags = kmem_cache_flags(size, flags, name, NULL);

308 309 310
	if (flags & SLAB_NEVER_MERGE)
		return NULL;

311
	list_for_each_entry_reverse(s, &slab_root_caches, root_caches_node) {
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
		if (slab_unmergeable(s))
			continue;

		if (size > s->size)
			continue;

		if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
			continue;
		/*
		 * Check if alignment is compatible.
		 * Courtesy of Adrian Drzewiecki
		 */
		if ((s->size & ~(align - 1)) != s->size)
			continue;

		if (s->size - size >= sizeof(void *))
			continue;

330 331 332 333
		if (IS_ENABLED(CONFIG_SLAB) && align &&
			(align > s->align || s->align % align))
			continue;

334 335 336 337 338
		return s;
	}
	return NULL;
}

339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
/*
 * Figure out what the alignment of the objects will be given a set of
 * flags, a user specified alignment and the size of the objects.
 */
unsigned long calculate_alignment(unsigned long flags,
		unsigned long align, unsigned long size)
{
	/*
	 * If the user wants hardware cache aligned objects then follow that
	 * suggestion if the object is sufficiently large.
	 *
	 * The hardware cache alignment cannot override the specified
	 * alignment though. If that is greater then use it.
	 */
	if (flags & SLAB_HWCACHE_ALIGN) {
		unsigned long ralign = cache_line_size();
		while (size <= ralign / 2)
			ralign /= 2;
		align = max(align, ralign);
	}

	if (align < ARCH_SLAB_MINALIGN)
		align = ARCH_SLAB_MINALIGN;

	return ALIGN(align, sizeof(void *));
}

366 367 368 369
static struct kmem_cache *create_cache(const char *name,
		size_t object_size, size_t size, size_t align,
		unsigned long flags, void (*ctor)(void *),
		struct mem_cgroup *memcg, struct kmem_cache *root_cache)
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
{
	struct kmem_cache *s;
	int err;

	err = -ENOMEM;
	s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
	if (!s)
		goto out;

	s->name = name;
	s->object_size = object_size;
	s->size = size;
	s->align = align;
	s->ctor = ctor;

385
	err = init_memcg_params(s, memcg, root_cache);
386 387 388 389 390 391 392 393 394
	if (err)
		goto out_free_cache;

	err = __kmem_cache_create(s, flags);
	if (err)
		goto out_free_cache;

	s->refcount = 1;
	list_add(&s->list, &slab_caches);
395
	memcg_link_cache(s);
396 397 398 399 400 401
out:
	if (err)
		return ERR_PTR(err);
	return s;

out_free_cache:
402
	destroy_memcg_params(s);
403
	kmem_cache_free(kmem_cache, s);
404 405
	goto out;
}
406

407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
/*
 * kmem_cache_create - Create a cache.
 * @name: A string which is used in /proc/slabinfo to identify this cache.
 * @size: The size of objects to be created in this cache.
 * @align: The required alignment for the objects.
 * @flags: SLAB flags
 * @ctor: A constructor for the objects.
 *
 * Returns a ptr to the cache on success, NULL on failure.
 * Cannot be called within a interrupt, but can be interrupted.
 * The @ctor is run when new pages are allocated by the cache.
 *
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
 * for buffer overruns.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
 */
431
struct kmem_cache *
432 433
kmem_cache_create(const char *name, size_t size, size_t align,
		  unsigned long flags, void (*ctor)(void *))
434
{
435
	struct kmem_cache *s = NULL;
436
	const char *cache_name;
437
	int err;
438

439
	get_online_cpus();
440
	get_online_mems();
441
	memcg_get_cache_ids();
442

443
	mutex_lock(&slab_mutex);
444

445
	err = kmem_cache_sanity_check(name, size);
A
Andrew Morton 已提交
446
	if (err) {
447
		goto out_unlock;
A
Andrew Morton 已提交
448
	}
449

450 451 452 453 454 455
	/* Refuse requests with allocator specific flags */
	if (flags & ~SLAB_FLAGS_PERMITTED) {
		err = -EINVAL;
		goto out_unlock;
	}

456 457 458 459 460 461 462
	/*
	 * Some allocators will constraint the set of valid flags to a subset
	 * of all flags. We expect them to define CACHE_CREATE_MASK in this
	 * case, and we'll just provide them with a sanitized version of the
	 * passed flags.
	 */
	flags &= CACHE_CREATE_MASK;
463

464 465
	s = __kmem_cache_alias(name, size, align, flags, ctor);
	if (s)
466
		goto out_unlock;
467

468
	cache_name = kstrdup_const(name, GFP_KERNEL);
469 470 471 472
	if (!cache_name) {
		err = -ENOMEM;
		goto out_unlock;
	}
473

474 475 476
	s = create_cache(cache_name, size, size,
			 calculate_alignment(flags, align, size),
			 flags, ctor, NULL, NULL);
477 478
	if (IS_ERR(s)) {
		err = PTR_ERR(s);
479
		kfree_const(cache_name);
480
	}
481 482

out_unlock:
483
	mutex_unlock(&slab_mutex);
484

485
	memcg_put_cache_ids();
486
	put_online_mems();
487 488
	put_online_cpus();

489
	if (err) {
490 491 492 493
		if (flags & SLAB_PANIC)
			panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
				name, err);
		else {
494
			pr_warn("kmem_cache_create(%s) failed with error %d\n",
495 496 497 498 499
				name, err);
			dump_stack();
		}
		return NULL;
	}
500 501
	return s;
}
502
EXPORT_SYMBOL(kmem_cache_create);
503

504
static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work)
505
{
506 507
	LIST_HEAD(to_destroy);
	struct kmem_cache *s, *s2;
508

509
	/*
510
	 * On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the
511 512 513 514 515 516 517 518 519 520
	 * @slab_caches_to_rcu_destroy list.  The slab pages are freed
	 * through RCU and and the associated kmem_cache are dereferenced
	 * while freeing the pages, so the kmem_caches should be freed only
	 * after the pending RCU operations are finished.  As rcu_barrier()
	 * is a pretty slow operation, we batch all pending destructions
	 * asynchronously.
	 */
	mutex_lock(&slab_mutex);
	list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy);
	mutex_unlock(&slab_mutex);
521

522 523 524 525 526 527 528 529 530 531 532 533
	if (list_empty(&to_destroy))
		return;

	rcu_barrier();

	list_for_each_entry_safe(s, s2, &to_destroy, list) {
#ifdef SLAB_SUPPORTS_SYSFS
		sysfs_slab_release(s);
#else
		slab_kmem_cache_release(s);
#endif
	}
534 535
}

536
static int shutdown_cache(struct kmem_cache *s)
537
{
538 539 540
	/* free asan quarantined objects */
	kasan_cache_shutdown(s);

541 542
	if (__kmem_cache_shutdown(s) != 0)
		return -EBUSY;
543

544
	memcg_unlink_cache(s);
545
	list_del(&s->list);
546

547
	if (s->flags & SLAB_TYPESAFE_BY_RCU) {
548 549 550
		list_add_tail(&s->list, &slab_caches_to_rcu_destroy);
		schedule_work(&slab_caches_to_rcu_destroy_work);
	} else {
551
#ifdef SLAB_SUPPORTS_SYSFS
552
		sysfs_slab_release(s);
553 554 555 556
#else
		slab_kmem_cache_release(s);
#endif
	}
557 558

	return 0;
559 560
}

561
#if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
562
/*
563
 * memcg_create_kmem_cache - Create a cache for a memory cgroup.
564 565 566 567 568 569 570
 * @memcg: The memory cgroup the new cache is for.
 * @root_cache: The parent of the new cache.
 *
 * This function attempts to create a kmem cache that will serve allocation
 * requests going from @memcg to @root_cache. The new cache inherits properties
 * from its parent.
 */
571 572
void memcg_create_kmem_cache(struct mem_cgroup *memcg,
			     struct kmem_cache *root_cache)
573
{
574
	static char memcg_name_buf[NAME_MAX + 1]; /* protected by slab_mutex */
M
Michal Hocko 已提交
575
	struct cgroup_subsys_state *css = &memcg->css;
576
	struct memcg_cache_array *arr;
577
	struct kmem_cache *s = NULL;
578
	char *cache_name;
579
	int idx;
580 581

	get_online_cpus();
582 583
	get_online_mems();

584 585
	mutex_lock(&slab_mutex);

586
	/*
587
	 * The memory cgroup could have been offlined while the cache
588 589
	 * creation work was pending.
	 */
590
	if (memcg->kmem_state != KMEM_ONLINE)
591 592
		goto out_unlock;

593 594 595 596
	idx = memcg_cache_id(memcg);
	arr = rcu_dereference_protected(root_cache->memcg_params.memcg_caches,
					lockdep_is_held(&slab_mutex));

597 598 599 600 601
	/*
	 * Since per-memcg caches are created asynchronously on first
	 * allocation (see memcg_kmem_get_cache()), several threads can try to
	 * create the same cache, but only one of them may succeed.
	 */
602
	if (arr->entries[idx])
603 604
		goto out_unlock;

605
	cgroup_name(css->cgroup, memcg_name_buf, sizeof(memcg_name_buf));
606 607
	cache_name = kasprintf(GFP_KERNEL, "%s(%llu:%s)", root_cache->name,
			       css->serial_nr, memcg_name_buf);
608 609 610
	if (!cache_name)
		goto out_unlock;

611 612
	s = create_cache(cache_name, root_cache->object_size,
			 root_cache->size, root_cache->align,
613 614
			 root_cache->flags & CACHE_CREATE_MASK,
			 root_cache->ctor, memcg, root_cache);
615 616 617 618 619
	/*
	 * If we could not create a memcg cache, do not complain, because
	 * that's not critical at all as we can always proceed with the root
	 * cache.
	 */
620
	if (IS_ERR(s)) {
621
		kfree(cache_name);
622
		goto out_unlock;
623
	}
624

625 626 627 628 629 630
	/*
	 * Since readers won't lock (see cache_from_memcg_idx()), we need a
	 * barrier here to ensure nobody will see the kmem_cache partially
	 * initialized.
	 */
	smp_wmb();
631
	arr->entries[idx] = s;
632

633 634
out_unlock:
	mutex_unlock(&slab_mutex);
635 636

	put_online_mems();
637
	put_online_cpus();
638
}
639

640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671
static void kmemcg_deactivate_workfn(struct work_struct *work)
{
	struct kmem_cache *s = container_of(work, struct kmem_cache,
					    memcg_params.deact_work);

	get_online_cpus();
	get_online_mems();

	mutex_lock(&slab_mutex);

	s->memcg_params.deact_fn(s);

	mutex_unlock(&slab_mutex);

	put_online_mems();
	put_online_cpus();

	/* done, put the ref from slab_deactivate_memcg_cache_rcu_sched() */
	css_put(&s->memcg_params.memcg->css);
}

static void kmemcg_deactivate_rcufn(struct rcu_head *head)
{
	struct kmem_cache *s = container_of(head, struct kmem_cache,
					    memcg_params.deact_rcu_head);

	/*
	 * We need to grab blocking locks.  Bounce to ->deact_work.  The
	 * work item shares the space with the RCU head and can't be
	 * initialized eariler.
	 */
	INIT_WORK(&s->memcg_params.deact_work, kmemcg_deactivate_workfn);
672
	queue_work(memcg_kmem_cache_wq, &s->memcg_params.deact_work);
673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699
}

/**
 * slab_deactivate_memcg_cache_rcu_sched - schedule deactivation after a
 *					   sched RCU grace period
 * @s: target kmem_cache
 * @deact_fn: deactivation function to call
 *
 * Schedule @deact_fn to be invoked with online cpus, mems and slab_mutex
 * held after a sched RCU grace period.  The slab is guaranteed to stay
 * alive until @deact_fn is finished.  This is to be used from
 * __kmemcg_cache_deactivate().
 */
void slab_deactivate_memcg_cache_rcu_sched(struct kmem_cache *s,
					   void (*deact_fn)(struct kmem_cache *))
{
	if (WARN_ON_ONCE(is_root_cache(s)) ||
	    WARN_ON_ONCE(s->memcg_params.deact_fn))
		return;

	/* pin memcg so that @s doesn't get destroyed in the middle */
	css_get(&s->memcg_params.memcg->css);

	s->memcg_params.deact_fn = deact_fn;
	call_rcu_sched(&s->memcg_params.deact_rcu_head, kmemcg_deactivate_rcufn);
}

700 701 702 703
void memcg_deactivate_kmem_caches(struct mem_cgroup *memcg)
{
	int idx;
	struct memcg_cache_array *arr;
704
	struct kmem_cache *s, *c;
705 706 707

	idx = memcg_cache_id(memcg);

708 709 710
	get_online_cpus();
	get_online_mems();

711
	mutex_lock(&slab_mutex);
712
	list_for_each_entry(s, &slab_root_caches, root_caches_node) {
713 714
		arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
						lockdep_is_held(&slab_mutex));
715 716 717 718
		c = arr->entries[idx];
		if (!c)
			continue;

719
		__kmemcg_cache_deactivate(c);
720 721 722
		arr->entries[idx] = NULL;
	}
	mutex_unlock(&slab_mutex);
723 724 725

	put_online_mems();
	put_online_cpus();
726 727
}

728
void memcg_destroy_kmem_caches(struct mem_cgroup *memcg)
729
{
730
	struct kmem_cache *s, *s2;
731

732 733
	get_online_cpus();
	get_online_mems();
734 735

	mutex_lock(&slab_mutex);
736 737
	list_for_each_entry_safe(s, s2, &memcg->kmem_caches,
				 memcg_params.kmem_caches_node) {
738 739 740 741
		/*
		 * The cgroup is about to be freed and therefore has no charges
		 * left. Hence, all its caches must be empty by now.
		 */
742
		BUG_ON(shutdown_cache(s));
743 744
	}
	mutex_unlock(&slab_mutex);
745

746 747
	put_online_mems();
	put_online_cpus();
748
}
749

750
static int shutdown_memcg_caches(struct kmem_cache *s)
751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768
{
	struct memcg_cache_array *arr;
	struct kmem_cache *c, *c2;
	LIST_HEAD(busy);
	int i;

	BUG_ON(!is_root_cache(s));

	/*
	 * First, shutdown active caches, i.e. caches that belong to online
	 * memory cgroups.
	 */
	arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
					lockdep_is_held(&slab_mutex));
	for_each_memcg_cache_index(i) {
		c = arr->entries[i];
		if (!c)
			continue;
769
		if (shutdown_cache(c))
770 771 772 773 774
			/*
			 * The cache still has objects. Move it to a temporary
			 * list so as not to try to destroy it for a second
			 * time while iterating over inactive caches below.
			 */
T
Tejun Heo 已提交
775
			list_move(&c->memcg_params.children_node, &busy);
776 777 778 779 780 781 782 783 784 785 786 787 788 789
		else
			/*
			 * The cache is empty and will be destroyed soon. Clear
			 * the pointer to it in the memcg_caches array so that
			 * it will never be accessed even if the root cache
			 * stays alive.
			 */
			arr->entries[i] = NULL;
	}

	/*
	 * Second, shutdown all caches left from memory cgroups that are now
	 * offline.
	 */
T
Tejun Heo 已提交
790 791
	list_for_each_entry_safe(c, c2, &s->memcg_params.children,
				 memcg_params.children_node)
792
		shutdown_cache(c);
793

T
Tejun Heo 已提交
794
	list_splice(&busy, &s->memcg_params.children);
795 796 797 798 799

	/*
	 * A cache being destroyed must be empty. In particular, this means
	 * that all per memcg caches attached to it must be empty too.
	 */
T
Tejun Heo 已提交
800
	if (!list_empty(&s->memcg_params.children))
801 802 803 804
		return -EBUSY;
	return 0;
}
#else
805
static inline int shutdown_memcg_caches(struct kmem_cache *s)
806 807 808
{
	return 0;
}
809
#endif /* CONFIG_MEMCG && !CONFIG_SLOB */
810

811 812
void slab_kmem_cache_release(struct kmem_cache *s)
{
813
	__kmem_cache_release(s);
814
	destroy_memcg_params(s);
815
	kfree_const(s->name);
816 817 818
	kmem_cache_free(kmem_cache, s);
}

819 820
void kmem_cache_destroy(struct kmem_cache *s)
{
821
	int err;
822

823 824 825
	if (unlikely(!s))
		return;

826
	get_online_cpus();
827 828
	get_online_mems();

829
	mutex_lock(&slab_mutex);
830

831
	s->refcount--;
832 833 834
	if (s->refcount)
		goto out_unlock;

835
	err = shutdown_memcg_caches(s);
836
	if (!err)
837
		err = shutdown_cache(s);
838

839
	if (err) {
J
Joe Perches 已提交
840 841
		pr_err("kmem_cache_destroy %s: Slab cache still has objects\n",
		       s->name);
842 843
		dump_stack();
	}
844 845
out_unlock:
	mutex_unlock(&slab_mutex);
846

847
	put_online_mems();
848 849 850 851
	put_online_cpus();
}
EXPORT_SYMBOL(kmem_cache_destroy);

852 853 854 855 856 857 858 859 860 861 862 863 864
/**
 * kmem_cache_shrink - Shrink a cache.
 * @cachep: The cache to shrink.
 *
 * Releases as many slabs as possible for a cache.
 * To help debugging, a zero exit status indicates all slabs were released.
 */
int kmem_cache_shrink(struct kmem_cache *cachep)
{
	int ret;

	get_online_cpus();
	get_online_mems();
865
	kasan_cache_shrink(cachep);
866
	ret = __kmem_cache_shrink(cachep);
867 868 869 870 871 872
	put_online_mems();
	put_online_cpus();
	return ret;
}
EXPORT_SYMBOL(kmem_cache_shrink);

873
bool slab_is_available(void)
874 875 876
{
	return slab_state >= UP;
}
877

878 879 880 881 882 883 884 885 886
#ifndef CONFIG_SLOB
/* Create a cache during boot when no slab services are available yet */
void __init create_boot_cache(struct kmem_cache *s, const char *name, size_t size,
		unsigned long flags)
{
	int err;

	s->name = name;
	s->size = s->object_size = size;
887
	s->align = calculate_alignment(flags, ARCH_KMALLOC_MINALIGN, size);
888 889 890

	slab_init_memcg_params(s);

891 892 893
	err = __kmem_cache_create(s, flags);

	if (err)
894
		panic("Creation of kmalloc slab %s size=%zu failed. Reason %d\n",
895 896 897 898 899 900 901 902 903 904 905 906 907 908 909
					name, size, err);

	s->refcount = -1;	/* Exempt from merging for now */
}

struct kmem_cache *__init create_kmalloc_cache(const char *name, size_t size,
				unsigned long flags)
{
	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);

	if (!s)
		panic("Out of memory when creating slab %s\n", name);

	create_boot_cache(s, name, size, flags);
	list_add(&s->list, &slab_caches);
910
	memcg_link_cache(s);
911 912 913 914
	s->refcount = 1;
	return s;
}

915 916 917 918 919 920 921 922
struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1];
EXPORT_SYMBOL(kmalloc_caches);

#ifdef CONFIG_ZONE_DMA
struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1];
EXPORT_SYMBOL(kmalloc_dma_caches);
#endif

923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968
/*
 * Conversion table for small slabs sizes / 8 to the index in the
 * kmalloc array. This is necessary for slabs < 192 since we have non power
 * of two cache sizes there. The size of larger slabs can be determined using
 * fls.
 */
static s8 size_index[24] = {
	3,	/* 8 */
	4,	/* 16 */
	5,	/* 24 */
	5,	/* 32 */
	6,	/* 40 */
	6,	/* 48 */
	6,	/* 56 */
	6,	/* 64 */
	1,	/* 72 */
	1,	/* 80 */
	1,	/* 88 */
	1,	/* 96 */
	7,	/* 104 */
	7,	/* 112 */
	7,	/* 120 */
	7,	/* 128 */
	2,	/* 136 */
	2,	/* 144 */
	2,	/* 152 */
	2,	/* 160 */
	2,	/* 168 */
	2,	/* 176 */
	2,	/* 184 */
	2	/* 192 */
};

static inline int size_index_elem(size_t bytes)
{
	return (bytes - 1) / 8;
}

/*
 * Find the kmem_cache structure that serves a given size of
 * allocation
 */
struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
{
	int index;

969
	if (unlikely(size > KMALLOC_MAX_SIZE)) {
970
		WARN_ON_ONCE(!(flags & __GFP_NOWARN));
971
		return NULL;
972
	}
973

974 975 976 977 978 979 980 981 982
	if (size <= 192) {
		if (!size)
			return ZERO_SIZE_PTR;

		index = size_index[size_index_elem(size)];
	} else
		index = fls(size - 1);

#ifdef CONFIG_ZONE_DMA
983
	if (unlikely((flags & GFP_DMA)))
984 985 986 987 988 989
		return kmalloc_dma_caches[index];

#endif
	return kmalloc_caches[index];
}

990 991 992 993 994
/*
 * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
 * kmalloc_index() supports up to 2^26=64MB, so the final entry of the table is
 * kmalloc-67108864.
 */
995
const struct kmalloc_info_struct kmalloc_info[] __initconst = {
996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
	{NULL,                      0},		{"kmalloc-96",             96},
	{"kmalloc-192",           192},		{"kmalloc-8",               8},
	{"kmalloc-16",             16},		{"kmalloc-32",             32},
	{"kmalloc-64",             64},		{"kmalloc-128",           128},
	{"kmalloc-256",           256},		{"kmalloc-512",           512},
	{"kmalloc-1024",         1024},		{"kmalloc-2048",         2048},
	{"kmalloc-4096",         4096},		{"kmalloc-8192",         8192},
	{"kmalloc-16384",       16384},		{"kmalloc-32768",       32768},
	{"kmalloc-65536",       65536},		{"kmalloc-131072",     131072},
	{"kmalloc-262144",     262144},		{"kmalloc-524288",     524288},
	{"kmalloc-1048576",   1048576},		{"kmalloc-2097152",   2097152},
	{"kmalloc-4194304",   4194304},		{"kmalloc-8388608",   8388608},
	{"kmalloc-16777216", 16777216},		{"kmalloc-33554432", 33554432},
	{"kmalloc-67108864", 67108864}
};

1012
/*
1013 1014 1015 1016 1017 1018 1019 1020 1021
 * Patch up the size_index table if we have strange large alignment
 * requirements for the kmalloc array. This is only the case for
 * MIPS it seems. The standard arches will not generate any code here.
 *
 * Largest permitted alignment is 256 bytes due to the way we
 * handle the index determination for the smaller caches.
 *
 * Make sure that nothing crazy happens if someone starts tinkering
 * around with ARCH_KMALLOC_MINALIGN
1022
 */
1023
void __init setup_kmalloc_cache_index_table(void)
1024 1025 1026
{
	int i;

1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));

	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
		int elem = size_index_elem(i);

		if (elem >= ARRAY_SIZE(size_index))
			break;
		size_index[elem] = KMALLOC_SHIFT_LOW;
	}

	if (KMALLOC_MIN_SIZE >= 64) {
		/*
		 * The 96 byte size cache is not used if the alignment
		 * is 64 byte.
		 */
		for (i = 64 + 8; i <= 96; i += 8)
			size_index[size_index_elem(i)] = 7;

	}

	if (KMALLOC_MIN_SIZE >= 128) {
		/*
		 * The 192 byte sized cache is not used if the alignment
		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
		 * instead.
		 */
		for (i = 128 + 8; i <= 192; i += 8)
			size_index[size_index_elem(i)] = 8;
	}
1057 1058
}

1059
static void __init new_kmalloc_cache(int idx, unsigned long flags)
1060 1061 1062 1063 1064
{
	kmalloc_caches[idx] = create_kmalloc_cache(kmalloc_info[idx].name,
					kmalloc_info[idx].size, flags);
}

1065 1066 1067 1068 1069 1070 1071 1072 1073
/*
 * Create the kmalloc array. Some of the regular kmalloc arrays
 * may already have been created because they were needed to
 * enable allocations for slab creation.
 */
void __init create_kmalloc_caches(unsigned long flags)
{
	int i;

1074 1075 1076
	for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
		if (!kmalloc_caches[i])
			new_kmalloc_cache(i, flags);
1077

1078
		/*
1079 1080 1081
		 * Caches that are not of the two-to-the-power-of size.
		 * These have to be created immediately after the
		 * earlier power of two caches
1082
		 */
1083 1084 1085 1086
		if (KMALLOC_MIN_SIZE <= 32 && !kmalloc_caches[1] && i == 6)
			new_kmalloc_cache(1, flags);
		if (KMALLOC_MIN_SIZE <= 64 && !kmalloc_caches[2] && i == 7)
			new_kmalloc_cache(2, flags);
1087 1088
	}

1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
	/* Kmalloc array is now usable */
	slab_state = UP;

#ifdef CONFIG_ZONE_DMA
	for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
		struct kmem_cache *s = kmalloc_caches[i];

		if (s) {
			int size = kmalloc_size(i);
			char *n = kasprintf(GFP_NOWAIT,
				 "dma-kmalloc-%d", size);

			BUG_ON(!n);
			kmalloc_dma_caches[i] = create_kmalloc_cache(n,
				size, SLAB_CACHE_DMA | flags);
		}
	}
#endif
}
1108 1109
#endif /* !CONFIG_SLOB */

V
Vladimir Davydov 已提交
1110 1111 1112 1113 1114
/*
 * To avoid unnecessary overhead, we pass through large allocation requests
 * directly to the page allocator. We use __GFP_COMP, because we will need to
 * know the allocation order to free the pages properly in kfree.
 */
V
Vladimir Davydov 已提交
1115 1116 1117 1118 1119 1120
void *kmalloc_order(size_t size, gfp_t flags, unsigned int order)
{
	void *ret;
	struct page *page;

	flags |= __GFP_COMP;
1121
	page = alloc_pages(flags, order);
V
Vladimir Davydov 已提交
1122 1123
	ret = page ? page_address(page) : NULL;
	kmemleak_alloc(ret, size, 1, flags);
1124
	kasan_kmalloc_large(ret, size, flags);
V
Vladimir Davydov 已提交
1125 1126 1127 1128
	return ret;
}
EXPORT_SYMBOL(kmalloc_order);

1129 1130 1131 1132 1133 1134 1135 1136 1137
#ifdef CONFIG_TRACING
void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
{
	void *ret = kmalloc_order(size, flags, order);
	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
	return ret;
}
EXPORT_SYMBOL(kmalloc_order_trace);
#endif
1138

1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
#ifdef CONFIG_SLAB_FREELIST_RANDOM
/* Randomize a generic freelist */
static void freelist_randomize(struct rnd_state *state, unsigned int *list,
			size_t count)
{
	size_t i;
	unsigned int rand;

	for (i = 0; i < count; i++)
		list[i] = i;

	/* Fisher-Yates shuffle */
	for (i = count - 1; i > 0; i--) {
		rand = prandom_u32_state(state);
		rand %= (i + 1);
		swap(list[i], list[rand]);
	}
}

/* Create a random sequence per cache */
int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
				    gfp_t gfp)
{
	struct rnd_state state;

	if (count < 2 || cachep->random_seq)
		return 0;

	cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp);
	if (!cachep->random_seq)
		return -ENOMEM;

	/* Get best entropy at this stage of boot */
	prandom_seed_state(&state, get_random_long());

	freelist_randomize(&state, cachep->random_seq, count);
	return 0;
}

/* Destroy the per-cache random freelist sequence */
void cache_random_seq_destroy(struct kmem_cache *cachep)
{
	kfree(cachep->random_seq);
	cachep->random_seq = NULL;
}
#endif /* CONFIG_SLAB_FREELIST_RANDOM */

1186
#ifdef CONFIG_SLABINFO
1187 1188 1189 1190 1191 1192 1193

#ifdef CONFIG_SLAB
#define SLABINFO_RIGHTS (S_IWUSR | S_IRUSR)
#else
#define SLABINFO_RIGHTS S_IRUSR
#endif

1194
static void print_slabinfo_header(struct seq_file *m)
1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
{
	/*
	 * Output format version, so at least we can change it
	 * without _too_ many complaints.
	 */
#ifdef CONFIG_DEBUG_SLAB
	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
#else
	seq_puts(m, "slabinfo - version: 2.1\n");
#endif
J
Joe Perches 已提交
1205
	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
1206 1207 1208
	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
#ifdef CONFIG_DEBUG_SLAB
J
Joe Perches 已提交
1209
	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
1210 1211 1212 1213 1214
	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
#endif
	seq_putc(m, '\n');
}

1215
void *slab_start(struct seq_file *m, loff_t *pos)
1216 1217
{
	mutex_lock(&slab_mutex);
1218
	return seq_list_start(&slab_root_caches, *pos);
1219 1220
}

1221
void *slab_next(struct seq_file *m, void *p, loff_t *pos)
1222
{
1223
	return seq_list_next(p, &slab_root_caches, pos);
1224 1225
}

1226
void slab_stop(struct seq_file *m, void *p)
1227 1228 1229 1230
{
	mutex_unlock(&slab_mutex);
}

1231 1232 1233 1234 1235 1236 1237 1238 1239
static void
memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info)
{
	struct kmem_cache *c;
	struct slabinfo sinfo;

	if (!is_root_cache(s))
		return;

1240
	for_each_memcg_cache(c, s) {
1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251
		memset(&sinfo, 0, sizeof(sinfo));
		get_slabinfo(c, &sinfo);

		info->active_slabs += sinfo.active_slabs;
		info->num_slabs += sinfo.num_slabs;
		info->shared_avail += sinfo.shared_avail;
		info->active_objs += sinfo.active_objs;
		info->num_objs += sinfo.num_objs;
	}
}

1252
static void cache_show(struct kmem_cache *s, struct seq_file *m)
1253
{
1254 1255 1256 1257 1258
	struct slabinfo sinfo;

	memset(&sinfo, 0, sizeof(sinfo));
	get_slabinfo(s, &sinfo);

1259 1260
	memcg_accumulate_slabinfo(s, &sinfo);

1261
	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
1262
		   cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size,
1263 1264 1265 1266 1267 1268 1269 1270
		   sinfo.objects_per_slab, (1 << sinfo.cache_order));

	seq_printf(m, " : tunables %4u %4u %4u",
		   sinfo.limit, sinfo.batchcount, sinfo.shared);
	seq_printf(m, " : slabdata %6lu %6lu %6lu",
		   sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
	slabinfo_show_stats(m, s);
	seq_putc(m, '\n');
1271 1272
}

1273
static int slab_show(struct seq_file *m, void *p)
1274
{
1275
	struct kmem_cache *s = list_entry(p, struct kmem_cache, root_caches_node);
1276

1277
	if (p == slab_root_caches.next)
1278
		print_slabinfo_header(m);
1279
	cache_show(s, m);
1280 1281 1282
	return 0;
}

1283
#if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
void *memcg_slab_start(struct seq_file *m, loff_t *pos)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));

	mutex_lock(&slab_mutex);
	return seq_list_start(&memcg->kmem_caches, *pos);
}

void *memcg_slab_next(struct seq_file *m, void *p, loff_t *pos)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));

	return seq_list_next(p, &memcg->kmem_caches, pos);
}

void memcg_slab_stop(struct seq_file *m, void *p)
{
	mutex_unlock(&slab_mutex);
}

1304 1305
int memcg_slab_show(struct seq_file *m, void *p)
{
1306 1307
	struct kmem_cache *s = list_entry(p, struct kmem_cache,
					  memcg_params.kmem_caches_node);
1308 1309
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));

1310
	if (p == memcg->kmem_caches.next)
1311
		print_slabinfo_header(m);
1312
	cache_show(s, m);
1313
	return 0;
1314
}
1315
#endif
1316

1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330
/*
 * slabinfo_op - iterator that generates /proc/slabinfo
 *
 * Output layout:
 * cache-name
 * num-active-objs
 * total-objs
 * object size
 * num-active-slabs
 * total-slabs
 * num-pages-per-slab
 * + further values on SMP and with statistics enabled
 */
static const struct seq_operations slabinfo_op = {
1331
	.start = slab_start,
1332 1333
	.next = slab_next,
	.stop = slab_stop,
1334
	.show = slab_show,
1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351
};

static int slabinfo_open(struct inode *inode, struct file *file)
{
	return seq_open(file, &slabinfo_op);
}

static const struct file_operations proc_slabinfo_operations = {
	.open		= slabinfo_open,
	.read		= seq_read,
	.write          = slabinfo_write,
	.llseek		= seq_lseek,
	.release	= seq_release,
};

static int __init slab_proc_init(void)
{
1352 1353
	proc_create("slabinfo", SLABINFO_RIGHTS, NULL,
						&proc_slabinfo_operations);
1354 1355 1356 1357
	return 0;
}
module_init(slab_proc_init);
#endif /* CONFIG_SLABINFO */
1358 1359 1360 1361 1362 1363 1364 1365 1366 1367

static __always_inline void *__do_krealloc(const void *p, size_t new_size,
					   gfp_t flags)
{
	void *ret;
	size_t ks = 0;

	if (p)
		ks = ksize(p);

1368
	if (ks >= new_size) {
1369
		kasan_krealloc((void *)p, new_size, flags);
1370
		return (void *)p;
1371
	}
1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458

	ret = kmalloc_track_caller(new_size, flags);
	if (ret && p)
		memcpy(ret, p, ks);

	return ret;
}

/**
 * __krealloc - like krealloc() but don't free @p.
 * @p: object to reallocate memory for.
 * @new_size: how many bytes of memory are required.
 * @flags: the type of memory to allocate.
 *
 * This function is like krealloc() except it never frees the originally
 * allocated buffer. Use this if you don't want to free the buffer immediately
 * like, for example, with RCU.
 */
void *__krealloc(const void *p, size_t new_size, gfp_t flags)
{
	if (unlikely(!new_size))
		return ZERO_SIZE_PTR;

	return __do_krealloc(p, new_size, flags);

}
EXPORT_SYMBOL(__krealloc);

/**
 * krealloc - reallocate memory. The contents will remain unchanged.
 * @p: object to reallocate memory for.
 * @new_size: how many bytes of memory are required.
 * @flags: the type of memory to allocate.
 *
 * The contents of the object pointed to are preserved up to the
 * lesser of the new and old sizes.  If @p is %NULL, krealloc()
 * behaves exactly like kmalloc().  If @new_size is 0 and @p is not a
 * %NULL pointer, the object pointed to is freed.
 */
void *krealloc(const void *p, size_t new_size, gfp_t flags)
{
	void *ret;

	if (unlikely(!new_size)) {
		kfree(p);
		return ZERO_SIZE_PTR;
	}

	ret = __do_krealloc(p, new_size, flags);
	if (ret && p != ret)
		kfree(p);

	return ret;
}
EXPORT_SYMBOL(krealloc);

/**
 * kzfree - like kfree but zero memory
 * @p: object to free memory of
 *
 * The memory of the object @p points to is zeroed before freed.
 * If @p is %NULL, kzfree() does nothing.
 *
 * Note: this function zeroes the whole allocated buffer which can be a good
 * deal bigger than the requested buffer size passed to kmalloc(). So be
 * careful when using this function in performance sensitive code.
 */
void kzfree(const void *p)
{
	size_t ks;
	void *mem = (void *)p;

	if (unlikely(ZERO_OR_NULL_PTR(mem)))
		return;
	ks = ksize(mem);
	memset(mem, 0, ks);
	kfree(mem);
}
EXPORT_SYMBOL(kzfree);

/* Tracepoints definitions. */
EXPORT_TRACEPOINT_SYMBOL(kmalloc);
EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
EXPORT_TRACEPOINT_SYMBOL(kfree);
EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);