nouveau_chan.c 11.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * Copyright 2012 Red Hat Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 *
 * Authors: Ben Skeggs
 */

25 26 27 28
#include <nvif/os.h>
#include <nvif/class.h>

/*XXX*/
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
#include <core/client.h>

#include "nouveau_drm.h"
#include "nouveau_dma.h"
#include "nouveau_bo.h"
#include "nouveau_chan.h"
#include "nouveau_fence.h"
#include "nouveau_abi16.h"

MODULE_PARM_DESC(vram_pushbuf, "Create DMA push buffers in VRAM");
static int nouveau_vram_pushbuf;
module_param_named(vram_pushbuf, nouveau_vram_pushbuf, int, 0400);

int
nouveau_channel_idle(struct nouveau_channel *chan)
{
45
	struct nouveau_cli *cli = (void *)nvif_client(chan->object);
46 47 48
	struct nouveau_fence *fence = NULL;
	int ret;

49
	ret = nouveau_fence_new(chan, false, &fence);
50 51 52 53 54 55
	if (!ret) {
		ret = nouveau_fence_wait(fence, false, false);
		nouveau_fence_unref(&fence);
	}

	if (ret)
56
		NV_PRINTK(error, cli, "failed to idle channel 0x%08x [%s]\n",
57
			  chan->object->handle, nvkm_client(&cli->base)->name);
58 59 60 61 62 63 64 65 66 67 68 69
	return ret;
}

void
nouveau_channel_del(struct nouveau_channel **pchan)
{
	struct nouveau_channel *chan = *pchan;
	if (chan) {
		if (chan->fence) {
			nouveau_channel_idle(chan);
			nouveau_fence(chan->drm)->context_del(chan);
		}
70 71 72 73 74
		nvif_object_fini(&chan->nvsw);
		nvif_object_fini(&chan->gart);
		nvif_object_fini(&chan->vram);
		nvif_object_ref(NULL, &chan->object);
		nvif_object_fini(&chan->push.ctxdma);
75 76
		nouveau_bo_vma_del(chan->push.buffer, &chan->push.vma);
		nouveau_bo_unmap(chan->push.buffer);
77 78
		if (chan->push.buffer && chan->push.buffer->pin_refcnt)
			nouveau_bo_unpin(chan->push.buffer);
79
		nouveau_bo_ref(NULL, &chan->push.buffer);
80
		nvif_device_ref(NULL, &chan->device);
81 82 83 84 85 86
		kfree(chan);
	}
	*pchan = NULL;
}

static int
87 88
nouveau_channel_prep(struct nouveau_drm *drm, struct nvif_device *device,
		     u32 handle, u32 size, struct nouveau_channel **pchan)
89
{
90
	struct nouveau_cli *cli = (void *)nvif_client(&device->base);
91 92 93
	struct nouveau_instmem *imem = nvkm_instmem(device);
	struct nouveau_vmmgr *vmm = nvkm_vmmgr(device);
	struct nouveau_fb *pfb = nvkm_fb(device);
94
	struct nv_dma_v0 args = {};
95 96 97 98 99 100 101 102
	struct nouveau_channel *chan;
	u32 target;
	int ret;

	chan = *pchan = kzalloc(sizeof(*chan), GFP_KERNEL);
	if (!chan)
		return -ENOMEM;

103
	nvif_device_ref(device, &chan->device);
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
	chan->drm = drm;

	/* allocate memory for dma push buffer */
	target = TTM_PL_FLAG_TT;
	if (nouveau_vram_pushbuf)
		target = TTM_PL_FLAG_VRAM;

	ret = nouveau_bo_new(drm->dev, size, 0, target, 0, 0, NULL,
			    &chan->push.buffer);
	if (ret == 0) {
		ret = nouveau_bo_pin(chan->push.buffer, target);
		if (ret == 0)
			ret = nouveau_bo_map(chan->push.buffer);
	}

	if (ret) {
		nouveau_channel_del(pchan);
		return ret;
	}

	/* create dma object covering the *entire* memory space that the
	 * pushbuf lives in, this is because the GEM code requires that
	 * we be able to call out to other (indirect) push buffers
	 */
	chan->push.vma.offset = chan->push.buffer->bo.offset;

130
	if (device->info.family >= NV_DEVICE_INFO_V0_TESLA) {
131
		ret = nouveau_bo_vma_add(chan->push.buffer, cli->vm,
132 133 134 135 136 137
					&chan->push.vma);
		if (ret) {
			nouveau_channel_del(pchan);
			return ret;
		}

138 139
		args.target = NV_DMA_V0_TARGET_VM;
		args.access = NV_DMA_V0_ACCESS_VM;
140
		args.start = 0;
141
		args.limit = cli->vm->vmm->limit - 1;
142 143
	} else
	if (chan->push.buffer->bo.mem.mem_type == TTM_PL_VRAM) {
144
		u64 limit = pfb->ram->size - imem->reserved - 1;
145
		if (device->info.family == NV_DEVICE_INFO_V0_TNT) {
146 147 148 149
			/* nv04 vram pushbuf hack, retarget to its location in
			 * the framebuffer bar rather than direct vram access..
			 * nfi why this exists, it came from the -nv ddx.
			 */
150 151
			args.target = NV_DMA_V0_TARGET_PCI;
			args.access = NV_DMA_V0_ACCESS_RDWR;
152
			args.start = nv_device_resource_start(nvkm_device(device), 1);
153 154
			args.limit = args.start + limit;
		} else {
155 156
			args.target = NV_DMA_V0_TARGET_VRAM;
			args.access = NV_DMA_V0_ACCESS_RDWR;
157 158 159 160 161
			args.start = 0;
			args.limit = limit;
		}
	} else {
		if (chan->drm->agp.stat == ENABLED) {
162 163
			args.target = NV_DMA_V0_TARGET_AGP;
			args.access = NV_DMA_V0_ACCESS_RDWR;
164 165 166 167
			args.start = chan->drm->agp.base;
			args.limit = chan->drm->agp.base +
				     chan->drm->agp.size - 1;
		} else {
168 169
			args.target = NV_DMA_V0_TARGET_VM;
			args.access = NV_DMA_V0_ACCESS_RDWR;
170 171 172 173 174
			args.start = 0;
			args.limit = vmm->limit - 1;
		}
	}

175
	ret = nvif_object_init(nvif_object(device), NULL, NVDRM_PUSH |
176
			       (handle & 0xffff), NV_DMA_FROM_MEMORY,
177
			       &args, sizeof(args), &chan->push.ctxdma);
178 179 180 181 182 183 184 185
	if (ret) {
		nouveau_channel_del(pchan);
		return ret;
	}

	return 0;
}

186
static int
187 188
nouveau_channel_ind(struct nouveau_drm *drm, struct nvif_device *device,
		    u32 handle, u32 engine, struct nouveau_channel **pchan)
189
{
190 191 192 193
	static const u16 oclasses[] = { KEPLER_CHANNEL_GPFIFO_A,
					FERMI_CHANNEL_GPFIFO,
					G82_CHANNEL_GPFIFO,
					NV50_CHANNEL_GPFIFO,
194
					0 };
195
	const u16 *oclass = oclasses;
196 197 198 199
	union {
		struct nv50_channel_gpfifo_v0 nv50;
		struct kepler_channel_gpfifo_a_v0 kepler;
	} args, *retn;
200
	struct nouveau_channel *chan;
201
	u32 size;
202 203 204
	int ret;

	/* allocate dma push buffer */
205
	ret = nouveau_channel_prep(drm, device, handle, 0x12000, &chan);
206 207 208 209 210 211
	*pchan = chan;
	if (ret)
		return ret;

	/* create channel object */
	do {
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
		if (oclass[0] >= KEPLER_CHANNEL_GPFIFO_A) {
			args.kepler.version = 0;
			args.kepler.engine  = engine;
			args.kepler.pushbuf = chan->push.ctxdma.handle;
			args.kepler.ilength = 0x02000;
			args.kepler.ioffset = 0x10000 + chan->push.vma.offset;
			size = sizeof(args.kepler);
		} else {
			args.nv50.version = 0;
			args.nv50.pushbuf = chan->push.ctxdma.handle;
			args.nv50.ilength = 0x02000;
			args.nv50.ioffset = 0x10000 + chan->push.vma.offset;
			size = sizeof(args.nv50);
		}

227
		ret = nvif_object_new(nvif_object(device), handle, *oclass++,
228 229 230 231 232 233 234
				      &args, size, &chan->object);
		if (ret == 0) {
			retn = chan->object->data;
			if (chan->object->oclass >= KEPLER_CHANNEL_GPFIFO_A)
				chan->chid = retn->kepler.chid;
			else
				chan->chid = retn->nv50.chid;
235
			return ret;
236
		}
237 238 239 240 241 242 243
	} while (*oclass);

	nouveau_channel_del(pchan);
	return ret;
}

static int
244 245
nouveau_channel_dma(struct nouveau_drm *drm, struct nvif_device *device,
		    u32 handle, struct nouveau_channel **pchan)
246
{
247 248 249 250
	static const u16 oclasses[] = { NV40_CHANNEL_DMA,
					NV17_CHANNEL_DMA,
					NV10_CHANNEL_DMA,
					NV03_CHANNEL_DMA,
251
					0 };
252
	const u16 *oclass = oclasses;
253
	struct nv03_channel_dma_v0 args, *retn;
254 255 256 257
	struct nouveau_channel *chan;
	int ret;

	/* allocate dma push buffer */
258
	ret = nouveau_channel_prep(drm, device, handle, 0x10000, &chan);
259 260 261 262 263
	*pchan = chan;
	if (ret)
		return ret;

	/* create channel object */
264
	args.version = 0;
265
	args.pushbuf = chan->push.ctxdma.handle;
266 267 268
	args.offset = chan->push.vma.offset;

	do {
269
		ret = nvif_object_new(nvif_object(device), handle, *oclass++,
270 271 272 273
				      &args, sizeof(args), &chan->object);
		if (ret == 0) {
			retn = chan->object->data;
			chan->chid = retn->chid;
274
			return ret;
275
		}
276 277 278 279 280 281 282 283 284
	} while (ret && *oclass);

	nouveau_channel_del(pchan);
	return ret;
}

static int
nouveau_channel_init(struct nouveau_channel *chan, u32 vram, u32 gart)
{
285 286
	struct nvif_device *device = chan->device;
	struct nouveau_cli *cli = (void *)nvif_client(&device->base);
287 288 289
	struct nouveau_instmem *imem = nvkm_instmem(device);
	struct nouveau_vmmgr *vmm = nvkm_vmmgr(device);
	struct nouveau_fb *pfb = nvkm_fb(device);
290
	struct nouveau_software_chan *swch;
291
	struct nv_dma_v0 args = {};
292 293
	int ret, i;

294 295
	nvif_object_map(chan->object);

296
	/* allocate dma objects to cover all allowed vram, and gart */
297 298
	if (device->info.family < NV_DEVICE_INFO_V0_FERMI) {
		if (device->info.family >= NV_DEVICE_INFO_V0_TESLA) {
299 300
			args.target = NV_DMA_V0_TARGET_VM;
			args.access = NV_DMA_V0_ACCESS_VM;
301
			args.start = 0;
302
			args.limit = cli->vm->vmm->limit - 1;
303
		} else {
304 305
			args.target = NV_DMA_V0_TARGET_VRAM;
			args.access = NV_DMA_V0_ACCESS_RDWR;
306
			args.start = 0;
307
			args.limit = pfb->ram->size - imem->reserved - 1;
308 309
		}

310
		ret = nvif_object_init(chan->object, NULL, vram,
311
				       NV_DMA_IN_MEMORY, &args,
312
				       sizeof(args), &chan->vram);
313 314 315
		if (ret)
			return ret;

316
		if (device->info.family >= NV_DEVICE_INFO_V0_TESLA) {
317 318
			args.target = NV_DMA_V0_TARGET_VM;
			args.access = NV_DMA_V0_ACCESS_VM;
319
			args.start = 0;
320
			args.limit = cli->vm->vmm->limit - 1;
321 322
		} else
		if (chan->drm->agp.stat == ENABLED) {
323 324
			args.target = NV_DMA_V0_TARGET_AGP;
			args.access = NV_DMA_V0_ACCESS_RDWR;
325 326 327 328
			args.start = chan->drm->agp.base;
			args.limit = chan->drm->agp.base +
				     chan->drm->agp.size - 1;
		} else {
329 330
			args.target = NV_DMA_V0_TARGET_VM;
			args.access = NV_DMA_V0_ACCESS_RDWR;
331 332 333 334
			args.start = 0;
			args.limit = vmm->limit - 1;
		}

335
		ret = nvif_object_init(chan->object, NULL, gart,
336
				       NV_DMA_IN_MEMORY, &args,
337
				       sizeof(args), &chan->gart);
338 339 340 341 342
		if (ret)
			return ret;
	}

	/* initialise dma tracking parameters */
343
	switch (chan->object->oclass & 0x00ff) {
344
	case 0x006b:
345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
	case 0x006e:
		chan->user_put = 0x40;
		chan->user_get = 0x44;
		chan->dma.max = (0x10000 / 4) - 2;
		break;
	default:
		chan->user_put = 0x40;
		chan->user_get = 0x44;
		chan->user_get_hi = 0x60;
		chan->dma.ib_base =  0x10000 / 4;
		chan->dma.ib_max  = (0x02000 / 8) - 1;
		chan->dma.ib_put  = 0;
		chan->dma.ib_free = chan->dma.ib_max - chan->dma.ib_put;
		chan->dma.max = chan->dma.ib_base;
		break;
	}

	chan->dma.put = 0;
	chan->dma.cur = chan->dma.put;
	chan->dma.free = chan->dma.max - chan->dma.cur;

	ret = RING_SPACE(chan, NOUVEAU_DMA_SKIPS);
	if (ret)
		return ret;

	for (i = 0; i < NOUVEAU_DMA_SKIPS; i++)
		OUT_RING(chan, 0x00000000);

373
	/* allocate software object class (used for fences on <= nv05) */
374
	if (device->info.family < NV_DEVICE_INFO_V0_CELSIUS) {
375
		ret = nvif_object_init(chan->object, NULL, 0x006e, 0x006e,
376
				       NULL, 0, &chan->nvsw);
377 378
		if (ret)
			return ret;
379

380
		swch = (void *)nvkm_object(&chan->nvsw)->parent;
381 382
		swch->flip = nouveau_flip_complete;
		swch->flip_data = chan;
383 384 385 386 387 388

		ret = RING_SPACE(chan, 2);
		if (ret)
			return ret;

		BEGIN_NV04(chan, NvSubSw, 0x0000, 1);
389
		OUT_RING  (chan, chan->nvsw.handle);
390 391 392 393 394 395 396 397
		FIRE_RING (chan);
	}

	/* initialise synchronisation */
	return nouveau_fence(chan->drm)->context_new(chan);
}

int
398 399
nouveau_channel_new(struct nouveau_drm *drm, struct nvif_device *device,
		    u32 handle, u32 arg0, u32 arg1,
400 401
		    struct nouveau_channel **pchan)
{
402
	struct nouveau_cli *cli = (void *)nvif_client(&device->base);
403 404
	int ret;

405
	ret = nouveau_channel_ind(drm, device, handle, arg0, pchan);
406
	if (ret) {
407
		NV_PRINTK(debug, cli, "ib channel create, %d\n", ret);
408
		ret = nouveau_channel_dma(drm, device, handle, pchan);
409
		if (ret) {
410
			NV_PRINTK(debug, cli, "dma channel create, %d\n", ret);
411 412 413 414
			return ret;
		}
	}

415
	ret = nouveau_channel_init(*pchan, arg0, arg1);
416
	if (ret) {
417
		NV_PRINTK(error, cli, "channel failed to initialise, %d\n", ret);
418 419 420 421 422 423
		nouveau_channel_del(pchan);
		return ret;
	}

	return 0;
}