nouveau_chan.c 11.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * Copyright 2012 Red Hat Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 *
 * Authors: Ben Skeggs
 */

25 26 27 28
#include <nvif/os.h>
#include <nvif/class.h>

/*XXX*/
29 30 31 32 33 34 35 36 37 38
#include <core/client.h>

#include "nouveau_drm.h"
#include "nouveau_dma.h"
#include "nouveau_bo.h"
#include "nouveau_chan.h"
#include "nouveau_fence.h"
#include "nouveau_abi16.h"

MODULE_PARM_DESC(vram_pushbuf, "Create DMA push buffers in VRAM");
39
int nouveau_vram_pushbuf;
40 41 42 43 44
module_param_named(vram_pushbuf, nouveau_vram_pushbuf, int, 0400);

int
nouveau_channel_idle(struct nouveau_channel *chan)
{
45
	struct nouveau_cli *cli = (void *)nvif_client(chan->object);
46 47 48
	struct nouveau_fence *fence = NULL;
	int ret;

49
	ret = nouveau_fence_new(chan, false, &fence);
50 51 52 53 54 55
	if (!ret) {
		ret = nouveau_fence_wait(fence, false, false);
		nouveau_fence_unref(&fence);
	}

	if (ret)
56
		NV_PRINTK(error, cli, "failed to idle channel 0x%08x [%s]\n",
57
			  chan->object->handle, nvkm_client(&cli->base)->name);
58 59 60 61 62 63 64 65 66 67 68 69
	return ret;
}

void
nouveau_channel_del(struct nouveau_channel **pchan)
{
	struct nouveau_channel *chan = *pchan;
	if (chan) {
		if (chan->fence) {
			nouveau_channel_idle(chan);
			nouveau_fence(chan->drm)->context_del(chan);
		}
70 71 72 73 74
		nvif_object_fini(&chan->nvsw);
		nvif_object_fini(&chan->gart);
		nvif_object_fini(&chan->vram);
		nvif_object_ref(NULL, &chan->object);
		nvif_object_fini(&chan->push.ctxdma);
75 76
		nouveau_bo_vma_del(chan->push.buffer, &chan->push.vma);
		nouveau_bo_unmap(chan->push.buffer);
77 78
		if (chan->push.buffer && chan->push.buffer->pin_refcnt)
			nouveau_bo_unpin(chan->push.buffer);
79
		nouveau_bo_ref(NULL, &chan->push.buffer);
80
		nvif_device_ref(NULL, &chan->device);
81 82 83 84 85 86
		kfree(chan);
	}
	*pchan = NULL;
}

static int
87 88
nouveau_channel_prep(struct nouveau_drm *drm, struct nvif_device *device,
		     u32 handle, u32 size, struct nouveau_channel **pchan)
89
{
90
	struct nouveau_cli *cli = (void *)nvif_client(&device->base);
91
	struct nouveau_vmmgr *vmm = nvkm_vmmgr(device);
92
	struct nv_dma_v0 args = {};
93 94 95 96 97 98 99 100
	struct nouveau_channel *chan;
	u32 target;
	int ret;

	chan = *pchan = kzalloc(sizeof(*chan), GFP_KERNEL);
	if (!chan)
		return -ENOMEM;

101
	nvif_device_ref(device, &chan->device);
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
	chan->drm = drm;

	/* allocate memory for dma push buffer */
	target = TTM_PL_FLAG_TT;
	if (nouveau_vram_pushbuf)
		target = TTM_PL_FLAG_VRAM;

	ret = nouveau_bo_new(drm->dev, size, 0, target, 0, 0, NULL,
			    &chan->push.buffer);
	if (ret == 0) {
		ret = nouveau_bo_pin(chan->push.buffer, target);
		if (ret == 0)
			ret = nouveau_bo_map(chan->push.buffer);
	}

	if (ret) {
		nouveau_channel_del(pchan);
		return ret;
	}

	/* create dma object covering the *entire* memory space that the
	 * pushbuf lives in, this is because the GEM code requires that
	 * we be able to call out to other (indirect) push buffers
	 */
	chan->push.vma.offset = chan->push.buffer->bo.offset;

128
	if (device->info.family >= NV_DEVICE_INFO_V0_TESLA) {
129
		ret = nouveau_bo_vma_add(chan->push.buffer, cli->vm,
130 131 132 133 134 135
					&chan->push.vma);
		if (ret) {
			nouveau_channel_del(pchan);
			return ret;
		}

136 137
		args.target = NV_DMA_V0_TARGET_VM;
		args.access = NV_DMA_V0_ACCESS_VM;
138
		args.start = 0;
139
		args.limit = cli->vm->vmm->limit - 1;
140 141
	} else
	if (chan->push.buffer->bo.mem.mem_type == TTM_PL_VRAM) {
142
		if (device->info.family == NV_DEVICE_INFO_V0_TNT) {
143 144 145 146
			/* nv04 vram pushbuf hack, retarget to its location in
			 * the framebuffer bar rather than direct vram access..
			 * nfi why this exists, it came from the -nv ddx.
			 */
147 148
			args.target = NV_DMA_V0_TARGET_PCI;
			args.access = NV_DMA_V0_ACCESS_RDWR;
149
			args.start = nv_device_resource_start(nvkm_device(device), 1);
150
			args.limit = args.start + device->info.ram_user - 1;
151
		} else {
152 153
			args.target = NV_DMA_V0_TARGET_VRAM;
			args.access = NV_DMA_V0_ACCESS_RDWR;
154
			args.start = 0;
155
			args.limit = device->info.ram_user - 1;
156 157 158
		}
	} else {
		if (chan->drm->agp.stat == ENABLED) {
159 160
			args.target = NV_DMA_V0_TARGET_AGP;
			args.access = NV_DMA_V0_ACCESS_RDWR;
161 162 163 164
			args.start = chan->drm->agp.base;
			args.limit = chan->drm->agp.base +
				     chan->drm->agp.size - 1;
		} else {
165 166
			args.target = NV_DMA_V0_TARGET_VM;
			args.access = NV_DMA_V0_ACCESS_RDWR;
167 168 169 170 171
			args.start = 0;
			args.limit = vmm->limit - 1;
		}
	}

172
	ret = nvif_object_init(nvif_object(device), NULL, NVDRM_PUSH |
173
			       (handle & 0xffff), NV_DMA_FROM_MEMORY,
174
			       &args, sizeof(args), &chan->push.ctxdma);
175 176 177 178 179 180 181 182
	if (ret) {
		nouveau_channel_del(pchan);
		return ret;
	}

	return 0;
}

183
static int
184 185
nouveau_channel_ind(struct nouveau_drm *drm, struct nvif_device *device,
		    u32 handle, u32 engine, struct nouveau_channel **pchan)
186
{
187 188 189 190
	static const u16 oclasses[] = { KEPLER_CHANNEL_GPFIFO_A,
					FERMI_CHANNEL_GPFIFO,
					G82_CHANNEL_GPFIFO,
					NV50_CHANNEL_GPFIFO,
191
					0 };
192
	const u16 *oclass = oclasses;
193 194 195 196
	union {
		struct nv50_channel_gpfifo_v0 nv50;
		struct kepler_channel_gpfifo_a_v0 kepler;
	} args, *retn;
197
	struct nouveau_channel *chan;
198
	u32 size;
199 200 201
	int ret;

	/* allocate dma push buffer */
202
	ret = nouveau_channel_prep(drm, device, handle, 0x12000, &chan);
203 204 205 206 207 208
	*pchan = chan;
	if (ret)
		return ret;

	/* create channel object */
	do {
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
		if (oclass[0] >= KEPLER_CHANNEL_GPFIFO_A) {
			args.kepler.version = 0;
			args.kepler.engine  = engine;
			args.kepler.pushbuf = chan->push.ctxdma.handle;
			args.kepler.ilength = 0x02000;
			args.kepler.ioffset = 0x10000 + chan->push.vma.offset;
			size = sizeof(args.kepler);
		} else {
			args.nv50.version = 0;
			args.nv50.pushbuf = chan->push.ctxdma.handle;
			args.nv50.ilength = 0x02000;
			args.nv50.ioffset = 0x10000 + chan->push.vma.offset;
			size = sizeof(args.nv50);
		}

224
		ret = nvif_object_new(nvif_object(device), handle, *oclass++,
225 226 227 228 229 230 231
				      &args, size, &chan->object);
		if (ret == 0) {
			retn = chan->object->data;
			if (chan->object->oclass >= KEPLER_CHANNEL_GPFIFO_A)
				chan->chid = retn->kepler.chid;
			else
				chan->chid = retn->nv50.chid;
232
			return ret;
233
		}
234 235 236 237 238 239 240
	} while (*oclass);

	nouveau_channel_del(pchan);
	return ret;
}

static int
241 242
nouveau_channel_dma(struct nouveau_drm *drm, struct nvif_device *device,
		    u32 handle, struct nouveau_channel **pchan)
243
{
244 245 246 247
	static const u16 oclasses[] = { NV40_CHANNEL_DMA,
					NV17_CHANNEL_DMA,
					NV10_CHANNEL_DMA,
					NV03_CHANNEL_DMA,
248
					0 };
249
	const u16 *oclass = oclasses;
250
	struct nv03_channel_dma_v0 args, *retn;
251 252 253 254
	struct nouveau_channel *chan;
	int ret;

	/* allocate dma push buffer */
255
	ret = nouveau_channel_prep(drm, device, handle, 0x10000, &chan);
256 257 258 259 260
	*pchan = chan;
	if (ret)
		return ret;

	/* create channel object */
261
	args.version = 0;
262
	args.pushbuf = chan->push.ctxdma.handle;
263 264 265
	args.offset = chan->push.vma.offset;

	do {
266
		ret = nvif_object_new(nvif_object(device), handle, *oclass++,
267 268 269 270
				      &args, sizeof(args), &chan->object);
		if (ret == 0) {
			retn = chan->object->data;
			chan->chid = retn->chid;
271
			return ret;
272
		}
273 274 275 276 277 278 279 280 281
	} while (ret && *oclass);

	nouveau_channel_del(pchan);
	return ret;
}

static int
nouveau_channel_init(struct nouveau_channel *chan, u32 vram, u32 gart)
{
282 283
	struct nvif_device *device = chan->device;
	struct nouveau_cli *cli = (void *)nvif_client(&device->base);
284
	struct nouveau_vmmgr *vmm = nvkm_vmmgr(device);
285
	struct nouveau_software_chan *swch;
286
	struct nv_dma_v0 args = {};
287 288
	int ret, i;

289 290
	nvif_object_map(chan->object);

291
	/* allocate dma objects to cover all allowed vram, and gart */
292 293
	if (device->info.family < NV_DEVICE_INFO_V0_FERMI) {
		if (device->info.family >= NV_DEVICE_INFO_V0_TESLA) {
294 295
			args.target = NV_DMA_V0_TARGET_VM;
			args.access = NV_DMA_V0_ACCESS_VM;
296
			args.start = 0;
297
			args.limit = cli->vm->vmm->limit - 1;
298
		} else {
299 300
			args.target = NV_DMA_V0_TARGET_VRAM;
			args.access = NV_DMA_V0_ACCESS_RDWR;
301
			args.start = 0;
302
			args.limit = device->info.ram_user - 1;
303 304
		}

305
		ret = nvif_object_init(chan->object, NULL, vram,
306
				       NV_DMA_IN_MEMORY, &args,
307
				       sizeof(args), &chan->vram);
308 309 310
		if (ret)
			return ret;

311
		if (device->info.family >= NV_DEVICE_INFO_V0_TESLA) {
312 313
			args.target = NV_DMA_V0_TARGET_VM;
			args.access = NV_DMA_V0_ACCESS_VM;
314
			args.start = 0;
315
			args.limit = cli->vm->vmm->limit - 1;
316 317
		} else
		if (chan->drm->agp.stat == ENABLED) {
318 319
			args.target = NV_DMA_V0_TARGET_AGP;
			args.access = NV_DMA_V0_ACCESS_RDWR;
320 321 322 323
			args.start = chan->drm->agp.base;
			args.limit = chan->drm->agp.base +
				     chan->drm->agp.size - 1;
		} else {
324 325
			args.target = NV_DMA_V0_TARGET_VM;
			args.access = NV_DMA_V0_ACCESS_RDWR;
326 327 328 329
			args.start = 0;
			args.limit = vmm->limit - 1;
		}

330
		ret = nvif_object_init(chan->object, NULL, gart,
331
				       NV_DMA_IN_MEMORY, &args,
332
				       sizeof(args), &chan->gart);
333 334 335 336 337
		if (ret)
			return ret;
	}

	/* initialise dma tracking parameters */
338
	switch (chan->object->oclass & 0x00ff) {
339
	case 0x006b:
340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
	case 0x006e:
		chan->user_put = 0x40;
		chan->user_get = 0x44;
		chan->dma.max = (0x10000 / 4) - 2;
		break;
	default:
		chan->user_put = 0x40;
		chan->user_get = 0x44;
		chan->user_get_hi = 0x60;
		chan->dma.ib_base =  0x10000 / 4;
		chan->dma.ib_max  = (0x02000 / 8) - 1;
		chan->dma.ib_put  = 0;
		chan->dma.ib_free = chan->dma.ib_max - chan->dma.ib_put;
		chan->dma.max = chan->dma.ib_base;
		break;
	}

	chan->dma.put = 0;
	chan->dma.cur = chan->dma.put;
	chan->dma.free = chan->dma.max - chan->dma.cur;

	ret = RING_SPACE(chan, NOUVEAU_DMA_SKIPS);
	if (ret)
		return ret;

	for (i = 0; i < NOUVEAU_DMA_SKIPS; i++)
		OUT_RING(chan, 0x00000000);

368
	/* allocate software object class (used for fences on <= nv05) */
369
	if (device->info.family < NV_DEVICE_INFO_V0_CELSIUS) {
370
		ret = nvif_object_init(chan->object, NULL, 0x006e, 0x006e,
371
				       NULL, 0, &chan->nvsw);
372 373
		if (ret)
			return ret;
374

375
		swch = (void *)nvkm_object(&chan->nvsw)->parent;
376 377
		swch->flip = nouveau_flip_complete;
		swch->flip_data = chan;
378 379 380 381 382 383

		ret = RING_SPACE(chan, 2);
		if (ret)
			return ret;

		BEGIN_NV04(chan, NvSubSw, 0x0000, 1);
384
		OUT_RING  (chan, chan->nvsw.handle);
385 386 387 388 389 390 391 392
		FIRE_RING (chan);
	}

	/* initialise synchronisation */
	return nouveau_fence(chan->drm)->context_new(chan);
}

int
393 394
nouveau_channel_new(struct nouveau_drm *drm, struct nvif_device *device,
		    u32 handle, u32 arg0, u32 arg1,
395 396
		    struct nouveau_channel **pchan)
{
397
	struct nouveau_cli *cli = (void *)nvif_client(&device->base);
398 399
	int ret;

400
	ret = nouveau_channel_ind(drm, device, handle, arg0, pchan);
401
	if (ret) {
402
		NV_PRINTK(debug, cli, "ib channel create, %d\n", ret);
403
		ret = nouveau_channel_dma(drm, device, handle, pchan);
404
		if (ret) {
405
			NV_PRINTK(debug, cli, "dma channel create, %d\n", ret);
406 407 408 409
			return ret;
		}
	}

410
	ret = nouveau_channel_init(*pchan, arg0, arg1);
411
	if (ret) {
412
		NV_PRINTK(error, cli, "channel failed to initialise, %d\n", ret);
413 414 415 416 417 418
		nouveau_channel_del(pchan);
		return ret;
	}

	return 0;
}