x86.c 96.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/*
 * Kernel-based Virtual Machine driver for Linux
 *
 * derived from drivers/kvm/kvm_main.c
 *
 * Copyright (C) 2006 Qumranet, Inc.
 *
 * Authors:
 *   Avi Kivity   <avi@qumranet.com>
 *   Yaniv Kamay  <yaniv@qumranet.com>
 *
 * This work is licensed under the terms of the GNU GPL, version 2.  See
 * the COPYING file in the top-level directory.
 *
 */

17
#include <linux/kvm_host.h>
18
#include "irq.h"
19
#include "mmu.h"
S
Sheng Yang 已提交
20
#include "i8254.h"
21
#include "tss.h"
22

23
#include <linux/clocksource.h>
24 25 26
#include <linux/kvm.h>
#include <linux/fs.h>
#include <linux/vmalloc.h>
27
#include <linux/module.h>
28
#include <linux/mman.h>
29
#include <linux/highmem.h>
30 31

#include <asm/uaccess.h>
32
#include <asm/msr.h>
33
#include <asm/desc.h>
34

35
#define MAX_IO_MSRS 256
36 37 38 39 40 41 42 43 44 45 46
#define CR0_RESERVED_BITS						\
	(~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
			  | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
			  | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
#define CR4_RESERVED_BITS						\
	(~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
			  | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE	\
			  | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR	\
			  | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))

#define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
47 48 49 50 51 52 53 54 55
/* EFER defaults:
 * - enable syscall per default because its emulated by KVM
 * - enable LME and LMA per default on 64 bit KVM
 */
#ifdef CONFIG_X86_64
static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
#else
static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
#endif
56

57 58
#define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
#define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
59

60 61 62
static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
				    struct kvm_cpuid_entry2 __user *entries);

63 64
struct kvm_x86_ops *kvm_x86_ops;

65
struct kvm_stats_debugfs_item debugfs_entries[] = {
66 67 68 69 70 71 72 73 74
	{ "pf_fixed", VCPU_STAT(pf_fixed) },
	{ "pf_guest", VCPU_STAT(pf_guest) },
	{ "tlb_flush", VCPU_STAT(tlb_flush) },
	{ "invlpg", VCPU_STAT(invlpg) },
	{ "exits", VCPU_STAT(exits) },
	{ "io_exits", VCPU_STAT(io_exits) },
	{ "mmio_exits", VCPU_STAT(mmio_exits) },
	{ "signal_exits", VCPU_STAT(signal_exits) },
	{ "irq_window", VCPU_STAT(irq_window_exits) },
75
	{ "nmi_window", VCPU_STAT(nmi_window_exits) },
76 77
	{ "halt_exits", VCPU_STAT(halt_exits) },
	{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
A
Amit Shah 已提交
78
	{ "hypercalls", VCPU_STAT(hypercalls) },
79 80 81 82 83 84 85
	{ "request_irq", VCPU_STAT(request_irq_exits) },
	{ "irq_exits", VCPU_STAT(irq_exits) },
	{ "host_state_reload", VCPU_STAT(host_state_reload) },
	{ "efer_reload", VCPU_STAT(efer_reload) },
	{ "fpu_reload", VCPU_STAT(fpu_reload) },
	{ "insn_emulation", VCPU_STAT(insn_emulation) },
	{ "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
A
Avi Kivity 已提交
86 87 88 89 90 91
	{ "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
	{ "mmu_pte_write", VM_STAT(mmu_pte_write) },
	{ "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
	{ "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
	{ "mmu_flooded", VM_STAT(mmu_flooded) },
	{ "mmu_recycled", VM_STAT(mmu_recycled) },
A
Avi Kivity 已提交
92
	{ "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
93
	{ "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
M
Marcelo Tosatti 已提交
94
	{ "largepages", VM_STAT(lpages) },
95 96 97 98
	{ NULL }
};


99 100 101
unsigned long segment_base(u16 selector)
{
	struct descriptor_table gdt;
102
	struct desc_struct *d;
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
	unsigned long table_base;
	unsigned long v;

	if (selector == 0)
		return 0;

	asm("sgdt %0" : "=m"(gdt));
	table_base = gdt.base;

	if (selector & 4) {           /* from ldt */
		u16 ldt_selector;

		asm("sldt %0" : "=g"(ldt_selector));
		table_base = segment_base(ldt_selector);
	}
118 119 120
	d = (struct desc_struct *)(table_base + (selector & ~7));
	v = d->base0 | ((unsigned long)d->base1 << 16) |
		((unsigned long)d->base2 << 24);
121
#ifdef CONFIG_X86_64
122 123
	if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
		v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
124 125 126 127 128
#endif
	return v;
}
EXPORT_SYMBOL_GPL(segment_base);

129 130 131
u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
{
	if (irqchip_in_kernel(vcpu->kvm))
132
		return vcpu->arch.apic_base;
133
	else
134
		return vcpu->arch.apic_base;
135 136 137 138 139 140 141 142 143
}
EXPORT_SYMBOL_GPL(kvm_get_apic_base);

void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
{
	/* TODO: reserve bits check */
	if (irqchip_in_kernel(vcpu->kvm))
		kvm_lapic_set_base(vcpu, data);
	else
144
		vcpu->arch.apic_base = data;
145 146 147
}
EXPORT_SYMBOL_GPL(kvm_set_apic_base);

148 149
void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
{
150 151 152 153
	WARN_ON(vcpu->arch.exception.pending);
	vcpu->arch.exception.pending = true;
	vcpu->arch.exception.has_error_code = false;
	vcpu->arch.exception.nr = nr;
154 155 156
}
EXPORT_SYMBOL_GPL(kvm_queue_exception);

157 158 159 160
void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
			   u32 error_code)
{
	++vcpu->stat.pf_guest;
J
Joerg Roedel 已提交
161 162 163 164 165 166 167 168 169 170
	if (vcpu->arch.exception.pending) {
		if (vcpu->arch.exception.nr == PF_VECTOR) {
			printk(KERN_DEBUG "kvm: inject_page_fault:"
					" double fault 0x%lx\n", addr);
			vcpu->arch.exception.nr = DF_VECTOR;
			vcpu->arch.exception.error_code = 0;
		} else if (vcpu->arch.exception.nr == DF_VECTOR) {
			/* triple fault -> shutdown */
			set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
		}
171 172
		return;
	}
173
	vcpu->arch.cr2 = addr;
174 175 176
	kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
}

177 178 179 180 181 182
void kvm_inject_nmi(struct kvm_vcpu *vcpu)
{
	vcpu->arch.nmi_pending = 1;
}
EXPORT_SYMBOL_GPL(kvm_inject_nmi);

183 184
void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
{
185 186 187 188 189
	WARN_ON(vcpu->arch.exception.pending);
	vcpu->arch.exception.pending = true;
	vcpu->arch.exception.has_error_code = true;
	vcpu->arch.exception.nr = nr;
	vcpu->arch.exception.error_code = error_code;
190 191 192 193 194
}
EXPORT_SYMBOL_GPL(kvm_queue_exception_e);

static void __queue_exception(struct kvm_vcpu *vcpu)
{
195 196 197
	kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
				     vcpu->arch.exception.has_error_code,
				     vcpu->arch.exception.error_code);
198 199
}

200 201 202 203 204 205 206 207 208
/*
 * Load the pae pdptrs.  Return true is they are all valid.
 */
int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
{
	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
	unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
	int i;
	int ret;
209
	u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224

	ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
				  offset * sizeof(u64), sizeof(pdpte));
	if (ret < 0) {
		ret = 0;
		goto out;
	}
	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
		if ((pdpte[i] & 1) && (pdpte[i] & 0xfffffff0000001e6ull)) {
			ret = 0;
			goto out;
		}
	}
	ret = 1;

225
	memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
226 227 228 229
out:

	return ret;
}
230
EXPORT_SYMBOL_GPL(load_pdptrs);
231

232 233
static bool pdptrs_changed(struct kvm_vcpu *vcpu)
{
234
	u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
235 236 237 238 239 240
	bool changed = true;
	int r;

	if (is_long_mode(vcpu) || !is_pae(vcpu))
		return false;

241
	r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
242 243
	if (r < 0)
		goto out;
244
	changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
245 246 247 248 249
out:

	return changed;
}

250
void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
251 252 253
{
	if (cr0 & CR0_RESERVED_BITS) {
		printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
254
		       cr0, vcpu->arch.cr0);
255
		kvm_inject_gp(vcpu, 0);
256 257 258 259 260
		return;
	}

	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
		printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
261
		kvm_inject_gp(vcpu, 0);
262 263 264 265 266 267
		return;
	}

	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
		printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
		       "and a clear PE flag\n");
268
		kvm_inject_gp(vcpu, 0);
269 270 271 272 273
		return;
	}

	if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
#ifdef CONFIG_X86_64
274
		if ((vcpu->arch.shadow_efer & EFER_LME)) {
275 276 277 278 279
			int cs_db, cs_l;

			if (!is_pae(vcpu)) {
				printk(KERN_DEBUG "set_cr0: #GP, start paging "
				       "in long mode while PAE is disabled\n");
280
				kvm_inject_gp(vcpu, 0);
281 282 283 284 285 286
				return;
			}
			kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
			if (cs_l) {
				printk(KERN_DEBUG "set_cr0: #GP, start paging "
				       "in long mode while CS.L == 1\n");
287
				kvm_inject_gp(vcpu, 0);
288 289 290 291 292
				return;

			}
		} else
#endif
293
		if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
294 295
			printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
			       "reserved bits\n");
296
			kvm_inject_gp(vcpu, 0);
297 298 299 300 301 302
			return;
		}

	}

	kvm_x86_ops->set_cr0(vcpu, cr0);
303
	vcpu->arch.cr0 = cr0;
304 305 306 307

	kvm_mmu_reset_context(vcpu);
	return;
}
308
EXPORT_SYMBOL_GPL(kvm_set_cr0);
309

310
void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
311
{
312
	kvm_set_cr0(vcpu, (vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f));
F
Feng (Eric) Liu 已提交
313 314 315
	KVMTRACE_1D(LMSW, vcpu,
		    (u32)((vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f)),
		    handler);
316
}
317
EXPORT_SYMBOL_GPL(kvm_lmsw);
318

319
void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
320 321 322
{
	if (cr4 & CR4_RESERVED_BITS) {
		printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
323
		kvm_inject_gp(vcpu, 0);
324 325 326 327 328 329 330
		return;
	}

	if (is_long_mode(vcpu)) {
		if (!(cr4 & X86_CR4_PAE)) {
			printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
			       "in long mode\n");
331
			kvm_inject_gp(vcpu, 0);
332 333 334
			return;
		}
	} else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & X86_CR4_PAE)
335
		   && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
336
		printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
337
		kvm_inject_gp(vcpu, 0);
338 339 340 341 342
		return;
	}

	if (cr4 & X86_CR4_VMXE) {
		printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
343
		kvm_inject_gp(vcpu, 0);
344 345 346
		return;
	}
	kvm_x86_ops->set_cr4(vcpu, cr4);
347
	vcpu->arch.cr4 = cr4;
348 349
	kvm_mmu_reset_context(vcpu);
}
350
EXPORT_SYMBOL_GPL(kvm_set_cr4);
351

352
void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
353
{
354
	if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
355 356 357 358
		kvm_mmu_flush_tlb(vcpu);
		return;
	}

359 360 361
	if (is_long_mode(vcpu)) {
		if (cr3 & CR3_L_MODE_RESERVED_BITS) {
			printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
362
			kvm_inject_gp(vcpu, 0);
363 364 365 366 367 368 369
			return;
		}
	} else {
		if (is_pae(vcpu)) {
			if (cr3 & CR3_PAE_RESERVED_BITS) {
				printk(KERN_DEBUG
				       "set_cr3: #GP, reserved bits\n");
370
				kvm_inject_gp(vcpu, 0);
371 372 373 374 375
				return;
			}
			if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
				printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
				       "reserved bits\n");
376
				kvm_inject_gp(vcpu, 0);
377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
				return;
			}
		}
		/*
		 * We don't check reserved bits in nonpae mode, because
		 * this isn't enforced, and VMware depends on this.
		 */
	}

	/*
	 * Does the new cr3 value map to physical memory? (Note, we
	 * catch an invalid cr3 even in real-mode, because it would
	 * cause trouble later on when we turn on paging anyway.)
	 *
	 * A real CPU would silently accept an invalid cr3 and would
	 * attempt to use it - with largely undefined (and often hard
	 * to debug) behavior on the guest side.
	 */
	if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
396
		kvm_inject_gp(vcpu, 0);
397
	else {
398 399
		vcpu->arch.cr3 = cr3;
		vcpu->arch.mmu.new_cr3(vcpu);
400 401
	}
}
402
EXPORT_SYMBOL_GPL(kvm_set_cr3);
403

404
void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
405 406 407
{
	if (cr8 & CR8_RESERVED_BITS) {
		printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
408
		kvm_inject_gp(vcpu, 0);
409 410 411 412 413
		return;
	}
	if (irqchip_in_kernel(vcpu->kvm))
		kvm_lapic_set_tpr(vcpu, cr8);
	else
414
		vcpu->arch.cr8 = cr8;
415
}
416
EXPORT_SYMBOL_GPL(kvm_set_cr8);
417

418
unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
419 420 421 422
{
	if (irqchip_in_kernel(vcpu->kvm))
		return kvm_lapic_get_cr8(vcpu);
	else
423
		return vcpu->arch.cr8;
424
}
425
EXPORT_SYMBOL_GPL(kvm_get_cr8);
426

427 428 429 430 431 432 433 434 435 436 437 438 439
/*
 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
 *
 * This list is modified at module load time to reflect the
 * capabilities of the host cpu.
 */
static u32 msrs_to_save[] = {
	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
	MSR_K6_STAR,
#ifdef CONFIG_X86_64
	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
#endif
440
	MSR_IA32_TIME_STAMP_COUNTER, MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
441
	MSR_IA32_PERF_STATUS,
442 443 444 445 446 447 448 449
};

static unsigned num_msrs_to_save;

static u32 emulated_msrs[] = {
	MSR_IA32_MISC_ENABLE,
};

450 451
static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
{
452
	if (efer & efer_reserved_bits) {
453 454
		printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
		       efer);
455
		kvm_inject_gp(vcpu, 0);
456 457 458 459
		return;
	}

	if (is_paging(vcpu)
460
	    && (vcpu->arch.shadow_efer & EFER_LME) != (efer & EFER_LME)) {
461
		printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
462
		kvm_inject_gp(vcpu, 0);
463 464 465 466 467 468
		return;
	}

	kvm_x86_ops->set_efer(vcpu, efer);

	efer &= ~EFER_LMA;
469
	efer |= vcpu->arch.shadow_efer & EFER_LMA;
470

471
	vcpu->arch.shadow_efer = efer;
472 473
}

474 475 476 477 478 479 480
void kvm_enable_efer_bits(u64 mask)
{
       efer_reserved_bits &= ~mask;
}
EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);


481 482 483 484 485 486 487 488 489 490
/*
 * Writes msr value into into the appropriate "register".
 * Returns 0 on success, non-0 otherwise.
 * Assumes vcpu_load() was already called.
 */
int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
{
	return kvm_x86_ops->set_msr(vcpu, msr_index, data);
}

491 492 493 494 495 496 497 498
/*
 * Adapt set_msr() to msr_io()'s calling convention
 */
static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
{
	return kvm_set_msr(vcpu, index, *data);
}

499 500 501
static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
{
	static int version;
502 503
	struct pvclock_wall_clock wc;
	struct timespec now, sys, boot;
504 505 506 507 508 509 510 511

	if (!wall_clock)
		return;

	version++;

	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));

512 513 514 515 516 517 518 519 520 521 522 523 524
	/*
	 * The guest calculates current wall clock time by adding
	 * system time (updated by kvm_write_guest_time below) to the
	 * wall clock specified here.  guest system time equals host
	 * system time for us, thus we must fill in host boot time here.
	 */
	now = current_kernel_time();
	ktime_get_ts(&sys);
	boot = ns_to_timespec(timespec_to_ns(&now) - timespec_to_ns(&sys));

	wc.sec = boot.tv_sec;
	wc.nsec = boot.tv_nsec;
	wc.version = version;
525 526 527 528 529 530 531

	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));

	version++;
	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
}

532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
{
	uint32_t quotient, remainder;

	/* Don't try to replace with do_div(), this one calculates
	 * "(dividend << 32) / divisor" */
	__asm__ ( "divl %4"
		  : "=a" (quotient), "=d" (remainder)
		  : "0" (0), "1" (dividend), "r" (divisor) );
	return quotient;
}

static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
{
	uint64_t nsecs = 1000000000LL;
	int32_t  shift = 0;
	uint64_t tps64;
	uint32_t tps32;

	tps64 = tsc_khz * 1000LL;
	while (tps64 > nsecs*2) {
		tps64 >>= 1;
		shift--;
	}

	tps32 = (uint32_t)tps64;
	while (tps32 <= (uint32_t)nsecs) {
		tps32 <<= 1;
		shift++;
	}

	hv_clock->tsc_shift = shift;
	hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);

	pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
		 __FUNCTION__, tsc_khz, hv_clock->tsc_shift,
		 hv_clock->tsc_to_system_mul);
}

571 572 573 574 575 576 577 578 579 580
static void kvm_write_guest_time(struct kvm_vcpu *v)
{
	struct timespec ts;
	unsigned long flags;
	struct kvm_vcpu_arch *vcpu = &v->arch;
	void *shared_kaddr;

	if ((!vcpu->time_page))
		return;

581 582 583 584 585
	if (unlikely(vcpu->hv_clock_tsc_khz != tsc_khz)) {
		kvm_set_time_scale(tsc_khz, &vcpu->hv_clock);
		vcpu->hv_clock_tsc_khz = tsc_khz;
	}

586 587 588 589 590 591 592 593 594 595 596 597 598 599
	/* Keep irq disabled to prevent changes to the clock */
	local_irq_save(flags);
	kvm_get_msr(v, MSR_IA32_TIME_STAMP_COUNTER,
			  &vcpu->hv_clock.tsc_timestamp);
	ktime_get_ts(&ts);
	local_irq_restore(flags);

	/* With all the info we got, fill in the values */

	vcpu->hv_clock.system_time = ts.tv_nsec +
				     (NSEC_PER_SEC * (u64)ts.tv_sec);
	/*
	 * The interface expects us to write an even number signaling that the
	 * update is finished. Since the guest won't see the intermediate
600
	 * state, we just increase by 2 at the end.
601
	 */
602
	vcpu->hv_clock.version += 2;
603 604 605 606

	shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);

	memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
607
	       sizeof(vcpu->hv_clock));
608 609 610 611 612 613

	kunmap_atomic(shared_kaddr, KM_USER0);

	mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
}

A
Avi Kivity 已提交
614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645
static bool msr_mtrr_valid(unsigned msr)
{
	switch (msr) {
	case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
	case MSR_MTRRfix64K_00000:
	case MSR_MTRRfix16K_80000:
	case MSR_MTRRfix16K_A0000:
	case MSR_MTRRfix4K_C0000:
	case MSR_MTRRfix4K_C8000:
	case MSR_MTRRfix4K_D0000:
	case MSR_MTRRfix4K_D8000:
	case MSR_MTRRfix4K_E0000:
	case MSR_MTRRfix4K_E8000:
	case MSR_MTRRfix4K_F0000:
	case MSR_MTRRfix4K_F8000:
	case MSR_MTRRdefType:
	case MSR_IA32_CR_PAT:
		return true;
	case 0x2f8:
		return true;
	}
	return false;
}

static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
{
	if (!msr_mtrr_valid(msr))
		return 1;

	vcpu->arch.mtrr[msr - 0x200] = data;
	return 0;
}
646 647 648 649 650 651 652 653 654

int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
{
	switch (msr) {
	case MSR_EFER:
		set_efer(vcpu, data);
		break;
	case MSR_IA32_MC0_STATUS:
		pr_unimpl(vcpu, "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
655
		       __func__, data);
656 657 658
		break;
	case MSR_IA32_MCG_STATUS:
		pr_unimpl(vcpu, "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
659
			__func__, data);
660
		break;
661 662
	case MSR_IA32_MCG_CTL:
		pr_unimpl(vcpu, "%s: MSR_IA32_MCG_CTL 0x%llx, nop\n",
663
			__func__, data);
664
		break;
665 666 667
	case MSR_IA32_UCODE_REV:
	case MSR_IA32_UCODE_WRITE:
		break;
A
Avi Kivity 已提交
668 669
	case 0x200 ... 0x2ff:
		return set_msr_mtrr(vcpu, msr, data);
670 671 672 673
	case MSR_IA32_APICBASE:
		kvm_set_apic_base(vcpu, data);
		break;
	case MSR_IA32_MISC_ENABLE:
674
		vcpu->arch.ia32_misc_enable_msr = data;
675
		break;
676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707
	case MSR_KVM_WALL_CLOCK:
		vcpu->kvm->arch.wall_clock = data;
		kvm_write_wall_clock(vcpu->kvm, data);
		break;
	case MSR_KVM_SYSTEM_TIME: {
		if (vcpu->arch.time_page) {
			kvm_release_page_dirty(vcpu->arch.time_page);
			vcpu->arch.time_page = NULL;
		}

		vcpu->arch.time = data;

		/* we verify if the enable bit is set... */
		if (!(data & 1))
			break;

		/* ...but clean it before doing the actual write */
		vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);

		down_read(&current->mm->mmap_sem);
		vcpu->arch.time_page =
				gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
		up_read(&current->mm->mmap_sem);

		if (is_error_page(vcpu->arch.time_page)) {
			kvm_release_page_clean(vcpu->arch.time_page);
			vcpu->arch.time_page = NULL;
		}

		kvm_write_guest_time(vcpu);
		break;
	}
708
	default:
709
		pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n", msr, data);
710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL_GPL(kvm_set_msr_common);


/*
 * Reads an msr value (of 'msr_index') into 'pdata'.
 * Returns 0 on success, non-0 otherwise.
 * Assumes vcpu_load() was already called.
 */
int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
{
	return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
}

A
Avi Kivity 已提交
727 728 729 730 731 732 733 734 735
static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
{
	if (!msr_mtrr_valid(msr))
		return 1;

	*pdata = vcpu->arch.mtrr[msr - 0x200];
	return 0;
}

736 737 738 739 740 741 742 743 744 745 746 747 748
int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
{
	u64 data;

	switch (msr) {
	case 0xc0010010: /* SYSCFG */
	case 0xc0010015: /* HWCR */
	case MSR_IA32_PLATFORM_ID:
	case MSR_IA32_P5_MC_ADDR:
	case MSR_IA32_P5_MC_TYPE:
	case MSR_IA32_MC0_CTL:
	case MSR_IA32_MCG_STATUS:
	case MSR_IA32_MCG_CAP:
749
	case MSR_IA32_MCG_CTL:
750 751 752 753 754 755 756 757 758
	case MSR_IA32_MC0_MISC:
	case MSR_IA32_MC0_MISC+4:
	case MSR_IA32_MC0_MISC+8:
	case MSR_IA32_MC0_MISC+12:
	case MSR_IA32_MC0_MISC+16:
	case MSR_IA32_UCODE_REV:
	case MSR_IA32_EBL_CR_POWERON:
		data = 0;
		break;
A
Avi Kivity 已提交
759 760 761 762 763
	case MSR_MTRRcap:
		data = 0x500 | KVM_NR_VAR_MTRR;
		break;
	case 0x200 ... 0x2ff:
		return get_msr_mtrr(vcpu, msr, pdata);
764 765 766 767 768 769 770
	case 0xcd: /* fsb frequency */
		data = 3;
		break;
	case MSR_IA32_APICBASE:
		data = kvm_get_apic_base(vcpu);
		break;
	case MSR_IA32_MISC_ENABLE:
771
		data = vcpu->arch.ia32_misc_enable_msr;
772
		break;
773 774 775 776 777 778
	case MSR_IA32_PERF_STATUS:
		/* TSC increment by tick */
		data = 1000ULL;
		/* CPU multiplier */
		data |= (((uint64_t)4ULL) << 40);
		break;
779
	case MSR_EFER:
780
		data = vcpu->arch.shadow_efer;
781
		break;
782 783 784 785 786 787
	case MSR_KVM_WALL_CLOCK:
		data = vcpu->kvm->arch.wall_clock;
		break;
	case MSR_KVM_SYSTEM_TIME:
		data = vcpu->arch.time;
		break;
788 789 790 791 792 793 794 795 796
	default:
		pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
		return 1;
	}
	*pdata = data;
	return 0;
}
EXPORT_SYMBOL_GPL(kvm_get_msr_common);

797 798 799 800 801 802 803 804 805 806 807 808 809 810
/*
 * Read or write a bunch of msrs. All parameters are kernel addresses.
 *
 * @return number of msrs set successfully.
 */
static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
		    struct kvm_msr_entry *entries,
		    int (*do_msr)(struct kvm_vcpu *vcpu,
				  unsigned index, u64 *data))
{
	int i;

	vcpu_load(vcpu);

811
	down_read(&vcpu->kvm->slots_lock);
812 813 814
	for (i = 0; i < msrs->nmsrs; ++i)
		if (do_msr(vcpu, entries[i].index, &entries[i].data))
			break;
815
	up_read(&vcpu->kvm->slots_lock);
816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870

	vcpu_put(vcpu);

	return i;
}

/*
 * Read or write a bunch of msrs. Parameters are user addresses.
 *
 * @return number of msrs set successfully.
 */
static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
		  int (*do_msr)(struct kvm_vcpu *vcpu,
				unsigned index, u64 *data),
		  int writeback)
{
	struct kvm_msrs msrs;
	struct kvm_msr_entry *entries;
	int r, n;
	unsigned size;

	r = -EFAULT;
	if (copy_from_user(&msrs, user_msrs, sizeof msrs))
		goto out;

	r = -E2BIG;
	if (msrs.nmsrs >= MAX_IO_MSRS)
		goto out;

	r = -ENOMEM;
	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
	entries = vmalloc(size);
	if (!entries)
		goto out;

	r = -EFAULT;
	if (copy_from_user(entries, user_msrs->entries, size))
		goto out_free;

	r = n = __msr_io(vcpu, &msrs, entries, do_msr);
	if (r < 0)
		goto out_free;

	r = -EFAULT;
	if (writeback && copy_to_user(user_msrs->entries, entries, size))
		goto out_free;

	r = n;

out_free:
	vfree(entries);
out:
	return r;
}

871 872 873 874 875 876 877 878 879 880
int kvm_dev_ioctl_check_extension(long ext)
{
	int r;

	switch (ext) {
	case KVM_CAP_IRQCHIP:
	case KVM_CAP_HLT:
	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
	case KVM_CAP_USER_MEMORY:
	case KVM_CAP_SET_TSS_ADDR:
881
	case KVM_CAP_EXT_CPUID:
882
	case KVM_CAP_CLOCKSOURCE:
S
Sheng Yang 已提交
883
	case KVM_CAP_PIT:
884
	case KVM_CAP_NOP_IO_DELAY:
885
	case KVM_CAP_MP_STATE:
886 887
		r = 1;
		break;
888 889 890
	case KVM_CAP_COALESCED_MMIO:
		r = KVM_COALESCED_MMIO_PAGE_OFFSET;
		break;
891 892 893
	case KVM_CAP_VAPIC:
		r = !kvm_x86_ops->cpu_has_accelerated_tpr();
		break;
894 895 896
	case KVM_CAP_NR_VCPUS:
		r = KVM_MAX_VCPUS;
		break;
897 898 899
	case KVM_CAP_NR_MEMSLOTS:
		r = KVM_MEMORY_SLOTS;
		break;
900 901 902
	case KVM_CAP_PV_MMU:
		r = !tdp_enabled;
		break;
903 904 905 906 907 908 909 910
	default:
		r = 0;
		break;
	}
	return r;

}

911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944
long kvm_arch_dev_ioctl(struct file *filp,
			unsigned int ioctl, unsigned long arg)
{
	void __user *argp = (void __user *)arg;
	long r;

	switch (ioctl) {
	case KVM_GET_MSR_INDEX_LIST: {
		struct kvm_msr_list __user *user_msr_list = argp;
		struct kvm_msr_list msr_list;
		unsigned n;

		r = -EFAULT;
		if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
			goto out;
		n = msr_list.nmsrs;
		msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
		if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
			goto out;
		r = -E2BIG;
		if (n < num_msrs_to_save)
			goto out;
		r = -EFAULT;
		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
				 num_msrs_to_save * sizeof(u32)))
			goto out;
		if (copy_to_user(user_msr_list->indices
				 + num_msrs_to_save * sizeof(u32),
				 &emulated_msrs,
				 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
			goto out;
		r = 0;
		break;
	}
945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962
	case KVM_GET_SUPPORTED_CPUID: {
		struct kvm_cpuid2 __user *cpuid_arg = argp;
		struct kvm_cpuid2 cpuid;

		r = -EFAULT;
		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
			goto out;
		r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
			cpuid_arg->entries);
		if (r)
			goto out;

		r = -EFAULT;
		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
			goto out;
		r = 0;
		break;
	}
963 964 965 966 967 968 969
	default:
		r = -EINVAL;
	}
out:
	return r;
}

970 971 972
void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
	kvm_x86_ops->vcpu_load(vcpu, cpu);
973
	kvm_write_guest_time(vcpu);
974 975 976 977 978
}

void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
	kvm_x86_ops->vcpu_put(vcpu);
979
	kvm_put_guest_fpu(vcpu);
980 981
}

982
static int is_efer_nx(void)
983 984 985 986
{
	u64 efer;

	rdmsrl(MSR_EFER, efer);
987 988 989 990 991 992 993 994
	return efer & EFER_NX;
}

static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
{
	int i;
	struct kvm_cpuid_entry2 *e, *entry;

995
	entry = NULL;
996 997
	for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
		e = &vcpu->arch.cpuid_entries[i];
998 999 1000 1001 1002
		if (e->function == 0x80000001) {
			entry = e;
			break;
		}
	}
1003
	if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
1004 1005 1006 1007 1008
		entry->edx &= ~(1 << 20);
		printk(KERN_INFO "kvm: guest NX capability removed\n");
	}
}

1009
/* when an old userspace process fills a new kernel module */
1010 1011 1012
static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
				    struct kvm_cpuid *cpuid,
				    struct kvm_cpuid_entry __user *entries)
1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
{
	int r, i;
	struct kvm_cpuid_entry *cpuid_entries;

	r = -E2BIG;
	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
		goto out;
	r = -ENOMEM;
	cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
	if (!cpuid_entries)
		goto out;
	r = -EFAULT;
	if (copy_from_user(cpuid_entries, entries,
			   cpuid->nent * sizeof(struct kvm_cpuid_entry)))
		goto out_free;
	for (i = 0; i < cpuid->nent; i++) {
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
		vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
		vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
		vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
		vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
		vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
		vcpu->arch.cpuid_entries[i].index = 0;
		vcpu->arch.cpuid_entries[i].flags = 0;
		vcpu->arch.cpuid_entries[i].padding[0] = 0;
		vcpu->arch.cpuid_entries[i].padding[1] = 0;
		vcpu->arch.cpuid_entries[i].padding[2] = 0;
	}
	vcpu->arch.cpuid_nent = cpuid->nent;
1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
	cpuid_fix_nx_cap(vcpu);
	r = 0;

out_free:
	vfree(cpuid_entries);
out:
	return r;
}

static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
				    struct kvm_cpuid2 *cpuid,
				    struct kvm_cpuid_entry2 __user *entries)
1053 1054 1055 1056 1057 1058 1059
{
	int r;

	r = -E2BIG;
	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
		goto out;
	r = -EFAULT;
1060
	if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
1061
			   cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
1062
		goto out;
1063
	vcpu->arch.cpuid_nent = cpuid->nent;
1064 1065 1066 1067 1068 1069
	return 0;

out:
	return r;
}

1070 1071 1072 1073 1074 1075 1076
static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
				    struct kvm_cpuid2 *cpuid,
				    struct kvm_cpuid_entry2 __user *entries)
{
	int r;

	r = -E2BIG;
1077
	if (cpuid->nent < vcpu->arch.cpuid_nent)
1078 1079
		goto out;
	r = -EFAULT;
1080 1081
	if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
			   vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
1082 1083 1084 1085
		goto out;
	return 0;

out:
1086
	cpuid->nent = vcpu->arch.cpuid_nent;
1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
	return r;
}

static inline u32 bit(int bitno)
{
	return 1 << (bitno & 31);
}

static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
			  u32 index)
{
	entry->function = function;
	entry->index = index;
	cpuid_count(entry->function, entry->index,
		&entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
	entry->flags = 0;
}

static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
			 u32 index, int *nent, int maxnent)
{
	const u32 kvm_supported_word0_x86_features = bit(X86_FEATURE_FPU) |
		bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) |
		bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) |
		bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) |
		bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) |
		bit(X86_FEATURE_SEP) | bit(X86_FEATURE_PGE) |
		bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) |
		bit(X86_FEATURE_CLFLSH) | bit(X86_FEATURE_MMX) |
		bit(X86_FEATURE_FXSR) | bit(X86_FEATURE_XMM) |
		bit(X86_FEATURE_XMM2) | bit(X86_FEATURE_SELFSNOOP);
	const u32 kvm_supported_word1_x86_features = bit(X86_FEATURE_FPU) |
		bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) |
		bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) |
		bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) |
		bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) |
		bit(X86_FEATURE_PGE) |
		bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) |
		bit(X86_FEATURE_MMX) | bit(X86_FEATURE_FXSR) |
		bit(X86_FEATURE_SYSCALL) |
		(bit(X86_FEATURE_NX) && is_efer_nx()) |
#ifdef CONFIG_X86_64
		bit(X86_FEATURE_LM) |
#endif
		bit(X86_FEATURE_MMXEXT) |
		bit(X86_FEATURE_3DNOWEXT) |
		bit(X86_FEATURE_3DNOW);
	const u32 kvm_supported_word3_x86_features =
		bit(X86_FEATURE_XMM3) | bit(X86_FEATURE_CX16);
	const u32 kvm_supported_word6_x86_features =
		bit(X86_FEATURE_LAHF_LM) | bit(X86_FEATURE_CMP_LEGACY);

	/* all func 2 cpuid_count() should be called on the same cpu */
	get_cpu();
	do_cpuid_1_ent(entry, function, index);
	++*nent;

	switch (function) {
	case 0:
		entry->eax = min(entry->eax, (u32)0xb);
		break;
	case 1:
		entry->edx &= kvm_supported_word0_x86_features;
		entry->ecx &= kvm_supported_word3_x86_features;
		break;
	/* function 2 entries are STATEFUL. That is, repeated cpuid commands
	 * may return different values. This forces us to get_cpu() before
	 * issuing the first command, and also to emulate this annoying behavior
	 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
	case 2: {
		int t, times = entry->eax & 0xff;

		entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
		for (t = 1; t < times && *nent < maxnent; ++t) {
			do_cpuid_1_ent(&entry[t], function, 0);
			entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
			++*nent;
		}
		break;
	}
	/* function 4 and 0xb have additional index. */
	case 4: {
1169
		int i, cache_type;
1170 1171 1172

		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
		/* read more entries until cache_type is zero */
1173 1174
		for (i = 1; *nent < maxnent; ++i) {
			cache_type = entry[i - 1].eax & 0x1f;
1175 1176
			if (!cache_type)
				break;
1177 1178
			do_cpuid_1_ent(&entry[i], function, i);
			entry[i].flags |=
1179 1180 1181 1182 1183 1184
			       KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
			++*nent;
		}
		break;
	}
	case 0xb: {
1185
		int i, level_type;
1186 1187 1188

		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
		/* read more entries until level_type is zero */
1189 1190
		for (i = 1; *nent < maxnent; ++i) {
			level_type = entry[i - 1].ecx & 0xff;
1191 1192
			if (!level_type)
				break;
1193 1194
			do_cpuid_1_ent(&entry[i], function, i);
			entry[i].flags |=
1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
			       KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
			++*nent;
		}
		break;
	}
	case 0x80000000:
		entry->eax = min(entry->eax, 0x8000001a);
		break;
	case 0x80000001:
		entry->edx &= kvm_supported_word1_x86_features;
		entry->ecx &= kvm_supported_word6_x86_features;
		break;
	}
	put_cpu();
}

1211
static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251
				    struct kvm_cpuid_entry2 __user *entries)
{
	struct kvm_cpuid_entry2 *cpuid_entries;
	int limit, nent = 0, r = -E2BIG;
	u32 func;

	if (cpuid->nent < 1)
		goto out;
	r = -ENOMEM;
	cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
	if (!cpuid_entries)
		goto out;

	do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
	limit = cpuid_entries[0].eax;
	for (func = 1; func <= limit && nent < cpuid->nent; ++func)
		do_cpuid_ent(&cpuid_entries[nent], func, 0,
				&nent, cpuid->nent);
	r = -E2BIG;
	if (nent >= cpuid->nent)
		goto out_free;

	do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
	limit = cpuid_entries[nent - 1].eax;
	for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
		do_cpuid_ent(&cpuid_entries[nent], func, 0,
			       &nent, cpuid->nent);
	r = -EFAULT;
	if (copy_to_user(entries, cpuid_entries,
			nent * sizeof(struct kvm_cpuid_entry2)))
		goto out_free;
	cpuid->nent = nent;
	r = 0;

out_free:
	vfree(cpuid_entries);
out:
	return r;
}

1252 1253 1254 1255
static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
				    struct kvm_lapic_state *s)
{
	vcpu_load(vcpu);
1256
	memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
1257 1258 1259 1260 1261 1262 1263 1264 1265
	vcpu_put(vcpu);

	return 0;
}

static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
				    struct kvm_lapic_state *s)
{
	vcpu_load(vcpu);
1266
	memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
1267 1268 1269 1270 1271 1272
	kvm_apic_post_state_restore(vcpu);
	vcpu_put(vcpu);

	return 0;
}

1273 1274 1275 1276 1277 1278 1279 1280 1281
static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
				    struct kvm_interrupt *irq)
{
	if (irq->irq < 0 || irq->irq >= 256)
		return -EINVAL;
	if (irqchip_in_kernel(vcpu->kvm))
		return -ENXIO;
	vcpu_load(vcpu);

1282 1283
	set_bit(irq->irq, vcpu->arch.irq_pending);
	set_bit(irq->irq / BITS_PER_LONG, &vcpu->arch.irq_summary);
1284 1285 1286 1287 1288 1289

	vcpu_put(vcpu);

	return 0;
}

1290 1291 1292 1293 1294 1295 1296 1297 1298
static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
					   struct kvm_tpr_access_ctl *tac)
{
	if (tac->flags)
		return -EINVAL;
	vcpu->arch.tpr_access_reporting = !!tac->enabled;
	return 0;
}

1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331
long kvm_arch_vcpu_ioctl(struct file *filp,
			 unsigned int ioctl, unsigned long arg)
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;
	int r;

	switch (ioctl) {
	case KVM_GET_LAPIC: {
		struct kvm_lapic_state lapic;

		memset(&lapic, 0, sizeof lapic);
		r = kvm_vcpu_ioctl_get_lapic(vcpu, &lapic);
		if (r)
			goto out;
		r = -EFAULT;
		if (copy_to_user(argp, &lapic, sizeof lapic))
			goto out;
		r = 0;
		break;
	}
	case KVM_SET_LAPIC: {
		struct kvm_lapic_state lapic;

		r = -EFAULT;
		if (copy_from_user(&lapic, argp, sizeof lapic))
			goto out;
		r = kvm_vcpu_ioctl_set_lapic(vcpu, &lapic);;
		if (r)
			goto out;
		r = 0;
		break;
	}
1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
	case KVM_INTERRUPT: {
		struct kvm_interrupt irq;

		r = -EFAULT;
		if (copy_from_user(&irq, argp, sizeof irq))
			goto out;
		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
		if (r)
			goto out;
		r = 0;
		break;
	}
1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355
	case KVM_SET_CPUID: {
		struct kvm_cpuid __user *cpuid_arg = argp;
		struct kvm_cpuid cpuid;

		r = -EFAULT;
		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
			goto out;
		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
		if (r)
			goto out;
		break;
	}
1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
	case KVM_SET_CPUID2: {
		struct kvm_cpuid2 __user *cpuid_arg = argp;
		struct kvm_cpuid2 cpuid;

		r = -EFAULT;
		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
			goto out;
		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
				cpuid_arg->entries);
		if (r)
			goto out;
		break;
	}
	case KVM_GET_CPUID2: {
		struct kvm_cpuid2 __user *cpuid_arg = argp;
		struct kvm_cpuid2 cpuid;

		r = -EFAULT;
		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
			goto out;
		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
				cpuid_arg->entries);
		if (r)
			goto out;
		r = -EFAULT;
		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
			goto out;
		r = 0;
		break;
	}
1386 1387 1388 1389 1390 1391
	case KVM_GET_MSRS:
		r = msr_io(vcpu, argp, kvm_get_msr, 1);
		break;
	case KVM_SET_MSRS:
		r = msr_io(vcpu, argp, do_set_msr, 0);
		break;
1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
	case KVM_TPR_ACCESS_REPORTING: {
		struct kvm_tpr_access_ctl tac;

		r = -EFAULT;
		if (copy_from_user(&tac, argp, sizeof tac))
			goto out;
		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
		if (r)
			goto out;
		r = -EFAULT;
		if (copy_to_user(argp, &tac, sizeof tac))
			goto out;
		r = 0;
		break;
	};
A
Avi Kivity 已提交
1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419
	case KVM_SET_VAPIC_ADDR: {
		struct kvm_vapic_addr va;

		r = -EINVAL;
		if (!irqchip_in_kernel(vcpu->kvm))
			goto out;
		r = -EFAULT;
		if (copy_from_user(&va, argp, sizeof va))
			goto out;
		r = 0;
		kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
		break;
	}
1420 1421 1422 1423 1424 1425 1426
	default:
		r = -EINVAL;
	}
out:
	return r;
}

1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442
static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
{
	int ret;

	if (addr > (unsigned int)(-3 * PAGE_SIZE))
		return -1;
	ret = kvm_x86_ops->set_tss_addr(kvm, addr);
	return ret;
}

static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
					  u32 kvm_nr_mmu_pages)
{
	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
		return -EINVAL;

1443
	down_write(&kvm->slots_lock);
1444 1445

	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
1446
	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
1447

1448
	up_write(&kvm->slots_lock);
1449 1450 1451 1452 1453
	return 0;
}

static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
{
1454
	return kvm->arch.n_alloc_mmu_pages;
1455 1456
}

1457 1458 1459 1460 1461
gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
{
	int i;
	struct kvm_mem_alias *alias;

1462 1463
	for (i = 0; i < kvm->arch.naliases; ++i) {
		alias = &kvm->arch.aliases[i];
1464 1465 1466 1467 1468 1469 1470
		if (gfn >= alias->base_gfn
		    && gfn < alias->base_gfn + alias->npages)
			return alias->target_gfn + gfn - alias->base_gfn;
	}
	return gfn;
}

1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496
/*
 * Set a new alias region.  Aliases map a portion of physical memory into
 * another portion.  This is useful for memory windows, for example the PC
 * VGA region.
 */
static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
					 struct kvm_memory_alias *alias)
{
	int r, n;
	struct kvm_mem_alias *p;

	r = -EINVAL;
	/* General sanity checks */
	if (alias->memory_size & (PAGE_SIZE - 1))
		goto out;
	if (alias->guest_phys_addr & (PAGE_SIZE - 1))
		goto out;
	if (alias->slot >= KVM_ALIAS_SLOTS)
		goto out;
	if (alias->guest_phys_addr + alias->memory_size
	    < alias->guest_phys_addr)
		goto out;
	if (alias->target_phys_addr + alias->memory_size
	    < alias->target_phys_addr)
		goto out;

1497
	down_write(&kvm->slots_lock);
1498

1499
	p = &kvm->arch.aliases[alias->slot];
1500 1501 1502 1503 1504
	p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
	p->npages = alias->memory_size >> PAGE_SHIFT;
	p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;

	for (n = KVM_ALIAS_SLOTS; n > 0; --n)
1505
		if (kvm->arch.aliases[n - 1].npages)
1506
			break;
1507
	kvm->arch.naliases = n;
1508 1509 1510

	kvm_mmu_zap_all(kvm);

1511
	up_write(&kvm->slots_lock);
1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575

	return 0;

out:
	return r;
}

static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
{
	int r;

	r = 0;
	switch (chip->chip_id) {
	case KVM_IRQCHIP_PIC_MASTER:
		memcpy(&chip->chip.pic,
			&pic_irqchip(kvm)->pics[0],
			sizeof(struct kvm_pic_state));
		break;
	case KVM_IRQCHIP_PIC_SLAVE:
		memcpy(&chip->chip.pic,
			&pic_irqchip(kvm)->pics[1],
			sizeof(struct kvm_pic_state));
		break;
	case KVM_IRQCHIP_IOAPIC:
		memcpy(&chip->chip.ioapic,
			ioapic_irqchip(kvm),
			sizeof(struct kvm_ioapic_state));
		break;
	default:
		r = -EINVAL;
		break;
	}
	return r;
}

static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
{
	int r;

	r = 0;
	switch (chip->chip_id) {
	case KVM_IRQCHIP_PIC_MASTER:
		memcpy(&pic_irqchip(kvm)->pics[0],
			&chip->chip.pic,
			sizeof(struct kvm_pic_state));
		break;
	case KVM_IRQCHIP_PIC_SLAVE:
		memcpy(&pic_irqchip(kvm)->pics[1],
			&chip->chip.pic,
			sizeof(struct kvm_pic_state));
		break;
	case KVM_IRQCHIP_IOAPIC:
		memcpy(ioapic_irqchip(kvm),
			&chip->chip.ioapic,
			sizeof(struct kvm_ioapic_state));
		break;
	default:
		r = -EINVAL;
		break;
	}
	kvm_pic_update_irq(pic_irqchip(kvm));
	return r;
}

1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592
static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
{
	int r = 0;

	memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
	return r;
}

static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
{
	int r = 0;

	memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
	kvm_pit_load_count(kvm, 0, ps->channels[0].count);
	return r;
}

1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603
/*
 * Get (and clear) the dirty memory log for a memory slot.
 */
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
				      struct kvm_dirty_log *log)
{
	int r;
	int n;
	struct kvm_memory_slot *memslot;
	int is_dirty = 0;

1604
	down_write(&kvm->slots_lock);
1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619

	r = kvm_get_dirty_log(kvm, log, &is_dirty);
	if (r)
		goto out;

	/* If nothing is dirty, don't bother messing with page tables. */
	if (is_dirty) {
		kvm_mmu_slot_remove_write_access(kvm, log->slot);
		kvm_flush_remote_tlbs(kvm);
		memslot = &kvm->memslots[log->slot];
		n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
		memset(memslot->dirty_bitmap, 0, n);
	}
	r = 0;
out:
1620
	up_write(&kvm->slots_lock);
1621 1622 1623
	return r;
}

1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673
long kvm_arch_vm_ioctl(struct file *filp,
		       unsigned int ioctl, unsigned long arg)
{
	struct kvm *kvm = filp->private_data;
	void __user *argp = (void __user *)arg;
	int r = -EINVAL;

	switch (ioctl) {
	case KVM_SET_TSS_ADDR:
		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
		if (r < 0)
			goto out;
		break;
	case KVM_SET_MEMORY_REGION: {
		struct kvm_memory_region kvm_mem;
		struct kvm_userspace_memory_region kvm_userspace_mem;

		r = -EFAULT;
		if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
			goto out;
		kvm_userspace_mem.slot = kvm_mem.slot;
		kvm_userspace_mem.flags = kvm_mem.flags;
		kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
		kvm_userspace_mem.memory_size = kvm_mem.memory_size;
		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
		if (r)
			goto out;
		break;
	}
	case KVM_SET_NR_MMU_PAGES:
		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
		if (r)
			goto out;
		break;
	case KVM_GET_NR_MMU_PAGES:
		r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
		break;
	case KVM_SET_MEMORY_ALIAS: {
		struct kvm_memory_alias alias;

		r = -EFAULT;
		if (copy_from_user(&alias, argp, sizeof alias))
			goto out;
		r = kvm_vm_ioctl_set_memory_alias(kvm, &alias);
		if (r)
			goto out;
		break;
	}
	case KVM_CREATE_IRQCHIP:
		r = -ENOMEM;
1674 1675
		kvm->arch.vpic = kvm_create_pic(kvm);
		if (kvm->arch.vpic) {
1676 1677
			r = kvm_ioapic_init(kvm);
			if (r) {
1678 1679
				kfree(kvm->arch.vpic);
				kvm->arch.vpic = NULL;
1680 1681 1682 1683 1684
				goto out;
			}
		} else
			goto out;
		break;
S
Sheng Yang 已提交
1685 1686 1687 1688 1689 1690
	case KVM_CREATE_PIT:
		r = -ENOMEM;
		kvm->arch.vpit = kvm_create_pit(kvm);
		if (kvm->arch.vpit)
			r = 0;
		break;
1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702
	case KVM_IRQ_LINE: {
		struct kvm_irq_level irq_event;

		r = -EFAULT;
		if (copy_from_user(&irq_event, argp, sizeof irq_event))
			goto out;
		if (irqchip_in_kernel(kvm)) {
			mutex_lock(&kvm->lock);
			if (irq_event.irq < 16)
				kvm_pic_set_irq(pic_irqchip(kvm),
					irq_event.irq,
					irq_event.level);
1703
			kvm_ioapic_set_irq(kvm->arch.vioapic,
1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745
					irq_event.irq,
					irq_event.level);
			mutex_unlock(&kvm->lock);
			r = 0;
		}
		break;
	}
	case KVM_GET_IRQCHIP: {
		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
		struct kvm_irqchip chip;

		r = -EFAULT;
		if (copy_from_user(&chip, argp, sizeof chip))
			goto out;
		r = -ENXIO;
		if (!irqchip_in_kernel(kvm))
			goto out;
		r = kvm_vm_ioctl_get_irqchip(kvm, &chip);
		if (r)
			goto out;
		r = -EFAULT;
		if (copy_to_user(argp, &chip, sizeof chip))
			goto out;
		r = 0;
		break;
	}
	case KVM_SET_IRQCHIP: {
		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
		struct kvm_irqchip chip;

		r = -EFAULT;
		if (copy_from_user(&chip, argp, sizeof chip))
			goto out;
		r = -ENXIO;
		if (!irqchip_in_kernel(kvm))
			goto out;
		r = kvm_vm_ioctl_set_irqchip(kvm, &chip);
		if (r)
			goto out;
		r = 0;
		break;
	}
1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776
	case KVM_GET_PIT: {
		struct kvm_pit_state ps;
		r = -EFAULT;
		if (copy_from_user(&ps, argp, sizeof ps))
			goto out;
		r = -ENXIO;
		if (!kvm->arch.vpit)
			goto out;
		r = kvm_vm_ioctl_get_pit(kvm, &ps);
		if (r)
			goto out;
		r = -EFAULT;
		if (copy_to_user(argp, &ps, sizeof ps))
			goto out;
		r = 0;
		break;
	}
	case KVM_SET_PIT: {
		struct kvm_pit_state ps;
		r = -EFAULT;
		if (copy_from_user(&ps, argp, sizeof ps))
			goto out;
		r = -ENXIO;
		if (!kvm->arch.vpit)
			goto out;
		r = kvm_vm_ioctl_set_pit(kvm, &ps);
		if (r)
			goto out;
		r = 0;
		break;
	}
1777 1778 1779 1780 1781 1782 1783
	default:
		;
	}
out:
	return r;
}

1784
static void kvm_init_msr_list(void)
1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798
{
	u32 dummy[2];
	unsigned i, j;

	for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
		if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
			continue;
		if (j < i)
			msrs_to_save[j] = msrs_to_save[i];
		j++;
	}
	num_msrs_to_save = j;
}

1799 1800 1801 1802
/*
 * Only apic need an MMIO device hook, so shortcut now..
 */
static struct kvm_io_device *vcpu_find_pervcpu_dev(struct kvm_vcpu *vcpu,
1803 1804
						gpa_t addr, int len,
						int is_write)
1805 1806 1807
{
	struct kvm_io_device *dev;

1808 1809
	if (vcpu->arch.apic) {
		dev = &vcpu->arch.apic->dev;
1810
		if (dev->in_range(dev, addr, len, is_write))
1811 1812 1813 1814 1815 1816 1817
			return dev;
	}
	return NULL;
}


static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
1818 1819
						gpa_t addr, int len,
						int is_write)
1820 1821 1822
{
	struct kvm_io_device *dev;

1823
	dev = vcpu_find_pervcpu_dev(vcpu, addr, len, is_write);
1824
	if (dev == NULL)
1825 1826
		dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr, len,
					  is_write);
1827 1828 1829 1830 1831 1832 1833 1834 1835
	return dev;
}

int emulator_read_std(unsigned long addr,
			     void *val,
			     unsigned int bytes,
			     struct kvm_vcpu *vcpu)
{
	void *data = val;
1836
	int r = X86EMUL_CONTINUE;
1837 1838

	while (bytes) {
1839
		gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
1840 1841 1842 1843
		unsigned offset = addr & (PAGE_SIZE-1);
		unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
		int ret;

1844 1845 1846 1847
		if (gpa == UNMAPPED_GVA) {
			r = X86EMUL_PROPAGATE_FAULT;
			goto out;
		}
1848
		ret = kvm_read_guest(vcpu->kvm, gpa, data, tocopy);
1849 1850 1851 1852
		if (ret < 0) {
			r = X86EMUL_UNHANDLEABLE;
			goto out;
		}
1853 1854 1855 1856 1857

		bytes -= tocopy;
		data += tocopy;
		addr += tocopy;
	}
1858 1859
out:
	return r;
1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876
}
EXPORT_SYMBOL_GPL(emulator_read_std);

static int emulator_read_emulated(unsigned long addr,
				  void *val,
				  unsigned int bytes,
				  struct kvm_vcpu *vcpu)
{
	struct kvm_io_device *mmio_dev;
	gpa_t                 gpa;

	if (vcpu->mmio_read_completed) {
		memcpy(val, vcpu->mmio_data, bytes);
		vcpu->mmio_read_completed = 0;
		return X86EMUL_CONTINUE;
	}

1877
	gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892

	/* For APIC access vmexit */
	if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
		goto mmio;

	if (emulator_read_std(addr, val, bytes, vcpu)
			== X86EMUL_CONTINUE)
		return X86EMUL_CONTINUE;
	if (gpa == UNMAPPED_GVA)
		return X86EMUL_PROPAGATE_FAULT;

mmio:
	/*
	 * Is this MMIO handled locally?
	 */
1893
	mutex_lock(&vcpu->kvm->lock);
1894
	mmio_dev = vcpu_find_mmio_dev(vcpu, gpa, bytes, 0);
1895 1896
	if (mmio_dev) {
		kvm_iodevice_read(mmio_dev, gpa, bytes, val);
1897
		mutex_unlock(&vcpu->kvm->lock);
1898 1899
		return X86EMUL_CONTINUE;
	}
1900
	mutex_unlock(&vcpu->kvm->lock);
1901 1902 1903 1904 1905 1906 1907 1908 1909

	vcpu->mmio_needed = 1;
	vcpu->mmio_phys_addr = gpa;
	vcpu->mmio_size = bytes;
	vcpu->mmio_is_write = 0;

	return X86EMUL_UNHANDLEABLE;
}

1910
int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
1911
			  const void *val, int bytes)
1912 1913 1914 1915
{
	int ret;

	ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
1916
	if (ret < 0)
1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927
		return 0;
	kvm_mmu_pte_write(vcpu, gpa, val, bytes);
	return 1;
}

static int emulator_write_emulated_onepage(unsigned long addr,
					   const void *val,
					   unsigned int bytes,
					   struct kvm_vcpu *vcpu)
{
	struct kvm_io_device *mmio_dev;
1928 1929 1930
	gpa_t                 gpa;

	gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
1931 1932

	if (gpa == UNMAPPED_GVA) {
1933
		kvm_inject_page_fault(vcpu, addr, 2);
1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947
		return X86EMUL_PROPAGATE_FAULT;
	}

	/* For APIC access vmexit */
	if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
		goto mmio;

	if (emulator_write_phys(vcpu, gpa, val, bytes))
		return X86EMUL_CONTINUE;

mmio:
	/*
	 * Is this MMIO handled locally?
	 */
1948
	mutex_lock(&vcpu->kvm->lock);
1949
	mmio_dev = vcpu_find_mmio_dev(vcpu, gpa, bytes, 1);
1950 1951
	if (mmio_dev) {
		kvm_iodevice_write(mmio_dev, gpa, bytes, val);
1952
		mutex_unlock(&vcpu->kvm->lock);
1953 1954
		return X86EMUL_CONTINUE;
	}
1955
	mutex_unlock(&vcpu->kvm->lock);
1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998

	vcpu->mmio_needed = 1;
	vcpu->mmio_phys_addr = gpa;
	vcpu->mmio_size = bytes;
	vcpu->mmio_is_write = 1;
	memcpy(vcpu->mmio_data, val, bytes);

	return X86EMUL_CONTINUE;
}

int emulator_write_emulated(unsigned long addr,
				   const void *val,
				   unsigned int bytes,
				   struct kvm_vcpu *vcpu)
{
	/* Crossing a page boundary? */
	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
		int rc, now;

		now = -addr & ~PAGE_MASK;
		rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
		if (rc != X86EMUL_CONTINUE)
			return rc;
		addr += now;
		val += now;
		bytes -= now;
	}
	return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
}
EXPORT_SYMBOL_GPL(emulator_write_emulated);

static int emulator_cmpxchg_emulated(unsigned long addr,
				     const void *old,
				     const void *new,
				     unsigned int bytes,
				     struct kvm_vcpu *vcpu)
{
	static int reported;

	if (!reported) {
		reported = 1;
		printk(KERN_WARNING "kvm: emulating exchange as write\n");
	}
1999 2000 2001
#ifndef CONFIG_X86_64
	/* guests cmpxchg8b have to be emulated atomically */
	if (bytes == 8) {
2002
		gpa_t gpa;
2003
		struct page *page;
A
Andrew Morton 已提交
2004
		char *kaddr;
2005 2006
		u64 val;

2007 2008
		gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);

2009 2010 2011 2012 2013 2014 2015 2016
		if (gpa == UNMAPPED_GVA ||
		   (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
			goto emul_write;

		if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
			goto emul_write;

		val = *(u64 *)new;
2017 2018

		down_read(&current->mm->mmap_sem);
2019
		page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
2020 2021
		up_read(&current->mm->mmap_sem);

A
Andrew Morton 已提交
2022 2023 2024
		kaddr = kmap_atomic(page, KM_USER0);
		set_64bit((u64 *)(kaddr + offset_in_page(gpa)), val);
		kunmap_atomic(kaddr, KM_USER0);
2025 2026
		kvm_release_page_dirty(page);
	}
2027
emul_write:
2028 2029
#endif

2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044
	return emulator_write_emulated(addr, new, bytes, vcpu);
}

static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
{
	return kvm_x86_ops->get_segment_base(vcpu, seg);
}

int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
{
	return X86EMUL_CONTINUE;
}

int emulate_clts(struct kvm_vcpu *vcpu)
{
J
Joerg Roedel 已提交
2045
	KVMTRACE_0D(CLTS, vcpu, handler);
2046
	kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 & ~X86_CR0_TS);
2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058
	return X86EMUL_CONTINUE;
}

int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
{
	struct kvm_vcpu *vcpu = ctxt->vcpu;

	switch (dr) {
	case 0 ... 3:
		*dest = kvm_x86_ops->get_dr(vcpu, dr);
		return X86EMUL_CONTINUE;
	default:
2059
		pr_unimpl(vcpu, "%s: unexpected dr %u\n", __func__, dr);
2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
		return X86EMUL_UNHANDLEABLE;
	}
}

int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
{
	unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
	int exception;

	kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
	if (exception) {
		/* FIXME: better handling */
		return X86EMUL_UNHANDLEABLE;
	}
	return X86EMUL_CONTINUE;
}

void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
{
	u8 opcodes[4];
2080
	unsigned long rip = vcpu->arch.rip;
2081 2082
	unsigned long rip_linear;

2083
	if (!printk_ratelimit())
2084 2085
		return;

2086 2087
	rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);

2088 2089 2090 2091 2092 2093 2094
	emulator_read_std(rip_linear, (void *)opcodes, 4, vcpu);

	printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
	       context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
}
EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);

2095
static struct x86_emulate_ops emulate_ops = {
2096 2097 2098 2099 2100 2101 2102 2103 2104 2105
	.read_std            = emulator_read_std,
	.read_emulated       = emulator_read_emulated,
	.write_emulated      = emulator_write_emulated,
	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
};

int emulate_instruction(struct kvm_vcpu *vcpu,
			struct kvm_run *run,
			unsigned long cr2,
			u16 error_code,
2106
			int emulation_type)
2107 2108
{
	int r;
2109
	struct decode_cache *c;
2110

2111
	vcpu->arch.mmio_fault_cr2 = cr2;
2112 2113 2114
	kvm_x86_ops->cache_regs(vcpu);

	vcpu->mmio_is_write = 0;
2115
	vcpu->arch.pio.string = 0;
2116

2117
	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
2118 2119 2120
		int cs_db, cs_l;
		kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);

2121 2122 2123 2124
		vcpu->arch.emulate_ctxt.vcpu = vcpu;
		vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
		vcpu->arch.emulate_ctxt.mode =
			(vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
2125 2126 2127 2128
			? X86EMUL_MODE_REAL : cs_l
			? X86EMUL_MODE_PROT64 :	cs_db
			? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;

2129 2130 2131 2132 2133
		if (vcpu->arch.emulate_ctxt.mode == X86EMUL_MODE_PROT64) {
			vcpu->arch.emulate_ctxt.cs_base = 0;
			vcpu->arch.emulate_ctxt.ds_base = 0;
			vcpu->arch.emulate_ctxt.es_base = 0;
			vcpu->arch.emulate_ctxt.ss_base = 0;
2134
		} else {
2135
			vcpu->arch.emulate_ctxt.cs_base =
2136
					get_segment_base(vcpu, VCPU_SREG_CS);
2137
			vcpu->arch.emulate_ctxt.ds_base =
2138
					get_segment_base(vcpu, VCPU_SREG_DS);
2139
			vcpu->arch.emulate_ctxt.es_base =
2140
					get_segment_base(vcpu, VCPU_SREG_ES);
2141
			vcpu->arch.emulate_ctxt.ss_base =
2142 2143 2144
					get_segment_base(vcpu, VCPU_SREG_SS);
		}

2145
		vcpu->arch.emulate_ctxt.gs_base =
2146
					get_segment_base(vcpu, VCPU_SREG_GS);
2147
		vcpu->arch.emulate_ctxt.fs_base =
2148 2149
					get_segment_base(vcpu, VCPU_SREG_FS);

2150
		r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
2151 2152 2153 2154 2155 2156 2157 2158 2159 2160

		/* Reject the instructions other than VMCALL/VMMCALL when
		 * try to emulate invalid opcode */
		c = &vcpu->arch.emulate_ctxt.decode;
		if ((emulation_type & EMULTYPE_TRAP_UD) &&
		    (!(c->twobyte && c->b == 0x01 &&
		      (c->modrm_reg == 0 || c->modrm_reg == 3) &&
		       c->modrm_mod == 3 && c->modrm_rm == 1)))
			return EMULATE_FAIL;

2161
		++vcpu->stat.insn_emulation;
2162
		if (r)  {
2163
			++vcpu->stat.insn_emulation_fail;
2164 2165 2166 2167 2168 2169
			if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
				return EMULATE_DONE;
			return EMULATE_FAIL;
		}
	}

2170
	r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
2171

2172
	if (vcpu->arch.pio.string)
2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193
		return EMULATE_DO_MMIO;

	if ((r || vcpu->mmio_is_write) && run) {
		run->exit_reason = KVM_EXIT_MMIO;
		run->mmio.phys_addr = vcpu->mmio_phys_addr;
		memcpy(run->mmio.data, vcpu->mmio_data, 8);
		run->mmio.len = vcpu->mmio_size;
		run->mmio.is_write = vcpu->mmio_is_write;
	}

	if (r) {
		if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
			return EMULATE_DONE;
		if (!vcpu->mmio_needed) {
			kvm_report_emulation_failure(vcpu, "mmio");
			return EMULATE_FAIL;
		}
		return EMULATE_DO_MMIO;
	}

	kvm_x86_ops->decache_regs(vcpu);
2194
	kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
2195 2196 2197 2198 2199 2200 2201 2202 2203 2204

	if (vcpu->mmio_is_write) {
		vcpu->mmio_needed = 0;
		return EMULATE_DO_MMIO;
	}

	return EMULATE_DONE;
}
EXPORT_SYMBOL_GPL(emulate_instruction);

2205 2206 2207 2208
static void free_pio_guest_pages(struct kvm_vcpu *vcpu)
{
	int i;

2209 2210 2211 2212
	for (i = 0; i < ARRAY_SIZE(vcpu->arch.pio.guest_pages); ++i)
		if (vcpu->arch.pio.guest_pages[i]) {
			kvm_release_page_dirty(vcpu->arch.pio.guest_pages[i]);
			vcpu->arch.pio.guest_pages[i] = NULL;
2213 2214 2215 2216 2217
		}
}

static int pio_copy_data(struct kvm_vcpu *vcpu)
{
2218
	void *p = vcpu->arch.pio_data;
2219 2220
	void *q;
	unsigned bytes;
2221
	int nr_pages = vcpu->arch.pio.guest_pages[1] ? 2 : 1;
2222

2223
	q = vmap(vcpu->arch.pio.guest_pages, nr_pages, VM_READ|VM_WRITE,
2224 2225 2226 2227 2228
		 PAGE_KERNEL);
	if (!q) {
		free_pio_guest_pages(vcpu);
		return -ENOMEM;
	}
2229 2230 2231
	q += vcpu->arch.pio.guest_page_offset;
	bytes = vcpu->arch.pio.size * vcpu->arch.pio.cur_count;
	if (vcpu->arch.pio.in)
2232 2233 2234
		memcpy(q, p, bytes);
	else
		memcpy(p, q, bytes);
2235
	q -= vcpu->arch.pio.guest_page_offset;
2236 2237 2238 2239 2240 2241 2242
	vunmap(q);
	free_pio_guest_pages(vcpu);
	return 0;
}

int complete_pio(struct kvm_vcpu *vcpu)
{
2243
	struct kvm_pio_request *io = &vcpu->arch.pio;
2244 2245 2246 2247 2248 2249 2250
	long delta;
	int r;

	kvm_x86_ops->cache_regs(vcpu);

	if (!io->string) {
		if (io->in)
2251
			memcpy(&vcpu->arch.regs[VCPU_REGS_RAX], vcpu->arch.pio_data,
2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268
			       io->size);
	} else {
		if (io->in) {
			r = pio_copy_data(vcpu);
			if (r) {
				kvm_x86_ops->cache_regs(vcpu);
				return r;
			}
		}

		delta = 1;
		if (io->rep) {
			delta *= io->cur_count;
			/*
			 * The size of the register should really depend on
			 * current address size.
			 */
2269
			vcpu->arch.regs[VCPU_REGS_RCX] -= delta;
2270 2271 2272 2273 2274
		}
		if (io->down)
			delta = -delta;
		delta *= io->size;
		if (io->in)
2275
			vcpu->arch.regs[VCPU_REGS_RDI] += delta;
2276
		else
2277
			vcpu->arch.regs[VCPU_REGS_RSI] += delta;
2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294
	}

	kvm_x86_ops->decache_regs(vcpu);

	io->count -= io->cur_count;
	io->cur_count = 0;

	return 0;
}

static void kernel_pio(struct kvm_io_device *pio_dev,
		       struct kvm_vcpu *vcpu,
		       void *pd)
{
	/* TODO: String I/O for in kernel device */

	mutex_lock(&vcpu->kvm->lock);
2295 2296 2297
	if (vcpu->arch.pio.in)
		kvm_iodevice_read(pio_dev, vcpu->arch.pio.port,
				  vcpu->arch.pio.size,
2298 2299
				  pd);
	else
2300 2301
		kvm_iodevice_write(pio_dev, vcpu->arch.pio.port,
				   vcpu->arch.pio.size,
2302 2303 2304 2305 2306 2307 2308
				   pd);
	mutex_unlock(&vcpu->kvm->lock);
}

static void pio_string_write(struct kvm_io_device *pio_dev,
			     struct kvm_vcpu *vcpu)
{
2309 2310
	struct kvm_pio_request *io = &vcpu->arch.pio;
	void *pd = vcpu->arch.pio_data;
2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323
	int i;

	mutex_lock(&vcpu->kvm->lock);
	for (i = 0; i < io->cur_count; i++) {
		kvm_iodevice_write(pio_dev, io->port,
				   io->size,
				   pd);
		pd += io->size;
	}
	mutex_unlock(&vcpu->kvm->lock);
}

static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
2324 2325
					       gpa_t addr, int len,
					       int is_write)
2326
{
2327
	return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr, len, is_write);
2328 2329 2330 2331 2332 2333 2334 2335 2336
}

int kvm_emulate_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
		  int size, unsigned port)
{
	struct kvm_io_device *pio_dev;

	vcpu->run->exit_reason = KVM_EXIT_IO;
	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
2337
	vcpu->run->io.size = vcpu->arch.pio.size = size;
2338
	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
2339 2340 2341 2342 2343 2344 2345
	vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = 1;
	vcpu->run->io.port = vcpu->arch.pio.port = port;
	vcpu->arch.pio.in = in;
	vcpu->arch.pio.string = 0;
	vcpu->arch.pio.down = 0;
	vcpu->arch.pio.guest_page_offset = 0;
	vcpu->arch.pio.rep = 0;
2346

F
Feng (Eric) Liu 已提交
2347 2348 2349 2350 2351 2352 2353
	if (vcpu->run->io.direction == KVM_EXIT_IO_IN)
		KVMTRACE_2D(IO_READ, vcpu, vcpu->run->io.port, (u32)size,
			    handler);
	else
		KVMTRACE_2D(IO_WRITE, vcpu, vcpu->run->io.port, (u32)size,
			    handler);

2354
	kvm_x86_ops->cache_regs(vcpu);
2355
	memcpy(vcpu->arch.pio_data, &vcpu->arch.regs[VCPU_REGS_RAX], 4);
2356 2357 2358

	kvm_x86_ops->skip_emulated_instruction(vcpu);

2359
	pio_dev = vcpu_find_pio_dev(vcpu, port, size, !in);
2360
	if (pio_dev) {
2361
		kernel_pio(pio_dev, vcpu, vcpu->arch.pio_data);
2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380
		complete_pio(vcpu);
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL_GPL(kvm_emulate_pio);

int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
		  int size, unsigned long count, int down,
		  gva_t address, int rep, unsigned port)
{
	unsigned now, in_page;
	int i, ret = 0;
	int nr_pages = 1;
	struct page *page;
	struct kvm_io_device *pio_dev;

	vcpu->run->exit_reason = KVM_EXIT_IO;
	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
2381
	vcpu->run->io.size = vcpu->arch.pio.size = size;
2382
	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
2383 2384 2385 2386 2387 2388 2389
	vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = count;
	vcpu->run->io.port = vcpu->arch.pio.port = port;
	vcpu->arch.pio.in = in;
	vcpu->arch.pio.string = 1;
	vcpu->arch.pio.down = down;
	vcpu->arch.pio.guest_page_offset = offset_in_page(address);
	vcpu->arch.pio.rep = rep;
2390

F
Feng (Eric) Liu 已提交
2391 2392 2393 2394 2395 2396 2397
	if (vcpu->run->io.direction == KVM_EXIT_IO_IN)
		KVMTRACE_2D(IO_READ, vcpu, vcpu->run->io.port, (u32)size,
			    handler);
	else
		KVMTRACE_2D(IO_WRITE, vcpu, vcpu->run->io.port, (u32)size,
			    handler);

2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421
	if (!count) {
		kvm_x86_ops->skip_emulated_instruction(vcpu);
		return 1;
	}

	if (!down)
		in_page = PAGE_SIZE - offset_in_page(address);
	else
		in_page = offset_in_page(address) + size;
	now = min(count, (unsigned long)in_page / size);
	if (!now) {
		/*
		 * String I/O straddles page boundary.  Pin two guest pages
		 * so that we satisfy atomicity constraints.  Do just one
		 * transaction to avoid complexity.
		 */
		nr_pages = 2;
		now = 1;
	}
	if (down) {
		/*
		 * String I/O in reverse.  Yuck.  Kill the guest, fix later.
		 */
		pr_unimpl(vcpu, "guest string pio down\n");
2422
		kvm_inject_gp(vcpu, 0);
2423 2424 2425
		return 1;
	}
	vcpu->run->io.count = now;
2426
	vcpu->arch.pio.cur_count = now;
2427

2428
	if (vcpu->arch.pio.cur_count == vcpu->arch.pio.count)
2429 2430 2431 2432
		kvm_x86_ops->skip_emulated_instruction(vcpu);

	for (i = 0; i < nr_pages; ++i) {
		page = gva_to_page(vcpu, address + i * PAGE_SIZE);
2433
		vcpu->arch.pio.guest_pages[i] = page;
2434
		if (!page) {
2435
			kvm_inject_gp(vcpu, 0);
2436 2437 2438 2439 2440
			free_pio_guest_pages(vcpu);
			return 1;
		}
	}

2441 2442 2443
	pio_dev = vcpu_find_pio_dev(vcpu, port,
				    vcpu->arch.pio.cur_count,
				    !vcpu->arch.pio.in);
2444
	if (!vcpu->arch.pio.in) {
2445 2446 2447 2448 2449
		/* string PIO write */
		ret = pio_copy_data(vcpu);
		if (ret >= 0 && pio_dev) {
			pio_string_write(pio_dev, vcpu);
			complete_pio(vcpu);
2450
			if (vcpu->arch.pio.count == 0)
2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461
				ret = 1;
		}
	} else if (pio_dev)
		pr_unimpl(vcpu, "no string pio read support yet, "
		       "port %x size %d count %ld\n",
			port, size, count);

	return ret;
}
EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);

2462
int kvm_arch_init(void *opaque)
2463
{
2464
	int r;
2465 2466 2467 2468
	struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;

	if (kvm_x86_ops) {
		printk(KERN_ERR "kvm: already loaded the other module\n");
2469 2470
		r = -EEXIST;
		goto out;
2471 2472 2473 2474
	}

	if (!ops->cpu_has_kvm_support()) {
		printk(KERN_ERR "kvm: no hardware support\n");
2475 2476
		r = -EOPNOTSUPP;
		goto out;
2477 2478 2479
	}
	if (ops->disabled_by_bios()) {
		printk(KERN_ERR "kvm: disabled by bios\n");
2480 2481
		r = -EOPNOTSUPP;
		goto out;
2482 2483
	}

2484 2485 2486 2487 2488 2489
	r = kvm_mmu_module_init();
	if (r)
		goto out;

	kvm_init_msr_list();

2490
	kvm_x86_ops = ops;
2491
	kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
S
Sheng Yang 已提交
2492 2493 2494
	kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
	kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
			PT_DIRTY_MASK, PT64_NX_MASK, 0);
2495
	return 0;
2496 2497 2498

out:
	return r;
2499
}
2500

2501 2502 2503
void kvm_arch_exit(void)
{
	kvm_x86_ops = NULL;
2504 2505
	kvm_mmu_module_exit();
}
2506

2507 2508 2509
int kvm_emulate_halt(struct kvm_vcpu *vcpu)
{
	++vcpu->stat.halt_exits;
F
Feng (Eric) Liu 已提交
2510
	KVMTRACE_0D(HLT, vcpu, handler);
2511
	if (irqchip_in_kernel(vcpu->kvm)) {
2512
		vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
2513
		up_read(&vcpu->kvm->slots_lock);
2514
		kvm_vcpu_block(vcpu);
2515
		down_read(&vcpu->kvm->slots_lock);
2516
		if (vcpu->arch.mp_state != KVM_MP_STATE_RUNNABLE)
2517 2518 2519 2520 2521 2522 2523 2524 2525
			return -EINTR;
		return 1;
	} else {
		vcpu->run->exit_reason = KVM_EXIT_HLT;
		return 0;
	}
}
EXPORT_SYMBOL_GPL(kvm_emulate_halt);

2526 2527 2528 2529 2530 2531 2532 2533 2534
static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
			   unsigned long a1)
{
	if (is_long_mode(vcpu))
		return a0;
	else
		return a0 | ((gpa_t)a1 << 32);
}

2535 2536 2537
int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
{
	unsigned long nr, a0, a1, a2, a3, ret;
2538
	int r = 1;
2539 2540 2541

	kvm_x86_ops->cache_regs(vcpu);

2542 2543 2544 2545 2546
	nr = vcpu->arch.regs[VCPU_REGS_RAX];
	a0 = vcpu->arch.regs[VCPU_REGS_RBX];
	a1 = vcpu->arch.regs[VCPU_REGS_RCX];
	a2 = vcpu->arch.regs[VCPU_REGS_RDX];
	a3 = vcpu->arch.regs[VCPU_REGS_RSI];
2547

F
Feng (Eric) Liu 已提交
2548 2549
	KVMTRACE_1D(VMMCALL, vcpu, (u32)nr, handler);

2550 2551 2552 2553 2554 2555 2556 2557 2558
	if (!is_long_mode(vcpu)) {
		nr &= 0xFFFFFFFF;
		a0 &= 0xFFFFFFFF;
		a1 &= 0xFFFFFFFF;
		a2 &= 0xFFFFFFFF;
		a3 &= 0xFFFFFFFF;
	}

	switch (nr) {
A
Avi Kivity 已提交
2559 2560 2561
	case KVM_HC_VAPIC_POLL_IRQ:
		ret = 0;
		break;
2562 2563 2564
	case KVM_HC_MMU_OP:
		r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
		break;
2565 2566 2567 2568
	default:
		ret = -KVM_ENOSYS;
		break;
	}
2569
	vcpu->arch.regs[VCPU_REGS_RAX] = ret;
2570
	kvm_x86_ops->decache_regs(vcpu);
A
Amit Shah 已提交
2571
	++vcpu->stat.hypercalls;
2572
	return r;
2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590
}
EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);

int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
{
	char instruction[3];
	int ret = 0;


	/*
	 * Blow out the MMU to ensure that no other VCPU has an active mapping
	 * to ensure that the updated hypercall appears atomically across all
	 * VCPUs.
	 */
	kvm_mmu_zap_all(vcpu->kvm);

	kvm_x86_ops->cache_regs(vcpu);
	kvm_x86_ops->patch_hypercall(vcpu, instruction);
2591
	if (emulator_write_emulated(vcpu->arch.rip, instruction, 3, vcpu)
2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619
	    != X86EMUL_CONTINUE)
		ret = -EFAULT;

	return ret;
}

static u64 mk_cr_64(u64 curr_cr, u32 new_val)
{
	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
}

void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
{
	struct descriptor_table dt = { limit, base };

	kvm_x86_ops->set_gdt(vcpu, &dt);
}

void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
{
	struct descriptor_table dt = { limit, base };

	kvm_x86_ops->set_idt(vcpu, &dt);
}

void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
		   unsigned long *rflags)
{
2620
	kvm_lmsw(vcpu, msw);
2621 2622 2623 2624 2625
	*rflags = kvm_x86_ops->get_rflags(vcpu);
}

unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
{
J
Joerg Roedel 已提交
2626 2627
	unsigned long value;

2628 2629 2630
	kvm_x86_ops->decache_cr4_guest_bits(vcpu);
	switch (cr) {
	case 0:
J
Joerg Roedel 已提交
2631 2632
		value = vcpu->arch.cr0;
		break;
2633
	case 2:
J
Joerg Roedel 已提交
2634 2635
		value = vcpu->arch.cr2;
		break;
2636
	case 3:
J
Joerg Roedel 已提交
2637 2638
		value = vcpu->arch.cr3;
		break;
2639
	case 4:
J
Joerg Roedel 已提交
2640 2641
		value = vcpu->arch.cr4;
		break;
2642
	case 8:
J
Joerg Roedel 已提交
2643 2644
		value = kvm_get_cr8(vcpu);
		break;
2645
	default:
2646
		vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
2647 2648
		return 0;
	}
J
Joerg Roedel 已提交
2649 2650 2651 2652
	KVMTRACE_3D(CR_READ, vcpu, (u32)cr, (u32)value,
		    (u32)((u64)value >> 32), handler);

	return value;
2653 2654 2655 2656 2657
}

void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
		     unsigned long *rflags)
{
J
Joerg Roedel 已提交
2658 2659 2660
	KVMTRACE_3D(CR_WRITE, vcpu, (u32)cr, (u32)val,
		    (u32)((u64)val >> 32), handler);

2661 2662
	switch (cr) {
	case 0:
2663
		kvm_set_cr0(vcpu, mk_cr_64(vcpu->arch.cr0, val));
2664 2665 2666
		*rflags = kvm_x86_ops->get_rflags(vcpu);
		break;
	case 2:
2667
		vcpu->arch.cr2 = val;
2668 2669
		break;
	case 3:
2670
		kvm_set_cr3(vcpu, val);
2671 2672
		break;
	case 4:
2673
		kvm_set_cr4(vcpu, mk_cr_64(vcpu->arch.cr4, val));
2674
		break;
2675
	case 8:
2676
		kvm_set_cr8(vcpu, val & 0xfUL);
2677
		break;
2678
	default:
2679
		vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
2680 2681 2682
	}
}

2683 2684
static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
{
2685 2686
	struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
	int j, nent = vcpu->arch.cpuid_nent;
2687 2688 2689 2690

	e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
	/* when no next entry is found, the current entry[i] is reselected */
	for (j = i + 1; j == i; j = (j + 1) % nent) {
2691
		struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714
		if (ej->function == e->function) {
			ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
			return j;
		}
	}
	return 0; /* silence gcc, even though control never reaches here */
}

/* find an entry with matching function, matching index (if needed), and that
 * should be read next (if it's stateful) */
static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
	u32 function, u32 index)
{
	if (e->function != function)
		return 0;
	if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
		return 0;
	if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
		!(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
		return 0;
	return 1;
}

2715 2716 2717
void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
{
	int i;
2718 2719
	u32 function, index;
	struct kvm_cpuid_entry2 *e, *best;
2720 2721

	kvm_x86_ops->cache_regs(vcpu);
2722 2723 2724 2725 2726 2727
	function = vcpu->arch.regs[VCPU_REGS_RAX];
	index = vcpu->arch.regs[VCPU_REGS_RCX];
	vcpu->arch.regs[VCPU_REGS_RAX] = 0;
	vcpu->arch.regs[VCPU_REGS_RBX] = 0;
	vcpu->arch.regs[VCPU_REGS_RCX] = 0;
	vcpu->arch.regs[VCPU_REGS_RDX] = 0;
2728
	best = NULL;
2729 2730
	for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
		e = &vcpu->arch.cpuid_entries[i];
2731 2732 2733
		if (is_matching_cpuid_entry(e, function, index)) {
			if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
				move_to_next_stateful_cpuid_entry(vcpu, i);
2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744
			best = e;
			break;
		}
		/*
		 * Both basic or both extended?
		 */
		if (((e->function ^ function) & 0x80000000) == 0)
			if (!best || e->function > best->function)
				best = e;
	}
	if (best) {
2745 2746 2747 2748
		vcpu->arch.regs[VCPU_REGS_RAX] = best->eax;
		vcpu->arch.regs[VCPU_REGS_RBX] = best->ebx;
		vcpu->arch.regs[VCPU_REGS_RCX] = best->ecx;
		vcpu->arch.regs[VCPU_REGS_RDX] = best->edx;
2749 2750 2751
	}
	kvm_x86_ops->decache_regs(vcpu);
	kvm_x86_ops->skip_emulated_instruction(vcpu);
F
Feng (Eric) Liu 已提交
2752 2753 2754 2755 2756
	KVMTRACE_5D(CPUID, vcpu, function,
		    (u32)vcpu->arch.regs[VCPU_REGS_RAX],
		    (u32)vcpu->arch.regs[VCPU_REGS_RBX],
		    (u32)vcpu->arch.regs[VCPU_REGS_RCX],
		    (u32)vcpu->arch.regs[VCPU_REGS_RDX], handler);
2757 2758
}
EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
2759

2760 2761 2762 2763 2764 2765 2766 2767 2768
/*
 * Check if userspace requested an interrupt window, and that the
 * interrupt window is open.
 *
 * No need to exit to userspace if we already have an interrupt queued.
 */
static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
					  struct kvm_run *kvm_run)
{
2769
	return (!vcpu->arch.irq_summary &&
2770
		kvm_run->request_interrupt_window &&
2771
		vcpu->arch.interrupt_window_open &&
2772 2773 2774 2775 2776 2777 2778
		(kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF));
}

static void post_kvm_run_save(struct kvm_vcpu *vcpu,
			      struct kvm_run *kvm_run)
{
	kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
2779
	kvm_run->cr8 = kvm_get_cr8(vcpu);
2780 2781 2782 2783 2784
	kvm_run->apic_base = kvm_get_apic_base(vcpu);
	if (irqchip_in_kernel(vcpu->kvm))
		kvm_run->ready_for_interrupt_injection = 1;
	else
		kvm_run->ready_for_interrupt_injection =
2785 2786
					(vcpu->arch.interrupt_window_open &&
					 vcpu->arch.irq_summary == 0);
2787 2788
}

A
Avi Kivity 已提交
2789 2790 2791 2792 2793 2794 2795 2796
static void vapic_enter(struct kvm_vcpu *vcpu)
{
	struct kvm_lapic *apic = vcpu->arch.apic;
	struct page *page;

	if (!apic || !apic->vapic_addr)
		return;

2797
	down_read(&current->mm->mmap_sem);
A
Avi Kivity 已提交
2798
	page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
2799
	up_read(&current->mm->mmap_sem);
2800 2801

	vcpu->arch.apic->vapic_page = page;
A
Avi Kivity 已提交
2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814
}

static void vapic_exit(struct kvm_vcpu *vcpu)
{
	struct kvm_lapic *apic = vcpu->arch.apic;

	if (!apic || !apic->vapic_addr)
		return;

	kvm_release_page_dirty(apic->vapic_page);
	mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
}

2815 2816 2817 2818
static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
	int r;

2819
	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
2820
		pr_debug("vcpu %d received sipi with vector # %x\n",
2821
		       vcpu->vcpu_id, vcpu->arch.sipi_vector);
2822 2823 2824 2825
		kvm_lapic_reset(vcpu);
		r = kvm_x86_ops->vcpu_reset(vcpu);
		if (r)
			return r;
2826
		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
2827 2828
	}

2829
	down_read(&vcpu->kvm->slots_lock);
A
Avi Kivity 已提交
2830 2831
	vapic_enter(vcpu);

2832 2833 2834 2835 2836
preempted:
	if (vcpu->guest_debug.enabled)
		kvm_x86_ops->guest_debug_pre(vcpu);

again:
2837 2838 2839 2840
	if (vcpu->requests)
		if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
			kvm_mmu_unload(vcpu);

2841 2842 2843 2844
	r = kvm_mmu_reload(vcpu);
	if (unlikely(r))
		goto out;

2845 2846
	if (vcpu->requests) {
		if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
M
Marcelo Tosatti 已提交
2847
			__kvm_migrate_timers(vcpu);
2848 2849
		if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
			kvm_x86_ops->tlb_flush(vcpu);
A
Avi Kivity 已提交
2850 2851 2852 2853 2854 2855
		if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
				       &vcpu->requests)) {
			kvm_run->exit_reason = KVM_EXIT_TPR_ACCESS;
			r = 0;
			goto out;
		}
J
Joerg Roedel 已提交
2856 2857 2858 2859 2860
		if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) {
			kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
			r = 0;
			goto out;
		}
2861
	}
A
Avi Kivity 已提交
2862

2863
	clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
2864 2865 2866 2867 2868 2869 2870 2871 2872
	kvm_inject_pending_timer_irqs(vcpu);

	preempt_disable();

	kvm_x86_ops->prepare_guest_switch(vcpu);
	kvm_load_guest_fpu(vcpu);

	local_irq_disable();

2873
	if (vcpu->requests || need_resched()) {
2874 2875 2876 2877 2878 2879
		local_irq_enable();
		preempt_enable();
		r = 1;
		goto out;
	}

2880 2881 2882 2883 2884 2885 2886 2887 2888
	if (signal_pending(current)) {
		local_irq_enable();
		preempt_enable();
		r = -EINTR;
		kvm_run->exit_reason = KVM_EXIT_INTR;
		++vcpu->stat.signal_exits;
		goto out;
	}

2889 2890 2891 2892 2893 2894 2895
	vcpu->guest_mode = 1;
	/*
	 * Make sure that guest_mode assignment won't happen after
	 * testing the pending IRQ vector bitmap.
	 */
	smp_wmb();

2896
	if (vcpu->arch.exception.pending)
2897 2898
		__queue_exception(vcpu);
	else if (irqchip_in_kernel(vcpu->kvm))
2899
		kvm_x86_ops->inject_pending_irq(vcpu);
2900
	else
2901 2902
		kvm_x86_ops->inject_pending_vectors(vcpu, kvm_run);

A
Avi Kivity 已提交
2903 2904
	kvm_lapic_sync_to_vapic(vcpu);

2905 2906
	up_read(&vcpu->kvm->slots_lock);

2907 2908 2909
	kvm_guest_enter();


F
Feng (Eric) Liu 已提交
2910
	KVMTRACE_0D(VMENTRY, vcpu, entryexit);
2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929
	kvm_x86_ops->run(vcpu, kvm_run);

	vcpu->guest_mode = 0;
	local_irq_enable();

	++vcpu->stat.exits;

	/*
	 * We must have an instruction between local_irq_enable() and
	 * kvm_guest_exit(), so the timer interrupt isn't delayed by
	 * the interrupt shadow.  The stat.exits increment will do nicely.
	 * But we need to prevent reordering, hence this barrier():
	 */
	barrier();

	kvm_guest_exit();

	preempt_enable();

2930 2931
	down_read(&vcpu->kvm->slots_lock);

2932 2933 2934 2935 2936
	/*
	 * Profile KVM exit RIPs:
	 */
	if (unlikely(prof_on == KVM_PROFILING)) {
		kvm_x86_ops->cache_regs(vcpu);
2937
		profile_hit(KVM_PROFILING, (void *)vcpu->arch.rip);
2938 2939
	}

2940 2941
	if (vcpu->arch.exception.pending && kvm_x86_ops->exception_injected(vcpu))
		vcpu->arch.exception.pending = false;
2942

A
Avi Kivity 已提交
2943 2944
	kvm_lapic_sync_from_vapic(vcpu);

2945 2946 2947 2948 2949 2950 2951 2952 2953
	r = kvm_x86_ops->handle_exit(kvm_run, vcpu);

	if (r > 0) {
		if (dm_request_for_irq_injection(vcpu, kvm_run)) {
			r = -EINTR;
			kvm_run->exit_reason = KVM_EXIT_INTR;
			++vcpu->stat.request_irq_exits;
			goto out;
		}
2954
		if (!need_resched())
2955 2956 2957 2958
			goto again;
	}

out:
2959
	up_read(&vcpu->kvm->slots_lock);
2960 2961
	if (r > 0) {
		kvm_resched(vcpu);
2962
		down_read(&vcpu->kvm->slots_lock);
2963 2964 2965 2966 2967
		goto preempted;
	}

	post_kvm_run_save(vcpu, kvm_run);

2968
	down_read(&vcpu->kvm->slots_lock);
A
Avi Kivity 已提交
2969
	vapic_exit(vcpu);
2970
	up_read(&vcpu->kvm->slots_lock);
A
Avi Kivity 已提交
2971

2972 2973 2974 2975 2976 2977 2978 2979 2980 2981
	return r;
}

int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
	int r;
	sigset_t sigsaved;

	vcpu_load(vcpu);

2982
	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
2983 2984 2985 2986 2987 2988 2989 2990 2991 2992
		kvm_vcpu_block(vcpu);
		vcpu_put(vcpu);
		return -EAGAIN;
	}

	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);

	/* re-sync apic's tpr */
	if (!irqchip_in_kernel(vcpu->kvm))
2993
		kvm_set_cr8(vcpu, kvm_run->cr8);
2994

2995
	if (vcpu->arch.pio.cur_count) {
2996 2997 2998 2999 3000 3001 3002 3003 3004
		r = complete_pio(vcpu);
		if (r)
			goto out;
	}
#if CONFIG_HAS_IOMEM
	if (vcpu->mmio_needed) {
		memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
		vcpu->mmio_read_completed = 1;
		vcpu->mmio_needed = 0;
3005 3006

		down_read(&vcpu->kvm->slots_lock);
3007
		r = emulate_instruction(vcpu, kvm_run,
3008 3009
					vcpu->arch.mmio_fault_cr2, 0,
					EMULTYPE_NO_DECODE);
3010
		up_read(&vcpu->kvm->slots_lock);
3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021
		if (r == EMULATE_DO_MMIO) {
			/*
			 * Read-modify-write.  Back to userspace.
			 */
			r = 0;
			goto out;
		}
	}
#endif
	if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL) {
		kvm_x86_ops->cache_regs(vcpu);
3022
		vcpu->arch.regs[VCPU_REGS_RAX] = kvm_run->hypercall.ret;
3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041
		kvm_x86_ops->decache_regs(vcpu);
	}

	r = __vcpu_run(vcpu, kvm_run);

out:
	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &sigsaved, NULL);

	vcpu_put(vcpu);
	return r;
}

int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
	vcpu_load(vcpu);

	kvm_x86_ops->cache_regs(vcpu);

3042 3043 3044 3045 3046 3047 3048 3049
	regs->rax = vcpu->arch.regs[VCPU_REGS_RAX];
	regs->rbx = vcpu->arch.regs[VCPU_REGS_RBX];
	regs->rcx = vcpu->arch.regs[VCPU_REGS_RCX];
	regs->rdx = vcpu->arch.regs[VCPU_REGS_RDX];
	regs->rsi = vcpu->arch.regs[VCPU_REGS_RSI];
	regs->rdi = vcpu->arch.regs[VCPU_REGS_RDI];
	regs->rsp = vcpu->arch.regs[VCPU_REGS_RSP];
	regs->rbp = vcpu->arch.regs[VCPU_REGS_RBP];
3050
#ifdef CONFIG_X86_64
3051 3052 3053 3054 3055 3056 3057 3058
	regs->r8 = vcpu->arch.regs[VCPU_REGS_R8];
	regs->r9 = vcpu->arch.regs[VCPU_REGS_R9];
	regs->r10 = vcpu->arch.regs[VCPU_REGS_R10];
	regs->r11 = vcpu->arch.regs[VCPU_REGS_R11];
	regs->r12 = vcpu->arch.regs[VCPU_REGS_R12];
	regs->r13 = vcpu->arch.regs[VCPU_REGS_R13];
	regs->r14 = vcpu->arch.regs[VCPU_REGS_R14];
	regs->r15 = vcpu->arch.regs[VCPU_REGS_R15];
3059 3060
#endif

3061
	regs->rip = vcpu->arch.rip;
3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078
	regs->rflags = kvm_x86_ops->get_rflags(vcpu);

	/*
	 * Don't leak debug flags in case they were set for guest debugging
	 */
	if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
		regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);

	vcpu_put(vcpu);

	return 0;
}

int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
	vcpu_load(vcpu);

3079 3080 3081 3082 3083 3084 3085 3086
	vcpu->arch.regs[VCPU_REGS_RAX] = regs->rax;
	vcpu->arch.regs[VCPU_REGS_RBX] = regs->rbx;
	vcpu->arch.regs[VCPU_REGS_RCX] = regs->rcx;
	vcpu->arch.regs[VCPU_REGS_RDX] = regs->rdx;
	vcpu->arch.regs[VCPU_REGS_RSI] = regs->rsi;
	vcpu->arch.regs[VCPU_REGS_RDI] = regs->rdi;
	vcpu->arch.regs[VCPU_REGS_RSP] = regs->rsp;
	vcpu->arch.regs[VCPU_REGS_RBP] = regs->rbp;
3087
#ifdef CONFIG_X86_64
3088 3089 3090 3091 3092 3093 3094 3095
	vcpu->arch.regs[VCPU_REGS_R8] = regs->r8;
	vcpu->arch.regs[VCPU_REGS_R9] = regs->r9;
	vcpu->arch.regs[VCPU_REGS_R10] = regs->r10;
	vcpu->arch.regs[VCPU_REGS_R11] = regs->r11;
	vcpu->arch.regs[VCPU_REGS_R12] = regs->r12;
	vcpu->arch.regs[VCPU_REGS_R13] = regs->r13;
	vcpu->arch.regs[VCPU_REGS_R14] = regs->r14;
	vcpu->arch.regs[VCPU_REGS_R15] = regs->r15;
3096 3097
#endif

3098
	vcpu->arch.rip = regs->rip;
3099 3100 3101 3102
	kvm_x86_ops->set_rflags(vcpu, regs->rflags);

	kvm_x86_ops->decache_regs(vcpu);

3103 3104
	vcpu->arch.exception.pending = false;

3105 3106 3107 3108 3109
	vcpu_put(vcpu);

	return 0;
}

3110 3111
void kvm_get_segment(struct kvm_vcpu *vcpu,
		     struct kvm_segment *var, int seg)
3112
{
3113
	kvm_x86_ops->get_segment(vcpu, var, seg);
3114 3115 3116 3117 3118 3119
}

void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
{
	struct kvm_segment cs;

3120
	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133
	*db = cs.db;
	*l = cs.l;
}
EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);

int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
				  struct kvm_sregs *sregs)
{
	struct descriptor_table dt;
	int pending_vec;

	vcpu_load(vcpu);

3134 3135 3136 3137 3138 3139
	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
3140

3141 3142
	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
3143 3144 3145 3146 3147 3148 3149 3150 3151

	kvm_x86_ops->get_idt(vcpu, &dt);
	sregs->idt.limit = dt.limit;
	sregs->idt.base = dt.base;
	kvm_x86_ops->get_gdt(vcpu, &dt);
	sregs->gdt.limit = dt.limit;
	sregs->gdt.base = dt.base;

	kvm_x86_ops->decache_cr4_guest_bits(vcpu);
3152 3153 3154 3155
	sregs->cr0 = vcpu->arch.cr0;
	sregs->cr2 = vcpu->arch.cr2;
	sregs->cr3 = vcpu->arch.cr3;
	sregs->cr4 = vcpu->arch.cr4;
3156
	sregs->cr8 = kvm_get_cr8(vcpu);
3157
	sregs->efer = vcpu->arch.shadow_efer;
3158 3159 3160 3161 3162 3163 3164 3165 3166 3167
	sregs->apic_base = kvm_get_apic_base(vcpu);

	if (irqchip_in_kernel(vcpu->kvm)) {
		memset(sregs->interrupt_bitmap, 0,
		       sizeof sregs->interrupt_bitmap);
		pending_vec = kvm_x86_ops->get_irq(vcpu);
		if (pending_vec >= 0)
			set_bit(pending_vec,
				(unsigned long *)sregs->interrupt_bitmap);
	} else
3168
		memcpy(sregs->interrupt_bitmap, vcpu->arch.irq_pending,
3169 3170 3171 3172 3173 3174 3175
		       sizeof sregs->interrupt_bitmap);

	vcpu_put(vcpu);

	return 0;
}

3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
	vcpu_load(vcpu);
	mp_state->mp_state = vcpu->arch.mp_state;
	vcpu_put(vcpu);
	return 0;
}

int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
	vcpu_load(vcpu);
	vcpu->arch.mp_state = mp_state->mp_state;
	vcpu_put(vcpu);
	return 0;
}

3194
static void kvm_set_segment(struct kvm_vcpu *vcpu,
3195 3196
			struct kvm_segment *var, int seg)
{
3197
	kvm_x86_ops->set_segment(vcpu, var, seg);
3198 3199
}

3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230
static void seg_desct_to_kvm_desct(struct desc_struct *seg_desc, u16 selector,
				   struct kvm_segment *kvm_desct)
{
	kvm_desct->base = seg_desc->base0;
	kvm_desct->base |= seg_desc->base1 << 16;
	kvm_desct->base |= seg_desc->base2 << 24;
	kvm_desct->limit = seg_desc->limit0;
	kvm_desct->limit |= seg_desc->limit << 16;
	kvm_desct->selector = selector;
	kvm_desct->type = seg_desc->type;
	kvm_desct->present = seg_desc->p;
	kvm_desct->dpl = seg_desc->dpl;
	kvm_desct->db = seg_desc->d;
	kvm_desct->s = seg_desc->s;
	kvm_desct->l = seg_desc->l;
	kvm_desct->g = seg_desc->g;
	kvm_desct->avl = seg_desc->avl;
	if (!selector)
		kvm_desct->unusable = 1;
	else
		kvm_desct->unusable = 0;
	kvm_desct->padding = 0;
}

static void get_segment_descritptor_dtable(struct kvm_vcpu *vcpu,
					   u16 selector,
					   struct descriptor_table *dtable)
{
	if (selector & 1 << 2) {
		struct kvm_segment kvm_seg;

3231
		kvm_get_segment(vcpu, &kvm_seg, VCPU_SREG_LDTR);
3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336

		if (kvm_seg.unusable)
			dtable->limit = 0;
		else
			dtable->limit = kvm_seg.limit;
		dtable->base = kvm_seg.base;
	}
	else
		kvm_x86_ops->get_gdt(vcpu, dtable);
}

/* allowed just for 8 bytes segments */
static int load_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
					 struct desc_struct *seg_desc)
{
	struct descriptor_table dtable;
	u16 index = selector >> 3;

	get_segment_descritptor_dtable(vcpu, selector, &dtable);

	if (dtable.limit < index * 8 + 7) {
		kvm_queue_exception_e(vcpu, GP_VECTOR, selector & 0xfffc);
		return 1;
	}
	return kvm_read_guest(vcpu->kvm, dtable.base + index * 8, seg_desc, 8);
}

/* allowed just for 8 bytes segments */
static int save_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
					 struct desc_struct *seg_desc)
{
	struct descriptor_table dtable;
	u16 index = selector >> 3;

	get_segment_descritptor_dtable(vcpu, selector, &dtable);

	if (dtable.limit < index * 8 + 7)
		return 1;
	return kvm_write_guest(vcpu->kvm, dtable.base + index * 8, seg_desc, 8);
}

static u32 get_tss_base_addr(struct kvm_vcpu *vcpu,
			     struct desc_struct *seg_desc)
{
	u32 base_addr;

	base_addr = seg_desc->base0;
	base_addr |= (seg_desc->base1 << 16);
	base_addr |= (seg_desc->base2 << 24);

	return base_addr;
}

static int load_tss_segment32(struct kvm_vcpu *vcpu,
			      struct desc_struct *seg_desc,
			      struct tss_segment_32 *tss)
{
	u32 base_addr;

	base_addr = get_tss_base_addr(vcpu, seg_desc);

	return kvm_read_guest(vcpu->kvm, base_addr, tss,
			      sizeof(struct tss_segment_32));
}

static int save_tss_segment32(struct kvm_vcpu *vcpu,
			      struct desc_struct *seg_desc,
			      struct tss_segment_32 *tss)
{
	u32 base_addr;

	base_addr = get_tss_base_addr(vcpu, seg_desc);

	return kvm_write_guest(vcpu->kvm, base_addr, tss,
			       sizeof(struct tss_segment_32));
}

static int load_tss_segment16(struct kvm_vcpu *vcpu,
			      struct desc_struct *seg_desc,
			      struct tss_segment_16 *tss)
{
	u32 base_addr;

	base_addr = get_tss_base_addr(vcpu, seg_desc);

	return kvm_read_guest(vcpu->kvm, base_addr, tss,
			      sizeof(struct tss_segment_16));
}

static int save_tss_segment16(struct kvm_vcpu *vcpu,
			      struct desc_struct *seg_desc,
			      struct tss_segment_16 *tss)
{
	u32 base_addr;

	base_addr = get_tss_base_addr(vcpu, seg_desc);

	return kvm_write_guest(vcpu->kvm, base_addr, tss,
			       sizeof(struct tss_segment_16));
}

static u16 get_segment_selector(struct kvm_vcpu *vcpu, int seg)
{
	struct kvm_segment kvm_seg;

3337
	kvm_get_segment(vcpu, &kvm_seg, seg);
3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352
	return kvm_seg.selector;
}

static int load_segment_descriptor_to_kvm_desct(struct kvm_vcpu *vcpu,
						u16 selector,
						struct kvm_segment *kvm_seg)
{
	struct desc_struct seg_desc;

	if (load_guest_segment_descriptor(vcpu, selector, &seg_desc))
		return 1;
	seg_desct_to_kvm_desct(&seg_desc, selector, kvm_seg);
	return 0;
}

3353 3354
int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
				int type_bits, int seg)
3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366
{
	struct kvm_segment kvm_seg;

	if (load_segment_descriptor_to_kvm_desct(vcpu, selector, &kvm_seg))
		return 1;
	kvm_seg.type |= type_bits;

	if (seg != VCPU_SREG_SS && seg != VCPU_SREG_CS &&
	    seg != VCPU_SREG_LDTR)
		if (!kvm_seg.s)
			kvm_seg.unusable = 1;

3367
	kvm_set_segment(vcpu, &kvm_seg, seg);
3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412
	return 0;
}

static void save_state_to_tss32(struct kvm_vcpu *vcpu,
				struct tss_segment_32 *tss)
{
	tss->cr3 = vcpu->arch.cr3;
	tss->eip = vcpu->arch.rip;
	tss->eflags = kvm_x86_ops->get_rflags(vcpu);
	tss->eax = vcpu->arch.regs[VCPU_REGS_RAX];
	tss->ecx = vcpu->arch.regs[VCPU_REGS_RCX];
	tss->edx = vcpu->arch.regs[VCPU_REGS_RDX];
	tss->ebx = vcpu->arch.regs[VCPU_REGS_RBX];
	tss->esp = vcpu->arch.regs[VCPU_REGS_RSP];
	tss->ebp = vcpu->arch.regs[VCPU_REGS_RBP];
	tss->esi = vcpu->arch.regs[VCPU_REGS_RSI];
	tss->edi = vcpu->arch.regs[VCPU_REGS_RDI];

	tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
	tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
	tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
	tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
	tss->fs = get_segment_selector(vcpu, VCPU_SREG_FS);
	tss->gs = get_segment_selector(vcpu, VCPU_SREG_GS);
	tss->ldt_selector = get_segment_selector(vcpu, VCPU_SREG_LDTR);
	tss->prev_task_link = get_segment_selector(vcpu, VCPU_SREG_TR);
}

static int load_state_from_tss32(struct kvm_vcpu *vcpu,
				  struct tss_segment_32 *tss)
{
	kvm_set_cr3(vcpu, tss->cr3);

	vcpu->arch.rip = tss->eip;
	kvm_x86_ops->set_rflags(vcpu, tss->eflags | 2);

	vcpu->arch.regs[VCPU_REGS_RAX] = tss->eax;
	vcpu->arch.regs[VCPU_REGS_RCX] = tss->ecx;
	vcpu->arch.regs[VCPU_REGS_RDX] = tss->edx;
	vcpu->arch.regs[VCPU_REGS_RBX] = tss->ebx;
	vcpu->arch.regs[VCPU_REGS_RSP] = tss->esp;
	vcpu->arch.regs[VCPU_REGS_RBP] = tss->ebp;
	vcpu->arch.regs[VCPU_REGS_RSI] = tss->esi;
	vcpu->arch.regs[VCPU_REGS_RDI] = tss->edi;

3413
	if (kvm_load_segment_descriptor(vcpu, tss->ldt_selector, 0, VCPU_SREG_LDTR))
3414 3415
		return 1;

3416
	if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
3417 3418
		return 1;

3419
	if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
3420 3421
		return 1;

3422
	if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
3423 3424
		return 1;

3425
	if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
3426 3427
		return 1;

3428
	if (kvm_load_segment_descriptor(vcpu, tss->fs, 1, VCPU_SREG_FS))
3429 3430
		return 1;

3431
	if (kvm_load_segment_descriptor(vcpu, tss->gs, 1, VCPU_SREG_GS))
3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471
		return 1;
	return 0;
}

static void save_state_to_tss16(struct kvm_vcpu *vcpu,
				struct tss_segment_16 *tss)
{
	tss->ip = vcpu->arch.rip;
	tss->flag = kvm_x86_ops->get_rflags(vcpu);
	tss->ax = vcpu->arch.regs[VCPU_REGS_RAX];
	tss->cx = vcpu->arch.regs[VCPU_REGS_RCX];
	tss->dx = vcpu->arch.regs[VCPU_REGS_RDX];
	tss->bx = vcpu->arch.regs[VCPU_REGS_RBX];
	tss->sp = vcpu->arch.regs[VCPU_REGS_RSP];
	tss->bp = vcpu->arch.regs[VCPU_REGS_RBP];
	tss->si = vcpu->arch.regs[VCPU_REGS_RSI];
	tss->di = vcpu->arch.regs[VCPU_REGS_RDI];

	tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
	tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
	tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
	tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
	tss->ldt = get_segment_selector(vcpu, VCPU_SREG_LDTR);
	tss->prev_task_link = get_segment_selector(vcpu, VCPU_SREG_TR);
}

static int load_state_from_tss16(struct kvm_vcpu *vcpu,
				 struct tss_segment_16 *tss)
{
	vcpu->arch.rip = tss->ip;
	kvm_x86_ops->set_rflags(vcpu, tss->flag | 2);
	vcpu->arch.regs[VCPU_REGS_RAX] = tss->ax;
	vcpu->arch.regs[VCPU_REGS_RCX] = tss->cx;
	vcpu->arch.regs[VCPU_REGS_RDX] = tss->dx;
	vcpu->arch.regs[VCPU_REGS_RBX] = tss->bx;
	vcpu->arch.regs[VCPU_REGS_RSP] = tss->sp;
	vcpu->arch.regs[VCPU_REGS_RBP] = tss->bp;
	vcpu->arch.regs[VCPU_REGS_RSI] = tss->si;
	vcpu->arch.regs[VCPU_REGS_RDI] = tss->di;

3472
	if (kvm_load_segment_descriptor(vcpu, tss->ldt, 0, VCPU_SREG_LDTR))
3473 3474
		return 1;

3475
	if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
3476 3477
		return 1;

3478
	if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
3479 3480
		return 1;

3481
	if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
3482 3483
		return 1;

3484
	if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
3485 3486 3487 3488
		return 1;
	return 0;
}

3489
static int kvm_task_switch_16(struct kvm_vcpu *vcpu, u16 tss_selector,
3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511
		       struct desc_struct *cseg_desc,
		       struct desc_struct *nseg_desc)
{
	struct tss_segment_16 tss_segment_16;
	int ret = 0;

	if (load_tss_segment16(vcpu, cseg_desc, &tss_segment_16))
		goto out;

	save_state_to_tss16(vcpu, &tss_segment_16);
	save_tss_segment16(vcpu, cseg_desc, &tss_segment_16);

	if (load_tss_segment16(vcpu, nseg_desc, &tss_segment_16))
		goto out;
	if (load_state_from_tss16(vcpu, &tss_segment_16))
		goto out;

	ret = 1;
out:
	return ret;
}

3512
static int kvm_task_switch_32(struct kvm_vcpu *vcpu, u16 tss_selector,
3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541
		       struct desc_struct *cseg_desc,
		       struct desc_struct *nseg_desc)
{
	struct tss_segment_32 tss_segment_32;
	int ret = 0;

	if (load_tss_segment32(vcpu, cseg_desc, &tss_segment_32))
		goto out;

	save_state_to_tss32(vcpu, &tss_segment_32);
	save_tss_segment32(vcpu, cseg_desc, &tss_segment_32);

	if (load_tss_segment32(vcpu, nseg_desc, &tss_segment_32))
		goto out;
	if (load_state_from_tss32(vcpu, &tss_segment_32))
		goto out;

	ret = 1;
out:
	return ret;
}

int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason)
{
	struct kvm_segment tr_seg;
	struct desc_struct cseg_desc;
	struct desc_struct nseg_desc;
	int ret = 0;

3542
	kvm_get_segment(vcpu, &tr_seg, VCPU_SREG_TR);
3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566

	if (load_guest_segment_descriptor(vcpu, tss_selector, &nseg_desc))
		goto out;

	if (load_guest_segment_descriptor(vcpu, tr_seg.selector, &cseg_desc))
		goto out;


	if (reason != TASK_SWITCH_IRET) {
		int cpl;

		cpl = kvm_x86_ops->get_cpl(vcpu);
		if ((tss_selector & 3) > nseg_desc.dpl || cpl > nseg_desc.dpl) {
			kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
			return 1;
		}
	}

	if (!nseg_desc.p || (nseg_desc.limit0 | nseg_desc.limit << 16) < 0x67) {
		kvm_queue_exception_e(vcpu, TS_VECTOR, tss_selector & 0xfffc);
		return 1;
	}

	if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) {
3567
		cseg_desc.type &= ~(1 << 1); //clear the B flag
3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592
		save_guest_segment_descriptor(vcpu, tr_seg.selector,
					      &cseg_desc);
	}

	if (reason == TASK_SWITCH_IRET) {
		u32 eflags = kvm_x86_ops->get_rflags(vcpu);
		kvm_x86_ops->set_rflags(vcpu, eflags & ~X86_EFLAGS_NT);
	}

	kvm_x86_ops->skip_emulated_instruction(vcpu);
	kvm_x86_ops->cache_regs(vcpu);

	if (nseg_desc.type & 8)
		ret = kvm_task_switch_32(vcpu, tss_selector, &cseg_desc,
					 &nseg_desc);
	else
		ret = kvm_task_switch_16(vcpu, tss_selector, &cseg_desc,
					 &nseg_desc);

	if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE) {
		u32 eflags = kvm_x86_ops->get_rflags(vcpu);
		kvm_x86_ops->set_rflags(vcpu, eflags | X86_EFLAGS_NT);
	}

	if (reason != TASK_SWITCH_IRET) {
3593
		nseg_desc.type |= (1 << 1);
3594 3595 3596 3597 3598 3599 3600
		save_guest_segment_descriptor(vcpu, tss_selector,
					      &nseg_desc);
	}

	kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 | X86_CR0_TS);
	seg_desct_to_kvm_desct(&nseg_desc, tss_selector, &tr_seg);
	tr_seg.type = 11;
3601
	kvm_set_segment(vcpu, &tr_seg, VCPU_SREG_TR);
3602 3603 3604 3605 3606 3607
out:
	kvm_x86_ops->decache_regs(vcpu);
	return ret;
}
EXPORT_SYMBOL_GPL(kvm_task_switch);

3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623
int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
				  struct kvm_sregs *sregs)
{
	int mmu_reset_needed = 0;
	int i, pending_vec, max_bits;
	struct descriptor_table dt;

	vcpu_load(vcpu);

	dt.limit = sregs->idt.limit;
	dt.base = sregs->idt.base;
	kvm_x86_ops->set_idt(vcpu, &dt);
	dt.limit = sregs->gdt.limit;
	dt.base = sregs->gdt.base;
	kvm_x86_ops->set_gdt(vcpu, &dt);

3624 3625 3626
	vcpu->arch.cr2 = sregs->cr2;
	mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
	vcpu->arch.cr3 = sregs->cr3;
3627

3628
	kvm_set_cr8(vcpu, sregs->cr8);
3629

3630
	mmu_reset_needed |= vcpu->arch.shadow_efer != sregs->efer;
3631 3632 3633 3634 3635
	kvm_x86_ops->set_efer(vcpu, sregs->efer);
	kvm_set_apic_base(vcpu, sregs->apic_base);

	kvm_x86_ops->decache_cr4_guest_bits(vcpu);

3636
	mmu_reset_needed |= vcpu->arch.cr0 != sregs->cr0;
3637
	kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
3638
	vcpu->arch.cr0 = sregs->cr0;
3639

3640
	mmu_reset_needed |= vcpu->arch.cr4 != sregs->cr4;
3641 3642
	kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
	if (!is_long_mode(vcpu) && is_pae(vcpu))
3643
		load_pdptrs(vcpu, vcpu->arch.cr3);
3644 3645 3646 3647 3648

	if (mmu_reset_needed)
		kvm_mmu_reset_context(vcpu);

	if (!irqchip_in_kernel(vcpu->kvm)) {
3649 3650 3651 3652 3653 3654
		memcpy(vcpu->arch.irq_pending, sregs->interrupt_bitmap,
		       sizeof vcpu->arch.irq_pending);
		vcpu->arch.irq_summary = 0;
		for (i = 0; i < ARRAY_SIZE(vcpu->arch.irq_pending); ++i)
			if (vcpu->arch.irq_pending[i])
				__set_bit(i, &vcpu->arch.irq_summary);
3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667
	} else {
		max_bits = (sizeof sregs->interrupt_bitmap) << 3;
		pending_vec = find_first_bit(
			(const unsigned long *)sregs->interrupt_bitmap,
			max_bits);
		/* Only pending external irq is handled here */
		if (pending_vec < max_bits) {
			kvm_x86_ops->set_irq(vcpu, pending_vec);
			pr_debug("Set back pending irq %d\n",
				 pending_vec);
		}
	}

3668 3669 3670 3671 3672 3673
	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
3674

3675 3676
	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696

	vcpu_put(vcpu);

	return 0;
}

int kvm_arch_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
				    struct kvm_debug_guest *dbg)
{
	int r;

	vcpu_load(vcpu);

	r = kvm_x86_ops->set_guest_debug(vcpu, dbg);

	vcpu_put(vcpu);

	return r;
}

3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717
/*
 * fxsave fpu state.  Taken from x86_64/processor.h.  To be killed when
 * we have asm/x86/processor.h
 */
struct fxsave {
	u16	cwd;
	u16	swd;
	u16	twd;
	u16	fop;
	u64	rip;
	u64	rdp;
	u32	mxcsr;
	u32	mxcsr_mask;
	u32	st_space[32];	/* 8*16 bytes for each FP-reg = 128 bytes */
#ifdef CONFIG_X86_64
	u32	xmm_space[64];	/* 16*16 bytes for each XMM-reg = 256 bytes */
#else
	u32	xmm_space[32];	/* 8*16 bytes for each XMM-reg = 128 bytes */
#endif
};

3718 3719 3720 3721 3722 3723 3724 3725 3726 3727
/*
 * Translate a guest virtual address to a guest physical address.
 */
int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
				    struct kvm_translation *tr)
{
	unsigned long vaddr = tr->linear_address;
	gpa_t gpa;

	vcpu_load(vcpu);
3728
	down_read(&vcpu->kvm->slots_lock);
3729
	gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, vaddr);
3730
	up_read(&vcpu->kvm->slots_lock);
3731 3732 3733 3734 3735 3736 3737 3738 3739
	tr->physical_address = gpa;
	tr->valid = gpa != UNMAPPED_GVA;
	tr->writeable = 1;
	tr->usermode = 0;
	vcpu_put(vcpu);

	return 0;
}

3740 3741
int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
3742
	struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761

	vcpu_load(vcpu);

	memcpy(fpu->fpr, fxsave->st_space, 128);
	fpu->fcw = fxsave->cwd;
	fpu->fsw = fxsave->swd;
	fpu->ftwx = fxsave->twd;
	fpu->last_opcode = fxsave->fop;
	fpu->last_ip = fxsave->rip;
	fpu->last_dp = fxsave->rdp;
	memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);

	vcpu_put(vcpu);

	return 0;
}

int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
3762
	struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783

	vcpu_load(vcpu);

	memcpy(fxsave->st_space, fpu->fpr, 128);
	fxsave->cwd = fpu->fcw;
	fxsave->swd = fpu->fsw;
	fxsave->twd = fpu->ftwx;
	fxsave->fop = fpu->last_opcode;
	fxsave->rip = fpu->last_ip;
	fxsave->rdp = fpu->last_dp;
	memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);

	vcpu_put(vcpu);

	return 0;
}

void fx_init(struct kvm_vcpu *vcpu)
{
	unsigned after_mxcsr_mask;

3784 3785 3786 3787 3788 3789 3790 3791 3792
	/*
	 * Touch the fpu the first time in non atomic context as if
	 * this is the first fpu instruction the exception handler
	 * will fire before the instruction returns and it'll have to
	 * allocate ram with GFP_KERNEL.
	 */
	if (!used_math())
		fx_save(&vcpu->arch.host_fx_image);

3793 3794
	/* Initialize guest FPU by resetting ours and saving into guest's */
	preempt_disable();
3795
	fx_save(&vcpu->arch.host_fx_image);
3796
	fx_finit();
3797 3798
	fx_save(&vcpu->arch.guest_fx_image);
	fx_restore(&vcpu->arch.host_fx_image);
3799 3800
	preempt_enable();

3801
	vcpu->arch.cr0 |= X86_CR0_ET;
3802
	after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
3803 3804
	vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
	memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
3805 3806 3807 3808 3809 3810 3811 3812 3813 3814
	       0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
}
EXPORT_SYMBOL_GPL(fx_init);

void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
{
	if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
		return;

	vcpu->guest_fpu_loaded = 1;
3815 3816
	fx_save(&vcpu->arch.host_fx_image);
	fx_restore(&vcpu->arch.guest_fx_image);
3817 3818 3819 3820 3821 3822 3823 3824 3825
}
EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);

void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
{
	if (!vcpu->guest_fpu_loaded)
		return;

	vcpu->guest_fpu_loaded = 0;
3826 3827
	fx_save(&vcpu->arch.guest_fx_image);
	fx_restore(&vcpu->arch.host_fx_image);
A
Avi Kivity 已提交
3828
	++vcpu->stat.fpu_reload;
3829 3830
}
EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
3831 3832 3833 3834 3835 3836 3837 3838 3839

void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
{
	kvm_x86_ops->vcpu_free(vcpu);
}

struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
						unsigned int id)
{
3840 3841
	return kvm_x86_ops->vcpu_create(kvm, id);
}
3842

3843 3844 3845
int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
{
	int r;
3846 3847

	/* We do fxsave: this must be aligned. */
3848
	BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
3849 3850 3851 3852 3853 3854 3855 3856 3857

	vcpu_load(vcpu);
	r = kvm_arch_vcpu_reset(vcpu);
	if (r == 0)
		r = kvm_mmu_setup(vcpu);
	vcpu_put(vcpu);
	if (r < 0)
		goto free_vcpu;

3858
	return 0;
3859 3860
free_vcpu:
	kvm_x86_ops->vcpu_free(vcpu);
3861
	return r;
3862 3863
}

3864
void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911
{
	vcpu_load(vcpu);
	kvm_mmu_unload(vcpu);
	vcpu_put(vcpu);

	kvm_x86_ops->vcpu_free(vcpu);
}

int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
{
	return kvm_x86_ops->vcpu_reset(vcpu);
}

void kvm_arch_hardware_enable(void *garbage)
{
	kvm_x86_ops->hardware_enable(garbage);
}

void kvm_arch_hardware_disable(void *garbage)
{
	kvm_x86_ops->hardware_disable(garbage);
}

int kvm_arch_hardware_setup(void)
{
	return kvm_x86_ops->hardware_setup();
}

void kvm_arch_hardware_unsetup(void)
{
	kvm_x86_ops->hardware_unsetup();
}

void kvm_arch_check_processor_compat(void *rtn)
{
	kvm_x86_ops->check_processor_compatibility(rtn);
}

int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
{
	struct page *page;
	struct kvm *kvm;
	int r;

	BUG_ON(vcpu->kvm == NULL);
	kvm = vcpu->kvm;

3912
	vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3913
	if (!irqchip_in_kernel(kvm) || vcpu->vcpu_id == 0)
3914
		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
3915
	else
3916
		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
3917 3918 3919 3920 3921 3922

	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
	if (!page) {
		r = -ENOMEM;
		goto fail;
	}
3923
	vcpu->arch.pio_data = page_address(page);
3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939

	r = kvm_mmu_create(vcpu);
	if (r < 0)
		goto fail_free_pio_data;

	if (irqchip_in_kernel(kvm)) {
		r = kvm_create_lapic(vcpu);
		if (r < 0)
			goto fail_mmu_destroy;
	}

	return 0;

fail_mmu_destroy:
	kvm_mmu_destroy(vcpu);
fail_free_pio_data:
3940
	free_page((unsigned long)vcpu->arch.pio_data);
3941 3942 3943 3944 3945 3946 3947
fail:
	return r;
}

void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
{
	kvm_free_lapic(vcpu);
3948
	down_read(&vcpu->kvm->slots_lock);
3949
	kvm_mmu_destroy(vcpu);
3950
	up_read(&vcpu->kvm->slots_lock);
3951
	free_page((unsigned long)vcpu->arch.pio_data);
3952
}
3953 3954 3955 3956 3957 3958 3959 3960

struct  kvm *kvm_arch_create_vm(void)
{
	struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);

	if (!kvm)
		return ERR_PTR(-ENOMEM);

3961
	INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993

	return kvm;
}

static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
{
	vcpu_load(vcpu);
	kvm_mmu_unload(vcpu);
	vcpu_put(vcpu);
}

static void kvm_free_vcpus(struct kvm *kvm)
{
	unsigned int i;

	/*
	 * Unpin any mmu pages first.
	 */
	for (i = 0; i < KVM_MAX_VCPUS; ++i)
		if (kvm->vcpus[i])
			kvm_unload_vcpu_mmu(kvm->vcpus[i]);
	for (i = 0; i < KVM_MAX_VCPUS; ++i) {
		if (kvm->vcpus[i]) {
			kvm_arch_vcpu_free(kvm->vcpus[i]);
			kvm->vcpus[i] = NULL;
		}
	}

}

void kvm_arch_destroy_vm(struct kvm *kvm)
{
S
Sheng Yang 已提交
3994
	kvm_free_pit(kvm);
3995 3996
	kfree(kvm->arch.vpic);
	kfree(kvm->arch.vioapic);
3997 3998
	kvm_free_vcpus(kvm);
	kvm_free_physmem(kvm);
3999 4000
	if (kvm->arch.apic_access_page)
		put_page(kvm->arch.apic_access_page);
4001 4002
	if (kvm->arch.ept_identity_pagetable)
		put_page(kvm->arch.ept_identity_pagetable);
4003 4004
	kfree(kvm);
}
4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018

int kvm_arch_set_memory_region(struct kvm *kvm,
				struct kvm_userspace_memory_region *mem,
				struct kvm_memory_slot old,
				int user_alloc)
{
	int npages = mem->memory_size >> PAGE_SHIFT;
	struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];

	/*To keep backward compatibility with older userspace,
	 *x86 needs to hanlde !user_alloc case.
	 */
	if (!user_alloc) {
		if (npages && !old.rmap) {
4019
			down_write(&current->mm->mmap_sem);
4020 4021 4022 4023 4024
			memslot->userspace_addr = do_mmap(NULL, 0,
						     npages * PAGE_SIZE,
						     PROT_READ | PROT_WRITE,
						     MAP_SHARED | MAP_ANONYMOUS,
						     0);
4025
			up_write(&current->mm->mmap_sem);
4026 4027 4028 4029 4030 4031 4032

			if (IS_ERR((void *)memslot->userspace_addr))
				return PTR_ERR((void *)memslot->userspace_addr);
		} else {
			if (!old.user_alloc && old.rmap) {
				int ret;

4033
				down_write(&current->mm->mmap_sem);
4034 4035
				ret = do_munmap(current->mm, old.userspace_addr,
						old.npages * PAGE_SIZE);
4036
				up_write(&current->mm->mmap_sem);
4037 4038 4039 4040 4041 4042 4043 4044
				if (ret < 0)
					printk(KERN_WARNING
				       "kvm_vm_ioctl_set_memory_region: "
				       "failed to munmap memory\n");
			}
		}
	}

4045
	if (!kvm->arch.n_requested_mmu_pages) {
4046 4047 4048 4049 4050 4051 4052 4053 4054
		unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
		kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
	}

	kvm_mmu_slot_remove_write_access(kvm, mem->slot);
	kvm_flush_remote_tlbs(kvm);

	return 0;
}
4055 4056 4057

int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
{
4058 4059
	return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
	       || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED;
4060
}
4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072

static void vcpu_kick_intr(void *info)
{
#ifdef DEBUG
	struct kvm_vcpu *vcpu = (struct kvm_vcpu *)info;
	printk(KERN_DEBUG "vcpu_kick_intr %p \n", vcpu);
#endif
}

void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
{
	int ipi_pcpu = vcpu->cpu;
4073
	int cpu = get_cpu();
4074 4075 4076 4077 4078

	if (waitqueue_active(&vcpu->wq)) {
		wake_up_interruptible(&vcpu->wq);
		++vcpu->stat.halt_wakeup;
	}
4079 4080 4081 4082 4083
	/*
	 * We may be called synchronously with irqs disabled in guest mode,
	 * So need not to call smp_call_function_single() in that case.
	 */
	if (vcpu->guest_mode && vcpu->cpu != cpu)
4084
		smp_call_function_single(ipi_pcpu, vcpu_kick_intr, vcpu, 0);
4085
	put_cpu();
4086
}