zl10353.c 15.8 KB
Newer Older
1 2 3
/*
 * Driver for Zarlink DVB-T ZL10353 demodulator
 *
4
 * Copyright (C) 2006, 2007 Christopher Pascoe <c.pascoe@itee.uq.edu.au>
5 6 7 8 9 10 11 12 13 14 15 16 17 18
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
19
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20 21 22 23 24 25 26 27
 */

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/string.h>
#include <linux/slab.h>
28
#include <asm/div64.h>
29 30 31 32 33 34 35 36 37 38

#include "dvb_frontend.h"
#include "zl10353_priv.h"
#include "zl10353.h"

struct zl10353_state {
	struct i2c_adapter *i2c;
	struct dvb_frontend frontend;

	struct zl10353_config config;
39 40

	enum fe_bandwidth bandwidth;
41 42
};

43 44 45 46 47 48
static int debug;
#define dprintk(args...) \
	do { \
		if (debug) printk(KERN_DEBUG "zl10353: " args); \
	} while (0)

49
static int debug_regs;
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64

static int zl10353_single_write(struct dvb_frontend *fe, u8 reg, u8 val)
{
	struct zl10353_state *state = fe->demodulator_priv;
	u8 buf[2] = { reg, val };
	struct i2c_msg msg = { .addr = state->config.demod_address, .flags = 0,
			       .buf = buf, .len = 2 };
	int err = i2c_transfer(state->i2c, &msg, 1);
	if (err != 1) {
		printk("zl10353: write to reg %x failed (err = %d)!\n", reg, err);
		return err;
	}
	return 0;
}

65
static int zl10353_write(struct dvb_frontend *fe, u8 *ibuf, int ilen)
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
{
	int err, i;
	for (i = 0; i < ilen - 1; i++)
		if ((err = zl10353_single_write(fe, ibuf[0] + i, ibuf[i + 1])))
			return err;

	return 0;
}

static int zl10353_read_register(struct zl10353_state *state, u8 reg)
{
	int ret;
	u8 b0[1] = { reg };
	u8 b1[1] = { 0 };
	struct i2c_msg msg[2] = { { .addr = state->config.demod_address,
				    .flags = 0,
				    .buf = b0, .len = 1 },
				  { .addr = state->config.demod_address,
				    .flags = I2C_M_RD,
				    .buf = b1, .len = 1 } };

	ret = i2c_transfer(state->i2c, msg, 2);

	if (ret != 2) {
		printk("%s: readreg error (reg=%d, ret==%i)\n",
91
		       __func__, reg, ret);
92 93 94 95 96 97
		return ret;
	}

	return b1[0];
}

98
static void zl10353_dump_regs(struct dvb_frontend *fe)
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
{
	struct zl10353_state *state = fe->demodulator_priv;
	char buf[52], buf2[4];
	int ret;
	u8 reg;

	/* Dump all registers. */
	for (reg = 0; ; reg++) {
		if (reg % 16 == 0) {
			if (reg)
				printk(KERN_DEBUG "%s\n", buf);
			sprintf(buf, "%02x: ", reg);
		}
		ret = zl10353_read_register(state, reg);
		if (ret >= 0)
			sprintf(buf2, "%02x ", (u8)ret);
		else
			strcpy(buf2, "-- ");
		strcat(buf, buf2);
		if (reg == 0xff)
			break;
	}
	printk(KERN_DEBUG "%s\n", buf);
}

124 125 126 127 128
static void zl10353_calc_nominal_rate(struct dvb_frontend *fe,
				      enum fe_bandwidth bandwidth,
				      u16 *nominal_rate)
{
	struct zl10353_state *state = fe->demodulator_priv;
129 130 131
	u32 adc_clock = 450560; /* 45.056 MHz */
	u64 value;
	u8 bw;
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148

	if (state->config.adc_clock)
		adc_clock = state->config.adc_clock;

	switch (bandwidth) {
	case BANDWIDTH_6_MHZ:
		bw = 6;
		break;
	case BANDWIDTH_7_MHZ:
		bw = 7;
		break;
	case BANDWIDTH_8_MHZ:
	default:
		bw = 8;
		break;
	}

149 150
	value = (u64)10 * (1 << 23) / 7 * 125;
	value = (bw * value) + adc_clock / 2;
151 152
	do_div(value, adc_clock);
	*nominal_rate = value;
153 154

	dprintk("%s: bw %d, adc_clock %d => 0x%x\n",
155
		__func__, bw, adc_clock, *nominal_rate);
156 157
}

158 159 160 161
static void zl10353_calc_input_freq(struct dvb_frontend *fe,
				    u16 *input_freq)
{
	struct zl10353_state *state = fe->demodulator_priv;
162 163
	u32 adc_clock = 450560;	/* 45.056  MHz */
	int if2 = 361667;	/* 36.1667 MHz */
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
	int ife;
	u64 value;

	if (state->config.adc_clock)
		adc_clock = state->config.adc_clock;
	if (state->config.if2)
		if2 = state->config.if2;

	if (adc_clock >= if2 * 2)
		ife = if2;
	else {
		ife = adc_clock - (if2 % adc_clock);
		if (ife > adc_clock / 2)
			ife = adc_clock - ife;
	}
179
	value = (u64)65536 * ife + adc_clock / 2;
180 181 182 183
	do_div(value, adc_clock);
	*input_freq = -value;

	dprintk("%s: if2 %d, ife %d, adc_clock %d => %d / 0x%x\n",
184
		__func__, if2, ife, adc_clock, -(int)value, *input_freq);
185 186
}

187 188 189 190 191 192 193 194 195 196 197
static int zl10353_sleep(struct dvb_frontend *fe)
{
	static u8 zl10353_softdown[] = { 0x50, 0x0C, 0x44 };

	zl10353_write(fe, zl10353_softdown, sizeof(zl10353_softdown));
	return 0;
}

static int zl10353_set_parameters(struct dvb_frontend *fe,
				  struct dvb_frontend_parameters *param)
{
198
	struct zl10353_state *state = fe->demodulator_priv;
199
	u16 nominal_rate, input_freq;
200 201 202
	u8 pllbuf[6] = { 0x67 }, acq_ctl = 0;
	u16 tps = 0;
	struct dvb_ofdm_parameters *op = &param->u.ofdm;
203

204
	zl10353_single_write(fe, RESET, 0x80);
205 206 207 208 209
	udelay(200);
	zl10353_single_write(fe, 0xEA, 0x01);
	udelay(200);
	zl10353_single_write(fe, 0xEA, 0x00);

210 211 212 213 214 215 216
	zl10353_single_write(fe, AGC_TARGET, 0x28);

	if (op->transmission_mode != TRANSMISSION_MODE_AUTO)
		acq_ctl |= (1 << 0);
	if (op->guard_interval != GUARD_INTERVAL_AUTO)
		acq_ctl |= (1 << 1);
	zl10353_single_write(fe, ACQ_CTL, acq_ctl);
217

218 219 220 221 222
	switch (op->bandwidth) {
	case BANDWIDTH_6_MHZ:
		/* These are extrapolated from the 7 and 8MHz values */
		zl10353_single_write(fe, MCLK_RATIO, 0x97);
		zl10353_single_write(fe, 0x64, 0x34);
223
		zl10353_single_write(fe, 0xcc, 0xdd);
224 225 226 227
		break;
	case BANDWIDTH_7_MHZ:
		zl10353_single_write(fe, MCLK_RATIO, 0x86);
		zl10353_single_write(fe, 0x64, 0x35);
228
		zl10353_single_write(fe, 0xcc, 0x73);
229 230 231 232 233
		break;
	case BANDWIDTH_8_MHZ:
	default:
		zl10353_single_write(fe, MCLK_RATIO, 0x75);
		zl10353_single_write(fe, 0x64, 0x36);
234
		zl10353_single_write(fe, 0xcc, 0x73);
235 236 237
	}

	zl10353_calc_nominal_rate(fe, op->bandwidth, &nominal_rate);
238 239
	zl10353_single_write(fe, TRL_NOMINAL_RATE_1, msb(nominal_rate));
	zl10353_single_write(fe, TRL_NOMINAL_RATE_0, lsb(nominal_rate));
240
	state->bandwidth = op->bandwidth;
241

242 243 244 245
	zl10353_calc_input_freq(fe, &input_freq);
	zl10353_single_write(fe, INPUT_FREQ_1, msb(input_freq));
	zl10353_single_write(fe, INPUT_FREQ_0, lsb(input_freq));

246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
	/* Hint at TPS settings */
	switch (op->code_rate_HP) {
	case FEC_2_3:
		tps |= (1 << 7);
		break;
	case FEC_3_4:
		tps |= (2 << 7);
		break;
	case FEC_5_6:
		tps |= (3 << 7);
		break;
	case FEC_7_8:
		tps |= (4 << 7);
		break;
	case FEC_1_2:
	case FEC_AUTO:
		break;
	default:
		return -EINVAL;
	}

	switch (op->code_rate_LP) {
	case FEC_2_3:
		tps |= (1 << 4);
		break;
	case FEC_3_4:
		tps |= (2 << 4);
		break;
	case FEC_5_6:
		tps |= (3 << 4);
		break;
	case FEC_7_8:
		tps |= (4 << 4);
		break;
	case FEC_1_2:
	case FEC_AUTO:
		break;
	case FEC_NONE:
		if (op->hierarchy_information == HIERARCHY_AUTO ||
		    op->hierarchy_information == HIERARCHY_NONE)
			break;
	default:
		return -EINVAL;
	}

	switch (op->constellation) {
	case QPSK:
		break;
	case QAM_AUTO:
	case QAM_16:
		tps |= (1 << 13);
		break;
	case QAM_64:
		tps |= (2 << 13);
		break;
	default:
		return -EINVAL;
	}

	switch (op->transmission_mode) {
	case TRANSMISSION_MODE_2K:
	case TRANSMISSION_MODE_AUTO:
		break;
	case TRANSMISSION_MODE_8K:
		tps |= (1 << 0);
		break;
	default:
		return -EINVAL;
	}

	switch (op->guard_interval) {
	case GUARD_INTERVAL_1_32:
	case GUARD_INTERVAL_AUTO:
		break;
	case GUARD_INTERVAL_1_16:
		tps |= (1 << 2);
		break;
	case GUARD_INTERVAL_1_8:
		tps |= (2 << 2);
		break;
	case GUARD_INTERVAL_1_4:
		tps |= (3 << 2);
		break;
	default:
		return -EINVAL;
	}

	switch (op->hierarchy_information) {
	case HIERARCHY_AUTO:
	case HIERARCHY_NONE:
		break;
	case HIERARCHY_1:
		tps |= (1 << 10);
		break;
	case HIERARCHY_2:
		tps |= (2 << 10);
		break;
	case HIERARCHY_4:
		tps |= (3 << 10);
		break;
	default:
		return -EINVAL;
	}

	zl10353_single_write(fe, TPS_GIVEN_1, msb(tps));
	zl10353_single_write(fe, TPS_GIVEN_0, lsb(tps));

353 354
	if (fe->ops.i2c_gate_ctrl)
		fe->ops.i2c_gate_ctrl(fe, 0);
355

356 357 358 359 360
	/*
	 * If there is no tuner attached to the secondary I2C bus, we call
	 * set_params to program a potential tuner attached somewhere else.
	 * Otherwise, we update the PLL registers via calc_regs.
	 */
361
	if (state->config.no_tuner) {
362 363
		if (fe->ops.tuner_ops.set_params) {
			fe->ops.tuner_ops.set_params(fe, param);
364 365
			if (fe->ops.i2c_gate_ctrl)
				fe->ops.i2c_gate_ctrl(fe, 0);
366
		}
367 368
	} else if (fe->ops.tuner_ops.calc_regs) {
		fe->ops.tuner_ops.calc_regs(fe, param, pllbuf + 1, 5);
369
		pllbuf[1] <<= 1;
370
		zl10353_write(fe, pllbuf, sizeof(pllbuf));
371
	}
372

373
	zl10353_single_write(fe, 0x5F, 0x13);
374 375 376 377 378 379 380

	/* If no attached tuner or invalid PLL registers, just start the FSM. */
	if (state->config.no_tuner || fe->ops.tuner_ops.calc_regs == NULL)
		zl10353_single_write(fe, FSM_GO, 0x01);
	else
		zl10353_single_write(fe, TUNER_GO, 0x01);

381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
	return 0;
}

static int zl10353_get_parameters(struct dvb_frontend *fe,
				  struct dvb_frontend_parameters *param)
{
	struct zl10353_state *state = fe->demodulator_priv;
	struct dvb_ofdm_parameters *op = &param->u.ofdm;
	int s6, s9;
	u16 tps;
	static const u8 tps_fec_to_api[8] = {
		FEC_1_2,
		FEC_2_3,
		FEC_3_4,
		FEC_5_6,
		FEC_7_8,
		FEC_AUTO,
		FEC_AUTO,
		FEC_AUTO
	};

	s6 = zl10353_read_register(state, STATUS_6);
	s9 = zl10353_read_register(state, STATUS_9);
	if (s6 < 0 || s9 < 0)
		return -EREMOTEIO;
	if ((s6 & (1 << 5)) == 0 || (s9 & (1 << 4)) == 0)
		return -EINVAL;	/* no FE or TPS lock */

	tps = zl10353_read_register(state, TPS_RECEIVED_1) << 8 |
	      zl10353_read_register(state, TPS_RECEIVED_0);

	op->code_rate_HP = tps_fec_to_api[(tps >> 7) & 7];
	op->code_rate_LP = tps_fec_to_api[(tps >> 4) & 7];

	switch ((tps >> 13) & 3) {
	case 0:
		op->constellation = QPSK;
		break;
	case 1:
		op->constellation = QAM_16;
		break;
	case 2:
		op->constellation = QAM_64;
		break;
	default:
		op->constellation = QAM_AUTO;
		break;
	}

	op->transmission_mode = (tps & 0x01) ? TRANSMISSION_MODE_8K :
					       TRANSMISSION_MODE_2K;

	switch ((tps >> 2) & 3) {
	case 0:
		op->guard_interval = GUARD_INTERVAL_1_32;
		break;
	case 1:
		op->guard_interval = GUARD_INTERVAL_1_16;
		break;
	case 2:
		op->guard_interval = GUARD_INTERVAL_1_8;
		break;
	case 3:
		op->guard_interval = GUARD_INTERVAL_1_4;
		break;
	default:
		op->guard_interval = GUARD_INTERVAL_AUTO;
		break;
	}

	switch ((tps >> 10) & 7) {
	case 0:
		op->hierarchy_information = HIERARCHY_NONE;
		break;
	case 1:
		op->hierarchy_information = HIERARCHY_1;
		break;
	case 2:
		op->hierarchy_information = HIERARCHY_2;
		break;
	case 3:
		op->hierarchy_information = HIERARCHY_4;
		break;
	default:
		op->hierarchy_information = HIERARCHY_AUTO;
		break;
	}

	param->frequency = 0;
	op->bandwidth = state->bandwidth;
	param->inversion = INVERSION_AUTO;
472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506

	return 0;
}

static int zl10353_read_status(struct dvb_frontend *fe, fe_status_t *status)
{
	struct zl10353_state *state = fe->demodulator_priv;
	int s6, s7, s8;

	if ((s6 = zl10353_read_register(state, STATUS_6)) < 0)
		return -EREMOTEIO;
	if ((s7 = zl10353_read_register(state, STATUS_7)) < 0)
		return -EREMOTEIO;
	if ((s8 = zl10353_read_register(state, STATUS_8)) < 0)
		return -EREMOTEIO;

	*status = 0;
	if (s6 & (1 << 2))
		*status |= FE_HAS_CARRIER;
	if (s6 & (1 << 1))
		*status |= FE_HAS_VITERBI;
	if (s6 & (1 << 5))
		*status |= FE_HAS_LOCK;
	if (s7 & (1 << 4))
		*status |= FE_HAS_SYNC;
	if (s8 & (1 << 6))
		*status |= FE_HAS_SIGNAL;

	if ((*status & (FE_HAS_CARRIER | FE_HAS_VITERBI | FE_HAS_SYNC)) !=
	    (FE_HAS_CARRIER | FE_HAS_VITERBI | FE_HAS_SYNC))
		*status &= ~FE_HAS_LOCK;

	return 0;
}

507 508 509 510
static int zl10353_read_ber(struct dvb_frontend *fe, u32 *ber)
{
	struct zl10353_state *state = fe->demodulator_priv;

511 512 513
	*ber = zl10353_read_register(state, RS_ERR_CNT_2) << 16 |
	       zl10353_read_register(state, RS_ERR_CNT_1) << 8 |
	       zl10353_read_register(state, RS_ERR_CNT_0);
514 515 516 517 518 519 520 521

	return 0;
}

static int zl10353_read_signal_strength(struct dvb_frontend *fe, u16 *strength)
{
	struct zl10353_state *state = fe->demodulator_priv;

522 523
	u16 signal = zl10353_read_register(state, AGC_GAIN_1) << 10 |
		     zl10353_read_register(state, AGC_GAIN_0) << 2 | 3;
524 525 526 527 528 529

	*strength = ~signal;

	return 0;
}

530 531 532 533 534 535 536 537 538 539 540 541 542 543
static int zl10353_read_snr(struct dvb_frontend *fe, u16 *snr)
{
	struct zl10353_state *state = fe->demodulator_priv;
	u8 _snr;

	if (debug_regs)
		zl10353_dump_regs(fe);

	_snr = zl10353_read_register(state, SNR);
	*snr = (_snr << 8) | _snr;

	return 0;
}

544 545 546 547
static int zl10353_read_ucblocks(struct dvb_frontend *fe, u32 *ucblocks)
{
	struct zl10353_state *state = fe->demodulator_priv;

548 549
	*ucblocks = zl10353_read_register(state, RS_UBC_1) << 8 |
		    zl10353_read_register(state, RS_UBC_0);
550 551 552 553

	return 0;
}

554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572
static int zl10353_get_tune_settings(struct dvb_frontend *fe,
				     struct dvb_frontend_tune_settings
					 *fe_tune_settings)
{
	fe_tune_settings->min_delay_ms = 1000;
	fe_tune_settings->step_size = 0;
	fe_tune_settings->max_drift = 0;

	return 0;
}

static int zl10353_init(struct dvb_frontend *fe)
{
	struct zl10353_state *state = fe->demodulator_priv;
	u8 zl10353_reset_attach[6] = { 0x50, 0x03, 0x64, 0x46, 0x15, 0x0F };
	int rc = 0;

	if (debug_regs)
		zl10353_dump_regs(fe);
573 574
	if (state->config.parallel_ts)
		zl10353_reset_attach[2] &= ~0x20;
575 576

	/* Do a "hard" reset if not already done */
577 578
	if (zl10353_read_register(state, 0x50) != zl10353_reset_attach[1] ||
	    zl10353_read_register(state, 0x51) != zl10353_reset_attach[2]) {
579 580 581 582 583 584 585 586 587
		rc = zl10353_write(fe, zl10353_reset_attach,
				   sizeof(zl10353_reset_attach));
		if (debug_regs)
			zl10353_dump_regs(fe);
	}

	return 0;
}

588 589 590 591 592 593 594 595 596 597
static int zl10353_i2c_gate_ctrl(struct dvb_frontend* fe, int enable)
{
	u8 val = 0x0a;

	if (enable)
		val |= 0x10;

	return zl10353_single_write(fe, 0x62, val);
}

598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624
static void zl10353_release(struct dvb_frontend *fe)
{
	struct zl10353_state *state = fe->demodulator_priv;
	kfree(state);
}

static struct dvb_frontend_ops zl10353_ops;

struct dvb_frontend *zl10353_attach(const struct zl10353_config *config,
				    struct i2c_adapter *i2c)
{
	struct zl10353_state *state = NULL;

	/* allocate memory for the internal state */
	state = kzalloc(sizeof(struct zl10353_state), GFP_KERNEL);
	if (state == NULL)
		goto error;

	/* setup the state */
	state->i2c = i2c;
	memcpy(&state->config, config, sizeof(struct zl10353_config));

	/* check if the demod is there */
	if (zl10353_read_register(state, CHIP_ID) != ID_ZL10353)
		goto error;

	/* create dvb_frontend */
625
	memcpy(&state->frontend.ops, &zl10353_ops, sizeof(struct dvb_frontend_ops));
626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655
	state->frontend.demodulator_priv = state;

	return &state->frontend;
error:
	kfree(state);
	return NULL;
}

static struct dvb_frontend_ops zl10353_ops = {

	.info = {
		.name			= "Zarlink ZL10353 DVB-T",
		.type			= FE_OFDM,
		.frequency_min		= 174000000,
		.frequency_max		= 862000000,
		.frequency_stepsize	= 166667,
		.frequency_tolerance	= 0,
		.caps = FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 |
			FE_CAN_FEC_3_4 | FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 |
			FE_CAN_FEC_AUTO |
			FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO |
			FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_GUARD_INTERVAL_AUTO |
			FE_CAN_HIERARCHY_AUTO | FE_CAN_RECOVER |
			FE_CAN_MUTE_TS
	},

	.release = zl10353_release,

	.init = zl10353_init,
	.sleep = zl10353_sleep,
656
	.i2c_gate_ctrl = zl10353_i2c_gate_ctrl,
657
	.write = zl10353_write,
658 659

	.set_frontend = zl10353_set_parameters,
660
	.get_frontend = zl10353_get_parameters,
661 662 663
	.get_tune_settings = zl10353_get_tune_settings,

	.read_status = zl10353_read_status,
664 665
	.read_ber = zl10353_read_ber,
	.read_signal_strength = zl10353_read_signal_strength,
666
	.read_snr = zl10353_read_snr,
667
	.read_ucblocks = zl10353_read_ucblocks,
668 669
};

670 671 672
module_param(debug, int, 0644);
MODULE_PARM_DESC(debug, "Turn on/off frontend debugging (default:off).");

673 674 675 676 677 678 679 680
module_param(debug_regs, int, 0644);
MODULE_PARM_DESC(debug_regs, "Turn on/off frontend register dumps (default:off).");

MODULE_DESCRIPTION("Zarlink ZL10353 DVB-T demodulator driver");
MODULE_AUTHOR("Chris Pascoe");
MODULE_LICENSE("GPL");

EXPORT_SYMBOL(zl10353_attach);