aesni-intel_asm.S 77.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
/*
 * Implement AES algorithm in Intel AES-NI instructions.
 *
 * The white paper of AES-NI instructions can be downloaded from:
 *   http://softwarecommunity.intel.com/isn/downloads/intelavx/AES-Instructions-Set_WP.pdf
 *
 * Copyright (C) 2008, Intel Corp.
 *    Author: Huang Ying <ying.huang@intel.com>
 *            Vinodh Gopal <vinodh.gopal@intel.com>
 *            Kahraman Akdemir
 *
12 13 14 15 16 17 18 19 20 21 22
 * Added RFC4106 AES-GCM support for 128-bit keys under the AEAD
 * interface for 64-bit kernels.
 *    Authors: Erdinc Ozturk (erdinc.ozturk@intel.com)
 *             Aidan O'Mahony (aidan.o.mahony@intel.com)
 *             Adrian Hoban <adrian.hoban@intel.com>
 *             James Guilford (james.guilford@intel.com)
 *             Gabriele Paoloni <gabriele.paoloni@intel.com>
 *             Tadeusz Struk (tadeusz.struk@intel.com)
 *             Wajdi Feghali (wajdi.k.feghali@intel.com)
 *    Copyright (c) 2010, Intel Corporation.
 *
23 24 25
 * Ported x86_64 version to x86:
 *    Author: Mathias Krause <minipli@googlemail.com>
 *
26 27 28 29 30 31 32
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 */

#include <linux/linkage.h>
33
#include <asm/inst.h>
34
#include <asm/frame.h>
35

36 37 38 39 40 41 42 43 44 45 46
/*
 * The following macros are used to move an (un)aligned 16 byte value to/from
 * an XMM register.  This can done for either FP or integer values, for FP use
 * movaps (move aligned packed single) or integer use movdqa (move double quad
 * aligned).  It doesn't make a performance difference which instruction is used
 * since Nehalem (original Core i7) was released.  However, the movaps is a byte
 * shorter, so that is the one we'll use for now. (same for unaligned).
 */
#define MOVADQ	movaps
#define MOVUDQ	movups

47
#ifdef __x86_64__
48

49 50
# constants in mergeable sections, linker can reorder and merge
.section	.rodata.cst16.gf128mul_x_ble_mask, "aM", @progbits, 16
51 52 53
.align 16
.Lgf128mul_x_ble_mask:
	.octa 0x00000000000000010000000000000087
54 55
.section	.rodata.cst16.POLY, "aM", @progbits, 16
.align 16
56
POLY:   .octa 0xC2000000000000000000000000000001
57 58
.section	.rodata.cst16.TWOONE, "aM", @progbits, 16
.align 16
59 60
TWOONE: .octa 0x00000001000000000000000000000001

61 62
.section	.rodata.cst16.SHUF_MASK, "aM", @progbits, 16
.align 16
63
SHUF_MASK:  .octa 0x000102030405060708090A0B0C0D0E0F
64 65
.section	.rodata.cst16.MASK1, "aM", @progbits, 16
.align 16
66
MASK1:      .octa 0x0000000000000000ffffffffffffffff
67 68
.section	.rodata.cst16.MASK2, "aM", @progbits, 16
.align 16
69
MASK2:      .octa 0xffffffffffffffff0000000000000000
70 71
.section	.rodata.cst16.ONE, "aM", @progbits, 16
.align 16
72
ONE:        .octa 0x00000000000000000000000000000001
73 74
.section	.rodata.cst16.F_MIN_MASK, "aM", @progbits, 16
.align 16
75
F_MIN_MASK: .octa 0xf1f2f3f4f5f6f7f8f9fafbfcfdfeff0
76 77
.section	.rodata.cst16.dec, "aM", @progbits, 16
.align 16
78
dec:        .octa 0x1
79 80
.section	.rodata.cst16.enc, "aM", @progbits, 16
.align 16
81 82
enc:        .octa 0x2

83 84 85 86 87 88 89 90 91
# order of these constants should not change.
# more specifically, ALL_F should follow SHIFT_MASK,
# and zero should follow ALL_F
.section	.rodata, "a", @progbits
.align 16
SHIFT_MASK: .octa 0x0f0e0d0c0b0a09080706050403020100
ALL_F:      .octa 0xffffffffffffffffffffffffffffffff
            .octa 0x00000000000000000000000000000000

92

93 94
.text

95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124

#define	STACK_OFFSET    8*3
#define	HashKey		16*0	// store HashKey <<1 mod poly here
#define	HashKey_2	16*1	// store HashKey^2 <<1 mod poly here
#define	HashKey_3	16*2	// store HashKey^3 <<1 mod poly here
#define	HashKey_4	16*3	// store HashKey^4 <<1 mod poly here
#define	HashKey_k	16*4	// store XOR of High 64 bits and Low 64
				// bits of  HashKey <<1 mod poly here
				//(for Karatsuba purposes)
#define	HashKey_2_k	16*5	// store XOR of High 64 bits and Low 64
				// bits of  HashKey^2 <<1 mod poly here
				// (for Karatsuba purposes)
#define	HashKey_3_k	16*6	// store XOR of High 64 bits and Low 64
				// bits of  HashKey^3 <<1 mod poly here
				// (for Karatsuba purposes)
#define	HashKey_4_k	16*7	// store XOR of High 64 bits and Low 64
				// bits of  HashKey^4 <<1 mod poly here
				// (for Karatsuba purposes)
#define	VARIABLE_OFFSET	16*8

#define arg1 rdi
#define arg2 rsi
#define arg3 rdx
#define arg4 rcx
#define arg5 r8
#define arg6 r9
#define arg7 STACK_OFFSET+8(%r14)
#define arg8 STACK_OFFSET+16(%r14)
#define arg9 STACK_OFFSET+24(%r14)
#define arg10 STACK_OFFSET+32(%r14)
125
#define keysize 2*15*16(%arg1)
126
#endif
127 128


129 130 131 132 133 134 135 136 137 138 139 140
#define STATE1	%xmm0
#define STATE2	%xmm4
#define STATE3	%xmm5
#define STATE4	%xmm6
#define STATE	STATE1
#define IN1	%xmm1
#define IN2	%xmm7
#define IN3	%xmm8
#define IN4	%xmm9
#define IN	IN1
#define KEY	%xmm2
#define IV	%xmm3
141

142 143 144
#define BSWAP_MASK %xmm10
#define CTR	%xmm11
#define INC	%xmm12
145

146 147
#define GF128MUL_MASK %xmm10

148 149
#ifdef __x86_64__
#define AREG	%rax
150 151
#define KEYP	%rdi
#define OUTP	%rsi
152
#define UKEYP	OUTP
153 154 155 156 157 158 159
#define INP	%rdx
#define LEN	%rcx
#define IVP	%r8
#define KLEN	%r9d
#define T1	%r10
#define TKEYP	T1
#define T2	%r11
160
#define TCTR_LOW T2
161 162 163 164 165 166 167 168 169 170 171 172
#else
#define AREG	%eax
#define KEYP	%edi
#define OUTP	AREG
#define UKEYP	OUTP
#define INP	%edx
#define LEN	%esi
#define IVP	%ebp
#define KLEN	%ebx
#define T1	%ecx
#define TKEYP	T1
#endif
173

174

175
#ifdef __x86_64__
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
/* GHASH_MUL MACRO to implement: Data*HashKey mod (128,127,126,121,0)
*
*
* Input: A and B (128-bits each, bit-reflected)
* Output: C = A*B*x mod poly, (i.e. >>1 )
* To compute GH = GH*HashKey mod poly, give HK = HashKey<<1 mod poly as input
* GH = GH * HK * x mod poly which is equivalent to GH*HashKey mod poly.
*
*/
.macro GHASH_MUL GH HK TMP1 TMP2 TMP3 TMP4 TMP5
	movdqa	  \GH, \TMP1
	pshufd	  $78, \GH, \TMP2
	pshufd	  $78, \HK, \TMP3
	pxor	  \GH, \TMP2            # TMP2 = a1+a0
	pxor	  \HK, \TMP3            # TMP3 = b1+b0
	PCLMULQDQ 0x11, \HK, \TMP1     # TMP1 = a1*b1
	PCLMULQDQ 0x00, \HK, \GH       # GH = a0*b0
	PCLMULQDQ 0x00, \TMP3, \TMP2   # TMP2 = (a0+a1)*(b1+b0)
	pxor	  \GH, \TMP2
	pxor	  \TMP1, \TMP2          # TMP2 = (a0*b0)+(a1*b0)
	movdqa	  \TMP2, \TMP3
	pslldq	  $8, \TMP3             # left shift TMP3 2 DWs
	psrldq	  $8, \TMP2             # right shift TMP2 2 DWs
	pxor	  \TMP3, \GH
	pxor	  \TMP2, \TMP1          # TMP2:GH holds the result of GH*HK

        # first phase of the reduction

	movdqa    \GH, \TMP2
	movdqa    \GH, \TMP3
	movdqa    \GH, \TMP4            # copy GH into TMP2,TMP3 and TMP4
					# in in order to perform
					# independent shifts
	pslld     $31, \TMP2            # packed right shift <<31
	pslld     $30, \TMP3            # packed right shift <<30
	pslld     $25, \TMP4            # packed right shift <<25
	pxor      \TMP3, \TMP2          # xor the shifted versions
	pxor      \TMP4, \TMP2
	movdqa    \TMP2, \TMP5
	psrldq    $4, \TMP5             # right shift TMP5 1 DW
	pslldq    $12, \TMP2            # left shift TMP2 3 DWs
	pxor      \TMP2, \GH

        # second phase of the reduction

	movdqa    \GH,\TMP2             # copy GH into TMP2,TMP3 and TMP4
					# in in order to perform
					# independent shifts
	movdqa    \GH,\TMP3
	movdqa    \GH,\TMP4
	psrld     $1,\TMP2              # packed left shift >>1
	psrld     $2,\TMP3              # packed left shift >>2
	psrld     $7,\TMP4              # packed left shift >>7
	pxor      \TMP3,\TMP2		# xor the shifted versions
	pxor      \TMP4,\TMP2
	pxor      \TMP5, \TMP2
	pxor      \TMP2, \GH
	pxor      \TMP1, \GH            # result is in TMP1
.endm

/*
* if a = number of total plaintext bytes
* b = floor(a/16)
* num_initial_blocks = b mod 4
* encrypt the initial num_initial_blocks blocks and apply ghash on
* the ciphertext
* %r10, %r11, %r12, %rax, %xmm5, %xmm6, %xmm7, %xmm8, %xmm9 registers
* are clobbered
* arg1, %arg2, %arg3, %r14 are used as a pointer only, not modified
*/


248 249
.macro INITIAL_BLOCKS_DEC num_initial_blocks TMP1 TMP2 TMP3 TMP4 TMP5 XMM0 XMM1 \
XMM2 XMM3 XMM4 XMMDst TMP6 TMP7 i i_seq operation
250
        MOVADQ     SHUF_MASK(%rip), %xmm14
251 252 253 254
	mov	   arg7, %r10           # %r10 = AAD
	mov	   arg8, %r12           # %r12 = aadLen
	mov	   %r12, %r11
	pxor	   %xmm\i, %xmm\i
255

256 257 258 259 260 261 262 263
_get_AAD_loop\num_initial_blocks\operation:
	movd	   (%r10), \TMP1
	pslldq	   $12, \TMP1
	psrldq	   $4, %xmm\i
	pxor	   \TMP1, %xmm\i
	add	   $4, %r10
	sub	   $4, %r12
	jne	   _get_AAD_loop\num_initial_blocks\operation
264

265 266
	cmp	   $16, %r11
	je	   _get_AAD_loop2_done\num_initial_blocks\operation
267

268 269 270 271 272 273
	mov	   $16, %r12
_get_AAD_loop2\num_initial_blocks\operation:
	psrldq	   $4, %xmm\i
	sub	   $4, %r12
	cmp	   %r11, %r12
	jne	   _get_AAD_loop2\num_initial_blocks\operation
274

275
_get_AAD_loop2_done\num_initial_blocks\operation:
276 277
	PSHUFB_XMM   %xmm14, %xmm\i # byte-reflect the AAD data

278 279 280 281 282 283
	xor	   %r11, %r11 # initialise the data pointer offset as zero

        # start AES for num_initial_blocks blocks

	mov	   %arg5, %rax                      # %rax = *Y0
	movdqu	   (%rax), \XMM0                    # XMM0 = Y0
284 285 286
	PSHUFB_XMM   %xmm14, \XMM0

.if (\i == 5) || (\i == 6) || (\i == 7)
287 288
	MOVADQ		ONE(%RIP),\TMP1
	MOVADQ		(%arg1),\TMP2
289
.irpc index, \i_seq
290
	paddd	   \TMP1, \XMM0                 # INCR Y0
291
	movdqa	   \XMM0, %xmm\index
292
	PSHUFB_XMM   %xmm14, %xmm\index      # perform a 16 byte swap
293
	pxor	   \TMP2, %xmm\index
294
.endr
295 296 297 298 299 300 301 302 303
	lea	0x10(%arg1),%r10
	mov	keysize,%eax
	shr	$2,%eax				# 128->4, 192->6, 256->8
	add	$5,%eax			      # 128->9, 192->11, 256->13

aes_loop_initial_dec\num_initial_blocks:
	MOVADQ	(%r10),\TMP1
.irpc	index, \i_seq
	AESENC	\TMP1, %xmm\index
304
.endr
305 306 307 308 309
	add	$16,%r10
	sub	$1,%eax
	jnz	aes_loop_initial_dec\num_initial_blocks

	MOVADQ	(%r10), \TMP1
310
.irpc index, \i_seq
311
	AESENCLAST \TMP1, %xmm\index         # Last Round
312 313 314 315 316 317 318
.endr
.irpc index, \i_seq
	movdqu	   (%arg3 , %r11, 1), \TMP1
	pxor	   \TMP1, %xmm\index
	movdqu	   %xmm\index, (%arg2 , %r11, 1)
	# write back plaintext/ciphertext for num_initial_blocks
	add	   $16, %r11
319

320
	movdqa     \TMP1, %xmm\index
321
	PSHUFB_XMM	   %xmm14, %xmm\index
322
                # prepare plaintext/ciphertext for GHASH computation
323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
.endr
.endif
	GHASH_MUL  %xmm\i, \TMP3, \TMP1, \TMP2, \TMP4, \TMP5, \XMM1
        # apply GHASH on num_initial_blocks blocks

.if \i == 5
        pxor       %xmm5, %xmm6
	GHASH_MUL  %xmm6, \TMP3, \TMP1, \TMP2, \TMP4, \TMP5, \XMM1
        pxor       %xmm6, %xmm7
	GHASH_MUL  %xmm7, \TMP3, \TMP1, \TMP2, \TMP4, \TMP5, \XMM1
        pxor       %xmm7, %xmm8
	GHASH_MUL  %xmm8, \TMP3, \TMP1, \TMP2, \TMP4, \TMP5, \XMM1
.elseif \i == 6
        pxor       %xmm6, %xmm7
	GHASH_MUL  %xmm7, \TMP3, \TMP1, \TMP2, \TMP4, \TMP5, \XMM1
        pxor       %xmm7, %xmm8
	GHASH_MUL  %xmm8, \TMP3, \TMP1, \TMP2, \TMP4, \TMP5, \XMM1
.elseif \i == 7
        pxor       %xmm7, %xmm8
	GHASH_MUL  %xmm8, \TMP3, \TMP1, \TMP2, \TMP4, \TMP5, \XMM1
.endif
	cmp	   $64, %r13
	jl	_initial_blocks_done\num_initial_blocks\operation
	# no need for precomputed values
/*
*
* Precomputations for HashKey parallel with encryption of first 4 blocks.
* Haskey_i_k holds XORed values of the low and high parts of the Haskey_i
*/
352 353 354
	MOVADQ	   ONE(%rip), \TMP1
	paddd	   \TMP1, \XMM0              # INCR Y0
	MOVADQ	   \XMM0, \XMM1
355 356
	PSHUFB_XMM  %xmm14, \XMM1        # perform a 16 byte swap

357 358
	paddd	   \TMP1, \XMM0              # INCR Y0
	MOVADQ	   \XMM0, \XMM2
359 360
	PSHUFB_XMM  %xmm14, \XMM2        # perform a 16 byte swap

361 362
	paddd	   \TMP1, \XMM0              # INCR Y0
	MOVADQ	   \XMM0, \XMM3
363 364
	PSHUFB_XMM %xmm14, \XMM3        # perform a 16 byte swap

365 366
	paddd	   \TMP1, \XMM0              # INCR Y0
	MOVADQ	   \XMM0, \XMM4
367 368
	PSHUFB_XMM %xmm14, \XMM4        # perform a 16 byte swap

369 370 371 372 373
	MOVADQ	   0(%arg1),\TMP1
	pxor	   \TMP1, \XMM1
	pxor	   \TMP1, \XMM2
	pxor	   \TMP1, \XMM3
	pxor	   \TMP1, \XMM4
374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
	movdqa	   \TMP3, \TMP5
	pshufd	   $78, \TMP3, \TMP1
	pxor	   \TMP3, \TMP1
	movdqa	   \TMP1, HashKey_k(%rsp)
	GHASH_MUL  \TMP5, \TMP3, \TMP1, \TMP2, \TMP4, \TMP6, \TMP7
# TMP5 = HashKey^2<<1 (mod poly)
	movdqa	   \TMP5, HashKey_2(%rsp)
# HashKey_2 = HashKey^2<<1 (mod poly)
	pshufd	   $78, \TMP5, \TMP1
	pxor	   \TMP5, \TMP1
	movdqa	   \TMP1, HashKey_2_k(%rsp)
.irpc index, 1234 # do 4 rounds
	movaps 0x10*\index(%arg1), \TMP1
	AESENC	   \TMP1, \XMM1
	AESENC	   \TMP1, \XMM2
	AESENC	   \TMP1, \XMM3
	AESENC	   \TMP1, \XMM4
.endr
	GHASH_MUL  \TMP5, \TMP3, \TMP1, \TMP2, \TMP4, \TMP6, \TMP7
# TMP5 = HashKey^3<<1 (mod poly)
	movdqa	   \TMP5, HashKey_3(%rsp)
	pshufd	   $78, \TMP5, \TMP1
	pxor	   \TMP5, \TMP1
	movdqa	   \TMP1, HashKey_3_k(%rsp)
.irpc index, 56789 # do next 5 rounds
	movaps 0x10*\index(%arg1), \TMP1
	AESENC	   \TMP1, \XMM1
	AESENC	   \TMP1, \XMM2
	AESENC	   \TMP1, \XMM3
	AESENC	   \TMP1, \XMM4
.endr
	GHASH_MUL  \TMP5, \TMP3, \TMP1, \TMP2, \TMP4, \TMP6, \TMP7
# TMP5 = HashKey^3<<1 (mod poly)
	movdqa	   \TMP5, HashKey_4(%rsp)
	pshufd	   $78, \TMP5, \TMP1
	pxor	   \TMP5, \TMP1
	movdqa	   \TMP1, HashKey_4_k(%rsp)
411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
	lea	   0xa0(%arg1),%r10
	mov	   keysize,%eax
	shr	   $2,%eax			# 128->4, 192->6, 256->8
	sub	   $4,%eax			# 128->0, 192->2, 256->4
	jz	   aes_loop_pre_dec_done\num_initial_blocks

aes_loop_pre_dec\num_initial_blocks:
	MOVADQ	   (%r10),\TMP2
.irpc	index, 1234
	AESENC	   \TMP2, %xmm\index
.endr
	add	   $16,%r10
	sub	   $1,%eax
	jnz	   aes_loop_pre_dec\num_initial_blocks

aes_loop_pre_dec_done\num_initial_blocks:
	MOVADQ	   (%r10), \TMP2
428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
	AESENCLAST \TMP2, \XMM1
	AESENCLAST \TMP2, \XMM2
	AESENCLAST \TMP2, \XMM3
	AESENCLAST \TMP2, \XMM4
	movdqu	   16*0(%arg3 , %r11 , 1), \TMP1
	pxor	   \TMP1, \XMM1
	movdqu	   \XMM1, 16*0(%arg2 , %r11 , 1)
	movdqa     \TMP1, \XMM1
	movdqu	   16*1(%arg3 , %r11 , 1), \TMP1
	pxor	   \TMP1, \XMM2
	movdqu	   \XMM2, 16*1(%arg2 , %r11 , 1)
	movdqa     \TMP1, \XMM2
	movdqu	   16*2(%arg3 , %r11 , 1), \TMP1
	pxor	   \TMP1, \XMM3
	movdqu	   \XMM3, 16*2(%arg2 , %r11 , 1)
	movdqa     \TMP1, \XMM3
	movdqu	   16*3(%arg3 , %r11 , 1), \TMP1
	pxor	   \TMP1, \XMM4
	movdqu	   \XMM4, 16*3(%arg2 , %r11 , 1)
	movdqa     \TMP1, \XMM4
448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
	add	   $64, %r11
	PSHUFB_XMM %xmm14, \XMM1 # perform a 16 byte swap
	pxor	   \XMMDst, \XMM1
# combine GHASHed value with the corresponding ciphertext
	PSHUFB_XMM %xmm14, \XMM2 # perform a 16 byte swap
	PSHUFB_XMM %xmm14, \XMM3 # perform a 16 byte swap
	PSHUFB_XMM %xmm14, \XMM4 # perform a 16 byte swap

_initial_blocks_done\num_initial_blocks\operation:

.endm


/*
* if a = number of total plaintext bytes
* b = floor(a/16)
* num_initial_blocks = b mod 4
* encrypt the initial num_initial_blocks blocks and apply ghash on
* the ciphertext
* %r10, %r11, %r12, %rax, %xmm5, %xmm6, %xmm7, %xmm8, %xmm9 registers
* are clobbered
* arg1, %arg2, %arg3, %r14 are used as a pointer only, not modified
*/


.macro INITIAL_BLOCKS_ENC num_initial_blocks TMP1 TMP2 TMP3 TMP4 TMP5 XMM0 XMM1 \
XMM2 XMM3 XMM4 XMMDst TMP6 TMP7 i i_seq operation
475
        MOVADQ     SHUF_MASK(%rip), %xmm14
476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
	mov	   arg7, %r10           # %r10 = AAD
	mov	   arg8, %r12           # %r12 = aadLen
	mov	   %r12, %r11
	pxor	   %xmm\i, %xmm\i
_get_AAD_loop\num_initial_blocks\operation:
	movd	   (%r10), \TMP1
	pslldq	   $12, \TMP1
	psrldq	   $4, %xmm\i
	pxor	   \TMP1, %xmm\i
	add	   $4, %r10
	sub	   $4, %r12
	jne	   _get_AAD_loop\num_initial_blocks\operation
	cmp	   $16, %r11
	je	   _get_AAD_loop2_done\num_initial_blocks\operation
	mov	   $16, %r12
_get_AAD_loop2\num_initial_blocks\operation:
	psrldq	   $4, %xmm\i
	sub	   $4, %r12
	cmp	   %r11, %r12
	jne	   _get_AAD_loop2\num_initial_blocks\operation
_get_AAD_loop2_done\num_initial_blocks\operation:
	PSHUFB_XMM   %xmm14, %xmm\i # byte-reflect the AAD data

	xor	   %r11, %r11 # initialise the data pointer offset as zero

        # start AES for num_initial_blocks blocks

	mov	   %arg5, %rax                      # %rax = *Y0
	movdqu	   (%rax), \XMM0                    # XMM0 = Y0
	PSHUFB_XMM   %xmm14, \XMM0

.if (\i == 5) || (\i == 6) || (\i == 7)

509 510
	MOVADQ		ONE(%RIP),\TMP1
	MOVADQ		0(%arg1),\TMP2
511
.irpc index, \i_seq
512 513 514 515
	paddd		\TMP1, \XMM0                 # INCR Y0
	MOVADQ		\XMM0, %xmm\index
	PSHUFB_XMM	%xmm14, %xmm\index      # perform a 16 byte swap
	pxor		\TMP2, %xmm\index
516
.endr
517 518 519 520 521 522 523 524 525
	lea	0x10(%arg1),%r10
	mov	keysize,%eax
	shr	$2,%eax				# 128->4, 192->6, 256->8
	add	$5,%eax			      # 128->9, 192->11, 256->13

aes_loop_initial_enc\num_initial_blocks:
	MOVADQ	(%r10),\TMP1
.irpc	index, \i_seq
	AESENC	\TMP1, %xmm\index
526
.endr
527 528 529 530 531
	add	$16,%r10
	sub	$1,%eax
	jnz	aes_loop_initial_enc\num_initial_blocks

	MOVADQ	(%r10), \TMP1
532
.irpc index, \i_seq
533
	AESENCLAST \TMP1, %xmm\index         # Last Round
534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572
.endr
.irpc index, \i_seq
	movdqu	   (%arg3 , %r11, 1), \TMP1
	pxor	   \TMP1, %xmm\index
	movdqu	   %xmm\index, (%arg2 , %r11, 1)
	# write back plaintext/ciphertext for num_initial_blocks
	add	   $16, %r11
	PSHUFB_XMM	   %xmm14, %xmm\index

		# prepare plaintext/ciphertext for GHASH computation
.endr
.endif
	GHASH_MUL  %xmm\i, \TMP3, \TMP1, \TMP2, \TMP4, \TMP5, \XMM1
        # apply GHASH on num_initial_blocks blocks

.if \i == 5
        pxor       %xmm5, %xmm6
	GHASH_MUL  %xmm6, \TMP3, \TMP1, \TMP2, \TMP4, \TMP5, \XMM1
        pxor       %xmm6, %xmm7
	GHASH_MUL  %xmm7, \TMP3, \TMP1, \TMP2, \TMP4, \TMP5, \XMM1
        pxor       %xmm7, %xmm8
	GHASH_MUL  %xmm8, \TMP3, \TMP1, \TMP2, \TMP4, \TMP5, \XMM1
.elseif \i == 6
        pxor       %xmm6, %xmm7
	GHASH_MUL  %xmm7, \TMP3, \TMP1, \TMP2, \TMP4, \TMP5, \XMM1
        pxor       %xmm7, %xmm8
	GHASH_MUL  %xmm8, \TMP3, \TMP1, \TMP2, \TMP4, \TMP5, \XMM1
.elseif \i == 7
        pxor       %xmm7, %xmm8
	GHASH_MUL  %xmm8, \TMP3, \TMP1, \TMP2, \TMP4, \TMP5, \XMM1
.endif
	cmp	   $64, %r13
	jl	_initial_blocks_done\num_initial_blocks\operation
	# no need for precomputed values
/*
*
* Precomputations for HashKey parallel with encryption of first 4 blocks.
* Haskey_i_k holds XORed values of the low and high parts of the Haskey_i
*/
573 574 575
	MOVADQ	   ONE(%RIP),\TMP1
	paddd	   \TMP1, \XMM0              # INCR Y0
	MOVADQ	   \XMM0, \XMM1
576 577
	PSHUFB_XMM  %xmm14, \XMM1        # perform a 16 byte swap

578 579
	paddd	   \TMP1, \XMM0              # INCR Y0
	MOVADQ	   \XMM0, \XMM2
580 581
	PSHUFB_XMM  %xmm14, \XMM2        # perform a 16 byte swap

582 583
	paddd	   \TMP1, \XMM0              # INCR Y0
	MOVADQ	   \XMM0, \XMM3
584 585
	PSHUFB_XMM %xmm14, \XMM3        # perform a 16 byte swap

586 587
	paddd	   \TMP1, \XMM0              # INCR Y0
	MOVADQ	   \XMM0, \XMM4
588 589
	PSHUFB_XMM %xmm14, \XMM4        # perform a 16 byte swap

590 591 592 593 594
	MOVADQ	   0(%arg1),\TMP1
	pxor	   \TMP1, \XMM1
	pxor	   \TMP1, \XMM2
	pxor	   \TMP1, \XMM3
	pxor	   \TMP1, \XMM4
595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631
	movdqa	   \TMP3, \TMP5
	pshufd	   $78, \TMP3, \TMP1
	pxor	   \TMP3, \TMP1
	movdqa	   \TMP1, HashKey_k(%rsp)
	GHASH_MUL  \TMP5, \TMP3, \TMP1, \TMP2, \TMP4, \TMP6, \TMP7
# TMP5 = HashKey^2<<1 (mod poly)
	movdqa	   \TMP5, HashKey_2(%rsp)
# HashKey_2 = HashKey^2<<1 (mod poly)
	pshufd	   $78, \TMP5, \TMP1
	pxor	   \TMP5, \TMP1
	movdqa	   \TMP1, HashKey_2_k(%rsp)
.irpc index, 1234 # do 4 rounds
	movaps 0x10*\index(%arg1), \TMP1
	AESENC	   \TMP1, \XMM1
	AESENC	   \TMP1, \XMM2
	AESENC	   \TMP1, \XMM3
	AESENC	   \TMP1, \XMM4
.endr
	GHASH_MUL  \TMP5, \TMP3, \TMP1, \TMP2, \TMP4, \TMP6, \TMP7
# TMP5 = HashKey^3<<1 (mod poly)
	movdqa	   \TMP5, HashKey_3(%rsp)
	pshufd	   $78, \TMP5, \TMP1
	pxor	   \TMP5, \TMP1
	movdqa	   \TMP1, HashKey_3_k(%rsp)
.irpc index, 56789 # do next 5 rounds
	movaps 0x10*\index(%arg1), \TMP1
	AESENC	   \TMP1, \XMM1
	AESENC	   \TMP1, \XMM2
	AESENC	   \TMP1, \XMM3
	AESENC	   \TMP1, \XMM4
.endr
	GHASH_MUL  \TMP5, \TMP3, \TMP1, \TMP2, \TMP4, \TMP6, \TMP7
# TMP5 = HashKey^3<<1 (mod poly)
	movdqa	   \TMP5, HashKey_4(%rsp)
	pshufd	   $78, \TMP5, \TMP1
	pxor	   \TMP5, \TMP1
	movdqa	   \TMP1, HashKey_4_k(%rsp)
632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648
	lea	   0xa0(%arg1),%r10
	mov	   keysize,%eax
	shr	   $2,%eax			# 128->4, 192->6, 256->8
	sub	   $4,%eax			# 128->0, 192->2, 256->4
	jz	   aes_loop_pre_enc_done\num_initial_blocks

aes_loop_pre_enc\num_initial_blocks:
	MOVADQ	   (%r10),\TMP2
.irpc	index, 1234
	AESENC	   \TMP2, %xmm\index
.endr
	add	   $16,%r10
	sub	   $1,%eax
	jnz	   aes_loop_pre_enc\num_initial_blocks

aes_loop_pre_enc_done\num_initial_blocks:
	MOVADQ	   (%r10), \TMP2
649 650 651 652 653 654 655 656 657 658 659 660
	AESENCLAST \TMP2, \XMM1
	AESENCLAST \TMP2, \XMM2
	AESENCLAST \TMP2, \XMM3
	AESENCLAST \TMP2, \XMM4
	movdqu	   16*0(%arg3 , %r11 , 1), \TMP1
	pxor	   \TMP1, \XMM1
	movdqu	   16*1(%arg3 , %r11 , 1), \TMP1
	pxor	   \TMP1, \XMM2
	movdqu	   16*2(%arg3 , %r11 , 1), \TMP1
	pxor	   \TMP1, \XMM3
	movdqu	   16*3(%arg3 , %r11 , 1), \TMP1
	pxor	   \TMP1, \XMM4
661 662 663 664
	movdqu     \XMM1, 16*0(%arg2 , %r11 , 1)
	movdqu     \XMM2, 16*1(%arg2 , %r11 , 1)
	movdqu     \XMM3, 16*2(%arg2 , %r11 , 1)
	movdqu     \XMM4, 16*3(%arg2 , %r11 , 1)
665

666
	add	   $64, %r11
667
	PSHUFB_XMM %xmm14, \XMM1 # perform a 16 byte swap
668 669
	pxor	   \XMMDst, \XMM1
# combine GHASHed value with the corresponding ciphertext
670 671 672 673
	PSHUFB_XMM %xmm14, \XMM2 # perform a 16 byte swap
	PSHUFB_XMM %xmm14, \XMM3 # perform a 16 byte swap
	PSHUFB_XMM %xmm14, \XMM4 # perform a 16 byte swap

674
_initial_blocks_done\num_initial_blocks\operation:
675

676 677 678 679 680 681 682 683
.endm

/*
* encrypt 4 blocks at a time
* ghash the 4 previously encrypted ciphertext blocks
* arg1, %arg2, %arg3 are used as pointers only, not modified
* %r11 is the data offset value
*/
684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801
.macro GHASH_4_ENCRYPT_4_PARALLEL_ENC TMP1 TMP2 TMP3 TMP4 TMP5 \
TMP6 XMM0 XMM1 XMM2 XMM3 XMM4 XMM5 XMM6 XMM7 XMM8 operation

	movdqa	  \XMM1, \XMM5
	movdqa	  \XMM2, \XMM6
	movdqa	  \XMM3, \XMM7
	movdqa	  \XMM4, \XMM8

        movdqa    SHUF_MASK(%rip), %xmm15
        # multiply TMP5 * HashKey using karatsuba

	movdqa	  \XMM5, \TMP4
	pshufd	  $78, \XMM5, \TMP6
	pxor	  \XMM5, \TMP6
	paddd     ONE(%rip), \XMM0		# INCR CNT
	movdqa	  HashKey_4(%rsp), \TMP5
	PCLMULQDQ 0x11, \TMP5, \TMP4           # TMP4 = a1*b1
	movdqa    \XMM0, \XMM1
	paddd     ONE(%rip), \XMM0		# INCR CNT
	movdqa    \XMM0, \XMM2
	paddd     ONE(%rip), \XMM0		# INCR CNT
	movdqa    \XMM0, \XMM3
	paddd     ONE(%rip), \XMM0		# INCR CNT
	movdqa    \XMM0, \XMM4
	PSHUFB_XMM %xmm15, \XMM1	# perform a 16 byte swap
	PCLMULQDQ 0x00, \TMP5, \XMM5           # XMM5 = a0*b0
	PSHUFB_XMM %xmm15, \XMM2	# perform a 16 byte swap
	PSHUFB_XMM %xmm15, \XMM3	# perform a 16 byte swap
	PSHUFB_XMM %xmm15, \XMM4	# perform a 16 byte swap

	pxor	  (%arg1), \XMM1
	pxor	  (%arg1), \XMM2
	pxor	  (%arg1), \XMM3
	pxor	  (%arg1), \XMM4
	movdqa	  HashKey_4_k(%rsp), \TMP5
	PCLMULQDQ 0x00, \TMP5, \TMP6           # TMP6 = (a1+a0)*(b1+b0)
	movaps 0x10(%arg1), \TMP1
	AESENC	  \TMP1, \XMM1              # Round 1
	AESENC	  \TMP1, \XMM2
	AESENC	  \TMP1, \XMM3
	AESENC	  \TMP1, \XMM4
	movaps 0x20(%arg1), \TMP1
	AESENC	  \TMP1, \XMM1              # Round 2
	AESENC	  \TMP1, \XMM2
	AESENC	  \TMP1, \XMM3
	AESENC	  \TMP1, \XMM4
	movdqa	  \XMM6, \TMP1
	pshufd	  $78, \XMM6, \TMP2
	pxor	  \XMM6, \TMP2
	movdqa	  HashKey_3(%rsp), \TMP5
	PCLMULQDQ 0x11, \TMP5, \TMP1           # TMP1 = a1 * b1
	movaps 0x30(%arg1), \TMP3
	AESENC    \TMP3, \XMM1              # Round 3
	AESENC    \TMP3, \XMM2
	AESENC    \TMP3, \XMM3
	AESENC    \TMP3, \XMM4
	PCLMULQDQ 0x00, \TMP5, \XMM6           # XMM6 = a0*b0
	movaps 0x40(%arg1), \TMP3
	AESENC	  \TMP3, \XMM1              # Round 4
	AESENC	  \TMP3, \XMM2
	AESENC	  \TMP3, \XMM3
	AESENC	  \TMP3, \XMM4
	movdqa	  HashKey_3_k(%rsp), \TMP5
	PCLMULQDQ 0x00, \TMP5, \TMP2           # TMP2 = (a1+a0)*(b1+b0)
	movaps 0x50(%arg1), \TMP3
	AESENC	  \TMP3, \XMM1              # Round 5
	AESENC	  \TMP3, \XMM2
	AESENC	  \TMP3, \XMM3
	AESENC	  \TMP3, \XMM4
	pxor	  \TMP1, \TMP4
# accumulate the results in TMP4:XMM5, TMP6 holds the middle part
	pxor	  \XMM6, \XMM5
	pxor	  \TMP2, \TMP6
	movdqa	  \XMM7, \TMP1
	pshufd	  $78, \XMM7, \TMP2
	pxor	  \XMM7, \TMP2
	movdqa	  HashKey_2(%rsp ), \TMP5

        # Multiply TMP5 * HashKey using karatsuba

	PCLMULQDQ 0x11, \TMP5, \TMP1           # TMP1 = a1*b1
	movaps 0x60(%arg1), \TMP3
	AESENC	  \TMP3, \XMM1              # Round 6
	AESENC	  \TMP3, \XMM2
	AESENC	  \TMP3, \XMM3
	AESENC	  \TMP3, \XMM4
	PCLMULQDQ 0x00, \TMP5, \XMM7           # XMM7 = a0*b0
	movaps 0x70(%arg1), \TMP3
	AESENC	  \TMP3, \XMM1             # Round 7
	AESENC	  \TMP3, \XMM2
	AESENC	  \TMP3, \XMM3
	AESENC	  \TMP3, \XMM4
	movdqa	  HashKey_2_k(%rsp), \TMP5
	PCLMULQDQ 0x00, \TMP5, \TMP2           # TMP2 = (a1+a0)*(b1+b0)
	movaps 0x80(%arg1), \TMP3
	AESENC	  \TMP3, \XMM1             # Round 8
	AESENC	  \TMP3, \XMM2
	AESENC	  \TMP3, \XMM3
	AESENC	  \TMP3, \XMM4
	pxor	  \TMP1, \TMP4
# accumulate the results in TMP4:XMM5, TMP6 holds the middle part
	pxor	  \XMM7, \XMM5
	pxor	  \TMP2, \TMP6

        # Multiply XMM8 * HashKey
        # XMM8 and TMP5 hold the values for the two operands

	movdqa	  \XMM8, \TMP1
	pshufd	  $78, \XMM8, \TMP2
	pxor	  \XMM8, \TMP2
	movdqa	  HashKey(%rsp), \TMP5
	PCLMULQDQ 0x11, \TMP5, \TMP1          # TMP1 = a1*b1
	movaps 0x90(%arg1), \TMP3
	AESENC	  \TMP3, \XMM1            # Round 9
	AESENC	  \TMP3, \XMM2
	AESENC	  \TMP3, \XMM3
	AESENC	  \TMP3, \XMM4
	PCLMULQDQ 0x00, \TMP5, \XMM8          # XMM8 = a0*b0
802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818
	lea	  0xa0(%arg1),%r10
	mov	  keysize,%eax
	shr	  $2,%eax			# 128->4, 192->6, 256->8
	sub	  $4,%eax			# 128->0, 192->2, 256->4
	jz	  aes_loop_par_enc_done

aes_loop_par_enc:
	MOVADQ	  (%r10),\TMP3
.irpc	index, 1234
	AESENC	  \TMP3, %xmm\index
.endr
	add	  $16,%r10
	sub	  $1,%eax
	jnz	  aes_loop_par_enc

aes_loop_par_enc_done:
	MOVADQ	  (%r10), \TMP3
819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892
	AESENCLAST \TMP3, \XMM1           # Round 10
	AESENCLAST \TMP3, \XMM2
	AESENCLAST \TMP3, \XMM3
	AESENCLAST \TMP3, \XMM4
	movdqa    HashKey_k(%rsp), \TMP5
	PCLMULQDQ 0x00, \TMP5, \TMP2          # TMP2 = (a1+a0)*(b1+b0)
	movdqu	  (%arg3,%r11,1), \TMP3
	pxor	  \TMP3, \XMM1                 # Ciphertext/Plaintext XOR EK
	movdqu	  16(%arg3,%r11,1), \TMP3
	pxor	  \TMP3, \XMM2                 # Ciphertext/Plaintext XOR EK
	movdqu	  32(%arg3,%r11,1), \TMP3
	pxor	  \TMP3, \XMM3                 # Ciphertext/Plaintext XOR EK
	movdqu	  48(%arg3,%r11,1), \TMP3
	pxor	  \TMP3, \XMM4                 # Ciphertext/Plaintext XOR EK
        movdqu    \XMM1, (%arg2,%r11,1)        # Write to the ciphertext buffer
        movdqu    \XMM2, 16(%arg2,%r11,1)      # Write to the ciphertext buffer
        movdqu    \XMM3, 32(%arg2,%r11,1)      # Write to the ciphertext buffer
        movdqu    \XMM4, 48(%arg2,%r11,1)      # Write to the ciphertext buffer
	PSHUFB_XMM %xmm15, \XMM1        # perform a 16 byte swap
	PSHUFB_XMM %xmm15, \XMM2	# perform a 16 byte swap
	PSHUFB_XMM %xmm15, \XMM3	# perform a 16 byte swap
	PSHUFB_XMM %xmm15, \XMM4	# perform a 16 byte swap

	pxor	  \TMP4, \TMP1
	pxor	  \XMM8, \XMM5
	pxor	  \TMP6, \TMP2
	pxor	  \TMP1, \TMP2
	pxor	  \XMM5, \TMP2
	movdqa	  \TMP2, \TMP3
	pslldq	  $8, \TMP3                    # left shift TMP3 2 DWs
	psrldq	  $8, \TMP2                    # right shift TMP2 2 DWs
	pxor	  \TMP3, \XMM5
	pxor	  \TMP2, \TMP1	  # accumulate the results in TMP1:XMM5

        # first phase of reduction

	movdqa    \XMM5, \TMP2
	movdqa    \XMM5, \TMP3
	movdqa    \XMM5, \TMP4
# move XMM5 into TMP2, TMP3, TMP4 in order to perform shifts independently
	pslld     $31, \TMP2                   # packed right shift << 31
	pslld     $30, \TMP3                   # packed right shift << 30
	pslld     $25, \TMP4                   # packed right shift << 25
	pxor      \TMP3, \TMP2	               # xor the shifted versions
	pxor      \TMP4, \TMP2
	movdqa    \TMP2, \TMP5
	psrldq    $4, \TMP5                    # right shift T5 1 DW
	pslldq    $12, \TMP2                   # left shift T2 3 DWs
	pxor      \TMP2, \XMM5

        # second phase of reduction

	movdqa    \XMM5,\TMP2 # make 3 copies of XMM5 into TMP2, TMP3, TMP4
	movdqa    \XMM5,\TMP3
	movdqa    \XMM5,\TMP4
	psrld     $1, \TMP2                    # packed left shift >>1
	psrld     $2, \TMP3                    # packed left shift >>2
	psrld     $7, \TMP4                    # packed left shift >>7
	pxor      \TMP3,\TMP2		       # xor the shifted versions
	pxor      \TMP4,\TMP2
	pxor      \TMP5, \TMP2
	pxor      \TMP2, \XMM5
	pxor      \TMP1, \XMM5                 # result is in TMP1

	pxor	  \XMM5, \XMM1
.endm

/*
* decrypt 4 blocks at a time
* ghash the 4 previously decrypted ciphertext blocks
* arg1, %arg2, %arg3 are used as pointers only, not modified
* %r11 is the data offset value
*/
.macro GHASH_4_ENCRYPT_4_PARALLEL_DEC TMP1 TMP2 TMP3 TMP4 TMP5 \
893 894 895 896 897 898 899
TMP6 XMM0 XMM1 XMM2 XMM3 XMM4 XMM5 XMM6 XMM7 XMM8 operation

	movdqa	  \XMM1, \XMM5
	movdqa	  \XMM2, \XMM6
	movdqa	  \XMM3, \XMM7
	movdqa	  \XMM4, \XMM8

900
        movdqa    SHUF_MASK(%rip), %xmm15
901 902 903 904 905 906 907 908 909 910 911 912 913 914 915
        # multiply TMP5 * HashKey using karatsuba

	movdqa	  \XMM5, \TMP4
	pshufd	  $78, \XMM5, \TMP6
	pxor	  \XMM5, \TMP6
	paddd     ONE(%rip), \XMM0		# INCR CNT
	movdqa	  HashKey_4(%rsp), \TMP5
	PCLMULQDQ 0x11, \TMP5, \TMP4           # TMP4 = a1*b1
	movdqa    \XMM0, \XMM1
	paddd     ONE(%rip), \XMM0		# INCR CNT
	movdqa    \XMM0, \XMM2
	paddd     ONE(%rip), \XMM0		# INCR CNT
	movdqa    \XMM0, \XMM3
	paddd     ONE(%rip), \XMM0		# INCR CNT
	movdqa    \XMM0, \XMM4
916
	PSHUFB_XMM %xmm15, \XMM1	# perform a 16 byte swap
917
	PCLMULQDQ 0x00, \TMP5, \XMM5           # XMM5 = a0*b0
918 919 920 921
	PSHUFB_XMM %xmm15, \XMM2	# perform a 16 byte swap
	PSHUFB_XMM %xmm15, \XMM3	# perform a 16 byte swap
	PSHUFB_XMM %xmm15, \XMM4	# perform a 16 byte swap

922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
	pxor	  (%arg1), \XMM1
	pxor	  (%arg1), \XMM2
	pxor	  (%arg1), \XMM3
	pxor	  (%arg1), \XMM4
	movdqa	  HashKey_4_k(%rsp), \TMP5
	PCLMULQDQ 0x00, \TMP5, \TMP6           # TMP6 = (a1+a0)*(b1+b0)
	movaps 0x10(%arg1), \TMP1
	AESENC	  \TMP1, \XMM1              # Round 1
	AESENC	  \TMP1, \XMM2
	AESENC	  \TMP1, \XMM3
	AESENC	  \TMP1, \XMM4
	movaps 0x20(%arg1), \TMP1
	AESENC	  \TMP1, \XMM1              # Round 2
	AESENC	  \TMP1, \XMM2
	AESENC	  \TMP1, \XMM3
	AESENC	  \TMP1, \XMM4
	movdqa	  \XMM6, \TMP1
	pshufd	  $78, \XMM6, \TMP2
	pxor	  \XMM6, \TMP2
	movdqa	  HashKey_3(%rsp), \TMP5
	PCLMULQDQ 0x11, \TMP5, \TMP1           # TMP1 = a1 * b1
	movaps 0x30(%arg1), \TMP3
	AESENC    \TMP3, \XMM1              # Round 3
	AESENC    \TMP3, \XMM2
	AESENC    \TMP3, \XMM3
	AESENC    \TMP3, \XMM4
	PCLMULQDQ 0x00, \TMP5, \XMM6           # XMM6 = a0*b0
	movaps 0x40(%arg1), \TMP3
	AESENC	  \TMP3, \XMM1              # Round 4
	AESENC	  \TMP3, \XMM2
	AESENC	  \TMP3, \XMM3
	AESENC	  \TMP3, \XMM4
	movdqa	  HashKey_3_k(%rsp), \TMP5
	PCLMULQDQ 0x00, \TMP5, \TMP2           # TMP2 = (a1+a0)*(b1+b0)
	movaps 0x50(%arg1), \TMP3
	AESENC	  \TMP3, \XMM1              # Round 5
	AESENC	  \TMP3, \XMM2
	AESENC	  \TMP3, \XMM3
	AESENC	  \TMP3, \XMM4
	pxor	  \TMP1, \TMP4
# accumulate the results in TMP4:XMM5, TMP6 holds the middle part
	pxor	  \XMM6, \XMM5
	pxor	  \TMP2, \TMP6
	movdqa	  \XMM7, \TMP1
	pshufd	  $78, \XMM7, \TMP2
	pxor	  \XMM7, \TMP2
	movdqa	  HashKey_2(%rsp ), \TMP5

        # Multiply TMP5 * HashKey using karatsuba

	PCLMULQDQ 0x11, \TMP5, \TMP1           # TMP1 = a1*b1
	movaps 0x60(%arg1), \TMP3
	AESENC	  \TMP3, \XMM1              # Round 6
	AESENC	  \TMP3, \XMM2
	AESENC	  \TMP3, \XMM3
	AESENC	  \TMP3, \XMM4
	PCLMULQDQ 0x00, \TMP5, \XMM7           # XMM7 = a0*b0
	movaps 0x70(%arg1), \TMP3
	AESENC	  \TMP3, \XMM1             # Round 7
	AESENC	  \TMP3, \XMM2
	AESENC	  \TMP3, \XMM3
	AESENC	  \TMP3, \XMM4
	movdqa	  HashKey_2_k(%rsp), \TMP5
	PCLMULQDQ 0x00, \TMP5, \TMP2           # TMP2 = (a1+a0)*(b1+b0)
	movaps 0x80(%arg1), \TMP3
	AESENC	  \TMP3, \XMM1             # Round 8
	AESENC	  \TMP3, \XMM2
	AESENC	  \TMP3, \XMM3
	AESENC	  \TMP3, \XMM4
	pxor	  \TMP1, \TMP4
# accumulate the results in TMP4:XMM5, TMP6 holds the middle part
	pxor	  \XMM7, \XMM5
	pxor	  \TMP2, \TMP6

        # Multiply XMM8 * HashKey
        # XMM8 and TMP5 hold the values for the two operands

	movdqa	  \XMM8, \TMP1
	pshufd	  $78, \XMM8, \TMP2
	pxor	  \XMM8, \TMP2
	movdqa	  HashKey(%rsp), \TMP5
	PCLMULQDQ 0x11, \TMP5, \TMP1          # TMP1 = a1*b1
	movaps 0x90(%arg1), \TMP3
	AESENC	  \TMP3, \XMM1            # Round 9
	AESENC	  \TMP3, \XMM2
	AESENC	  \TMP3, \XMM3
	AESENC	  \TMP3, \XMM4
	PCLMULQDQ 0x00, \TMP5, \XMM8          # XMM8 = a0*b0
1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
	lea	  0xa0(%arg1),%r10
	mov	  keysize,%eax
	shr	  $2,%eax		        # 128->4, 192->6, 256->8
	sub	  $4,%eax			# 128->0, 192->2, 256->4
	jz	  aes_loop_par_dec_done

aes_loop_par_dec:
	MOVADQ	  (%r10),\TMP3
.irpc	index, 1234
	AESENC	  \TMP3, %xmm\index
.endr
	add	  $16,%r10
	sub	  $1,%eax
	jnz	  aes_loop_par_dec

aes_loop_par_dec_done:
	MOVADQ	  (%r10), \TMP3
	AESENCLAST \TMP3, \XMM1           # last round
1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
	AESENCLAST \TMP3, \XMM2
	AESENCLAST \TMP3, \XMM3
	AESENCLAST \TMP3, \XMM4
	movdqa    HashKey_k(%rsp), \TMP5
	PCLMULQDQ 0x00, \TMP5, \TMP2          # TMP2 = (a1+a0)*(b1+b0)
	movdqu	  (%arg3,%r11,1), \TMP3
	pxor	  \TMP3, \XMM1                 # Ciphertext/Plaintext XOR EK
	movdqu	  \XMM1, (%arg2,%r11,1)        # Write to plaintext buffer
	movdqa    \TMP3, \XMM1
	movdqu	  16(%arg3,%r11,1), \TMP3
	pxor	  \TMP3, \XMM2                 # Ciphertext/Plaintext XOR EK
	movdqu	  \XMM2, 16(%arg2,%r11,1)      # Write to plaintext buffer
	movdqa    \TMP3, \XMM2
	movdqu	  32(%arg3,%r11,1), \TMP3
	pxor	  \TMP3, \XMM3                 # Ciphertext/Plaintext XOR EK
	movdqu	  \XMM3, 32(%arg2,%r11,1)      # Write to plaintext buffer
	movdqa    \TMP3, \XMM3
	movdqu	  48(%arg3,%r11,1), \TMP3
	pxor	  \TMP3, \XMM4                 # Ciphertext/Plaintext XOR EK
	movdqu	  \XMM4, 48(%arg2,%r11,1)      # Write to plaintext buffer
	movdqa    \TMP3, \XMM4
1049 1050 1051 1052
	PSHUFB_XMM %xmm15, \XMM1        # perform a 16 byte swap
	PSHUFB_XMM %xmm15, \XMM2	# perform a 16 byte swap
	PSHUFB_XMM %xmm15, \XMM3	# perform a 16 byte swap
	PSHUFB_XMM %xmm15, \XMM4	# perform a 16 byte swap
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195

	pxor	  \TMP4, \TMP1
	pxor	  \XMM8, \XMM5
	pxor	  \TMP6, \TMP2
	pxor	  \TMP1, \TMP2
	pxor	  \XMM5, \TMP2
	movdqa	  \TMP2, \TMP3
	pslldq	  $8, \TMP3                    # left shift TMP3 2 DWs
	psrldq	  $8, \TMP2                    # right shift TMP2 2 DWs
	pxor	  \TMP3, \XMM5
	pxor	  \TMP2, \TMP1	  # accumulate the results in TMP1:XMM5

        # first phase of reduction

	movdqa    \XMM5, \TMP2
	movdqa    \XMM5, \TMP3
	movdqa    \XMM5, \TMP4
# move XMM5 into TMP2, TMP3, TMP4 in order to perform shifts independently
	pslld     $31, \TMP2                   # packed right shift << 31
	pslld     $30, \TMP3                   # packed right shift << 30
	pslld     $25, \TMP4                   # packed right shift << 25
	pxor      \TMP3, \TMP2	               # xor the shifted versions
	pxor      \TMP4, \TMP2
	movdqa    \TMP2, \TMP5
	psrldq    $4, \TMP5                    # right shift T5 1 DW
	pslldq    $12, \TMP2                   # left shift T2 3 DWs
	pxor      \TMP2, \XMM5

        # second phase of reduction

	movdqa    \XMM5,\TMP2 # make 3 copies of XMM5 into TMP2, TMP3, TMP4
	movdqa    \XMM5,\TMP3
	movdqa    \XMM5,\TMP4
	psrld     $1, \TMP2                    # packed left shift >>1
	psrld     $2, \TMP3                    # packed left shift >>2
	psrld     $7, \TMP4                    # packed left shift >>7
	pxor      \TMP3,\TMP2		       # xor the shifted versions
	pxor      \TMP4,\TMP2
	pxor      \TMP5, \TMP2
	pxor      \TMP2, \XMM5
	pxor      \TMP1, \XMM5                 # result is in TMP1

	pxor	  \XMM5, \XMM1
.endm

/* GHASH the last 4 ciphertext blocks. */
.macro	GHASH_LAST_4 TMP1 TMP2 TMP3 TMP4 TMP5 TMP6 \
TMP7 XMM1 XMM2 XMM3 XMM4 XMMDst

        # Multiply TMP6 * HashKey (using Karatsuba)

	movdqa	  \XMM1, \TMP6
	pshufd	  $78, \XMM1, \TMP2
	pxor	  \XMM1, \TMP2
	movdqa	  HashKey_4(%rsp), \TMP5
	PCLMULQDQ 0x11, \TMP5, \TMP6       # TMP6 = a1*b1
	PCLMULQDQ 0x00, \TMP5, \XMM1       # XMM1 = a0*b0
	movdqa	  HashKey_4_k(%rsp), \TMP4
	PCLMULQDQ 0x00, \TMP4, \TMP2       # TMP2 = (a1+a0)*(b1+b0)
	movdqa	  \XMM1, \XMMDst
	movdqa	  \TMP2, \XMM1              # result in TMP6, XMMDst, XMM1

        # Multiply TMP1 * HashKey (using Karatsuba)

	movdqa	  \XMM2, \TMP1
	pshufd	  $78, \XMM2, \TMP2
	pxor	  \XMM2, \TMP2
	movdqa	  HashKey_3(%rsp), \TMP5
	PCLMULQDQ 0x11, \TMP5, \TMP1       # TMP1 = a1*b1
	PCLMULQDQ 0x00, \TMP5, \XMM2       # XMM2 = a0*b0
	movdqa	  HashKey_3_k(%rsp), \TMP4
	PCLMULQDQ 0x00, \TMP4, \TMP2       # TMP2 = (a1+a0)*(b1+b0)
	pxor	  \TMP1, \TMP6
	pxor	  \XMM2, \XMMDst
	pxor	  \TMP2, \XMM1
# results accumulated in TMP6, XMMDst, XMM1

        # Multiply TMP1 * HashKey (using Karatsuba)

	movdqa	  \XMM3, \TMP1
	pshufd	  $78, \XMM3, \TMP2
	pxor	  \XMM3, \TMP2
	movdqa	  HashKey_2(%rsp), \TMP5
	PCLMULQDQ 0x11, \TMP5, \TMP1       # TMP1 = a1*b1
	PCLMULQDQ 0x00, \TMP5, \XMM3       # XMM3 = a0*b0
	movdqa	  HashKey_2_k(%rsp), \TMP4
	PCLMULQDQ 0x00, \TMP4, \TMP2       # TMP2 = (a1+a0)*(b1+b0)
	pxor	  \TMP1, \TMP6
	pxor	  \XMM3, \XMMDst
	pxor	  \TMP2, \XMM1   # results accumulated in TMP6, XMMDst, XMM1

        # Multiply TMP1 * HashKey (using Karatsuba)
	movdqa	  \XMM4, \TMP1
	pshufd	  $78, \XMM4, \TMP2
	pxor	  \XMM4, \TMP2
	movdqa	  HashKey(%rsp), \TMP5
	PCLMULQDQ 0x11, \TMP5, \TMP1	    # TMP1 = a1*b1
	PCLMULQDQ 0x00, \TMP5, \XMM4       # XMM4 = a0*b0
	movdqa	  HashKey_k(%rsp), \TMP4
	PCLMULQDQ 0x00, \TMP4, \TMP2       # TMP2 = (a1+a0)*(b1+b0)
	pxor	  \TMP1, \TMP6
	pxor	  \XMM4, \XMMDst
	pxor	  \XMM1, \TMP2
	pxor	  \TMP6, \TMP2
	pxor	  \XMMDst, \TMP2
	# middle section of the temp results combined as in karatsuba algorithm
	movdqa	  \TMP2, \TMP4
	pslldq	  $8, \TMP4                 # left shift TMP4 2 DWs
	psrldq	  $8, \TMP2                 # right shift TMP2 2 DWs
	pxor	  \TMP4, \XMMDst
	pxor	  \TMP2, \TMP6
# TMP6:XMMDst holds the result of the accumulated carry-less multiplications
	# first phase of the reduction
	movdqa    \XMMDst, \TMP2
	movdqa    \XMMDst, \TMP3
	movdqa    \XMMDst, \TMP4
# move XMMDst into TMP2, TMP3, TMP4 in order to perform 3 shifts independently
	pslld     $31, \TMP2                # packed right shifting << 31
	pslld     $30, \TMP3                # packed right shifting << 30
	pslld     $25, \TMP4                # packed right shifting << 25
	pxor      \TMP3, \TMP2              # xor the shifted versions
	pxor      \TMP4, \TMP2
	movdqa    \TMP2, \TMP7
	psrldq    $4, \TMP7                 # right shift TMP7 1 DW
	pslldq    $12, \TMP2                # left shift TMP2 3 DWs
	pxor      \TMP2, \XMMDst

        # second phase of the reduction
	movdqa    \XMMDst, \TMP2
	# make 3 copies of XMMDst for doing 3 shift operations
	movdqa    \XMMDst, \TMP3
	movdqa    \XMMDst, \TMP4
	psrld     $1, \TMP2                 # packed left shift >> 1
	psrld     $2, \TMP3                 # packed left shift >> 2
	psrld     $7, \TMP4                 # packed left shift >> 7
	pxor      \TMP3, \TMP2              # xor the shifted versions
	pxor      \TMP4, \TMP2
	pxor      \TMP7, \TMP2
	pxor      \TMP2, \XMMDst
	pxor      \TMP6, \XMMDst            # reduced result is in XMMDst
.endm


1196 1197 1198
/* Encryption of a single block
* uses eax & r10
*/
1199

1200
.macro ENCRYPT_SINGLE_BLOCK XMM0 TMP1
1201

1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217
	pxor		(%arg1), \XMM0
	mov		keysize,%eax
	shr		$2,%eax			# 128->4, 192->6, 256->8
	add		$5,%eax			# 128->9, 192->11, 256->13
	lea		16(%arg1), %r10	  # get first expanded key address

_esb_loop_\@:
	MOVADQ		(%r10),\TMP1
	AESENC		\TMP1,\XMM0
	add		$16,%r10
	sub		$1,%eax
	jnz		_esb_loop_\@

	MOVADQ		(%r10),\TMP1
	AESENCLAST	\TMP1,\XMM0
.endm
1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
/*****************************************************************************
* void aesni_gcm_dec(void *aes_ctx,    // AES Key schedule. Starts on a 16 byte boundary.
*                   u8 *out,           // Plaintext output. Encrypt in-place is allowed.
*                   const u8 *in,      // Ciphertext input
*                   u64 plaintext_len, // Length of data in bytes for decryption.
*                   u8 *iv,            // Pre-counter block j0: 4 byte salt (from Security Association)
*                                      // concatenated with 8 byte Initialisation Vector (from IPSec ESP Payload)
*                                      // concatenated with 0x00000001. 16-byte aligned pointer.
*                   u8 *hash_subkey,   // H, the Hash sub key input. Data starts on a 16-byte boundary.
*                   const u8 *aad,     // Additional Authentication Data (AAD)
*                   u64 aad_len,       // Length of AAD in bytes. With RFC4106 this is going to be 8 or 12 bytes
*                   u8  *auth_tag,     // Authenticated Tag output. The driver will compare this to the
*                                      // given authentication tag and only return the plaintext if they match.
*                   u64 auth_tag_len); // Authenticated Tag Length in bytes. Valid values are 16
*                                      // (most likely), 12 or 8.
*
* Assumptions:
*
* keys:
*       keys are pre-expanded and aligned to 16 bytes. we are using the first
*       set of 11 keys in the data structure void *aes_ctx
*
* iv:
*       0                   1                   2                   3
*       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
*       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
*       |                             Salt  (From the SA)               |
*       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
*       |                     Initialization Vector                     |
*       |         (This is the sequence number from IPSec header)       |
*       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
*       |                              0x1                              |
*       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
*
*
*
* AAD:
*       AAD padded to 128 bits with 0
*       for example, assume AAD is a u32 vector
*
*       if AAD is 8 bytes:
*       AAD[3] = {A0, A1};
*       padded AAD in xmm register = {A1 A0 0 0}
*
*       0                   1                   2                   3
*       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
*       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
*       |                               SPI (A1)                        |
*       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
*       |                     32-bit Sequence Number (A0)               |
*       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
*       |                              0x0                              |
*       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
*
*                                       AAD Format with 32-bit Sequence Number
*
*       if AAD is 12 bytes:
*       AAD[3] = {A0, A1, A2};
*       padded AAD in xmm register = {A2 A1 A0 0}
*
*       0                   1                   2                   3
*       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
*       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
*       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
*       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
*       |                               SPI (A2)                        |
*       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
*       |                 64-bit Extended Sequence Number {A1,A0}       |
*       |                                                               |
*       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
*       |                              0x0                              |
*       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
*
*                        AAD Format with 64-bit Extended Sequence Number
*
* aadLen:
*       from the definition of the spec, aadLen can only be 8 or 12 bytes.
*       The code supports 16 too but for other sizes, the code will fail.
*
* TLen:
*       from the definition of the spec, TLen can only be 8, 12 or 16 bytes.
*       For other sizes, the code will fail.
*
* poly = x^128 + x^127 + x^126 + x^121 + 1
*
*****************************************************************************/
ENTRY(aesni_gcm_dec)
	push	%r12
	push	%r13
	push	%r14
	mov	%rsp, %r14
/*
* states of %xmm registers %xmm6:%xmm15 not saved
* all %xmm registers are clobbered
*/
	sub	$VARIABLE_OFFSET, %rsp
	and	$~63, %rsp                        # align rsp to 64 bytes
	mov	%arg6, %r12
	movdqu	(%r12), %xmm13			  # %xmm13 = HashKey
1317 1318 1319
        movdqa  SHUF_MASK(%rip), %xmm2
	PSHUFB_XMM %xmm2, %xmm13

1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350

# Precompute HashKey<<1 (mod poly) from the hash key (required for GHASH)

	movdqa	%xmm13, %xmm2
	psllq	$1, %xmm13
	psrlq	$63, %xmm2
	movdqa	%xmm2, %xmm1
	pslldq	$8, %xmm2
	psrldq	$8, %xmm1
	por	%xmm2, %xmm13

        # Reduction

	pshufd	$0x24, %xmm1, %xmm2
	pcmpeqd TWOONE(%rip), %xmm2
	pand	POLY(%rip), %xmm2
	pxor	%xmm2, %xmm13     # %xmm13 holds the HashKey<<1 (mod poly)


        # Decrypt first few blocks

	movdqa %xmm13, HashKey(%rsp)           # store HashKey<<1 (mod poly)
	mov %arg4, %r13    # save the number of bytes of plaintext/ciphertext
	and $-16, %r13                      # %r13 = %r13 - (%r13 mod 16)
	mov %r13, %r12
	and $(3<<4), %r12
	jz _initial_num_blocks_is_0_decrypt
	cmp $(2<<4), %r12
	jb _initial_num_blocks_is_1_decrypt
	je _initial_num_blocks_is_2_decrypt
_initial_num_blocks_is_3_decrypt:
1351
	INITIAL_BLOCKS_DEC 3, %xmm9, %xmm10, %xmm13, %xmm11, %xmm12, %xmm0, \
1352 1353 1354 1355
%xmm1, %xmm2, %xmm3, %xmm4, %xmm8, %xmm5, %xmm6, 5, 678, dec
	sub	$48, %r13
	jmp	_initial_blocks_decrypted
_initial_num_blocks_is_2_decrypt:
1356
	INITIAL_BLOCKS_DEC	2, %xmm9, %xmm10, %xmm13, %xmm11, %xmm12, %xmm0, \
1357 1358 1359 1360
%xmm1, %xmm2, %xmm3, %xmm4, %xmm8, %xmm5, %xmm6, 6, 78, dec
	sub	$32, %r13
	jmp	_initial_blocks_decrypted
_initial_num_blocks_is_1_decrypt:
1361
	INITIAL_BLOCKS_DEC	1, %xmm9, %xmm10, %xmm13, %xmm11, %xmm12, %xmm0, \
1362 1363 1364 1365
%xmm1, %xmm2, %xmm3, %xmm4, %xmm8, %xmm5, %xmm6, 7, 8, dec
	sub	$16, %r13
	jmp	_initial_blocks_decrypted
_initial_num_blocks_is_0_decrypt:
1366
	INITIAL_BLOCKS_DEC	0, %xmm9, %xmm10, %xmm13, %xmm11, %xmm12, %xmm0, \
1367 1368 1369 1370 1371 1372 1373
%xmm1, %xmm2, %xmm3, %xmm4, %xmm8, %xmm5, %xmm6, 8, 0, dec
_initial_blocks_decrypted:
	cmp	$0, %r13
	je	_zero_cipher_left_decrypt
	sub	$64, %r13
	je	_four_cipher_left_decrypt
_decrypt_by_4:
1374
	GHASH_4_ENCRYPT_4_PARALLEL_DEC	%xmm9, %xmm10, %xmm11, %xmm12, %xmm13, \
1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386
%xmm14, %xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, %xmm8, dec
	add	$64, %r11
	sub	$64, %r13
	jne	_decrypt_by_4
_four_cipher_left_decrypt:
	GHASH_LAST_4	%xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14, \
%xmm15, %xmm1, %xmm2, %xmm3, %xmm4, %xmm8
_zero_cipher_left_decrypt:
	mov	%arg4, %r13
	and	$15, %r13				# %r13 = arg4 (mod 16)
	je	_multiple_of_16_bytes_decrypt

L
Lucas De Marchi 已提交
1387
        # Handle the last <16 byte block separately
1388 1389

	paddd ONE(%rip), %xmm0         # increment CNT to get Yn
1390 1391 1392
        movdqa SHUF_MASK(%rip), %xmm10
	PSHUFB_XMM %xmm10, %xmm0

1393 1394 1395
	ENCRYPT_SINGLE_BLOCK  %xmm0, %xmm1    # E(K, Yn)
	sub $16, %r11
	add %r13, %r11
L
Lucas De Marchi 已提交
1396
	movdqu (%arg3,%r11,1), %xmm1   # receive the last <16 byte block
1397 1398 1399 1400 1401
	lea SHIFT_MASK+16(%rip), %r12
	sub %r13, %r12
# adjust the shuffle mask pointer to be able to shift 16-%r13 bytes
# (%r13 is the number of bytes in plaintext mod 16)
	movdqu (%r12), %xmm2           # get the appropriate shuffle mask
1402 1403
	PSHUFB_XMM %xmm2, %xmm1            # right shift 16-%r13 butes

1404 1405 1406 1407 1408 1409
	movdqa  %xmm1, %xmm2
	pxor %xmm1, %xmm0            # Ciphertext XOR E(K, Yn)
	movdqu ALL_F-SHIFT_MASK(%r12), %xmm1
	# get the appropriate mask to mask out top 16-%r13 bytes of %xmm0
	pand %xmm1, %xmm0            # mask out top 16-%r13 bytes of %xmm0
	pand    %xmm1, %xmm2
1410 1411 1412
        movdqa SHUF_MASK(%rip), %xmm10
	PSHUFB_XMM %xmm10 ,%xmm2

1413 1414 1415 1416 1417 1418 1419
	pxor %xmm2, %xmm8
	GHASH_MUL %xmm8, %xmm13, %xmm9, %xmm10, %xmm11, %xmm5, %xmm6
	          # GHASH computation for the last <16 byte block
	sub %r13, %r11
	add $16, %r11

        # output %r13 bytes
1420
	MOVQ_R64_XMM	%xmm0, %rax
1421 1422 1423 1424 1425
	cmp	$8, %r13
	jle	_less_than_8_bytes_left_decrypt
	mov	%rax, (%arg2 , %r11, 1)
	add	$8, %r11
	psrldq	$8, %xmm0
1426
	MOVQ_R64_XMM	%xmm0, %rax
1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438
	sub	$8, %r13
_less_than_8_bytes_left_decrypt:
	mov	%al,  (%arg2, %r11, 1)
	add	$1, %r11
	shr	$8, %rax
	sub	$1, %r13
	jne	_less_than_8_bytes_left_decrypt
_multiple_of_16_bytes_decrypt:
	mov	arg8, %r12		  # %r13 = aadLen (number of bytes)
	shl	$3, %r12		  # convert into number of bits
	movd	%r12d, %xmm15		  # len(A) in %xmm15
	shl	$3, %arg4		  # len(C) in bits (*128)
1439
	MOVQ_R64_XMM	%arg4, %xmm1
1440 1441 1442 1443 1444
	pslldq	$8, %xmm15		  # %xmm15 = len(A)||0x0000000000000000
	pxor	%xmm1, %xmm15		  # %xmm15 = len(A)||len(C)
	pxor	%xmm15, %xmm8
	GHASH_MUL	%xmm8, %xmm13, %xmm9, %xmm10, %xmm11, %xmm5, %xmm6
	         # final GHASH computation
1445 1446 1447
        movdqa SHUF_MASK(%rip), %xmm10
	PSHUFB_XMM %xmm10, %xmm8

1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459
	mov	%arg5, %rax		  # %rax = *Y0
	movdqu	(%rax), %xmm0		  # %xmm0 = Y0
	ENCRYPT_SINGLE_BLOCK	%xmm0,  %xmm1	  # E(K, Y0)
	pxor	%xmm8, %xmm0
_return_T_decrypt:
	mov	arg9, %r10                # %r10 = authTag
	mov	arg10, %r11               # %r11 = auth_tag_len
	cmp	$16, %r11
	je	_T_16_decrypt
	cmp	$12, %r11
	je	_T_12_decrypt
_T_8_decrypt:
1460
	MOVQ_R64_XMM	%xmm0, %rax
1461 1462 1463
	mov	%rax, (%r10)
	jmp	_return_T_done_decrypt
_T_12_decrypt:
1464
	MOVQ_R64_XMM	%xmm0, %rax
1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477
	mov	%rax, (%r10)
	psrldq	$8, %xmm0
	movd	%xmm0, %eax
	mov	%eax, 8(%r10)
	jmp	_return_T_done_decrypt
_T_16_decrypt:
	movdqu	%xmm0, (%r10)
_return_T_done_decrypt:
	mov	%r14, %rsp
	pop	%r14
	pop	%r13
	pop	%r12
	ret
1478
ENDPROC(aesni_gcm_dec)
1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576


/*****************************************************************************
* void aesni_gcm_enc(void *aes_ctx,      // AES Key schedule. Starts on a 16 byte boundary.
*                    u8 *out,            // Ciphertext output. Encrypt in-place is allowed.
*                    const u8 *in,       // Plaintext input
*                    u64 plaintext_len,  // Length of data in bytes for encryption.
*                    u8 *iv,             // Pre-counter block j0: 4 byte salt (from Security Association)
*                                        // concatenated with 8 byte Initialisation Vector (from IPSec ESP Payload)
*                                        // concatenated with 0x00000001. 16-byte aligned pointer.
*                    u8 *hash_subkey,    // H, the Hash sub key input. Data starts on a 16-byte boundary.
*                    const u8 *aad,      // Additional Authentication Data (AAD)
*                    u64 aad_len,        // Length of AAD in bytes. With RFC4106 this is going to be 8 or 12 bytes
*                    u8 *auth_tag,       // Authenticated Tag output.
*                    u64 auth_tag_len);  // Authenticated Tag Length in bytes. Valid values are 16 (most likely),
*                                        // 12 or 8.
*
* Assumptions:
*
* keys:
*       keys are pre-expanded and aligned to 16 bytes. we are using the
*       first set of 11 keys in the data structure void *aes_ctx
*
*
* iv:
*       0                   1                   2                   3
*       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
*       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
*       |                             Salt  (From the SA)               |
*       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
*       |                     Initialization Vector                     |
*       |         (This is the sequence number from IPSec header)       |
*       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
*       |                              0x1                              |
*       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
*
*
*
* AAD:
*       AAD padded to 128 bits with 0
*       for example, assume AAD is a u32 vector
*
*       if AAD is 8 bytes:
*       AAD[3] = {A0, A1};
*       padded AAD in xmm register = {A1 A0 0 0}
*
*       0                   1                   2                   3
*       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
*       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
*       |                               SPI (A1)                        |
*       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
*       |                     32-bit Sequence Number (A0)               |
*       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
*       |                              0x0                              |
*       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
*
*                                 AAD Format with 32-bit Sequence Number
*
*       if AAD is 12 bytes:
*       AAD[3] = {A0, A1, A2};
*       padded AAD in xmm register = {A2 A1 A0 0}
*
*       0                   1                   2                   3
*       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
*       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
*       |                               SPI (A2)                        |
*       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
*       |                 64-bit Extended Sequence Number {A1,A0}       |
*       |                                                               |
*       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
*       |                              0x0                              |
*       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
*
*                         AAD Format with 64-bit Extended Sequence Number
*
* aadLen:
*       from the definition of the spec, aadLen can only be 8 or 12 bytes.
*       The code supports 16 too but for other sizes, the code will fail.
*
* TLen:
*       from the definition of the spec, TLen can only be 8, 12 or 16 bytes.
*       For other sizes, the code will fail.
*
* poly = x^128 + x^127 + x^126 + x^121 + 1
***************************************************************************/
ENTRY(aesni_gcm_enc)
	push	%r12
	push	%r13
	push	%r14
	mov	%rsp, %r14
#
# states of %xmm registers %xmm6:%xmm15 not saved
# all %xmm registers are clobbered
#
	sub	$VARIABLE_OFFSET, %rsp
	and	$~63, %rsp
	mov	%arg6, %r12
	movdqu	(%r12), %xmm13
1577 1578 1579
        movdqa  SHUF_MASK(%rip), %xmm2
	PSHUFB_XMM %xmm2, %xmm13

1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609

# precompute HashKey<<1 mod poly from the HashKey (required for GHASH)

	movdqa	%xmm13, %xmm2
	psllq	$1, %xmm13
	psrlq	$63, %xmm2
	movdqa	%xmm2, %xmm1
	pslldq	$8, %xmm2
	psrldq	$8, %xmm1
	por	%xmm2, %xmm13

        # reduce HashKey<<1

	pshufd	$0x24, %xmm1, %xmm2
	pcmpeqd TWOONE(%rip), %xmm2
	pand	POLY(%rip), %xmm2
	pxor	%xmm2, %xmm13
	movdqa	%xmm13, HashKey(%rsp)
	mov	%arg4, %r13            # %xmm13 holds HashKey<<1 (mod poly)
	and	$-16, %r13
	mov	%r13, %r12

        # Encrypt first few blocks

	and	$(3<<4), %r12
	jz	_initial_num_blocks_is_0_encrypt
	cmp	$(2<<4), %r12
	jb	_initial_num_blocks_is_1_encrypt
	je	_initial_num_blocks_is_2_encrypt
_initial_num_blocks_is_3_encrypt:
1610
	INITIAL_BLOCKS_ENC	3, %xmm9, %xmm10, %xmm13, %xmm11, %xmm12, %xmm0, \
1611 1612 1613 1614
%xmm1, %xmm2, %xmm3, %xmm4, %xmm8, %xmm5, %xmm6, 5, 678, enc
	sub	$48, %r13
	jmp	_initial_blocks_encrypted
_initial_num_blocks_is_2_encrypt:
1615
	INITIAL_BLOCKS_ENC	2, %xmm9, %xmm10, %xmm13, %xmm11, %xmm12, %xmm0, \
1616 1617 1618 1619
%xmm1, %xmm2, %xmm3, %xmm4, %xmm8, %xmm5, %xmm6, 6, 78, enc
	sub	$32, %r13
	jmp	_initial_blocks_encrypted
_initial_num_blocks_is_1_encrypt:
1620
	INITIAL_BLOCKS_ENC	1, %xmm9, %xmm10, %xmm13, %xmm11, %xmm12, %xmm0, \
1621 1622 1623 1624
%xmm1, %xmm2, %xmm3, %xmm4, %xmm8, %xmm5, %xmm6, 7, 8, enc
	sub	$16, %r13
	jmp	_initial_blocks_encrypted
_initial_num_blocks_is_0_encrypt:
1625
	INITIAL_BLOCKS_ENC	0, %xmm9, %xmm10, %xmm13, %xmm11, %xmm12, %xmm0, \
1626 1627 1628 1629 1630 1631 1632 1633 1634 1635
%xmm1, %xmm2, %xmm3, %xmm4, %xmm8, %xmm5, %xmm6, 8, 0, enc
_initial_blocks_encrypted:

        # Main loop - Encrypt remaining blocks

	cmp	$0, %r13
	je	_zero_cipher_left_encrypt
	sub	$64, %r13
	je	_four_cipher_left_encrypt
_encrypt_by_4_encrypt:
1636
	GHASH_4_ENCRYPT_4_PARALLEL_ENC	%xmm9, %xmm10, %xmm11, %xmm12, %xmm13, \
1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648
%xmm14, %xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, %xmm8, enc
	add	$64, %r11
	sub	$64, %r13
	jne	_encrypt_by_4_encrypt
_four_cipher_left_encrypt:
	GHASH_LAST_4	%xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14, \
%xmm15, %xmm1, %xmm2, %xmm3, %xmm4, %xmm8
_zero_cipher_left_encrypt:
	mov	%arg4, %r13
	and	$15, %r13			# %r13 = arg4 (mod 16)
	je	_multiple_of_16_bytes_encrypt

L
Lucas De Marchi 已提交
1649
         # Handle the last <16 Byte block separately
1650
	paddd ONE(%rip), %xmm0                # INCR CNT to get Yn
1651 1652 1653
        movdqa SHUF_MASK(%rip), %xmm10
	PSHUFB_XMM %xmm10, %xmm0

1654

1655 1656 1657 1658 1659 1660 1661 1662 1663
	ENCRYPT_SINGLE_BLOCK	%xmm0, %xmm1        # Encrypt(K, Yn)
	sub $16, %r11
	add %r13, %r11
	movdqu (%arg3,%r11,1), %xmm1     # receive the last <16 byte blocks
	lea SHIFT_MASK+16(%rip), %r12
	sub %r13, %r12
	# adjust the shuffle mask pointer to be able to shift 16-r13 bytes
	# (%r13 is the number of bytes in plaintext mod 16)
	movdqu	(%r12), %xmm2           # get the appropriate shuffle mask
1664
	PSHUFB_XMM	%xmm2, %xmm1            # shift right 16-r13 byte
1665 1666 1667 1668
	pxor	%xmm1, %xmm0            # Plaintext XOR Encrypt(K, Yn)
	movdqu	ALL_F-SHIFT_MASK(%r12), %xmm1
	# get the appropriate mask to mask out top 16-r13 bytes of xmm0
	pand	%xmm1, %xmm0            # mask out top 16-r13 bytes of xmm0
1669 1670
        movdqa SHUF_MASK(%rip), %xmm10
	PSHUFB_XMM %xmm10,%xmm0
1671 1672 1673 1674 1675 1676

	pxor	%xmm0, %xmm8
	GHASH_MUL %xmm8, %xmm13, %xmm9, %xmm10, %xmm11, %xmm5, %xmm6
	# GHASH computation for the last <16 byte block
	sub	%r13, %r11
	add	$16, %r11
1677 1678 1679

	movdqa SHUF_MASK(%rip), %xmm10
	PSHUFB_XMM %xmm10, %xmm0
1680

1681 1682 1683
	# shuffle xmm0 back to output as ciphertext

        # Output %r13 bytes
1684
	MOVQ_R64_XMM %xmm0, %rax
1685 1686 1687 1688 1689
	cmp $8, %r13
	jle _less_than_8_bytes_left_encrypt
	mov %rax, (%arg2 , %r11, 1)
	add $8, %r11
	psrldq $8, %xmm0
1690
	MOVQ_R64_XMM %xmm0, %rax
1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702
	sub $8, %r13
_less_than_8_bytes_left_encrypt:
	mov %al,  (%arg2, %r11, 1)
	add $1, %r11
	shr $8, %rax
	sub $1, %r13
	jne _less_than_8_bytes_left_encrypt
_multiple_of_16_bytes_encrypt:
	mov	arg8, %r12    # %r12 = addLen (number of bytes)
	shl	$3, %r12
	movd	%r12d, %xmm15       # len(A) in %xmm15
	shl	$3, %arg4               # len(C) in bits (*128)
1703
	MOVQ_R64_XMM	%arg4, %xmm1
1704 1705 1706 1707 1708
	pslldq	$8, %xmm15          # %xmm15 = len(A)||0x0000000000000000
	pxor	%xmm1, %xmm15       # %xmm15 = len(A)||len(C)
	pxor	%xmm15, %xmm8
	GHASH_MUL	%xmm8, %xmm13, %xmm9, %xmm10, %xmm11, %xmm5, %xmm6
	# final GHASH computation
1709 1710
        movdqa SHUF_MASK(%rip), %xmm10
	PSHUFB_XMM %xmm10, %xmm8         # perform a 16 byte swap
1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723

	mov	%arg5, %rax		       # %rax  = *Y0
	movdqu	(%rax), %xmm0		       # %xmm0 = Y0
	ENCRYPT_SINGLE_BLOCK	%xmm0, %xmm15         # Encrypt(K, Y0)
	pxor	%xmm8, %xmm0
_return_T_encrypt:
	mov	arg9, %r10                     # %r10 = authTag
	mov	arg10, %r11                    # %r11 = auth_tag_len
	cmp	$16, %r11
	je	_T_16_encrypt
	cmp	$12, %r11
	je	_T_12_encrypt
_T_8_encrypt:
1724
	MOVQ_R64_XMM	%xmm0, %rax
1725 1726 1727
	mov	%rax, (%r10)
	jmp	_return_T_done_encrypt
_T_12_encrypt:
1728
	MOVQ_R64_XMM	%xmm0, %rax
1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741
	mov	%rax, (%r10)
	psrldq	$8, %xmm0
	movd	%xmm0, %eax
	mov	%eax, 8(%r10)
	jmp	_return_T_done_encrypt
_T_16_encrypt:
	movdqu	%xmm0, (%r10)
_return_T_done_encrypt:
	mov	%r14, %rsp
	pop	%r14
	pop	%r13
	pop	%r12
	ret
1742
ENDPROC(aesni_gcm_enc)
1743

1744
#endif
1745 1746


1747
.align 4
1748 1749 1750 1751 1752 1753 1754 1755
_key_expansion_128:
_key_expansion_256a:
	pshufd $0b11111111, %xmm1, %xmm1
	shufps $0b00010000, %xmm0, %xmm4
	pxor %xmm4, %xmm0
	shufps $0b10001100, %xmm0, %xmm4
	pxor %xmm4, %xmm0
	pxor %xmm1, %xmm0
1756 1757
	movaps %xmm0, (TKEYP)
	add $0x10, TKEYP
1758
	ret
1759 1760
ENDPROC(_key_expansion_128)
ENDPROC(_key_expansion_256a)
1761

1762
.align 4
1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779
_key_expansion_192a:
	pshufd $0b01010101, %xmm1, %xmm1
	shufps $0b00010000, %xmm0, %xmm4
	pxor %xmm4, %xmm0
	shufps $0b10001100, %xmm0, %xmm4
	pxor %xmm4, %xmm0
	pxor %xmm1, %xmm0

	movaps %xmm2, %xmm5
	movaps %xmm2, %xmm6
	pslldq $4, %xmm5
	pshufd $0b11111111, %xmm0, %xmm3
	pxor %xmm3, %xmm2
	pxor %xmm5, %xmm2

	movaps %xmm0, %xmm1
	shufps $0b01000100, %xmm0, %xmm6
1780
	movaps %xmm6, (TKEYP)
1781
	shufps $0b01001110, %xmm2, %xmm1
1782 1783
	movaps %xmm1, 0x10(TKEYP)
	add $0x20, TKEYP
1784
	ret
1785
ENDPROC(_key_expansion_192a)
1786

1787
.align 4
1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801
_key_expansion_192b:
	pshufd $0b01010101, %xmm1, %xmm1
	shufps $0b00010000, %xmm0, %xmm4
	pxor %xmm4, %xmm0
	shufps $0b10001100, %xmm0, %xmm4
	pxor %xmm4, %xmm0
	pxor %xmm1, %xmm0

	movaps %xmm2, %xmm5
	pslldq $4, %xmm5
	pshufd $0b11111111, %xmm0, %xmm3
	pxor %xmm3, %xmm2
	pxor %xmm5, %xmm2

1802 1803
	movaps %xmm0, (TKEYP)
	add $0x10, TKEYP
1804
	ret
1805
ENDPROC(_key_expansion_192b)
1806

1807
.align 4
1808 1809 1810 1811 1812 1813 1814
_key_expansion_256b:
	pshufd $0b10101010, %xmm1, %xmm1
	shufps $0b00010000, %xmm2, %xmm4
	pxor %xmm4, %xmm2
	shufps $0b10001100, %xmm2, %xmm4
	pxor %xmm4, %xmm2
	pxor %xmm1, %xmm2
1815 1816
	movaps %xmm2, (TKEYP)
	add $0x10, TKEYP
1817
	ret
1818
ENDPROC(_key_expansion_256b)
1819 1820 1821 1822 1823 1824

/*
 * int aesni_set_key(struct crypto_aes_ctx *ctx, const u8 *in_key,
 *                   unsigned int key_len)
 */
ENTRY(aesni_set_key)
1825
	FRAME_BEGIN
1826 1827
#ifndef __x86_64__
	pushl KEYP
1828 1829 1830
	movl (FRAME_OFFSET+8)(%esp), KEYP	# ctx
	movl (FRAME_OFFSET+12)(%esp), UKEYP	# in_key
	movl (FRAME_OFFSET+16)(%esp), %edx	# key_len
1831 1832 1833 1834 1835
#endif
	movups (UKEYP), %xmm0		# user key (first 16 bytes)
	movaps %xmm0, (KEYP)
	lea 0x10(KEYP), TKEYP		# key addr
	movl %edx, 480(KEYP)
1836 1837 1838 1839
	pxor %xmm4, %xmm4		# xmm4 is assumed 0 in _key_expansion_x
	cmp $24, %dl
	jb .Lenc_key128
	je .Lenc_key192
1840 1841 1842
	movups 0x10(UKEYP), %xmm2	# other user key
	movaps %xmm2, (TKEYP)
	add $0x10, TKEYP
1843
	AESKEYGENASSIST 0x1 %xmm2 %xmm1		# round 1
1844
	call _key_expansion_256a
1845
	AESKEYGENASSIST 0x1 %xmm0 %xmm1
1846
	call _key_expansion_256b
1847
	AESKEYGENASSIST 0x2 %xmm2 %xmm1		# round 2
1848
	call _key_expansion_256a
1849
	AESKEYGENASSIST 0x2 %xmm0 %xmm1
1850
	call _key_expansion_256b
1851
	AESKEYGENASSIST 0x4 %xmm2 %xmm1		# round 3
1852
	call _key_expansion_256a
1853
	AESKEYGENASSIST 0x4 %xmm0 %xmm1
1854
	call _key_expansion_256b
1855
	AESKEYGENASSIST 0x8 %xmm2 %xmm1		# round 4
1856
	call _key_expansion_256a
1857
	AESKEYGENASSIST 0x8 %xmm0 %xmm1
1858
	call _key_expansion_256b
1859
	AESKEYGENASSIST 0x10 %xmm2 %xmm1	# round 5
1860
	call _key_expansion_256a
1861
	AESKEYGENASSIST 0x10 %xmm0 %xmm1
1862
	call _key_expansion_256b
1863
	AESKEYGENASSIST 0x20 %xmm2 %xmm1	# round 6
1864
	call _key_expansion_256a
1865
	AESKEYGENASSIST 0x20 %xmm0 %xmm1
1866
	call _key_expansion_256b
1867
	AESKEYGENASSIST 0x40 %xmm2 %xmm1	# round 7
1868 1869 1870
	call _key_expansion_256a
	jmp .Ldec_key
.Lenc_key192:
1871
	movq 0x10(UKEYP), %xmm2		# other user key
1872
	AESKEYGENASSIST 0x1 %xmm2 %xmm1		# round 1
1873
	call _key_expansion_192a
1874
	AESKEYGENASSIST 0x2 %xmm2 %xmm1		# round 2
1875
	call _key_expansion_192b
1876
	AESKEYGENASSIST 0x4 %xmm2 %xmm1		# round 3
1877
	call _key_expansion_192a
1878
	AESKEYGENASSIST 0x8 %xmm2 %xmm1		# round 4
1879
	call _key_expansion_192b
1880
	AESKEYGENASSIST 0x10 %xmm2 %xmm1	# round 5
1881
	call _key_expansion_192a
1882
	AESKEYGENASSIST 0x20 %xmm2 %xmm1	# round 6
1883
	call _key_expansion_192b
1884
	AESKEYGENASSIST 0x40 %xmm2 %xmm1	# round 7
1885
	call _key_expansion_192a
1886
	AESKEYGENASSIST 0x80 %xmm2 %xmm1	# round 8
1887 1888 1889
	call _key_expansion_192b
	jmp .Ldec_key
.Lenc_key128:
1890
	AESKEYGENASSIST 0x1 %xmm0 %xmm1		# round 1
1891
	call _key_expansion_128
1892
	AESKEYGENASSIST 0x2 %xmm0 %xmm1		# round 2
1893
	call _key_expansion_128
1894
	AESKEYGENASSIST 0x4 %xmm0 %xmm1		# round 3
1895
	call _key_expansion_128
1896
	AESKEYGENASSIST 0x8 %xmm0 %xmm1		# round 4
1897
	call _key_expansion_128
1898
	AESKEYGENASSIST 0x10 %xmm0 %xmm1	# round 5
1899
	call _key_expansion_128
1900
	AESKEYGENASSIST 0x20 %xmm0 %xmm1	# round 6
1901
	call _key_expansion_128
1902
	AESKEYGENASSIST 0x40 %xmm0 %xmm1	# round 7
1903
	call _key_expansion_128
1904
	AESKEYGENASSIST 0x80 %xmm0 %xmm1	# round 8
1905
	call _key_expansion_128
1906
	AESKEYGENASSIST 0x1b %xmm0 %xmm1	# round 9
1907
	call _key_expansion_128
1908
	AESKEYGENASSIST 0x36 %xmm0 %xmm1	# round 10
1909 1910
	call _key_expansion_128
.Ldec_key:
1911 1912 1913 1914 1915 1916 1917
	sub $0x10, TKEYP
	movaps (KEYP), %xmm0
	movaps (TKEYP), %xmm1
	movaps %xmm0, 240(TKEYP)
	movaps %xmm1, 240(KEYP)
	add $0x10, KEYP
	lea 240-16(TKEYP), UKEYP
1918 1919
.align 4
.Ldec_key_loop:
1920
	movaps (KEYP), %xmm0
1921
	AESIMC %xmm0 %xmm1
1922 1923 1924 1925
	movaps %xmm1, (UKEYP)
	add $0x10, KEYP
	sub $0x10, UKEYP
	cmp TKEYP, KEYP
1926
	jb .Ldec_key_loop
1927 1928 1929 1930
	xor AREG, AREG
#ifndef __x86_64__
	popl KEYP
#endif
1931
	FRAME_END
1932
	ret
1933
ENDPROC(aesni_set_key)
1934 1935 1936 1937 1938

/*
 * void aesni_enc(struct crypto_aes_ctx *ctx, u8 *dst, const u8 *src)
 */
ENTRY(aesni_enc)
1939
	FRAME_BEGIN
1940 1941 1942
#ifndef __x86_64__
	pushl KEYP
	pushl KLEN
1943 1944 1945
	movl (FRAME_OFFSET+12)(%esp), KEYP	# ctx
	movl (FRAME_OFFSET+16)(%esp), OUTP	# dst
	movl (FRAME_OFFSET+20)(%esp), INP	# src
1946
#endif
1947 1948 1949 1950
	movl 480(KEYP), KLEN		# key length
	movups (INP), STATE		# input
	call _aesni_enc1
	movups STATE, (OUTP)		# output
1951 1952 1953 1954
#ifndef __x86_64__
	popl KLEN
	popl KEYP
#endif
1955
	FRAME_END
1956
	ret
1957
ENDPROC(aesni_enc)
1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970

/*
 * _aesni_enc1:		internal ABI
 * input:
 *	KEYP:		key struct pointer
 *	KLEN:		round count
 *	STATE:		initial state (input)
 * output:
 *	STATE:		finial state (output)
 * changed:
 *	KEY
 *	TKEYP (T1)
 */
1971
.align 4
1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982
_aesni_enc1:
	movaps (KEYP), KEY		# key
	mov KEYP, TKEYP
	pxor KEY, STATE		# round 0
	add $0x30, TKEYP
	cmp $24, KLEN
	jb .Lenc128
	lea 0x20(TKEYP), TKEYP
	je .Lenc192
	add $0x20, TKEYP
	movaps -0x60(TKEYP), KEY
1983
	AESENC KEY STATE
1984
	movaps -0x50(TKEYP), KEY
1985
	AESENC KEY STATE
1986 1987 1988
.align 4
.Lenc192:
	movaps -0x40(TKEYP), KEY
1989
	AESENC KEY STATE
1990
	movaps -0x30(TKEYP), KEY
1991
	AESENC KEY STATE
1992 1993 1994
.align 4
.Lenc128:
	movaps -0x20(TKEYP), KEY
1995
	AESENC KEY STATE
1996
	movaps -0x10(TKEYP), KEY
1997
	AESENC KEY STATE
1998
	movaps (TKEYP), KEY
1999
	AESENC KEY STATE
2000
	movaps 0x10(TKEYP), KEY
2001
	AESENC KEY STATE
2002
	movaps 0x20(TKEYP), KEY
2003
	AESENC KEY STATE
2004
	movaps 0x30(TKEYP), KEY
2005
	AESENC KEY STATE
2006
	movaps 0x40(TKEYP), KEY
2007
	AESENC KEY STATE
2008
	movaps 0x50(TKEYP), KEY
2009
	AESENC KEY STATE
2010
	movaps 0x60(TKEYP), KEY
2011
	AESENC KEY STATE
2012
	movaps 0x70(TKEYP), KEY
2013
	AESENCLAST KEY STATE
2014
	ret
2015
ENDPROC(_aesni_enc1)
2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034

/*
 * _aesni_enc4:	internal ABI
 * input:
 *	KEYP:		key struct pointer
 *	KLEN:		round count
 *	STATE1:		initial state (input)
 *	STATE2
 *	STATE3
 *	STATE4
 * output:
 *	STATE1:		finial state (output)
 *	STATE2
 *	STATE3
 *	STATE4
 * changed:
 *	KEY
 *	TKEYP (T1)
 */
2035
.align 4
2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049
_aesni_enc4:
	movaps (KEYP), KEY		# key
	mov KEYP, TKEYP
	pxor KEY, STATE1		# round 0
	pxor KEY, STATE2
	pxor KEY, STATE3
	pxor KEY, STATE4
	add $0x30, TKEYP
	cmp $24, KLEN
	jb .L4enc128
	lea 0x20(TKEYP), TKEYP
	je .L4enc192
	add $0x20, TKEYP
	movaps -0x60(TKEYP), KEY
2050 2051 2052 2053
	AESENC KEY STATE1
	AESENC KEY STATE2
	AESENC KEY STATE3
	AESENC KEY STATE4
2054
	movaps -0x50(TKEYP), KEY
2055 2056 2057 2058
	AESENC KEY STATE1
	AESENC KEY STATE2
	AESENC KEY STATE3
	AESENC KEY STATE4
2059 2060 2061
#.align 4
.L4enc192:
	movaps -0x40(TKEYP), KEY
2062 2063 2064 2065
	AESENC KEY STATE1
	AESENC KEY STATE2
	AESENC KEY STATE3
	AESENC KEY STATE4
2066
	movaps -0x30(TKEYP), KEY
2067 2068 2069 2070
	AESENC KEY STATE1
	AESENC KEY STATE2
	AESENC KEY STATE3
	AESENC KEY STATE4
2071 2072 2073
#.align 4
.L4enc128:
	movaps -0x20(TKEYP), KEY
2074 2075 2076 2077
	AESENC KEY STATE1
	AESENC KEY STATE2
	AESENC KEY STATE3
	AESENC KEY STATE4
2078
	movaps -0x10(TKEYP), KEY
2079 2080 2081 2082
	AESENC KEY STATE1
	AESENC KEY STATE2
	AESENC KEY STATE3
	AESENC KEY STATE4
2083
	movaps (TKEYP), KEY
2084 2085 2086 2087
	AESENC KEY STATE1
	AESENC KEY STATE2
	AESENC KEY STATE3
	AESENC KEY STATE4
2088
	movaps 0x10(TKEYP), KEY
2089 2090 2091 2092
	AESENC KEY STATE1
	AESENC KEY STATE2
	AESENC KEY STATE3
	AESENC KEY STATE4
2093
	movaps 0x20(TKEYP), KEY
2094 2095 2096 2097
	AESENC KEY STATE1
	AESENC KEY STATE2
	AESENC KEY STATE3
	AESENC KEY STATE4
2098
	movaps 0x30(TKEYP), KEY
2099 2100 2101 2102
	AESENC KEY STATE1
	AESENC KEY STATE2
	AESENC KEY STATE3
	AESENC KEY STATE4
2103
	movaps 0x40(TKEYP), KEY
2104 2105 2106 2107
	AESENC KEY STATE1
	AESENC KEY STATE2
	AESENC KEY STATE3
	AESENC KEY STATE4
2108
	movaps 0x50(TKEYP), KEY
2109 2110 2111 2112
	AESENC KEY STATE1
	AESENC KEY STATE2
	AESENC KEY STATE3
	AESENC KEY STATE4
2113
	movaps 0x60(TKEYP), KEY
2114 2115 2116 2117
	AESENC KEY STATE1
	AESENC KEY STATE2
	AESENC KEY STATE3
	AESENC KEY STATE4
2118
	movaps 0x70(TKEYP), KEY
2119 2120 2121 2122
	AESENCLAST KEY STATE1		# last round
	AESENCLAST KEY STATE2
	AESENCLAST KEY STATE3
	AESENCLAST KEY STATE4
2123
	ret
2124
ENDPROC(_aesni_enc4)
2125 2126 2127 2128 2129

/*
 * void aesni_dec (struct crypto_aes_ctx *ctx, u8 *dst, const u8 *src)
 */
ENTRY(aesni_dec)
2130
	FRAME_BEGIN
2131 2132 2133
#ifndef __x86_64__
	pushl KEYP
	pushl KLEN
2134 2135 2136
	movl (FRAME_OFFSET+12)(%esp), KEYP	# ctx
	movl (FRAME_OFFSET+16)(%esp), OUTP	# dst
	movl (FRAME_OFFSET+20)(%esp), INP	# src
2137
#endif
2138 2139 2140 2141 2142
	mov 480(KEYP), KLEN		# key length
	add $240, KEYP
	movups (INP), STATE		# input
	call _aesni_dec1
	movups STATE, (OUTP)		#output
2143 2144 2145 2146
#ifndef __x86_64__
	popl KLEN
	popl KEYP
#endif
2147
	FRAME_END
2148
	ret
2149
ENDPROC(aesni_dec)
2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162

/*
 * _aesni_dec1:		internal ABI
 * input:
 *	KEYP:		key struct pointer
 *	KLEN:		key length
 *	STATE:		initial state (input)
 * output:
 *	STATE:		finial state (output)
 * changed:
 *	KEY
 *	TKEYP (T1)
 */
2163
.align 4
2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174
_aesni_dec1:
	movaps (KEYP), KEY		# key
	mov KEYP, TKEYP
	pxor KEY, STATE		# round 0
	add $0x30, TKEYP
	cmp $24, KLEN
	jb .Ldec128
	lea 0x20(TKEYP), TKEYP
	je .Ldec192
	add $0x20, TKEYP
	movaps -0x60(TKEYP), KEY
2175
	AESDEC KEY STATE
2176
	movaps -0x50(TKEYP), KEY
2177
	AESDEC KEY STATE
2178 2179 2180
.align 4
.Ldec192:
	movaps -0x40(TKEYP), KEY
2181
	AESDEC KEY STATE
2182
	movaps -0x30(TKEYP), KEY
2183
	AESDEC KEY STATE
2184 2185 2186
.align 4
.Ldec128:
	movaps -0x20(TKEYP), KEY
2187
	AESDEC KEY STATE
2188
	movaps -0x10(TKEYP), KEY
2189
	AESDEC KEY STATE
2190
	movaps (TKEYP), KEY
2191
	AESDEC KEY STATE
2192
	movaps 0x10(TKEYP), KEY
2193
	AESDEC KEY STATE
2194
	movaps 0x20(TKEYP), KEY
2195
	AESDEC KEY STATE
2196
	movaps 0x30(TKEYP), KEY
2197
	AESDEC KEY STATE
2198
	movaps 0x40(TKEYP), KEY
2199
	AESDEC KEY STATE
2200
	movaps 0x50(TKEYP), KEY
2201
	AESDEC KEY STATE
2202
	movaps 0x60(TKEYP), KEY
2203
	AESDEC KEY STATE
2204
	movaps 0x70(TKEYP), KEY
2205
	AESDECLAST KEY STATE
2206
	ret
2207
ENDPROC(_aesni_dec1)
2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226

/*
 * _aesni_dec4:	internal ABI
 * input:
 *	KEYP:		key struct pointer
 *	KLEN:		key length
 *	STATE1:		initial state (input)
 *	STATE2
 *	STATE3
 *	STATE4
 * output:
 *	STATE1:		finial state (output)
 *	STATE2
 *	STATE3
 *	STATE4
 * changed:
 *	KEY
 *	TKEYP (T1)
 */
2227
.align 4
2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241
_aesni_dec4:
	movaps (KEYP), KEY		# key
	mov KEYP, TKEYP
	pxor KEY, STATE1		# round 0
	pxor KEY, STATE2
	pxor KEY, STATE3
	pxor KEY, STATE4
	add $0x30, TKEYP
	cmp $24, KLEN
	jb .L4dec128
	lea 0x20(TKEYP), TKEYP
	je .L4dec192
	add $0x20, TKEYP
	movaps -0x60(TKEYP), KEY
2242 2243 2244 2245
	AESDEC KEY STATE1
	AESDEC KEY STATE2
	AESDEC KEY STATE3
	AESDEC KEY STATE4
2246
	movaps -0x50(TKEYP), KEY
2247 2248 2249 2250
	AESDEC KEY STATE1
	AESDEC KEY STATE2
	AESDEC KEY STATE3
	AESDEC KEY STATE4
2251 2252 2253
.align 4
.L4dec192:
	movaps -0x40(TKEYP), KEY
2254 2255 2256 2257
	AESDEC KEY STATE1
	AESDEC KEY STATE2
	AESDEC KEY STATE3
	AESDEC KEY STATE4
2258
	movaps -0x30(TKEYP), KEY
2259 2260 2261 2262
	AESDEC KEY STATE1
	AESDEC KEY STATE2
	AESDEC KEY STATE3
	AESDEC KEY STATE4
2263 2264 2265
.align 4
.L4dec128:
	movaps -0x20(TKEYP), KEY
2266 2267 2268 2269
	AESDEC KEY STATE1
	AESDEC KEY STATE2
	AESDEC KEY STATE3
	AESDEC KEY STATE4
2270
	movaps -0x10(TKEYP), KEY
2271 2272 2273 2274
	AESDEC KEY STATE1
	AESDEC KEY STATE2
	AESDEC KEY STATE3
	AESDEC KEY STATE4
2275
	movaps (TKEYP), KEY
2276 2277 2278 2279
	AESDEC KEY STATE1
	AESDEC KEY STATE2
	AESDEC KEY STATE3
	AESDEC KEY STATE4
2280
	movaps 0x10(TKEYP), KEY
2281 2282 2283 2284
	AESDEC KEY STATE1
	AESDEC KEY STATE2
	AESDEC KEY STATE3
	AESDEC KEY STATE4
2285
	movaps 0x20(TKEYP), KEY
2286 2287 2288 2289
	AESDEC KEY STATE1
	AESDEC KEY STATE2
	AESDEC KEY STATE3
	AESDEC KEY STATE4
2290
	movaps 0x30(TKEYP), KEY
2291 2292 2293 2294
	AESDEC KEY STATE1
	AESDEC KEY STATE2
	AESDEC KEY STATE3
	AESDEC KEY STATE4
2295
	movaps 0x40(TKEYP), KEY
2296 2297 2298 2299
	AESDEC KEY STATE1
	AESDEC KEY STATE2
	AESDEC KEY STATE3
	AESDEC KEY STATE4
2300
	movaps 0x50(TKEYP), KEY
2301 2302 2303 2304
	AESDEC KEY STATE1
	AESDEC KEY STATE2
	AESDEC KEY STATE3
	AESDEC KEY STATE4
2305
	movaps 0x60(TKEYP), KEY
2306 2307 2308 2309
	AESDEC KEY STATE1
	AESDEC KEY STATE2
	AESDEC KEY STATE3
	AESDEC KEY STATE4
2310
	movaps 0x70(TKEYP), KEY
2311 2312 2313 2314
	AESDECLAST KEY STATE1		# last round
	AESDECLAST KEY STATE2
	AESDECLAST KEY STATE3
	AESDECLAST KEY STATE4
2315
	ret
2316
ENDPROC(_aesni_dec4)
2317 2318 2319 2320 2321 2322

/*
 * void aesni_ecb_enc(struct crypto_aes_ctx *ctx, const u8 *dst, u8 *src,
 *		      size_t len)
 */
ENTRY(aesni_ecb_enc)
2323
	FRAME_BEGIN
2324 2325 2326 2327
#ifndef __x86_64__
	pushl LEN
	pushl KEYP
	pushl KLEN
2328 2329 2330 2331
	movl (FRAME_OFFSET+16)(%esp), KEYP	# ctx
	movl (FRAME_OFFSET+20)(%esp), OUTP	# dst
	movl (FRAME_OFFSET+24)(%esp), INP	# src
	movl (FRAME_OFFSET+28)(%esp), LEN	# len
2332
#endif
2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368
	test LEN, LEN		# check length
	jz .Lecb_enc_ret
	mov 480(KEYP), KLEN
	cmp $16, LEN
	jb .Lecb_enc_ret
	cmp $64, LEN
	jb .Lecb_enc_loop1
.align 4
.Lecb_enc_loop4:
	movups (INP), STATE1
	movups 0x10(INP), STATE2
	movups 0x20(INP), STATE3
	movups 0x30(INP), STATE4
	call _aesni_enc4
	movups STATE1, (OUTP)
	movups STATE2, 0x10(OUTP)
	movups STATE3, 0x20(OUTP)
	movups STATE4, 0x30(OUTP)
	sub $64, LEN
	add $64, INP
	add $64, OUTP
	cmp $64, LEN
	jge .Lecb_enc_loop4
	cmp $16, LEN
	jb .Lecb_enc_ret
.align 4
.Lecb_enc_loop1:
	movups (INP), STATE1
	call _aesni_enc1
	movups STATE1, (OUTP)
	sub $16, LEN
	add $16, INP
	add $16, OUTP
	cmp $16, LEN
	jge .Lecb_enc_loop1
.Lecb_enc_ret:
2369 2370 2371 2372 2373
#ifndef __x86_64__
	popl KLEN
	popl KEYP
	popl LEN
#endif
2374
	FRAME_END
2375
	ret
2376
ENDPROC(aesni_ecb_enc)
2377 2378 2379 2380 2381 2382

/*
 * void aesni_ecb_dec(struct crypto_aes_ctx *ctx, const u8 *dst, u8 *src,
 *		      size_t len);
 */
ENTRY(aesni_ecb_dec)
2383
	FRAME_BEGIN
2384 2385 2386 2387
#ifndef __x86_64__
	pushl LEN
	pushl KEYP
	pushl KLEN
2388 2389 2390 2391
	movl (FRAME_OFFSET+16)(%esp), KEYP	# ctx
	movl (FRAME_OFFSET+20)(%esp), OUTP	# dst
	movl (FRAME_OFFSET+24)(%esp), INP	# src
	movl (FRAME_OFFSET+28)(%esp), LEN	# len
2392
#endif
2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429
	test LEN, LEN
	jz .Lecb_dec_ret
	mov 480(KEYP), KLEN
	add $240, KEYP
	cmp $16, LEN
	jb .Lecb_dec_ret
	cmp $64, LEN
	jb .Lecb_dec_loop1
.align 4
.Lecb_dec_loop4:
	movups (INP), STATE1
	movups 0x10(INP), STATE2
	movups 0x20(INP), STATE3
	movups 0x30(INP), STATE4
	call _aesni_dec4
	movups STATE1, (OUTP)
	movups STATE2, 0x10(OUTP)
	movups STATE3, 0x20(OUTP)
	movups STATE4, 0x30(OUTP)
	sub $64, LEN
	add $64, INP
	add $64, OUTP
	cmp $64, LEN
	jge .Lecb_dec_loop4
	cmp $16, LEN
	jb .Lecb_dec_ret
.align 4
.Lecb_dec_loop1:
	movups (INP), STATE1
	call _aesni_dec1
	movups STATE1, (OUTP)
	sub $16, LEN
	add $16, INP
	add $16, OUTP
	cmp $16, LEN
	jge .Lecb_dec_loop1
.Lecb_dec_ret:
2430 2431 2432 2433 2434
#ifndef __x86_64__
	popl KLEN
	popl KEYP
	popl LEN
#endif
2435
	FRAME_END
2436
	ret
2437
ENDPROC(aesni_ecb_dec)
2438 2439 2440 2441 2442 2443

/*
 * void aesni_cbc_enc(struct crypto_aes_ctx *ctx, const u8 *dst, u8 *src,
 *		      size_t len, u8 *iv)
 */
ENTRY(aesni_cbc_enc)
2444
	FRAME_BEGIN
2445 2446 2447 2448 2449
#ifndef __x86_64__
	pushl IVP
	pushl LEN
	pushl KEYP
	pushl KLEN
2450 2451 2452 2453 2454
	movl (FRAME_OFFSET+20)(%esp), KEYP	# ctx
	movl (FRAME_OFFSET+24)(%esp), OUTP	# dst
	movl (FRAME_OFFSET+28)(%esp), INP	# src
	movl (FRAME_OFFSET+32)(%esp), LEN	# len
	movl (FRAME_OFFSET+36)(%esp), IVP	# iv
2455
#endif
2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472
	cmp $16, LEN
	jb .Lcbc_enc_ret
	mov 480(KEYP), KLEN
	movups (IVP), STATE	# load iv as initial state
.align 4
.Lcbc_enc_loop:
	movups (INP), IN	# load input
	pxor IN, STATE
	call _aesni_enc1
	movups STATE, (OUTP)	# store output
	sub $16, LEN
	add $16, INP
	add $16, OUTP
	cmp $16, LEN
	jge .Lcbc_enc_loop
	movups STATE, (IVP)
.Lcbc_enc_ret:
2473 2474 2475 2476 2477 2478
#ifndef __x86_64__
	popl KLEN
	popl KEYP
	popl LEN
	popl IVP
#endif
2479
	FRAME_END
2480
	ret
2481
ENDPROC(aesni_cbc_enc)
2482 2483 2484 2485 2486 2487

/*
 * void aesni_cbc_dec(struct crypto_aes_ctx *ctx, const u8 *dst, u8 *src,
 *		      size_t len, u8 *iv)
 */
ENTRY(aesni_cbc_dec)
2488
	FRAME_BEGIN
2489 2490 2491 2492 2493
#ifndef __x86_64__
	pushl IVP
	pushl LEN
	pushl KEYP
	pushl KLEN
2494 2495 2496 2497 2498
	movl (FRAME_OFFSET+20)(%esp), KEYP	# ctx
	movl (FRAME_OFFSET+24)(%esp), OUTP	# dst
	movl (FRAME_OFFSET+28)(%esp), INP	# src
	movl (FRAME_OFFSET+32)(%esp), LEN	# len
	movl (FRAME_OFFSET+36)(%esp), IVP	# iv
2499
#endif
2500
	cmp $16, LEN
2501
	jb .Lcbc_dec_just_ret
2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512
	mov 480(KEYP), KLEN
	add $240, KEYP
	movups (IVP), IV
	cmp $64, LEN
	jb .Lcbc_dec_loop1
.align 4
.Lcbc_dec_loop4:
	movups (INP), IN1
	movaps IN1, STATE1
	movups 0x10(INP), IN2
	movaps IN2, STATE2
2513
#ifdef __x86_64__
2514 2515 2516 2517
	movups 0x20(INP), IN3
	movaps IN3, STATE3
	movups 0x30(INP), IN4
	movaps IN4, STATE4
2518 2519 2520 2521 2522 2523
#else
	movups 0x20(INP), IN1
	movaps IN1, STATE3
	movups 0x30(INP), IN2
	movaps IN2, STATE4
#endif
2524 2525
	call _aesni_dec4
	pxor IV, STATE1
2526
#ifdef __x86_64__
2527 2528 2529 2530
	pxor IN1, STATE2
	pxor IN2, STATE3
	pxor IN3, STATE4
	movaps IN4, IV
2531 2532 2533
#else
	pxor IN1, STATE4
	movaps IN2, IV
2534 2535 2536 2537
	movups (INP), IN1
	pxor IN1, STATE2
	movups 0x10(INP), IN2
	pxor IN2, STATE3
2538
#endif
2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563
	movups STATE1, (OUTP)
	movups STATE2, 0x10(OUTP)
	movups STATE3, 0x20(OUTP)
	movups STATE4, 0x30(OUTP)
	sub $64, LEN
	add $64, INP
	add $64, OUTP
	cmp $64, LEN
	jge .Lcbc_dec_loop4
	cmp $16, LEN
	jb .Lcbc_dec_ret
.align 4
.Lcbc_dec_loop1:
	movups (INP), IN
	movaps IN, STATE
	call _aesni_dec1
	pxor IV, STATE
	movups STATE, (OUTP)
	movaps IN, IV
	sub $16, LEN
	add $16, INP
	add $16, OUTP
	cmp $16, LEN
	jge .Lcbc_dec_loop1
.Lcbc_dec_ret:
2564 2565
	movups IV, (IVP)
.Lcbc_dec_just_ret:
2566 2567 2568 2569 2570 2571
#ifndef __x86_64__
	popl KLEN
	popl KEYP
	popl LEN
	popl IVP
#endif
2572
	FRAME_END
2573
	ret
2574
ENDPROC(aesni_cbc_dec)
2575

2576
#ifdef __x86_64__
2577
.pushsection .rodata
2578 2579 2580
.align 16
.Lbswap_mask:
	.byte 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0
2581
.popsection
2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593

/*
 * _aesni_inc_init:	internal ABI
 *	setup registers used by _aesni_inc
 * input:
 *	IV
 * output:
 *	CTR:	== IV, in little endian
 *	TCTR_LOW: == lower qword of CTR
 *	INC:	== 1, in little endian
 *	BSWAP_MASK == endian swapping mask
 */
2594
.align 4
2595 2596 2597 2598 2599
_aesni_inc_init:
	movaps .Lbswap_mask, BSWAP_MASK
	movaps IV, CTR
	PSHUFB_XMM BSWAP_MASK CTR
	mov $1, TCTR_LOW
2600 2601
	MOVQ_R64_XMM TCTR_LOW INC
	MOVQ_R64_XMM CTR TCTR_LOW
2602
	ret
2603
ENDPROC(_aesni_inc_init)
2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619

/*
 * _aesni_inc:		internal ABI
 *	Increase IV by 1, IV is in big endian
 * input:
 *	IV
 *	CTR:	== IV, in little endian
 *	TCTR_LOW: == lower qword of CTR
 *	INC:	== 1, in little endian
 *	BSWAP_MASK == endian swapping mask
 * output:
 *	IV:	Increase by 1
 * changed:
 *	CTR:	== output IV, in little endian
 *	TCTR_LOW: == lower qword of CTR
 */
2620
.align 4
2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631
_aesni_inc:
	paddq INC, CTR
	add $1, TCTR_LOW
	jnc .Linc_low
	pslldq $8, INC
	paddq INC, CTR
	psrldq $8, INC
.Linc_low:
	movaps CTR, IV
	PSHUFB_XMM BSWAP_MASK IV
	ret
2632
ENDPROC(_aesni_inc)
2633 2634 2635 2636 2637 2638

/*
 * void aesni_ctr_enc(struct crypto_aes_ctx *ctx, const u8 *dst, u8 *src,
 *		      size_t len, u8 *iv)
 */
ENTRY(aesni_ctr_enc)
2639
	FRAME_BEGIN
2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692
	cmp $16, LEN
	jb .Lctr_enc_just_ret
	mov 480(KEYP), KLEN
	movups (IVP), IV
	call _aesni_inc_init
	cmp $64, LEN
	jb .Lctr_enc_loop1
.align 4
.Lctr_enc_loop4:
	movaps IV, STATE1
	call _aesni_inc
	movups (INP), IN1
	movaps IV, STATE2
	call _aesni_inc
	movups 0x10(INP), IN2
	movaps IV, STATE3
	call _aesni_inc
	movups 0x20(INP), IN3
	movaps IV, STATE4
	call _aesni_inc
	movups 0x30(INP), IN4
	call _aesni_enc4
	pxor IN1, STATE1
	movups STATE1, (OUTP)
	pxor IN2, STATE2
	movups STATE2, 0x10(OUTP)
	pxor IN3, STATE3
	movups STATE3, 0x20(OUTP)
	pxor IN4, STATE4
	movups STATE4, 0x30(OUTP)
	sub $64, LEN
	add $64, INP
	add $64, OUTP
	cmp $64, LEN
	jge .Lctr_enc_loop4
	cmp $16, LEN
	jb .Lctr_enc_ret
.align 4
.Lctr_enc_loop1:
	movaps IV, STATE
	call _aesni_inc
	movups (INP), IN
	call _aesni_enc1
	pxor IN, STATE
	movups STATE, (OUTP)
	sub $16, LEN
	add $16, INP
	add $16, OUTP
	cmp $16, LEN
	jge .Lctr_enc_loop1
.Lctr_enc_ret:
	movups IV, (IVP)
.Lctr_enc_just_ret:
2693
	FRAME_END
2694
	ret
2695
ENDPROC(aesni_ctr_enc)
2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719

/*
 * _aesni_gf128mul_x_ble:		internal ABI
 *	Multiply in GF(2^128) for XTS IVs
 * input:
 *	IV:	current IV
 *	GF128MUL_MASK == mask with 0x87 and 0x01
 * output:
 *	IV:	next IV
 * changed:
 *	CTR:	== temporary value
 */
#define _aesni_gf128mul_x_ble() \
	pshufd $0x13, IV, CTR; \
	paddq IV, IV; \
	psrad $31, CTR; \
	pand GF128MUL_MASK, CTR; \
	pxor CTR, IV;

/*
 * void aesni_xts_crypt8(struct crypto_aes_ctx *ctx, const u8 *dst, u8 *src,
 *			 bool enc, u8 *iv)
 */
ENTRY(aesni_xts_crypt8)
2720
	FRAME_BEGIN
2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735
	cmpb $0, %cl
	movl $0, %ecx
	movl $240, %r10d
	leaq _aesni_enc4, %r11
	leaq _aesni_dec4, %rax
	cmovel %r10d, %ecx
	cmoveq %rax, %r11

	movdqa .Lgf128mul_x_ble_mask, GF128MUL_MASK
	movups (IVP), IV

	mov 480(KEYP), KLEN
	addq %rcx, KEYP

	movdqa IV, STATE1
2736 2737
	movdqu 0x00(INP), INC
	pxor INC, STATE1
2738 2739 2740 2741
	movdqu IV, 0x00(OUTP)

	_aesni_gf128mul_x_ble()
	movdqa IV, STATE2
2742 2743
	movdqu 0x10(INP), INC
	pxor INC, STATE2
2744 2745 2746 2747
	movdqu IV, 0x10(OUTP)

	_aesni_gf128mul_x_ble()
	movdqa IV, STATE3
2748 2749
	movdqu 0x20(INP), INC
	pxor INC, STATE3
2750 2751 2752 2753
	movdqu IV, 0x20(OUTP)

	_aesni_gf128mul_x_ble()
	movdqa IV, STATE4
2754 2755
	movdqu 0x30(INP), INC
	pxor INC, STATE4
2756 2757 2758 2759
	movdqu IV, 0x30(OUTP)

	call *%r11

2760 2761
	movdqu 0x00(OUTP), INC
	pxor INC, STATE1
2762 2763 2764 2765
	movdqu STATE1, 0x00(OUTP)

	_aesni_gf128mul_x_ble()
	movdqa IV, STATE1
2766 2767
	movdqu 0x40(INP), INC
	pxor INC, STATE1
2768 2769
	movdqu IV, 0x40(OUTP)

2770 2771
	movdqu 0x10(OUTP), INC
	pxor INC, STATE2
2772 2773 2774 2775
	movdqu STATE2, 0x10(OUTP)

	_aesni_gf128mul_x_ble()
	movdqa IV, STATE2
2776 2777
	movdqu 0x50(INP), INC
	pxor INC, STATE2
2778 2779
	movdqu IV, 0x50(OUTP)

2780 2781
	movdqu 0x20(OUTP), INC
	pxor INC, STATE3
2782 2783 2784 2785
	movdqu STATE3, 0x20(OUTP)

	_aesni_gf128mul_x_ble()
	movdqa IV, STATE3
2786 2787
	movdqu 0x60(INP), INC
	pxor INC, STATE3
2788 2789
	movdqu IV, 0x60(OUTP)

2790 2791
	movdqu 0x30(OUTP), INC
	pxor INC, STATE4
2792 2793 2794 2795
	movdqu STATE4, 0x30(OUTP)

	_aesni_gf128mul_x_ble()
	movdqa IV, STATE4
2796 2797
	movdqu 0x70(INP), INC
	pxor INC, STATE4
2798 2799 2800 2801 2802 2803 2804
	movdqu IV, 0x70(OUTP)

	_aesni_gf128mul_x_ble()
	movups IV, (IVP)

	call *%r11

2805 2806
	movdqu 0x40(OUTP), INC
	pxor INC, STATE1
2807 2808
	movdqu STATE1, 0x40(OUTP)

2809 2810
	movdqu 0x50(OUTP), INC
	pxor INC, STATE2
2811 2812
	movdqu STATE2, 0x50(OUTP)

2813 2814
	movdqu 0x60(OUTP), INC
	pxor INC, STATE3
2815 2816
	movdqu STATE3, 0x60(OUTP)

2817 2818
	movdqu 0x70(OUTP), INC
	pxor INC, STATE4
2819 2820
	movdqu STATE4, 0x70(OUTP)

2821
	FRAME_END
2822 2823 2824
	ret
ENDPROC(aesni_xts_crypt8)

2825
#endif