aesni-intel_asm.S 73.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
/*
 * Implement AES algorithm in Intel AES-NI instructions.
 *
 * The white paper of AES-NI instructions can be downloaded from:
 *   http://softwarecommunity.intel.com/isn/downloads/intelavx/AES-Instructions-Set_WP.pdf
 *
 * Copyright (C) 2008, Intel Corp.
 *    Author: Huang Ying <ying.huang@intel.com>
 *            Vinodh Gopal <vinodh.gopal@intel.com>
 *            Kahraman Akdemir
 *
12 13 14 15 16 17 18 19 20 21 22
 * Added RFC4106 AES-GCM support for 128-bit keys under the AEAD
 * interface for 64-bit kernels.
 *    Authors: Erdinc Ozturk (erdinc.ozturk@intel.com)
 *             Aidan O'Mahony (aidan.o.mahony@intel.com)
 *             Adrian Hoban <adrian.hoban@intel.com>
 *             James Guilford (james.guilford@intel.com)
 *             Gabriele Paoloni <gabriele.paoloni@intel.com>
 *             Tadeusz Struk (tadeusz.struk@intel.com)
 *             Wajdi Feghali (wajdi.k.feghali@intel.com)
 *    Copyright (c) 2010, Intel Corporation.
 *
23 24 25
 * Ported x86_64 version to x86:
 *    Author: Mathias Krause <minipli@googlemail.com>
 *
26 27 28 29 30 31 32
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 */

#include <linux/linkage.h>
33
#include <asm/inst.h>
34

35
#ifdef __x86_64__
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
.data
POLY:   .octa 0xC2000000000000000000000000000001
TWOONE: .octa 0x00000001000000000000000000000001

# order of these constants should not change.
# more specifically, ALL_F should follow SHIFT_MASK,
# and ZERO should follow ALL_F

SHUF_MASK:  .octa 0x000102030405060708090A0B0C0D0E0F
MASK1:      .octa 0x0000000000000000ffffffffffffffff
MASK2:      .octa 0xffffffffffffffff0000000000000000
SHIFT_MASK: .octa 0x0f0e0d0c0b0a09080706050403020100
ALL_F:      .octa 0xffffffffffffffffffffffffffffffff
ZERO:       .octa 0x00000000000000000000000000000000
ONE:        .octa 0x00000000000000000000000000000001
F_MIN_MASK: .octa 0xf1f2f3f4f5f6f7f8f9fafbfcfdfeff0
dec:        .octa 0x1
enc:        .octa 0x2


56 57
.text

58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87

#define	STACK_OFFSET    8*3
#define	HashKey		16*0	// store HashKey <<1 mod poly here
#define	HashKey_2	16*1	// store HashKey^2 <<1 mod poly here
#define	HashKey_3	16*2	// store HashKey^3 <<1 mod poly here
#define	HashKey_4	16*3	// store HashKey^4 <<1 mod poly here
#define	HashKey_k	16*4	// store XOR of High 64 bits and Low 64
				// bits of  HashKey <<1 mod poly here
				//(for Karatsuba purposes)
#define	HashKey_2_k	16*5	// store XOR of High 64 bits and Low 64
				// bits of  HashKey^2 <<1 mod poly here
				// (for Karatsuba purposes)
#define	HashKey_3_k	16*6	// store XOR of High 64 bits and Low 64
				// bits of  HashKey^3 <<1 mod poly here
				// (for Karatsuba purposes)
#define	HashKey_4_k	16*7	// store XOR of High 64 bits and Low 64
				// bits of  HashKey^4 <<1 mod poly here
				// (for Karatsuba purposes)
#define	VARIABLE_OFFSET	16*8

#define arg1 rdi
#define arg2 rsi
#define arg3 rdx
#define arg4 rcx
#define arg5 r8
#define arg6 r9
#define arg7 STACK_OFFSET+8(%r14)
#define arg8 STACK_OFFSET+16(%r14)
#define arg9 STACK_OFFSET+24(%r14)
#define arg10 STACK_OFFSET+32(%r14)
88
#endif
89 90


91 92 93 94 95 96 97 98 99 100 101 102
#define STATE1	%xmm0
#define STATE2	%xmm4
#define STATE3	%xmm5
#define STATE4	%xmm6
#define STATE	STATE1
#define IN1	%xmm1
#define IN2	%xmm7
#define IN3	%xmm8
#define IN4	%xmm9
#define IN	IN1
#define KEY	%xmm2
#define IV	%xmm3
103

104 105 106
#define BSWAP_MASK %xmm10
#define CTR	%xmm11
#define INC	%xmm12
107

108 109
#ifdef __x86_64__
#define AREG	%rax
110 111
#define KEYP	%rdi
#define OUTP	%rsi
112
#define UKEYP	OUTP
113 114 115 116 117 118 119
#define INP	%rdx
#define LEN	%rcx
#define IVP	%r8
#define KLEN	%r9d
#define T1	%r10
#define TKEYP	T1
#define T2	%r11
120
#define TCTR_LOW T2
121 122 123 124 125 126 127 128 129 130 131 132
#else
#define AREG	%eax
#define KEYP	%edi
#define OUTP	AREG
#define UKEYP	OUTP
#define INP	%edx
#define LEN	%esi
#define IVP	%ebp
#define KLEN	%ebx
#define T1	%ecx
#define TKEYP	T1
#endif
133

134

135
#ifdef __x86_64__
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
/* GHASH_MUL MACRO to implement: Data*HashKey mod (128,127,126,121,0)
*
*
* Input: A and B (128-bits each, bit-reflected)
* Output: C = A*B*x mod poly, (i.e. >>1 )
* To compute GH = GH*HashKey mod poly, give HK = HashKey<<1 mod poly as input
* GH = GH * HK * x mod poly which is equivalent to GH*HashKey mod poly.
*
*/
.macro GHASH_MUL GH HK TMP1 TMP2 TMP3 TMP4 TMP5
	movdqa	  \GH, \TMP1
	pshufd	  $78, \GH, \TMP2
	pshufd	  $78, \HK, \TMP3
	pxor	  \GH, \TMP2            # TMP2 = a1+a0
	pxor	  \HK, \TMP3            # TMP3 = b1+b0
	PCLMULQDQ 0x11, \HK, \TMP1     # TMP1 = a1*b1
	PCLMULQDQ 0x00, \HK, \GH       # GH = a0*b0
	PCLMULQDQ 0x00, \TMP3, \TMP2   # TMP2 = (a0+a1)*(b1+b0)
	pxor	  \GH, \TMP2
	pxor	  \TMP1, \TMP2          # TMP2 = (a0*b0)+(a1*b0)
	movdqa	  \TMP2, \TMP3
	pslldq	  $8, \TMP3             # left shift TMP3 2 DWs
	psrldq	  $8, \TMP2             # right shift TMP2 2 DWs
	pxor	  \TMP3, \GH
	pxor	  \TMP2, \TMP1          # TMP2:GH holds the result of GH*HK

        # first phase of the reduction

	movdqa    \GH, \TMP2
	movdqa    \GH, \TMP3
	movdqa    \GH, \TMP4            # copy GH into TMP2,TMP3 and TMP4
					# in in order to perform
					# independent shifts
	pslld     $31, \TMP2            # packed right shift <<31
	pslld     $30, \TMP3            # packed right shift <<30
	pslld     $25, \TMP4            # packed right shift <<25
	pxor      \TMP3, \TMP2          # xor the shifted versions
	pxor      \TMP4, \TMP2
	movdqa    \TMP2, \TMP5
	psrldq    $4, \TMP5             # right shift TMP5 1 DW
	pslldq    $12, \TMP2            # left shift TMP2 3 DWs
	pxor      \TMP2, \GH

        # second phase of the reduction

	movdqa    \GH,\TMP2             # copy GH into TMP2,TMP3 and TMP4
					# in in order to perform
					# independent shifts
	movdqa    \GH,\TMP3
	movdqa    \GH,\TMP4
	psrld     $1,\TMP2              # packed left shift >>1
	psrld     $2,\TMP3              # packed left shift >>2
	psrld     $7,\TMP4              # packed left shift >>7
	pxor      \TMP3,\TMP2		# xor the shifted versions
	pxor      \TMP4,\TMP2
	pxor      \TMP5, \TMP2
	pxor      \TMP2, \GH
	pxor      \TMP1, \GH            # result is in TMP1
.endm

/*
* if a = number of total plaintext bytes
* b = floor(a/16)
* num_initial_blocks = b mod 4
* encrypt the initial num_initial_blocks blocks and apply ghash on
* the ciphertext
* %r10, %r11, %r12, %rax, %xmm5, %xmm6, %xmm7, %xmm8, %xmm9 registers
* are clobbered
* arg1, %arg2, %arg3, %r14 are used as a pointer only, not modified
*/


208 209
.macro INITIAL_BLOCKS_DEC num_initial_blocks TMP1 TMP2 TMP3 TMP4 TMP5 XMM0 XMM1 \
XMM2 XMM3 XMM4 XMMDst TMP6 TMP7 i i_seq operation
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
	mov	   arg7, %r10           # %r10 = AAD
	mov	   arg8, %r12           # %r12 = aadLen
	mov	   %r12, %r11
	pxor	   %xmm\i, %xmm\i
_get_AAD_loop\num_initial_blocks\operation:
	movd	   (%r10), \TMP1
	pslldq	   $12, \TMP1
	psrldq	   $4, %xmm\i
	pxor	   \TMP1, %xmm\i
	add	   $4, %r10
	sub	   $4, %r12
	jne	   _get_AAD_loop\num_initial_blocks\operation
	cmp	   $16, %r11
	je	   _get_AAD_loop2_done\num_initial_blocks\operation
	mov	   $16, %r12
_get_AAD_loop2\num_initial_blocks\operation:
	psrldq	   $4, %xmm\i
	sub	   $4, %r12
	cmp	   %r11, %r12
	jne	   _get_AAD_loop2\num_initial_blocks\operation
_get_AAD_loop2_done\num_initial_blocks\operation:
231 232 233
        movdqa     SHUF_MASK(%rip), %xmm14
	PSHUFB_XMM   %xmm14, %xmm\i # byte-reflect the AAD data

234 235 236 237 238 239
	xor	   %r11, %r11 # initialise the data pointer offset as zero

        # start AES for num_initial_blocks blocks

	mov	   %arg5, %rax                      # %rax = *Y0
	movdqu	   (%rax), \XMM0                    # XMM0 = Y0
240 241 242 243
        movdqa     SHUF_MASK(%rip), %xmm14
	PSHUFB_XMM   %xmm14, \XMM0

.if (\i == 5) || (\i == 6) || (\i == 7)
244 245 246
.irpc index, \i_seq
	paddd	   ONE(%rip), \XMM0                 # INCR Y0
	movdqa	   \XMM0, %xmm\index
247 248 249
        movdqa     SHUF_MASK(%rip), %xmm14
	PSHUFB_XMM   %xmm14, %xmm\index      # perform a 16 byte swap

250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
.endr
.irpc index, \i_seq
	pxor	   16*0(%arg1), %xmm\index
.endr
.irpc index, \i_seq
	movaps 0x10(%rdi), \TMP1
	AESENC     \TMP1, %xmm\index          # Round 1
.endr
.irpc index, \i_seq
	movaps 0x20(%arg1), \TMP1
	AESENC     \TMP1, %xmm\index          # Round 2
.endr
.irpc index, \i_seq
	movaps 0x30(%arg1), \TMP1
	AESENC     \TMP1, %xmm\index          # Round 2
.endr
.irpc index, \i_seq
	movaps 0x40(%arg1), \TMP1
	AESENC     \TMP1, %xmm\index          # Round 2
.endr
.irpc index, \i_seq
	movaps 0x50(%arg1), \TMP1
	AESENC     \TMP1, %xmm\index          # Round 2
.endr
.irpc index, \i_seq
	movaps 0x60(%arg1), \TMP1
	AESENC     \TMP1, %xmm\index          # Round 2
.endr
.irpc index, \i_seq
	movaps 0x70(%arg1), \TMP1
	AESENC     \TMP1, %xmm\index          # Round 2
.endr
.irpc index, \i_seq
	movaps 0x80(%arg1), \TMP1
	AESENC     \TMP1, %xmm\index          # Round 2
.endr
.irpc index, \i_seq
	movaps 0x90(%arg1), \TMP1
	AESENC     \TMP1, %xmm\index          # Round 2
.endr
.irpc index, \i_seq
	movaps 0xa0(%arg1), \TMP1
	AESENCLAST \TMP1, %xmm\index         # Round 10
.endr
.irpc index, \i_seq
	movdqu	   (%arg3 , %r11, 1), \TMP1
	pxor	   \TMP1, %xmm\index
	movdqu	   %xmm\index, (%arg2 , %r11, 1)
	# write back plaintext/ciphertext for num_initial_blocks
	add	   $16, %r11
300

301
	movdqa     \TMP1, %xmm\index
302 303 304
        movdqa     SHUF_MASK(%rip), %xmm14
	PSHUFB_XMM	   %xmm14, %xmm\index

305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
		# prepare plaintext/ciphertext for GHASH computation
.endr
.endif
	GHASH_MUL  %xmm\i, \TMP3, \TMP1, \TMP2, \TMP4, \TMP5, \XMM1
        # apply GHASH on num_initial_blocks blocks

.if \i == 5
        pxor       %xmm5, %xmm6
	GHASH_MUL  %xmm6, \TMP3, \TMP1, \TMP2, \TMP4, \TMP5, \XMM1
        pxor       %xmm6, %xmm7
	GHASH_MUL  %xmm7, \TMP3, \TMP1, \TMP2, \TMP4, \TMP5, \XMM1
        pxor       %xmm7, %xmm8
	GHASH_MUL  %xmm8, \TMP3, \TMP1, \TMP2, \TMP4, \TMP5, \XMM1
.elseif \i == 6
        pxor       %xmm6, %xmm7
	GHASH_MUL  %xmm7, \TMP3, \TMP1, \TMP2, \TMP4, \TMP5, \XMM1
        pxor       %xmm7, %xmm8
	GHASH_MUL  %xmm8, \TMP3, \TMP1, \TMP2, \TMP4, \TMP5, \XMM1
.elseif \i == 7
        pxor       %xmm7, %xmm8
	GHASH_MUL  %xmm8, \TMP3, \TMP1, \TMP2, \TMP4, \TMP5, \XMM1
.endif
	cmp	   $64, %r13
	jl	_initial_blocks_done\num_initial_blocks\operation
	# no need for precomputed values
/*
*
* Precomputations for HashKey parallel with encryption of first 4 blocks.
* Haskey_i_k holds XORed values of the low and high parts of the Haskey_i
*/
	paddd	   ONE(%rip), \XMM0              # INCR Y0
	movdqa	   \XMM0, \XMM1
337 338 339
        movdqa     SHUF_MASK(%rip), %xmm14
	PSHUFB_XMM  %xmm14, \XMM1        # perform a 16 byte swap

340 341
	paddd	   ONE(%rip), \XMM0              # INCR Y0
	movdqa	   \XMM0, \XMM2
342 343 344
        movdqa     SHUF_MASK(%rip), %xmm14
	PSHUFB_XMM  %xmm14, \XMM2        # perform a 16 byte swap

345 346
	paddd	   ONE(%rip), \XMM0              # INCR Y0
	movdqa	   \XMM0, \XMM3
347 348 349
        movdqa     SHUF_MASK(%rip), %xmm14
	PSHUFB_XMM %xmm14, \XMM3        # perform a 16 byte swap

350 351
	paddd	   ONE(%rip), \XMM0              # INCR Y0
	movdqa	   \XMM0, \XMM4
352 353 354
        movdqa     SHUF_MASK(%rip), %xmm14
	PSHUFB_XMM %xmm14, \XMM4        # perform a 16 byte swap

355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
	pxor	   16*0(%arg1), \XMM1
	pxor	   16*0(%arg1), \XMM2
	pxor	   16*0(%arg1), \XMM3
	pxor	   16*0(%arg1), \XMM4
	movdqa	   \TMP3, \TMP5
	pshufd	   $78, \TMP3, \TMP1
	pxor	   \TMP3, \TMP1
	movdqa	   \TMP1, HashKey_k(%rsp)
	GHASH_MUL  \TMP5, \TMP3, \TMP1, \TMP2, \TMP4, \TMP6, \TMP7
# TMP5 = HashKey^2<<1 (mod poly)
	movdqa	   \TMP5, HashKey_2(%rsp)
# HashKey_2 = HashKey^2<<1 (mod poly)
	pshufd	   $78, \TMP5, \TMP1
	pxor	   \TMP5, \TMP1
	movdqa	   \TMP1, HashKey_2_k(%rsp)
.irpc index, 1234 # do 4 rounds
	movaps 0x10*\index(%arg1), \TMP1
	AESENC	   \TMP1, \XMM1
	AESENC	   \TMP1, \XMM2
	AESENC	   \TMP1, \XMM3
	AESENC	   \TMP1, \XMM4
.endr
	GHASH_MUL  \TMP5, \TMP3, \TMP1, \TMP2, \TMP4, \TMP6, \TMP7
# TMP5 = HashKey^3<<1 (mod poly)
	movdqa	   \TMP5, HashKey_3(%rsp)
	pshufd	   $78, \TMP5, \TMP1
	pxor	   \TMP5, \TMP1
	movdqa	   \TMP1, HashKey_3_k(%rsp)
.irpc index, 56789 # do next 5 rounds
	movaps 0x10*\index(%arg1), \TMP1
	AESENC	   \TMP1, \XMM1
	AESENC	   \TMP1, \XMM2
	AESENC	   \TMP1, \XMM3
	AESENC	   \TMP1, \XMM4
.endr
	GHASH_MUL  \TMP5, \TMP3, \TMP1, \TMP2, \TMP4, \TMP6, \TMP7
# TMP5 = HashKey^3<<1 (mod poly)
	movdqa	   \TMP5, HashKey_4(%rsp)
	pshufd	   $78, \TMP5, \TMP1
	pxor	   \TMP5, \TMP1
	movdqa	   \TMP1, HashKey_4_k(%rsp)
	movaps 0xa0(%arg1), \TMP2
	AESENCLAST \TMP2, \XMM1
	AESENCLAST \TMP2, \XMM2
	AESENCLAST \TMP2, \XMM3
	AESENCLAST \TMP2, \XMM4
	movdqu	   16*0(%arg3 , %r11 , 1), \TMP1
	pxor	   \TMP1, \XMM1
	movdqu	   \XMM1, 16*0(%arg2 , %r11 , 1)
	movdqa     \TMP1, \XMM1
	movdqu	   16*1(%arg3 , %r11 , 1), \TMP1
	pxor	   \TMP1, \XMM2
	movdqu	   \XMM2, 16*1(%arg2 , %r11 , 1)
	movdqa     \TMP1, \XMM2
	movdqu	   16*2(%arg3 , %r11 , 1), \TMP1
	pxor	   \TMP1, \XMM3
	movdqu	   \XMM3, 16*2(%arg2 , %r11 , 1)
	movdqa     \TMP1, \XMM3
	movdqu	   16*3(%arg3 , %r11 , 1), \TMP1
	pxor	   \TMP1, \XMM4
	movdqu	   \XMM4, 16*3(%arg2 , %r11 , 1)
	movdqa     \TMP1, \XMM4
417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645
	add	   $64, %r11
        movdqa     SHUF_MASK(%rip), %xmm14
	PSHUFB_XMM %xmm14, \XMM1 # perform a 16 byte swap
	pxor	   \XMMDst, \XMM1
# combine GHASHed value with the corresponding ciphertext
        movdqa     SHUF_MASK(%rip), %xmm14
	PSHUFB_XMM %xmm14, \XMM2 # perform a 16 byte swap
        movdqa     SHUF_MASK(%rip), %xmm14
	PSHUFB_XMM %xmm14, \XMM3 # perform a 16 byte swap
        movdqa     SHUF_MASK(%rip), %xmm14
	PSHUFB_XMM %xmm14, \XMM4 # perform a 16 byte swap

_initial_blocks_done\num_initial_blocks\operation:

.endm


/*
* if a = number of total plaintext bytes
* b = floor(a/16)
* num_initial_blocks = b mod 4
* encrypt the initial num_initial_blocks blocks and apply ghash on
* the ciphertext
* %r10, %r11, %r12, %rax, %xmm5, %xmm6, %xmm7, %xmm8, %xmm9 registers
* are clobbered
* arg1, %arg2, %arg3, %r14 are used as a pointer only, not modified
*/


.macro INITIAL_BLOCKS_ENC num_initial_blocks TMP1 TMP2 TMP3 TMP4 TMP5 XMM0 XMM1 \
XMM2 XMM3 XMM4 XMMDst TMP6 TMP7 i i_seq operation
	mov	   arg7, %r10           # %r10 = AAD
	mov	   arg8, %r12           # %r12 = aadLen
	mov	   %r12, %r11
	pxor	   %xmm\i, %xmm\i
_get_AAD_loop\num_initial_blocks\operation:
	movd	   (%r10), \TMP1
	pslldq	   $12, \TMP1
	psrldq	   $4, %xmm\i
	pxor	   \TMP1, %xmm\i
	add	   $4, %r10
	sub	   $4, %r12
	jne	   _get_AAD_loop\num_initial_blocks\operation
	cmp	   $16, %r11
	je	   _get_AAD_loop2_done\num_initial_blocks\operation
	mov	   $16, %r12
_get_AAD_loop2\num_initial_blocks\operation:
	psrldq	   $4, %xmm\i
	sub	   $4, %r12
	cmp	   %r11, %r12
	jne	   _get_AAD_loop2\num_initial_blocks\operation
_get_AAD_loop2_done\num_initial_blocks\operation:
        movdqa     SHUF_MASK(%rip), %xmm14
	PSHUFB_XMM   %xmm14, %xmm\i # byte-reflect the AAD data

	xor	   %r11, %r11 # initialise the data pointer offset as zero

        # start AES for num_initial_blocks blocks

	mov	   %arg5, %rax                      # %rax = *Y0
	movdqu	   (%rax), \XMM0                    # XMM0 = Y0
        movdqa     SHUF_MASK(%rip), %xmm14
	PSHUFB_XMM   %xmm14, \XMM0

.if (\i == 5) || (\i == 6) || (\i == 7)
.irpc index, \i_seq
	paddd	   ONE(%rip), \XMM0                 # INCR Y0
	movdqa	   \XMM0, %xmm\index
        movdqa     SHUF_MASK(%rip), %xmm14
	PSHUFB_XMM   %xmm14, %xmm\index      # perform a 16 byte swap

.endr
.irpc index, \i_seq
	pxor	   16*0(%arg1), %xmm\index
.endr
.irpc index, \i_seq
	movaps 0x10(%rdi), \TMP1
	AESENC     \TMP1, %xmm\index          # Round 1
.endr
.irpc index, \i_seq
	movaps 0x20(%arg1), \TMP1
	AESENC     \TMP1, %xmm\index          # Round 2
.endr
.irpc index, \i_seq
	movaps 0x30(%arg1), \TMP1
	AESENC     \TMP1, %xmm\index          # Round 2
.endr
.irpc index, \i_seq
	movaps 0x40(%arg1), \TMP1
	AESENC     \TMP1, %xmm\index          # Round 2
.endr
.irpc index, \i_seq
	movaps 0x50(%arg1), \TMP1
	AESENC     \TMP1, %xmm\index          # Round 2
.endr
.irpc index, \i_seq
	movaps 0x60(%arg1), \TMP1
	AESENC     \TMP1, %xmm\index          # Round 2
.endr
.irpc index, \i_seq
	movaps 0x70(%arg1), \TMP1
	AESENC     \TMP1, %xmm\index          # Round 2
.endr
.irpc index, \i_seq
	movaps 0x80(%arg1), \TMP1
	AESENC     \TMP1, %xmm\index          # Round 2
.endr
.irpc index, \i_seq
	movaps 0x90(%arg1), \TMP1
	AESENC     \TMP1, %xmm\index          # Round 2
.endr
.irpc index, \i_seq
	movaps 0xa0(%arg1), \TMP1
	AESENCLAST \TMP1, %xmm\index         # Round 10
.endr
.irpc index, \i_seq
	movdqu	   (%arg3 , %r11, 1), \TMP1
	pxor	   \TMP1, %xmm\index
	movdqu	   %xmm\index, (%arg2 , %r11, 1)
	# write back plaintext/ciphertext for num_initial_blocks
	add	   $16, %r11

        movdqa     SHUF_MASK(%rip), %xmm14
	PSHUFB_XMM	   %xmm14, %xmm\index

		# prepare plaintext/ciphertext for GHASH computation
.endr
.endif
	GHASH_MUL  %xmm\i, \TMP3, \TMP1, \TMP2, \TMP4, \TMP5, \XMM1
        # apply GHASH on num_initial_blocks blocks

.if \i == 5
        pxor       %xmm5, %xmm6
	GHASH_MUL  %xmm6, \TMP3, \TMP1, \TMP2, \TMP4, \TMP5, \XMM1
        pxor       %xmm6, %xmm7
	GHASH_MUL  %xmm7, \TMP3, \TMP1, \TMP2, \TMP4, \TMP5, \XMM1
        pxor       %xmm7, %xmm8
	GHASH_MUL  %xmm8, \TMP3, \TMP1, \TMP2, \TMP4, \TMP5, \XMM1
.elseif \i == 6
        pxor       %xmm6, %xmm7
	GHASH_MUL  %xmm7, \TMP3, \TMP1, \TMP2, \TMP4, \TMP5, \XMM1
        pxor       %xmm7, %xmm8
	GHASH_MUL  %xmm8, \TMP3, \TMP1, \TMP2, \TMP4, \TMP5, \XMM1
.elseif \i == 7
        pxor       %xmm7, %xmm8
	GHASH_MUL  %xmm8, \TMP3, \TMP1, \TMP2, \TMP4, \TMP5, \XMM1
.endif
	cmp	   $64, %r13
	jl	_initial_blocks_done\num_initial_blocks\operation
	# no need for precomputed values
/*
*
* Precomputations for HashKey parallel with encryption of first 4 blocks.
* Haskey_i_k holds XORed values of the low and high parts of the Haskey_i
*/
	paddd	   ONE(%rip), \XMM0              # INCR Y0
	movdqa	   \XMM0, \XMM1
        movdqa     SHUF_MASK(%rip), %xmm14
	PSHUFB_XMM  %xmm14, \XMM1        # perform a 16 byte swap

	paddd	   ONE(%rip), \XMM0              # INCR Y0
	movdqa	   \XMM0, \XMM2
        movdqa     SHUF_MASK(%rip), %xmm14
	PSHUFB_XMM  %xmm14, \XMM2        # perform a 16 byte swap

	paddd	   ONE(%rip), \XMM0              # INCR Y0
	movdqa	   \XMM0, \XMM3
        movdqa     SHUF_MASK(%rip), %xmm14
	PSHUFB_XMM %xmm14, \XMM3        # perform a 16 byte swap

	paddd	   ONE(%rip), \XMM0              # INCR Y0
	movdqa	   \XMM0, \XMM4
        movdqa     SHUF_MASK(%rip), %xmm14
	PSHUFB_XMM %xmm14, \XMM4        # perform a 16 byte swap

	pxor	   16*0(%arg1), \XMM1
	pxor	   16*0(%arg1), \XMM2
	pxor	   16*0(%arg1), \XMM3
	pxor	   16*0(%arg1), \XMM4
	movdqa	   \TMP3, \TMP5
	pshufd	   $78, \TMP3, \TMP1
	pxor	   \TMP3, \TMP1
	movdqa	   \TMP1, HashKey_k(%rsp)
	GHASH_MUL  \TMP5, \TMP3, \TMP1, \TMP2, \TMP4, \TMP6, \TMP7
# TMP5 = HashKey^2<<1 (mod poly)
	movdqa	   \TMP5, HashKey_2(%rsp)
# HashKey_2 = HashKey^2<<1 (mod poly)
	pshufd	   $78, \TMP5, \TMP1
	pxor	   \TMP5, \TMP1
	movdqa	   \TMP1, HashKey_2_k(%rsp)
.irpc index, 1234 # do 4 rounds
	movaps 0x10*\index(%arg1), \TMP1
	AESENC	   \TMP1, \XMM1
	AESENC	   \TMP1, \XMM2
	AESENC	   \TMP1, \XMM3
	AESENC	   \TMP1, \XMM4
.endr
	GHASH_MUL  \TMP5, \TMP3, \TMP1, \TMP2, \TMP4, \TMP6, \TMP7
# TMP5 = HashKey^3<<1 (mod poly)
	movdqa	   \TMP5, HashKey_3(%rsp)
	pshufd	   $78, \TMP5, \TMP1
	pxor	   \TMP5, \TMP1
	movdqa	   \TMP1, HashKey_3_k(%rsp)
.irpc index, 56789 # do next 5 rounds
	movaps 0x10*\index(%arg1), \TMP1
	AESENC	   \TMP1, \XMM1
	AESENC	   \TMP1, \XMM2
	AESENC	   \TMP1, \XMM3
	AESENC	   \TMP1, \XMM4
.endr
	GHASH_MUL  \TMP5, \TMP3, \TMP1, \TMP2, \TMP4, \TMP6, \TMP7
# TMP5 = HashKey^3<<1 (mod poly)
	movdqa	   \TMP5, HashKey_4(%rsp)
	pshufd	   $78, \TMP5, \TMP1
	pxor	   \TMP5, \TMP1
	movdqa	   \TMP1, HashKey_4_k(%rsp)
	movaps 0xa0(%arg1), \TMP2
	AESENCLAST \TMP2, \XMM1
	AESENCLAST \TMP2, \XMM2
	AESENCLAST \TMP2, \XMM3
	AESENCLAST \TMP2, \XMM4
	movdqu	   16*0(%arg3 , %r11 , 1), \TMP1
	pxor	   \TMP1, \XMM1
	movdqu	   16*1(%arg3 , %r11 , 1), \TMP1
	pxor	   \TMP1, \XMM2
	movdqu	   16*2(%arg3 , %r11 , 1), \TMP1
	pxor	   \TMP1, \XMM3
	movdqu	   16*3(%arg3 , %r11 , 1), \TMP1
	pxor	   \TMP1, \XMM4
646 647 648 649
	movdqu     \XMM1, 16*0(%arg2 , %r11 , 1)
	movdqu     \XMM2, 16*1(%arg2 , %r11 , 1)
	movdqu     \XMM3, 16*2(%arg2 , %r11 , 1)
	movdqu     \XMM4, 16*3(%arg2 , %r11 , 1)
650

651
	add	   $64, %r11
652 653
        movdqa     SHUF_MASK(%rip), %xmm14
	PSHUFB_XMM %xmm14, \XMM1 # perform a 16 byte swap
654 655
	pxor	   \XMMDst, \XMM1
# combine GHASHed value with the corresponding ciphertext
656 657 658 659 660 661 662
        movdqa     SHUF_MASK(%rip), %xmm14
	PSHUFB_XMM %xmm14, \XMM2 # perform a 16 byte swap
        movdqa     SHUF_MASK(%rip), %xmm14
	PSHUFB_XMM %xmm14, \XMM3 # perform a 16 byte swap
        movdqa     SHUF_MASK(%rip), %xmm14
	PSHUFB_XMM %xmm14, \XMM4 # perform a 16 byte swap

663
_initial_blocks_done\num_initial_blocks\operation:
664

665 666 667 668 669 670 671 672
.endm

/*
* encrypt 4 blocks at a time
* ghash the 4 previously encrypted ciphertext blocks
* arg1, %arg2, %arg3 are used as pointers only, not modified
* %r11 is the data offset value
*/
673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865
.macro GHASH_4_ENCRYPT_4_PARALLEL_ENC TMP1 TMP2 TMP3 TMP4 TMP5 \
TMP6 XMM0 XMM1 XMM2 XMM3 XMM4 XMM5 XMM6 XMM7 XMM8 operation

	movdqa	  \XMM1, \XMM5
	movdqa	  \XMM2, \XMM6
	movdqa	  \XMM3, \XMM7
	movdqa	  \XMM4, \XMM8

        movdqa    SHUF_MASK(%rip), %xmm15
        # multiply TMP5 * HashKey using karatsuba

	movdqa	  \XMM5, \TMP4
	pshufd	  $78, \XMM5, \TMP6
	pxor	  \XMM5, \TMP6
	paddd     ONE(%rip), \XMM0		# INCR CNT
	movdqa	  HashKey_4(%rsp), \TMP5
	PCLMULQDQ 0x11, \TMP5, \TMP4           # TMP4 = a1*b1
	movdqa    \XMM0, \XMM1
	paddd     ONE(%rip), \XMM0		# INCR CNT
	movdqa    \XMM0, \XMM2
	paddd     ONE(%rip), \XMM0		# INCR CNT
	movdqa    \XMM0, \XMM3
	paddd     ONE(%rip), \XMM0		# INCR CNT
	movdqa    \XMM0, \XMM4
	PSHUFB_XMM %xmm15, \XMM1	# perform a 16 byte swap
	PCLMULQDQ 0x00, \TMP5, \XMM5           # XMM5 = a0*b0
	PSHUFB_XMM %xmm15, \XMM2	# perform a 16 byte swap
	PSHUFB_XMM %xmm15, \XMM3	# perform a 16 byte swap
	PSHUFB_XMM %xmm15, \XMM4	# perform a 16 byte swap

	pxor	  (%arg1), \XMM1
	pxor	  (%arg1), \XMM2
	pxor	  (%arg1), \XMM3
	pxor	  (%arg1), \XMM4
	movdqa	  HashKey_4_k(%rsp), \TMP5
	PCLMULQDQ 0x00, \TMP5, \TMP6           # TMP6 = (a1+a0)*(b1+b0)
	movaps 0x10(%arg1), \TMP1
	AESENC	  \TMP1, \XMM1              # Round 1
	AESENC	  \TMP1, \XMM2
	AESENC	  \TMP1, \XMM3
	AESENC	  \TMP1, \XMM4
	movaps 0x20(%arg1), \TMP1
	AESENC	  \TMP1, \XMM1              # Round 2
	AESENC	  \TMP1, \XMM2
	AESENC	  \TMP1, \XMM3
	AESENC	  \TMP1, \XMM4
	movdqa	  \XMM6, \TMP1
	pshufd	  $78, \XMM6, \TMP2
	pxor	  \XMM6, \TMP2
	movdqa	  HashKey_3(%rsp), \TMP5
	PCLMULQDQ 0x11, \TMP5, \TMP1           # TMP1 = a1 * b1
	movaps 0x30(%arg1), \TMP3
	AESENC    \TMP3, \XMM1              # Round 3
	AESENC    \TMP3, \XMM2
	AESENC    \TMP3, \XMM3
	AESENC    \TMP3, \XMM4
	PCLMULQDQ 0x00, \TMP5, \XMM6           # XMM6 = a0*b0
	movaps 0x40(%arg1), \TMP3
	AESENC	  \TMP3, \XMM1              # Round 4
	AESENC	  \TMP3, \XMM2
	AESENC	  \TMP3, \XMM3
	AESENC	  \TMP3, \XMM4
	movdqa	  HashKey_3_k(%rsp), \TMP5
	PCLMULQDQ 0x00, \TMP5, \TMP2           # TMP2 = (a1+a0)*(b1+b0)
	movaps 0x50(%arg1), \TMP3
	AESENC	  \TMP3, \XMM1              # Round 5
	AESENC	  \TMP3, \XMM2
	AESENC	  \TMP3, \XMM3
	AESENC	  \TMP3, \XMM4
	pxor	  \TMP1, \TMP4
# accumulate the results in TMP4:XMM5, TMP6 holds the middle part
	pxor	  \XMM6, \XMM5
	pxor	  \TMP2, \TMP6
	movdqa	  \XMM7, \TMP1
	pshufd	  $78, \XMM7, \TMP2
	pxor	  \XMM7, \TMP2
	movdqa	  HashKey_2(%rsp ), \TMP5

        # Multiply TMP5 * HashKey using karatsuba

	PCLMULQDQ 0x11, \TMP5, \TMP1           # TMP1 = a1*b1
	movaps 0x60(%arg1), \TMP3
	AESENC	  \TMP3, \XMM1              # Round 6
	AESENC	  \TMP3, \XMM2
	AESENC	  \TMP3, \XMM3
	AESENC	  \TMP3, \XMM4
	PCLMULQDQ 0x00, \TMP5, \XMM7           # XMM7 = a0*b0
	movaps 0x70(%arg1), \TMP3
	AESENC	  \TMP3, \XMM1             # Round 7
	AESENC	  \TMP3, \XMM2
	AESENC	  \TMP3, \XMM3
	AESENC	  \TMP3, \XMM4
	movdqa	  HashKey_2_k(%rsp), \TMP5
	PCLMULQDQ 0x00, \TMP5, \TMP2           # TMP2 = (a1+a0)*(b1+b0)
	movaps 0x80(%arg1), \TMP3
	AESENC	  \TMP3, \XMM1             # Round 8
	AESENC	  \TMP3, \XMM2
	AESENC	  \TMP3, \XMM3
	AESENC	  \TMP3, \XMM4
	pxor	  \TMP1, \TMP4
# accumulate the results in TMP4:XMM5, TMP6 holds the middle part
	pxor	  \XMM7, \XMM5
	pxor	  \TMP2, \TMP6

        # Multiply XMM8 * HashKey
        # XMM8 and TMP5 hold the values for the two operands

	movdqa	  \XMM8, \TMP1
	pshufd	  $78, \XMM8, \TMP2
	pxor	  \XMM8, \TMP2
	movdqa	  HashKey(%rsp), \TMP5
	PCLMULQDQ 0x11, \TMP5, \TMP1          # TMP1 = a1*b1
	movaps 0x90(%arg1), \TMP3
	AESENC	  \TMP3, \XMM1            # Round 9
	AESENC	  \TMP3, \XMM2
	AESENC	  \TMP3, \XMM3
	AESENC	  \TMP3, \XMM4
	PCLMULQDQ 0x00, \TMP5, \XMM8          # XMM8 = a0*b0
	movaps 0xa0(%arg1), \TMP3
	AESENCLAST \TMP3, \XMM1           # Round 10
	AESENCLAST \TMP3, \XMM2
	AESENCLAST \TMP3, \XMM3
	AESENCLAST \TMP3, \XMM4
	movdqa    HashKey_k(%rsp), \TMP5
	PCLMULQDQ 0x00, \TMP5, \TMP2          # TMP2 = (a1+a0)*(b1+b0)
	movdqu	  (%arg3,%r11,1), \TMP3
	pxor	  \TMP3, \XMM1                 # Ciphertext/Plaintext XOR EK
	movdqu	  16(%arg3,%r11,1), \TMP3
	pxor	  \TMP3, \XMM2                 # Ciphertext/Plaintext XOR EK
	movdqu	  32(%arg3,%r11,1), \TMP3
	pxor	  \TMP3, \XMM3                 # Ciphertext/Plaintext XOR EK
	movdqu	  48(%arg3,%r11,1), \TMP3
	pxor	  \TMP3, \XMM4                 # Ciphertext/Plaintext XOR EK
        movdqu    \XMM1, (%arg2,%r11,1)        # Write to the ciphertext buffer
        movdqu    \XMM2, 16(%arg2,%r11,1)      # Write to the ciphertext buffer
        movdqu    \XMM3, 32(%arg2,%r11,1)      # Write to the ciphertext buffer
        movdqu    \XMM4, 48(%arg2,%r11,1)      # Write to the ciphertext buffer
	PSHUFB_XMM %xmm15, \XMM1        # perform a 16 byte swap
	PSHUFB_XMM %xmm15, \XMM2	# perform a 16 byte swap
	PSHUFB_XMM %xmm15, \XMM3	# perform a 16 byte swap
	PSHUFB_XMM %xmm15, \XMM4	# perform a 16 byte swap

	pxor	  \TMP4, \TMP1
	pxor	  \XMM8, \XMM5
	pxor	  \TMP6, \TMP2
	pxor	  \TMP1, \TMP2
	pxor	  \XMM5, \TMP2
	movdqa	  \TMP2, \TMP3
	pslldq	  $8, \TMP3                    # left shift TMP3 2 DWs
	psrldq	  $8, \TMP2                    # right shift TMP2 2 DWs
	pxor	  \TMP3, \XMM5
	pxor	  \TMP2, \TMP1	  # accumulate the results in TMP1:XMM5

        # first phase of reduction

	movdqa    \XMM5, \TMP2
	movdqa    \XMM5, \TMP3
	movdqa    \XMM5, \TMP4
# move XMM5 into TMP2, TMP3, TMP4 in order to perform shifts independently
	pslld     $31, \TMP2                   # packed right shift << 31
	pslld     $30, \TMP3                   # packed right shift << 30
	pslld     $25, \TMP4                   # packed right shift << 25
	pxor      \TMP3, \TMP2	               # xor the shifted versions
	pxor      \TMP4, \TMP2
	movdqa    \TMP2, \TMP5
	psrldq    $4, \TMP5                    # right shift T5 1 DW
	pslldq    $12, \TMP2                   # left shift T2 3 DWs
	pxor      \TMP2, \XMM5

        # second phase of reduction

	movdqa    \XMM5,\TMP2 # make 3 copies of XMM5 into TMP2, TMP3, TMP4
	movdqa    \XMM5,\TMP3
	movdqa    \XMM5,\TMP4
	psrld     $1, \TMP2                    # packed left shift >>1
	psrld     $2, \TMP3                    # packed left shift >>2
	psrld     $7, \TMP4                    # packed left shift >>7
	pxor      \TMP3,\TMP2		       # xor the shifted versions
	pxor      \TMP4,\TMP2
	pxor      \TMP5, \TMP2
	pxor      \TMP2, \XMM5
	pxor      \TMP1, \XMM5                 # result is in TMP1

	pxor	  \XMM5, \XMM1
.endm

/*
* decrypt 4 blocks at a time
* ghash the 4 previously decrypted ciphertext blocks
* arg1, %arg2, %arg3 are used as pointers only, not modified
* %r11 is the data offset value
*/
.macro GHASH_4_ENCRYPT_4_PARALLEL_DEC TMP1 TMP2 TMP3 TMP4 TMP5 \
866 867 868 869 870 871 872
TMP6 XMM0 XMM1 XMM2 XMM3 XMM4 XMM5 XMM6 XMM7 XMM8 operation

	movdqa	  \XMM1, \XMM5
	movdqa	  \XMM2, \XMM6
	movdqa	  \XMM3, \XMM7
	movdqa	  \XMM4, \XMM8

873
        movdqa    SHUF_MASK(%rip), %xmm15
874 875 876 877 878 879 880 881 882 883 884 885 886 887 888
        # multiply TMP5 * HashKey using karatsuba

	movdqa	  \XMM5, \TMP4
	pshufd	  $78, \XMM5, \TMP6
	pxor	  \XMM5, \TMP6
	paddd     ONE(%rip), \XMM0		# INCR CNT
	movdqa	  HashKey_4(%rsp), \TMP5
	PCLMULQDQ 0x11, \TMP5, \TMP4           # TMP4 = a1*b1
	movdqa    \XMM0, \XMM1
	paddd     ONE(%rip), \XMM0		# INCR CNT
	movdqa    \XMM0, \XMM2
	paddd     ONE(%rip), \XMM0		# INCR CNT
	movdqa    \XMM0, \XMM3
	paddd     ONE(%rip), \XMM0		# INCR CNT
	movdqa    \XMM0, \XMM4
889
	PSHUFB_XMM %xmm15, \XMM1	# perform a 16 byte swap
890
	PCLMULQDQ 0x00, \TMP5, \XMM5           # XMM5 = a0*b0
891 892 893 894
	PSHUFB_XMM %xmm15, \XMM2	# perform a 16 byte swap
	PSHUFB_XMM %xmm15, \XMM3	# perform a 16 byte swap
	PSHUFB_XMM %xmm15, \XMM4	# perform a 16 byte swap

895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005
	pxor	  (%arg1), \XMM1
	pxor	  (%arg1), \XMM2
	pxor	  (%arg1), \XMM3
	pxor	  (%arg1), \XMM4
	movdqa	  HashKey_4_k(%rsp), \TMP5
	PCLMULQDQ 0x00, \TMP5, \TMP6           # TMP6 = (a1+a0)*(b1+b0)
	movaps 0x10(%arg1), \TMP1
	AESENC	  \TMP1, \XMM1              # Round 1
	AESENC	  \TMP1, \XMM2
	AESENC	  \TMP1, \XMM3
	AESENC	  \TMP1, \XMM4
	movaps 0x20(%arg1), \TMP1
	AESENC	  \TMP1, \XMM1              # Round 2
	AESENC	  \TMP1, \XMM2
	AESENC	  \TMP1, \XMM3
	AESENC	  \TMP1, \XMM4
	movdqa	  \XMM6, \TMP1
	pshufd	  $78, \XMM6, \TMP2
	pxor	  \XMM6, \TMP2
	movdqa	  HashKey_3(%rsp), \TMP5
	PCLMULQDQ 0x11, \TMP5, \TMP1           # TMP1 = a1 * b1
	movaps 0x30(%arg1), \TMP3
	AESENC    \TMP3, \XMM1              # Round 3
	AESENC    \TMP3, \XMM2
	AESENC    \TMP3, \XMM3
	AESENC    \TMP3, \XMM4
	PCLMULQDQ 0x00, \TMP5, \XMM6           # XMM6 = a0*b0
	movaps 0x40(%arg1), \TMP3
	AESENC	  \TMP3, \XMM1              # Round 4
	AESENC	  \TMP3, \XMM2
	AESENC	  \TMP3, \XMM3
	AESENC	  \TMP3, \XMM4
	movdqa	  HashKey_3_k(%rsp), \TMP5
	PCLMULQDQ 0x00, \TMP5, \TMP2           # TMP2 = (a1+a0)*(b1+b0)
	movaps 0x50(%arg1), \TMP3
	AESENC	  \TMP3, \XMM1              # Round 5
	AESENC	  \TMP3, \XMM2
	AESENC	  \TMP3, \XMM3
	AESENC	  \TMP3, \XMM4
	pxor	  \TMP1, \TMP4
# accumulate the results in TMP4:XMM5, TMP6 holds the middle part
	pxor	  \XMM6, \XMM5
	pxor	  \TMP2, \TMP6
	movdqa	  \XMM7, \TMP1
	pshufd	  $78, \XMM7, \TMP2
	pxor	  \XMM7, \TMP2
	movdqa	  HashKey_2(%rsp ), \TMP5

        # Multiply TMP5 * HashKey using karatsuba

	PCLMULQDQ 0x11, \TMP5, \TMP1           # TMP1 = a1*b1
	movaps 0x60(%arg1), \TMP3
	AESENC	  \TMP3, \XMM1              # Round 6
	AESENC	  \TMP3, \XMM2
	AESENC	  \TMP3, \XMM3
	AESENC	  \TMP3, \XMM4
	PCLMULQDQ 0x00, \TMP5, \XMM7           # XMM7 = a0*b0
	movaps 0x70(%arg1), \TMP3
	AESENC	  \TMP3, \XMM1             # Round 7
	AESENC	  \TMP3, \XMM2
	AESENC	  \TMP3, \XMM3
	AESENC	  \TMP3, \XMM4
	movdqa	  HashKey_2_k(%rsp), \TMP5
	PCLMULQDQ 0x00, \TMP5, \TMP2           # TMP2 = (a1+a0)*(b1+b0)
	movaps 0x80(%arg1), \TMP3
	AESENC	  \TMP3, \XMM1             # Round 8
	AESENC	  \TMP3, \XMM2
	AESENC	  \TMP3, \XMM3
	AESENC	  \TMP3, \XMM4
	pxor	  \TMP1, \TMP4
# accumulate the results in TMP4:XMM5, TMP6 holds the middle part
	pxor	  \XMM7, \XMM5
	pxor	  \TMP2, \TMP6

        # Multiply XMM8 * HashKey
        # XMM8 and TMP5 hold the values for the two operands

	movdqa	  \XMM8, \TMP1
	pshufd	  $78, \XMM8, \TMP2
	pxor	  \XMM8, \TMP2
	movdqa	  HashKey(%rsp), \TMP5
	PCLMULQDQ 0x11, \TMP5, \TMP1          # TMP1 = a1*b1
	movaps 0x90(%arg1), \TMP3
	AESENC	  \TMP3, \XMM1            # Round 9
	AESENC	  \TMP3, \XMM2
	AESENC	  \TMP3, \XMM3
	AESENC	  \TMP3, \XMM4
	PCLMULQDQ 0x00, \TMP5, \XMM8          # XMM8 = a0*b0
	movaps 0xa0(%arg1), \TMP3
	AESENCLAST \TMP3, \XMM1           # Round 10
	AESENCLAST \TMP3, \XMM2
	AESENCLAST \TMP3, \XMM3
	AESENCLAST \TMP3, \XMM4
	movdqa    HashKey_k(%rsp), \TMP5
	PCLMULQDQ 0x00, \TMP5, \TMP2          # TMP2 = (a1+a0)*(b1+b0)
	movdqu	  (%arg3,%r11,1), \TMP3
	pxor	  \TMP3, \XMM1                 # Ciphertext/Plaintext XOR EK
	movdqu	  \XMM1, (%arg2,%r11,1)        # Write to plaintext buffer
	movdqa    \TMP3, \XMM1
	movdqu	  16(%arg3,%r11,1), \TMP3
	pxor	  \TMP3, \XMM2                 # Ciphertext/Plaintext XOR EK
	movdqu	  \XMM2, 16(%arg2,%r11,1)      # Write to plaintext buffer
	movdqa    \TMP3, \XMM2
	movdqu	  32(%arg3,%r11,1), \TMP3
	pxor	  \TMP3, \XMM3                 # Ciphertext/Plaintext XOR EK
	movdqu	  \XMM3, 32(%arg2,%r11,1)      # Write to plaintext buffer
	movdqa    \TMP3, \XMM3
	movdqu	  48(%arg3,%r11,1), \TMP3
	pxor	  \TMP3, \XMM4                 # Ciphertext/Plaintext XOR EK
	movdqu	  \XMM4, 48(%arg2,%r11,1)      # Write to plaintext buffer
	movdqa    \TMP3, \XMM4
1006 1007 1008 1009
	PSHUFB_XMM %xmm15, \XMM1        # perform a 16 byte swap
	PSHUFB_XMM %xmm15, \XMM2	# perform a 16 byte swap
	PSHUFB_XMM %xmm15, \XMM3	# perform a 16 byte swap
	PSHUFB_XMM %xmm15, \XMM4	# perform a 16 byte swap
1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278

	pxor	  \TMP4, \TMP1
	pxor	  \XMM8, \XMM5
	pxor	  \TMP6, \TMP2
	pxor	  \TMP1, \TMP2
	pxor	  \XMM5, \TMP2
	movdqa	  \TMP2, \TMP3
	pslldq	  $8, \TMP3                    # left shift TMP3 2 DWs
	psrldq	  $8, \TMP2                    # right shift TMP2 2 DWs
	pxor	  \TMP3, \XMM5
	pxor	  \TMP2, \TMP1	  # accumulate the results in TMP1:XMM5

        # first phase of reduction

	movdqa    \XMM5, \TMP2
	movdqa    \XMM5, \TMP3
	movdqa    \XMM5, \TMP4
# move XMM5 into TMP2, TMP3, TMP4 in order to perform shifts independently
	pslld     $31, \TMP2                   # packed right shift << 31
	pslld     $30, \TMP3                   # packed right shift << 30
	pslld     $25, \TMP4                   # packed right shift << 25
	pxor      \TMP3, \TMP2	               # xor the shifted versions
	pxor      \TMP4, \TMP2
	movdqa    \TMP2, \TMP5
	psrldq    $4, \TMP5                    # right shift T5 1 DW
	pslldq    $12, \TMP2                   # left shift T2 3 DWs
	pxor      \TMP2, \XMM5

        # second phase of reduction

	movdqa    \XMM5,\TMP2 # make 3 copies of XMM5 into TMP2, TMP3, TMP4
	movdqa    \XMM5,\TMP3
	movdqa    \XMM5,\TMP4
	psrld     $1, \TMP2                    # packed left shift >>1
	psrld     $2, \TMP3                    # packed left shift >>2
	psrld     $7, \TMP4                    # packed left shift >>7
	pxor      \TMP3,\TMP2		       # xor the shifted versions
	pxor      \TMP4,\TMP2
	pxor      \TMP5, \TMP2
	pxor      \TMP2, \XMM5
	pxor      \TMP1, \XMM5                 # result is in TMP1

	pxor	  \XMM5, \XMM1
.endm

/* GHASH the last 4 ciphertext blocks. */
.macro	GHASH_LAST_4 TMP1 TMP2 TMP3 TMP4 TMP5 TMP6 \
TMP7 XMM1 XMM2 XMM3 XMM4 XMMDst

        # Multiply TMP6 * HashKey (using Karatsuba)

	movdqa	  \XMM1, \TMP6
	pshufd	  $78, \XMM1, \TMP2
	pxor	  \XMM1, \TMP2
	movdqa	  HashKey_4(%rsp), \TMP5
	PCLMULQDQ 0x11, \TMP5, \TMP6       # TMP6 = a1*b1
	PCLMULQDQ 0x00, \TMP5, \XMM1       # XMM1 = a0*b0
	movdqa	  HashKey_4_k(%rsp), \TMP4
	PCLMULQDQ 0x00, \TMP4, \TMP2       # TMP2 = (a1+a0)*(b1+b0)
	movdqa	  \XMM1, \XMMDst
	movdqa	  \TMP2, \XMM1              # result in TMP6, XMMDst, XMM1

        # Multiply TMP1 * HashKey (using Karatsuba)

	movdqa	  \XMM2, \TMP1
	pshufd	  $78, \XMM2, \TMP2
	pxor	  \XMM2, \TMP2
	movdqa	  HashKey_3(%rsp), \TMP5
	PCLMULQDQ 0x11, \TMP5, \TMP1       # TMP1 = a1*b1
	PCLMULQDQ 0x00, \TMP5, \XMM2       # XMM2 = a0*b0
	movdqa	  HashKey_3_k(%rsp), \TMP4
	PCLMULQDQ 0x00, \TMP4, \TMP2       # TMP2 = (a1+a0)*(b1+b0)
	pxor	  \TMP1, \TMP6
	pxor	  \XMM2, \XMMDst
	pxor	  \TMP2, \XMM1
# results accumulated in TMP6, XMMDst, XMM1

        # Multiply TMP1 * HashKey (using Karatsuba)

	movdqa	  \XMM3, \TMP1
	pshufd	  $78, \XMM3, \TMP2
	pxor	  \XMM3, \TMP2
	movdqa	  HashKey_2(%rsp), \TMP5
	PCLMULQDQ 0x11, \TMP5, \TMP1       # TMP1 = a1*b1
	PCLMULQDQ 0x00, \TMP5, \XMM3       # XMM3 = a0*b0
	movdqa	  HashKey_2_k(%rsp), \TMP4
	PCLMULQDQ 0x00, \TMP4, \TMP2       # TMP2 = (a1+a0)*(b1+b0)
	pxor	  \TMP1, \TMP6
	pxor	  \XMM3, \XMMDst
	pxor	  \TMP2, \XMM1   # results accumulated in TMP6, XMMDst, XMM1

        # Multiply TMP1 * HashKey (using Karatsuba)
	movdqa	  \XMM4, \TMP1
	pshufd	  $78, \XMM4, \TMP2
	pxor	  \XMM4, \TMP2
	movdqa	  HashKey(%rsp), \TMP5
	PCLMULQDQ 0x11, \TMP5, \TMP1	    # TMP1 = a1*b1
	PCLMULQDQ 0x00, \TMP5, \XMM4       # XMM4 = a0*b0
	movdqa	  HashKey_k(%rsp), \TMP4
	PCLMULQDQ 0x00, \TMP4, \TMP2       # TMP2 = (a1+a0)*(b1+b0)
	pxor	  \TMP1, \TMP6
	pxor	  \XMM4, \XMMDst
	pxor	  \XMM1, \TMP2
	pxor	  \TMP6, \TMP2
	pxor	  \XMMDst, \TMP2
	# middle section of the temp results combined as in karatsuba algorithm
	movdqa	  \TMP2, \TMP4
	pslldq	  $8, \TMP4                 # left shift TMP4 2 DWs
	psrldq	  $8, \TMP2                 # right shift TMP2 2 DWs
	pxor	  \TMP4, \XMMDst
	pxor	  \TMP2, \TMP6
# TMP6:XMMDst holds the result of the accumulated carry-less multiplications
	# first phase of the reduction
	movdqa    \XMMDst, \TMP2
	movdqa    \XMMDst, \TMP3
	movdqa    \XMMDst, \TMP4
# move XMMDst into TMP2, TMP3, TMP4 in order to perform 3 shifts independently
	pslld     $31, \TMP2                # packed right shifting << 31
	pslld     $30, \TMP3                # packed right shifting << 30
	pslld     $25, \TMP4                # packed right shifting << 25
	pxor      \TMP3, \TMP2              # xor the shifted versions
	pxor      \TMP4, \TMP2
	movdqa    \TMP2, \TMP7
	psrldq    $4, \TMP7                 # right shift TMP7 1 DW
	pslldq    $12, \TMP2                # left shift TMP2 3 DWs
	pxor      \TMP2, \XMMDst

        # second phase of the reduction
	movdqa    \XMMDst, \TMP2
	# make 3 copies of XMMDst for doing 3 shift operations
	movdqa    \XMMDst, \TMP3
	movdqa    \XMMDst, \TMP4
	psrld     $1, \TMP2                 # packed left shift >> 1
	psrld     $2, \TMP3                 # packed left shift >> 2
	psrld     $7, \TMP4                 # packed left shift >> 7
	pxor      \TMP3, \TMP2              # xor the shifted versions
	pxor      \TMP4, \TMP2
	pxor      \TMP7, \TMP2
	pxor      \TMP2, \XMMDst
	pxor      \TMP6, \XMMDst            # reduced result is in XMMDst
.endm

/* Encryption of a single block done*/
.macro ENCRYPT_SINGLE_BLOCK XMM0 TMP1

	pxor	(%arg1), \XMM0
        movaps 16(%arg1), \TMP1
	AESENC	\TMP1, \XMM0
        movaps 32(%arg1), \TMP1
	AESENC	\TMP1, \XMM0
        movaps 48(%arg1), \TMP1
	AESENC	\TMP1, \XMM0
        movaps 64(%arg1), \TMP1
	AESENC	\TMP1, \XMM0
        movaps 80(%arg1), \TMP1
	AESENC	\TMP1, \XMM0
        movaps 96(%arg1), \TMP1
	AESENC	\TMP1, \XMM0
        movaps 112(%arg1), \TMP1
	AESENC	\TMP1, \XMM0
        movaps 128(%arg1), \TMP1
	AESENC	\TMP1, \XMM0
        movaps 144(%arg1), \TMP1
	AESENC	\TMP1, \XMM0
        movaps 160(%arg1), \TMP1
	AESENCLAST	\TMP1, \XMM0
.endm


/*****************************************************************************
* void aesni_gcm_dec(void *aes_ctx,    // AES Key schedule. Starts on a 16 byte boundary.
*                   u8 *out,           // Plaintext output. Encrypt in-place is allowed.
*                   const u8 *in,      // Ciphertext input
*                   u64 plaintext_len, // Length of data in bytes for decryption.
*                   u8 *iv,            // Pre-counter block j0: 4 byte salt (from Security Association)
*                                      // concatenated with 8 byte Initialisation Vector (from IPSec ESP Payload)
*                                      // concatenated with 0x00000001. 16-byte aligned pointer.
*                   u8 *hash_subkey,   // H, the Hash sub key input. Data starts on a 16-byte boundary.
*                   const u8 *aad,     // Additional Authentication Data (AAD)
*                   u64 aad_len,       // Length of AAD in bytes. With RFC4106 this is going to be 8 or 12 bytes
*                   u8  *auth_tag,     // Authenticated Tag output. The driver will compare this to the
*                                      // given authentication tag and only return the plaintext if they match.
*                   u64 auth_tag_len); // Authenticated Tag Length in bytes. Valid values are 16
*                                      // (most likely), 12 or 8.
*
* Assumptions:
*
* keys:
*       keys are pre-expanded and aligned to 16 bytes. we are using the first
*       set of 11 keys in the data structure void *aes_ctx
*
* iv:
*       0                   1                   2                   3
*       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
*       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
*       |                             Salt  (From the SA)               |
*       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
*       |                     Initialization Vector                     |
*       |         (This is the sequence number from IPSec header)       |
*       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
*       |                              0x1                              |
*       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
*
*
*
* AAD:
*       AAD padded to 128 bits with 0
*       for example, assume AAD is a u32 vector
*
*       if AAD is 8 bytes:
*       AAD[3] = {A0, A1};
*       padded AAD in xmm register = {A1 A0 0 0}
*
*       0                   1                   2                   3
*       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
*       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
*       |                               SPI (A1)                        |
*       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
*       |                     32-bit Sequence Number (A0)               |
*       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
*       |                              0x0                              |
*       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
*
*                                       AAD Format with 32-bit Sequence Number
*
*       if AAD is 12 bytes:
*       AAD[3] = {A0, A1, A2};
*       padded AAD in xmm register = {A2 A1 A0 0}
*
*       0                   1                   2                   3
*       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
*       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
*       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
*       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
*       |                               SPI (A2)                        |
*       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
*       |                 64-bit Extended Sequence Number {A1,A0}       |
*       |                                                               |
*       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
*       |                              0x0                              |
*       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
*
*                        AAD Format with 64-bit Extended Sequence Number
*
* aadLen:
*       from the definition of the spec, aadLen can only be 8 or 12 bytes.
*       The code supports 16 too but for other sizes, the code will fail.
*
* TLen:
*       from the definition of the spec, TLen can only be 8, 12 or 16 bytes.
*       For other sizes, the code will fail.
*
* poly = x^128 + x^127 + x^126 + x^121 + 1
*
*****************************************************************************/

ENTRY(aesni_gcm_dec)
	push	%r12
	push	%r13
	push	%r14
	mov	%rsp, %r14
/*
* states of %xmm registers %xmm6:%xmm15 not saved
* all %xmm registers are clobbered
*/
	sub	$VARIABLE_OFFSET, %rsp
	and	$~63, %rsp                        # align rsp to 64 bytes
	mov	%arg6, %r12
	movdqu	(%r12), %xmm13			  # %xmm13 = HashKey
1279 1280 1281
        movdqa  SHUF_MASK(%rip), %xmm2
	PSHUFB_XMM %xmm2, %xmm13

1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312

# Precompute HashKey<<1 (mod poly) from the hash key (required for GHASH)

	movdqa	%xmm13, %xmm2
	psllq	$1, %xmm13
	psrlq	$63, %xmm2
	movdqa	%xmm2, %xmm1
	pslldq	$8, %xmm2
	psrldq	$8, %xmm1
	por	%xmm2, %xmm13

        # Reduction

	pshufd	$0x24, %xmm1, %xmm2
	pcmpeqd TWOONE(%rip), %xmm2
	pand	POLY(%rip), %xmm2
	pxor	%xmm2, %xmm13     # %xmm13 holds the HashKey<<1 (mod poly)


        # Decrypt first few blocks

	movdqa %xmm13, HashKey(%rsp)           # store HashKey<<1 (mod poly)
	mov %arg4, %r13    # save the number of bytes of plaintext/ciphertext
	and $-16, %r13                      # %r13 = %r13 - (%r13 mod 16)
	mov %r13, %r12
	and $(3<<4), %r12
	jz _initial_num_blocks_is_0_decrypt
	cmp $(2<<4), %r12
	jb _initial_num_blocks_is_1_decrypt
	je _initial_num_blocks_is_2_decrypt
_initial_num_blocks_is_3_decrypt:
1313
	INITIAL_BLOCKS_DEC 3, %xmm9, %xmm10, %xmm13, %xmm11, %xmm12, %xmm0, \
1314 1315 1316 1317
%xmm1, %xmm2, %xmm3, %xmm4, %xmm8, %xmm5, %xmm6, 5, 678, dec
	sub	$48, %r13
	jmp	_initial_blocks_decrypted
_initial_num_blocks_is_2_decrypt:
1318
	INITIAL_BLOCKS_DEC	2, %xmm9, %xmm10, %xmm13, %xmm11, %xmm12, %xmm0, \
1319 1320 1321 1322
%xmm1, %xmm2, %xmm3, %xmm4, %xmm8, %xmm5, %xmm6, 6, 78, dec
	sub	$32, %r13
	jmp	_initial_blocks_decrypted
_initial_num_blocks_is_1_decrypt:
1323
	INITIAL_BLOCKS_DEC	1, %xmm9, %xmm10, %xmm13, %xmm11, %xmm12, %xmm0, \
1324 1325 1326 1327
%xmm1, %xmm2, %xmm3, %xmm4, %xmm8, %xmm5, %xmm6, 7, 8, dec
	sub	$16, %r13
	jmp	_initial_blocks_decrypted
_initial_num_blocks_is_0_decrypt:
1328
	INITIAL_BLOCKS_DEC	0, %xmm9, %xmm10, %xmm13, %xmm11, %xmm12, %xmm0, \
1329 1330 1331 1332 1333 1334 1335
%xmm1, %xmm2, %xmm3, %xmm4, %xmm8, %xmm5, %xmm6, 8, 0, dec
_initial_blocks_decrypted:
	cmp	$0, %r13
	je	_zero_cipher_left_decrypt
	sub	$64, %r13
	je	_four_cipher_left_decrypt
_decrypt_by_4:
1336
	GHASH_4_ENCRYPT_4_PARALLEL_DEC	%xmm9, %xmm10, %xmm11, %xmm12, %xmm13, \
1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351
%xmm14, %xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, %xmm8, dec
	add	$64, %r11
	sub	$64, %r13
	jne	_decrypt_by_4
_four_cipher_left_decrypt:
	GHASH_LAST_4	%xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14, \
%xmm15, %xmm1, %xmm2, %xmm3, %xmm4, %xmm8
_zero_cipher_left_decrypt:
	mov	%arg4, %r13
	and	$15, %r13				# %r13 = arg4 (mod 16)
	je	_multiple_of_16_bytes_decrypt

        # Handle the last <16 byte block seperately

	paddd ONE(%rip), %xmm0         # increment CNT to get Yn
1352 1353 1354
        movdqa SHUF_MASK(%rip), %xmm10
	PSHUFB_XMM %xmm10, %xmm0

1355 1356 1357 1358 1359 1360 1361 1362 1363
	ENCRYPT_SINGLE_BLOCK  %xmm0, %xmm1    # E(K, Yn)
	sub $16, %r11
	add %r13, %r11
	movdqu (%arg3,%r11,1), %xmm1   # recieve the last <16 byte block
	lea SHIFT_MASK+16(%rip), %r12
	sub %r13, %r12
# adjust the shuffle mask pointer to be able to shift 16-%r13 bytes
# (%r13 is the number of bytes in plaintext mod 16)
	movdqu (%r12), %xmm2           # get the appropriate shuffle mask
1364 1365
	PSHUFB_XMM %xmm2, %xmm1            # right shift 16-%r13 butes

1366 1367 1368 1369 1370 1371
	movdqa  %xmm1, %xmm2
	pxor %xmm1, %xmm0            # Ciphertext XOR E(K, Yn)
	movdqu ALL_F-SHIFT_MASK(%r12), %xmm1
	# get the appropriate mask to mask out top 16-%r13 bytes of %xmm0
	pand %xmm1, %xmm0            # mask out top 16-%r13 bytes of %xmm0
	pand    %xmm1, %xmm2
1372 1373 1374
        movdqa SHUF_MASK(%rip), %xmm10
	PSHUFB_XMM %xmm10 ,%xmm2

1375 1376 1377 1378 1379 1380 1381
	pxor %xmm2, %xmm8
	GHASH_MUL %xmm8, %xmm13, %xmm9, %xmm10, %xmm11, %xmm5, %xmm6
	          # GHASH computation for the last <16 byte block
	sub %r13, %r11
	add $16, %r11

        # output %r13 bytes
1382
	MOVQ_R64_XMM	%xmm0, %rax
1383 1384 1385 1386 1387
	cmp	$8, %r13
	jle	_less_than_8_bytes_left_decrypt
	mov	%rax, (%arg2 , %r11, 1)
	add	$8, %r11
	psrldq	$8, %xmm0
1388
	MOVQ_R64_XMM	%xmm0, %rax
1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
	sub	$8, %r13
_less_than_8_bytes_left_decrypt:
	mov	%al,  (%arg2, %r11, 1)
	add	$1, %r11
	shr	$8, %rax
	sub	$1, %r13
	jne	_less_than_8_bytes_left_decrypt
_multiple_of_16_bytes_decrypt:
	mov	arg8, %r12		  # %r13 = aadLen (number of bytes)
	shl	$3, %r12		  # convert into number of bits
	movd	%r12d, %xmm15		  # len(A) in %xmm15
	shl	$3, %arg4		  # len(C) in bits (*128)
1401
	MOVQ_R64_XMM	%arg4, %xmm1
1402 1403 1404 1405 1406
	pslldq	$8, %xmm15		  # %xmm15 = len(A)||0x0000000000000000
	pxor	%xmm1, %xmm15		  # %xmm15 = len(A)||len(C)
	pxor	%xmm15, %xmm8
	GHASH_MUL	%xmm8, %xmm13, %xmm9, %xmm10, %xmm11, %xmm5, %xmm6
	         # final GHASH computation
1407 1408 1409
        movdqa SHUF_MASK(%rip), %xmm10
	PSHUFB_XMM %xmm10, %xmm8

1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421
	mov	%arg5, %rax		  # %rax = *Y0
	movdqu	(%rax), %xmm0		  # %xmm0 = Y0
	ENCRYPT_SINGLE_BLOCK	%xmm0,  %xmm1	  # E(K, Y0)
	pxor	%xmm8, %xmm0
_return_T_decrypt:
	mov	arg9, %r10                # %r10 = authTag
	mov	arg10, %r11               # %r11 = auth_tag_len
	cmp	$16, %r11
	je	_T_16_decrypt
	cmp	$12, %r11
	je	_T_12_decrypt
_T_8_decrypt:
1422
	MOVQ_R64_XMM	%xmm0, %rax
1423 1424 1425
	mov	%rax, (%r10)
	jmp	_return_T_done_decrypt
_T_12_decrypt:
1426
	MOVQ_R64_XMM	%xmm0, %rax
1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537
	mov	%rax, (%r10)
	psrldq	$8, %xmm0
	movd	%xmm0, %eax
	mov	%eax, 8(%r10)
	jmp	_return_T_done_decrypt
_T_16_decrypt:
	movdqu	%xmm0, (%r10)
_return_T_done_decrypt:
	mov	%r14, %rsp
	pop	%r14
	pop	%r13
	pop	%r12
	ret


/*****************************************************************************
* void aesni_gcm_enc(void *aes_ctx,      // AES Key schedule. Starts on a 16 byte boundary.
*                    u8 *out,            // Ciphertext output. Encrypt in-place is allowed.
*                    const u8 *in,       // Plaintext input
*                    u64 plaintext_len,  // Length of data in bytes for encryption.
*                    u8 *iv,             // Pre-counter block j0: 4 byte salt (from Security Association)
*                                        // concatenated with 8 byte Initialisation Vector (from IPSec ESP Payload)
*                                        // concatenated with 0x00000001. 16-byte aligned pointer.
*                    u8 *hash_subkey,    // H, the Hash sub key input. Data starts on a 16-byte boundary.
*                    const u8 *aad,      // Additional Authentication Data (AAD)
*                    u64 aad_len,        // Length of AAD in bytes. With RFC4106 this is going to be 8 or 12 bytes
*                    u8 *auth_tag,       // Authenticated Tag output.
*                    u64 auth_tag_len);  // Authenticated Tag Length in bytes. Valid values are 16 (most likely),
*                                        // 12 or 8.
*
* Assumptions:
*
* keys:
*       keys are pre-expanded and aligned to 16 bytes. we are using the
*       first set of 11 keys in the data structure void *aes_ctx
*
*
* iv:
*       0                   1                   2                   3
*       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
*       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
*       |                             Salt  (From the SA)               |
*       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
*       |                     Initialization Vector                     |
*       |         (This is the sequence number from IPSec header)       |
*       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
*       |                              0x1                              |
*       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
*
*
*
* AAD:
*       AAD padded to 128 bits with 0
*       for example, assume AAD is a u32 vector
*
*       if AAD is 8 bytes:
*       AAD[3] = {A0, A1};
*       padded AAD in xmm register = {A1 A0 0 0}
*
*       0                   1                   2                   3
*       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
*       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
*       |                               SPI (A1)                        |
*       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
*       |                     32-bit Sequence Number (A0)               |
*       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
*       |                              0x0                              |
*       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
*
*                                 AAD Format with 32-bit Sequence Number
*
*       if AAD is 12 bytes:
*       AAD[3] = {A0, A1, A2};
*       padded AAD in xmm register = {A2 A1 A0 0}
*
*       0                   1                   2                   3
*       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
*       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
*       |                               SPI (A2)                        |
*       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
*       |                 64-bit Extended Sequence Number {A1,A0}       |
*       |                                                               |
*       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
*       |                              0x0                              |
*       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
*
*                         AAD Format with 64-bit Extended Sequence Number
*
* aadLen:
*       from the definition of the spec, aadLen can only be 8 or 12 bytes.
*       The code supports 16 too but for other sizes, the code will fail.
*
* TLen:
*       from the definition of the spec, TLen can only be 8, 12 or 16 bytes.
*       For other sizes, the code will fail.
*
* poly = x^128 + x^127 + x^126 + x^121 + 1
***************************************************************************/
ENTRY(aesni_gcm_enc)
	push	%r12
	push	%r13
	push	%r14
	mov	%rsp, %r14
#
# states of %xmm registers %xmm6:%xmm15 not saved
# all %xmm registers are clobbered
#
	sub	$VARIABLE_OFFSET, %rsp
	and	$~63, %rsp
	mov	%arg6, %r12
	movdqu	(%r12), %xmm13
1538 1539 1540
        movdqa  SHUF_MASK(%rip), %xmm2
	PSHUFB_XMM %xmm2, %xmm13

1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570

# precompute HashKey<<1 mod poly from the HashKey (required for GHASH)

	movdqa	%xmm13, %xmm2
	psllq	$1, %xmm13
	psrlq	$63, %xmm2
	movdqa	%xmm2, %xmm1
	pslldq	$8, %xmm2
	psrldq	$8, %xmm1
	por	%xmm2, %xmm13

        # reduce HashKey<<1

	pshufd	$0x24, %xmm1, %xmm2
	pcmpeqd TWOONE(%rip), %xmm2
	pand	POLY(%rip), %xmm2
	pxor	%xmm2, %xmm13
	movdqa	%xmm13, HashKey(%rsp)
	mov	%arg4, %r13            # %xmm13 holds HashKey<<1 (mod poly)
	and	$-16, %r13
	mov	%r13, %r12

        # Encrypt first few blocks

	and	$(3<<4), %r12
	jz	_initial_num_blocks_is_0_encrypt
	cmp	$(2<<4), %r12
	jb	_initial_num_blocks_is_1_encrypt
	je	_initial_num_blocks_is_2_encrypt
_initial_num_blocks_is_3_encrypt:
1571
	INITIAL_BLOCKS_ENC	3, %xmm9, %xmm10, %xmm13, %xmm11, %xmm12, %xmm0, \
1572 1573 1574 1575
%xmm1, %xmm2, %xmm3, %xmm4, %xmm8, %xmm5, %xmm6, 5, 678, enc
	sub	$48, %r13
	jmp	_initial_blocks_encrypted
_initial_num_blocks_is_2_encrypt:
1576
	INITIAL_BLOCKS_ENC	2, %xmm9, %xmm10, %xmm13, %xmm11, %xmm12, %xmm0, \
1577 1578 1579 1580
%xmm1, %xmm2, %xmm3, %xmm4, %xmm8, %xmm5, %xmm6, 6, 78, enc
	sub	$32, %r13
	jmp	_initial_blocks_encrypted
_initial_num_blocks_is_1_encrypt:
1581
	INITIAL_BLOCKS_ENC	1, %xmm9, %xmm10, %xmm13, %xmm11, %xmm12, %xmm0, \
1582 1583 1584 1585
%xmm1, %xmm2, %xmm3, %xmm4, %xmm8, %xmm5, %xmm6, 7, 8, enc
	sub	$16, %r13
	jmp	_initial_blocks_encrypted
_initial_num_blocks_is_0_encrypt:
1586
	INITIAL_BLOCKS_ENC	0, %xmm9, %xmm10, %xmm13, %xmm11, %xmm12, %xmm0, \
1587 1588 1589 1590 1591 1592 1593 1594 1595 1596
%xmm1, %xmm2, %xmm3, %xmm4, %xmm8, %xmm5, %xmm6, 8, 0, enc
_initial_blocks_encrypted:

        # Main loop - Encrypt remaining blocks

	cmp	$0, %r13
	je	_zero_cipher_left_encrypt
	sub	$64, %r13
	je	_four_cipher_left_encrypt
_encrypt_by_4_encrypt:
1597
	GHASH_4_ENCRYPT_4_PARALLEL_ENC	%xmm9, %xmm10, %xmm11, %xmm12, %xmm13, \
1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611
%xmm14, %xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, %xmm8, enc
	add	$64, %r11
	sub	$64, %r13
	jne	_encrypt_by_4_encrypt
_four_cipher_left_encrypt:
	GHASH_LAST_4	%xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14, \
%xmm15, %xmm1, %xmm2, %xmm3, %xmm4, %xmm8
_zero_cipher_left_encrypt:
	mov	%arg4, %r13
	and	$15, %r13			# %r13 = arg4 (mod 16)
	je	_multiple_of_16_bytes_encrypt

         # Handle the last <16 Byte block seperately
	paddd ONE(%rip), %xmm0                # INCR CNT to get Yn
1612 1613 1614
        movdqa SHUF_MASK(%rip), %xmm10
	PSHUFB_XMM %xmm10, %xmm0

1615 1616 1617 1618 1619 1620 1621 1622 1623
	ENCRYPT_SINGLE_BLOCK	%xmm0, %xmm1        # Encrypt(K, Yn)
	sub $16, %r11
	add %r13, %r11
	movdqu (%arg3,%r11,1), %xmm1     # receive the last <16 byte blocks
	lea SHIFT_MASK+16(%rip), %r12
	sub %r13, %r12
	# adjust the shuffle mask pointer to be able to shift 16-r13 bytes
	# (%r13 is the number of bytes in plaintext mod 16)
	movdqu	(%r12), %xmm2           # get the appropriate shuffle mask
1624
	PSHUFB_XMM	%xmm2, %xmm1            # shift right 16-r13 byte
1625 1626 1627 1628
	pxor	%xmm1, %xmm0            # Plaintext XOR Encrypt(K, Yn)
	movdqu	ALL_F-SHIFT_MASK(%r12), %xmm1
	# get the appropriate mask to mask out top 16-r13 bytes of xmm0
	pand	%xmm1, %xmm0            # mask out top 16-r13 bytes of xmm0
1629 1630
        movdqa SHUF_MASK(%rip), %xmm10
	PSHUFB_XMM %xmm10,%xmm0
1631 1632 1633 1634 1635 1636

	pxor	%xmm0, %xmm8
	GHASH_MUL %xmm8, %xmm13, %xmm9, %xmm10, %xmm11, %xmm5, %xmm6
	# GHASH computation for the last <16 byte block
	sub	%r13, %r11
	add	$16, %r11
1637 1638
	PSHUFB_XMM %xmm10, %xmm1

1639 1640 1641
	# shuffle xmm0 back to output as ciphertext

        # Output %r13 bytes
1642
	MOVQ_R64_XMM %xmm0, %rax
1643 1644 1645 1646 1647
	cmp $8, %r13
	jle _less_than_8_bytes_left_encrypt
	mov %rax, (%arg2 , %r11, 1)
	add $8, %r11
	psrldq $8, %xmm0
1648
	MOVQ_R64_XMM %xmm0, %rax
1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660
	sub $8, %r13
_less_than_8_bytes_left_encrypt:
	mov %al,  (%arg2, %r11, 1)
	add $1, %r11
	shr $8, %rax
	sub $1, %r13
	jne _less_than_8_bytes_left_encrypt
_multiple_of_16_bytes_encrypt:
	mov	arg8, %r12    # %r12 = addLen (number of bytes)
	shl	$3, %r12
	movd	%r12d, %xmm15       # len(A) in %xmm15
	shl	$3, %arg4               # len(C) in bits (*128)
1661
	MOVQ_R64_XMM	%arg4, %xmm1
1662 1663 1664 1665 1666
	pslldq	$8, %xmm15          # %xmm15 = len(A)||0x0000000000000000
	pxor	%xmm1, %xmm15       # %xmm15 = len(A)||len(C)
	pxor	%xmm15, %xmm8
	GHASH_MUL	%xmm8, %xmm13, %xmm9, %xmm10, %xmm11, %xmm5, %xmm6
	# final GHASH computation
1667 1668
        movdqa SHUF_MASK(%rip), %xmm10
	PSHUFB_XMM %xmm10, %xmm8         # perform a 16 byte swap
1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681

	mov	%arg5, %rax		       # %rax  = *Y0
	movdqu	(%rax), %xmm0		       # %xmm0 = Y0
	ENCRYPT_SINGLE_BLOCK	%xmm0, %xmm15         # Encrypt(K, Y0)
	pxor	%xmm8, %xmm0
_return_T_encrypt:
	mov	arg9, %r10                     # %r10 = authTag
	mov	arg10, %r11                    # %r11 = auth_tag_len
	cmp	$16, %r11
	je	_T_16_encrypt
	cmp	$12, %r11
	je	_T_12_encrypt
_T_8_encrypt:
1682
	MOVQ_R64_XMM	%xmm0, %rax
1683 1684 1685
	mov	%rax, (%r10)
	jmp	_return_T_done_encrypt
_T_12_encrypt:
1686
	MOVQ_R64_XMM	%xmm0, %rax
1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699
	mov	%rax, (%r10)
	psrldq	$8, %xmm0
	movd	%xmm0, %eax
	mov	%eax, 8(%r10)
	jmp	_return_T_done_encrypt
_T_16_encrypt:
	movdqu	%xmm0, (%r10)
_return_T_done_encrypt:
	mov	%r14, %rsp
	pop	%r14
	pop	%r13
	pop	%r12
	ret
1700

1701
#endif
1702 1703


1704 1705 1706 1707 1708 1709 1710 1711
_key_expansion_128:
_key_expansion_256a:
	pshufd $0b11111111, %xmm1, %xmm1
	shufps $0b00010000, %xmm0, %xmm4
	pxor %xmm4, %xmm0
	shufps $0b10001100, %xmm0, %xmm4
	pxor %xmm4, %xmm0
	pxor %xmm1, %xmm0
1712 1713
	movaps %xmm0, (TKEYP)
	add $0x10, TKEYP
1714 1715
	ret

1716
.align 4
1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733
_key_expansion_192a:
	pshufd $0b01010101, %xmm1, %xmm1
	shufps $0b00010000, %xmm0, %xmm4
	pxor %xmm4, %xmm0
	shufps $0b10001100, %xmm0, %xmm4
	pxor %xmm4, %xmm0
	pxor %xmm1, %xmm0

	movaps %xmm2, %xmm5
	movaps %xmm2, %xmm6
	pslldq $4, %xmm5
	pshufd $0b11111111, %xmm0, %xmm3
	pxor %xmm3, %xmm2
	pxor %xmm5, %xmm2

	movaps %xmm0, %xmm1
	shufps $0b01000100, %xmm0, %xmm6
1734
	movaps %xmm6, (TKEYP)
1735
	shufps $0b01001110, %xmm2, %xmm1
1736 1737
	movaps %xmm1, 0x10(TKEYP)
	add $0x20, TKEYP
1738 1739
	ret

1740
.align 4
1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754
_key_expansion_192b:
	pshufd $0b01010101, %xmm1, %xmm1
	shufps $0b00010000, %xmm0, %xmm4
	pxor %xmm4, %xmm0
	shufps $0b10001100, %xmm0, %xmm4
	pxor %xmm4, %xmm0
	pxor %xmm1, %xmm0

	movaps %xmm2, %xmm5
	pslldq $4, %xmm5
	pshufd $0b11111111, %xmm0, %xmm3
	pxor %xmm3, %xmm2
	pxor %xmm5, %xmm2

1755 1756
	movaps %xmm0, (TKEYP)
	add $0x10, TKEYP
1757 1758
	ret

1759
.align 4
1760 1761 1762 1763 1764 1765 1766
_key_expansion_256b:
	pshufd $0b10101010, %xmm1, %xmm1
	shufps $0b00010000, %xmm2, %xmm4
	pxor %xmm4, %xmm2
	shufps $0b10001100, %xmm2, %xmm4
	pxor %xmm4, %xmm2
	pxor %xmm1, %xmm2
1767 1768
	movaps %xmm2, (TKEYP)
	add $0x10, TKEYP
1769 1770 1771 1772 1773 1774 1775
	ret

/*
 * int aesni_set_key(struct crypto_aes_ctx *ctx, const u8 *in_key,
 *                   unsigned int key_len)
 */
ENTRY(aesni_set_key)
1776 1777 1778 1779 1780 1781 1782 1783 1784 1785
#ifndef __x86_64__
	pushl KEYP
	movl 8(%esp), KEYP		# ctx
	movl 12(%esp), UKEYP		# in_key
	movl 16(%esp), %edx		# key_len
#endif
	movups (UKEYP), %xmm0		# user key (first 16 bytes)
	movaps %xmm0, (KEYP)
	lea 0x10(KEYP), TKEYP		# key addr
	movl %edx, 480(KEYP)
1786 1787 1788 1789
	pxor %xmm4, %xmm4		# xmm4 is assumed 0 in _key_expansion_x
	cmp $24, %dl
	jb .Lenc_key128
	je .Lenc_key192
1790 1791 1792
	movups 0x10(UKEYP), %xmm2	# other user key
	movaps %xmm2, (TKEYP)
	add $0x10, TKEYP
1793
	AESKEYGENASSIST 0x1 %xmm2 %xmm1		# round 1
1794
	call _key_expansion_256a
1795
	AESKEYGENASSIST 0x1 %xmm0 %xmm1
1796
	call _key_expansion_256b
1797
	AESKEYGENASSIST 0x2 %xmm2 %xmm1		# round 2
1798
	call _key_expansion_256a
1799
	AESKEYGENASSIST 0x2 %xmm0 %xmm1
1800
	call _key_expansion_256b
1801
	AESKEYGENASSIST 0x4 %xmm2 %xmm1		# round 3
1802
	call _key_expansion_256a
1803
	AESKEYGENASSIST 0x4 %xmm0 %xmm1
1804
	call _key_expansion_256b
1805
	AESKEYGENASSIST 0x8 %xmm2 %xmm1		# round 4
1806
	call _key_expansion_256a
1807
	AESKEYGENASSIST 0x8 %xmm0 %xmm1
1808
	call _key_expansion_256b
1809
	AESKEYGENASSIST 0x10 %xmm2 %xmm1	# round 5
1810
	call _key_expansion_256a
1811
	AESKEYGENASSIST 0x10 %xmm0 %xmm1
1812
	call _key_expansion_256b
1813
	AESKEYGENASSIST 0x20 %xmm2 %xmm1	# round 6
1814
	call _key_expansion_256a
1815
	AESKEYGENASSIST 0x20 %xmm0 %xmm1
1816
	call _key_expansion_256b
1817
	AESKEYGENASSIST 0x40 %xmm2 %xmm1	# round 7
1818 1819 1820
	call _key_expansion_256a
	jmp .Ldec_key
.Lenc_key192:
1821
	movq 0x10(UKEYP), %xmm2		# other user key
1822
	AESKEYGENASSIST 0x1 %xmm2 %xmm1		# round 1
1823
	call _key_expansion_192a
1824
	AESKEYGENASSIST 0x2 %xmm2 %xmm1		# round 2
1825
	call _key_expansion_192b
1826
	AESKEYGENASSIST 0x4 %xmm2 %xmm1		# round 3
1827
	call _key_expansion_192a
1828
	AESKEYGENASSIST 0x8 %xmm2 %xmm1		# round 4
1829
	call _key_expansion_192b
1830
	AESKEYGENASSIST 0x10 %xmm2 %xmm1	# round 5
1831
	call _key_expansion_192a
1832
	AESKEYGENASSIST 0x20 %xmm2 %xmm1	# round 6
1833
	call _key_expansion_192b
1834
	AESKEYGENASSIST 0x40 %xmm2 %xmm1	# round 7
1835
	call _key_expansion_192a
1836
	AESKEYGENASSIST 0x80 %xmm2 %xmm1	# round 8
1837 1838 1839
	call _key_expansion_192b
	jmp .Ldec_key
.Lenc_key128:
1840
	AESKEYGENASSIST 0x1 %xmm0 %xmm1		# round 1
1841
	call _key_expansion_128
1842
	AESKEYGENASSIST 0x2 %xmm0 %xmm1		# round 2
1843
	call _key_expansion_128
1844
	AESKEYGENASSIST 0x4 %xmm0 %xmm1		# round 3
1845
	call _key_expansion_128
1846
	AESKEYGENASSIST 0x8 %xmm0 %xmm1		# round 4
1847
	call _key_expansion_128
1848
	AESKEYGENASSIST 0x10 %xmm0 %xmm1	# round 5
1849
	call _key_expansion_128
1850
	AESKEYGENASSIST 0x20 %xmm0 %xmm1	# round 6
1851
	call _key_expansion_128
1852
	AESKEYGENASSIST 0x40 %xmm0 %xmm1	# round 7
1853
	call _key_expansion_128
1854
	AESKEYGENASSIST 0x80 %xmm0 %xmm1	# round 8
1855
	call _key_expansion_128
1856
	AESKEYGENASSIST 0x1b %xmm0 %xmm1	# round 9
1857
	call _key_expansion_128
1858
	AESKEYGENASSIST 0x36 %xmm0 %xmm1	# round 10
1859 1860
	call _key_expansion_128
.Ldec_key:
1861 1862 1863 1864 1865 1866 1867
	sub $0x10, TKEYP
	movaps (KEYP), %xmm0
	movaps (TKEYP), %xmm1
	movaps %xmm0, 240(TKEYP)
	movaps %xmm1, 240(KEYP)
	add $0x10, KEYP
	lea 240-16(TKEYP), UKEYP
1868 1869
.align 4
.Ldec_key_loop:
1870
	movaps (KEYP), %xmm0
1871
	AESIMC %xmm0 %xmm1
1872 1873 1874 1875
	movaps %xmm1, (UKEYP)
	add $0x10, KEYP
	sub $0x10, UKEYP
	cmp TKEYP, KEYP
1876
	jb .Ldec_key_loop
1877 1878 1879 1880
	xor AREG, AREG
#ifndef __x86_64__
	popl KEYP
#endif
1881 1882 1883 1884 1885 1886
	ret

/*
 * void aesni_enc(struct crypto_aes_ctx *ctx, u8 *dst, const u8 *src)
 */
ENTRY(aesni_enc)
1887 1888 1889 1890 1891 1892 1893
#ifndef __x86_64__
	pushl KEYP
	pushl KLEN
	movl 12(%esp), KEYP
	movl 16(%esp), OUTP
	movl 20(%esp), INP
#endif
1894 1895 1896 1897
	movl 480(KEYP), KLEN		# key length
	movups (INP), STATE		# input
	call _aesni_enc1
	movups STATE, (OUTP)		# output
1898 1899 1900 1901
#ifndef __x86_64__
	popl KLEN
	popl KEYP
#endif
1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915
	ret

/*
 * _aesni_enc1:		internal ABI
 * input:
 *	KEYP:		key struct pointer
 *	KLEN:		round count
 *	STATE:		initial state (input)
 * output:
 *	STATE:		finial state (output)
 * changed:
 *	KEY
 *	TKEYP (T1)
 */
1916
.align 4
1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927
_aesni_enc1:
	movaps (KEYP), KEY		# key
	mov KEYP, TKEYP
	pxor KEY, STATE		# round 0
	add $0x30, TKEYP
	cmp $24, KLEN
	jb .Lenc128
	lea 0x20(TKEYP), TKEYP
	je .Lenc192
	add $0x20, TKEYP
	movaps -0x60(TKEYP), KEY
1928
	AESENC KEY STATE
1929
	movaps -0x50(TKEYP), KEY
1930
	AESENC KEY STATE
1931 1932 1933
.align 4
.Lenc192:
	movaps -0x40(TKEYP), KEY
1934
	AESENC KEY STATE
1935
	movaps -0x30(TKEYP), KEY
1936
	AESENC KEY STATE
1937 1938 1939
.align 4
.Lenc128:
	movaps -0x20(TKEYP), KEY
1940
	AESENC KEY STATE
1941
	movaps -0x10(TKEYP), KEY
1942
	AESENC KEY STATE
1943
	movaps (TKEYP), KEY
1944
	AESENC KEY STATE
1945
	movaps 0x10(TKEYP), KEY
1946
	AESENC KEY STATE
1947
	movaps 0x20(TKEYP), KEY
1948
	AESENC KEY STATE
1949
	movaps 0x30(TKEYP), KEY
1950
	AESENC KEY STATE
1951
	movaps 0x40(TKEYP), KEY
1952
	AESENC KEY STATE
1953
	movaps 0x50(TKEYP), KEY
1954
	AESENC KEY STATE
1955
	movaps 0x60(TKEYP), KEY
1956
	AESENC KEY STATE
1957
	movaps 0x70(TKEYP), KEY
1958
	AESENCLAST KEY STATE
1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978
	ret

/*
 * _aesni_enc4:	internal ABI
 * input:
 *	KEYP:		key struct pointer
 *	KLEN:		round count
 *	STATE1:		initial state (input)
 *	STATE2
 *	STATE3
 *	STATE4
 * output:
 *	STATE1:		finial state (output)
 *	STATE2
 *	STATE3
 *	STATE4
 * changed:
 *	KEY
 *	TKEYP (T1)
 */
1979
.align 4
1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993
_aesni_enc4:
	movaps (KEYP), KEY		# key
	mov KEYP, TKEYP
	pxor KEY, STATE1		# round 0
	pxor KEY, STATE2
	pxor KEY, STATE3
	pxor KEY, STATE4
	add $0x30, TKEYP
	cmp $24, KLEN
	jb .L4enc128
	lea 0x20(TKEYP), TKEYP
	je .L4enc192
	add $0x20, TKEYP
	movaps -0x60(TKEYP), KEY
1994 1995 1996 1997
	AESENC KEY STATE1
	AESENC KEY STATE2
	AESENC KEY STATE3
	AESENC KEY STATE4
1998
	movaps -0x50(TKEYP), KEY
1999 2000 2001 2002
	AESENC KEY STATE1
	AESENC KEY STATE2
	AESENC KEY STATE3
	AESENC KEY STATE4
2003 2004 2005
#.align 4
.L4enc192:
	movaps -0x40(TKEYP), KEY
2006 2007 2008 2009
	AESENC KEY STATE1
	AESENC KEY STATE2
	AESENC KEY STATE3
	AESENC KEY STATE4
2010
	movaps -0x30(TKEYP), KEY
2011 2012 2013 2014
	AESENC KEY STATE1
	AESENC KEY STATE2
	AESENC KEY STATE3
	AESENC KEY STATE4
2015 2016 2017
#.align 4
.L4enc128:
	movaps -0x20(TKEYP), KEY
2018 2019 2020 2021
	AESENC KEY STATE1
	AESENC KEY STATE2
	AESENC KEY STATE3
	AESENC KEY STATE4
2022
	movaps -0x10(TKEYP), KEY
2023 2024 2025 2026
	AESENC KEY STATE1
	AESENC KEY STATE2
	AESENC KEY STATE3
	AESENC KEY STATE4
2027
	movaps (TKEYP), KEY
2028 2029 2030 2031
	AESENC KEY STATE1
	AESENC KEY STATE2
	AESENC KEY STATE3
	AESENC KEY STATE4
2032
	movaps 0x10(TKEYP), KEY
2033 2034 2035 2036
	AESENC KEY STATE1
	AESENC KEY STATE2
	AESENC KEY STATE3
	AESENC KEY STATE4
2037
	movaps 0x20(TKEYP), KEY
2038 2039 2040 2041
	AESENC KEY STATE1
	AESENC KEY STATE2
	AESENC KEY STATE3
	AESENC KEY STATE4
2042
	movaps 0x30(TKEYP), KEY
2043 2044 2045 2046
	AESENC KEY STATE1
	AESENC KEY STATE2
	AESENC KEY STATE3
	AESENC KEY STATE4
2047
	movaps 0x40(TKEYP), KEY
2048 2049 2050 2051
	AESENC KEY STATE1
	AESENC KEY STATE2
	AESENC KEY STATE3
	AESENC KEY STATE4
2052
	movaps 0x50(TKEYP), KEY
2053 2054 2055 2056
	AESENC KEY STATE1
	AESENC KEY STATE2
	AESENC KEY STATE3
	AESENC KEY STATE4
2057
	movaps 0x60(TKEYP), KEY
2058 2059 2060 2061
	AESENC KEY STATE1
	AESENC KEY STATE2
	AESENC KEY STATE3
	AESENC KEY STATE4
2062
	movaps 0x70(TKEYP), KEY
2063 2064 2065 2066
	AESENCLAST KEY STATE1		# last round
	AESENCLAST KEY STATE2
	AESENCLAST KEY STATE3
	AESENCLAST KEY STATE4
2067 2068 2069 2070 2071 2072
	ret

/*
 * void aesni_dec (struct crypto_aes_ctx *ctx, u8 *dst, const u8 *src)
 */
ENTRY(aesni_dec)
2073 2074 2075 2076 2077 2078 2079
#ifndef __x86_64__
	pushl KEYP
	pushl KLEN
	movl 12(%esp), KEYP
	movl 16(%esp), OUTP
	movl 20(%esp), INP
#endif
2080 2081 2082 2083 2084
	mov 480(KEYP), KLEN		# key length
	add $240, KEYP
	movups (INP), STATE		# input
	call _aesni_dec1
	movups STATE, (OUTP)		#output
2085 2086 2087 2088
#ifndef __x86_64__
	popl KLEN
	popl KEYP
#endif
2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102
	ret

/*
 * _aesni_dec1:		internal ABI
 * input:
 *	KEYP:		key struct pointer
 *	KLEN:		key length
 *	STATE:		initial state (input)
 * output:
 *	STATE:		finial state (output)
 * changed:
 *	KEY
 *	TKEYP (T1)
 */
2103
.align 4
2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114
_aesni_dec1:
	movaps (KEYP), KEY		# key
	mov KEYP, TKEYP
	pxor KEY, STATE		# round 0
	add $0x30, TKEYP
	cmp $24, KLEN
	jb .Ldec128
	lea 0x20(TKEYP), TKEYP
	je .Ldec192
	add $0x20, TKEYP
	movaps -0x60(TKEYP), KEY
2115
	AESDEC KEY STATE
2116
	movaps -0x50(TKEYP), KEY
2117
	AESDEC KEY STATE
2118 2119 2120
.align 4
.Ldec192:
	movaps -0x40(TKEYP), KEY
2121
	AESDEC KEY STATE
2122
	movaps -0x30(TKEYP), KEY
2123
	AESDEC KEY STATE
2124 2125 2126
.align 4
.Ldec128:
	movaps -0x20(TKEYP), KEY
2127
	AESDEC KEY STATE
2128
	movaps -0x10(TKEYP), KEY
2129
	AESDEC KEY STATE
2130
	movaps (TKEYP), KEY
2131
	AESDEC KEY STATE
2132
	movaps 0x10(TKEYP), KEY
2133
	AESDEC KEY STATE
2134
	movaps 0x20(TKEYP), KEY
2135
	AESDEC KEY STATE
2136
	movaps 0x30(TKEYP), KEY
2137
	AESDEC KEY STATE
2138
	movaps 0x40(TKEYP), KEY
2139
	AESDEC KEY STATE
2140
	movaps 0x50(TKEYP), KEY
2141
	AESDEC KEY STATE
2142
	movaps 0x60(TKEYP), KEY
2143
	AESDEC KEY STATE
2144
	movaps 0x70(TKEYP), KEY
2145
	AESDECLAST KEY STATE
2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165
	ret

/*
 * _aesni_dec4:	internal ABI
 * input:
 *	KEYP:		key struct pointer
 *	KLEN:		key length
 *	STATE1:		initial state (input)
 *	STATE2
 *	STATE3
 *	STATE4
 * output:
 *	STATE1:		finial state (output)
 *	STATE2
 *	STATE3
 *	STATE4
 * changed:
 *	KEY
 *	TKEYP (T1)
 */
2166
.align 4
2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180
_aesni_dec4:
	movaps (KEYP), KEY		# key
	mov KEYP, TKEYP
	pxor KEY, STATE1		# round 0
	pxor KEY, STATE2
	pxor KEY, STATE3
	pxor KEY, STATE4
	add $0x30, TKEYP
	cmp $24, KLEN
	jb .L4dec128
	lea 0x20(TKEYP), TKEYP
	je .L4dec192
	add $0x20, TKEYP
	movaps -0x60(TKEYP), KEY
2181 2182 2183 2184
	AESDEC KEY STATE1
	AESDEC KEY STATE2
	AESDEC KEY STATE3
	AESDEC KEY STATE4
2185
	movaps -0x50(TKEYP), KEY
2186 2187 2188 2189
	AESDEC KEY STATE1
	AESDEC KEY STATE2
	AESDEC KEY STATE3
	AESDEC KEY STATE4
2190 2191 2192
.align 4
.L4dec192:
	movaps -0x40(TKEYP), KEY
2193 2194 2195 2196
	AESDEC KEY STATE1
	AESDEC KEY STATE2
	AESDEC KEY STATE3
	AESDEC KEY STATE4
2197
	movaps -0x30(TKEYP), KEY
2198 2199 2200 2201
	AESDEC KEY STATE1
	AESDEC KEY STATE2
	AESDEC KEY STATE3
	AESDEC KEY STATE4
2202 2203 2204
.align 4
.L4dec128:
	movaps -0x20(TKEYP), KEY
2205 2206 2207 2208
	AESDEC KEY STATE1
	AESDEC KEY STATE2
	AESDEC KEY STATE3
	AESDEC KEY STATE4
2209
	movaps -0x10(TKEYP), KEY
2210 2211 2212 2213
	AESDEC KEY STATE1
	AESDEC KEY STATE2
	AESDEC KEY STATE3
	AESDEC KEY STATE4
2214
	movaps (TKEYP), KEY
2215 2216 2217 2218
	AESDEC KEY STATE1
	AESDEC KEY STATE2
	AESDEC KEY STATE3
	AESDEC KEY STATE4
2219
	movaps 0x10(TKEYP), KEY
2220 2221 2222 2223
	AESDEC KEY STATE1
	AESDEC KEY STATE2
	AESDEC KEY STATE3
	AESDEC KEY STATE4
2224
	movaps 0x20(TKEYP), KEY
2225 2226 2227 2228
	AESDEC KEY STATE1
	AESDEC KEY STATE2
	AESDEC KEY STATE3
	AESDEC KEY STATE4
2229
	movaps 0x30(TKEYP), KEY
2230 2231 2232 2233
	AESDEC KEY STATE1
	AESDEC KEY STATE2
	AESDEC KEY STATE3
	AESDEC KEY STATE4
2234
	movaps 0x40(TKEYP), KEY
2235 2236 2237 2238
	AESDEC KEY STATE1
	AESDEC KEY STATE2
	AESDEC KEY STATE3
	AESDEC KEY STATE4
2239
	movaps 0x50(TKEYP), KEY
2240 2241 2242 2243
	AESDEC KEY STATE1
	AESDEC KEY STATE2
	AESDEC KEY STATE3
	AESDEC KEY STATE4
2244
	movaps 0x60(TKEYP), KEY
2245 2246 2247 2248
	AESDEC KEY STATE1
	AESDEC KEY STATE2
	AESDEC KEY STATE3
	AESDEC KEY STATE4
2249
	movaps 0x70(TKEYP), KEY
2250 2251 2252 2253
	AESDECLAST KEY STATE1		# last round
	AESDECLAST KEY STATE2
	AESDECLAST KEY STATE3
	AESDECLAST KEY STATE4
2254 2255 2256 2257 2258 2259 2260
	ret

/*
 * void aesni_ecb_enc(struct crypto_aes_ctx *ctx, const u8 *dst, u8 *src,
 *		      size_t len)
 */
ENTRY(aesni_ecb_enc)
2261 2262 2263 2264 2265 2266 2267 2268 2269
#ifndef __x86_64__
	pushl LEN
	pushl KEYP
	pushl KLEN
	movl 16(%esp), KEYP
	movl 20(%esp), OUTP
	movl 24(%esp), INP
	movl 28(%esp), LEN
#endif
2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305
	test LEN, LEN		# check length
	jz .Lecb_enc_ret
	mov 480(KEYP), KLEN
	cmp $16, LEN
	jb .Lecb_enc_ret
	cmp $64, LEN
	jb .Lecb_enc_loop1
.align 4
.Lecb_enc_loop4:
	movups (INP), STATE1
	movups 0x10(INP), STATE2
	movups 0x20(INP), STATE3
	movups 0x30(INP), STATE4
	call _aesni_enc4
	movups STATE1, (OUTP)
	movups STATE2, 0x10(OUTP)
	movups STATE3, 0x20(OUTP)
	movups STATE4, 0x30(OUTP)
	sub $64, LEN
	add $64, INP
	add $64, OUTP
	cmp $64, LEN
	jge .Lecb_enc_loop4
	cmp $16, LEN
	jb .Lecb_enc_ret
.align 4
.Lecb_enc_loop1:
	movups (INP), STATE1
	call _aesni_enc1
	movups STATE1, (OUTP)
	sub $16, LEN
	add $16, INP
	add $16, OUTP
	cmp $16, LEN
	jge .Lecb_enc_loop1
.Lecb_enc_ret:
2306 2307 2308 2309 2310
#ifndef __x86_64__
	popl KLEN
	popl KEYP
	popl LEN
#endif
2311 2312 2313 2314 2315 2316 2317
	ret

/*
 * void aesni_ecb_dec(struct crypto_aes_ctx *ctx, const u8 *dst, u8 *src,
 *		      size_t len);
 */
ENTRY(aesni_ecb_dec)
2318 2319 2320 2321 2322 2323 2324 2325 2326
#ifndef __x86_64__
	pushl LEN
	pushl KEYP
	pushl KLEN
	movl 16(%esp), KEYP
	movl 20(%esp), OUTP
	movl 24(%esp), INP
	movl 28(%esp), LEN
#endif
2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363
	test LEN, LEN
	jz .Lecb_dec_ret
	mov 480(KEYP), KLEN
	add $240, KEYP
	cmp $16, LEN
	jb .Lecb_dec_ret
	cmp $64, LEN
	jb .Lecb_dec_loop1
.align 4
.Lecb_dec_loop4:
	movups (INP), STATE1
	movups 0x10(INP), STATE2
	movups 0x20(INP), STATE3
	movups 0x30(INP), STATE4
	call _aesni_dec4
	movups STATE1, (OUTP)
	movups STATE2, 0x10(OUTP)
	movups STATE3, 0x20(OUTP)
	movups STATE4, 0x30(OUTP)
	sub $64, LEN
	add $64, INP
	add $64, OUTP
	cmp $64, LEN
	jge .Lecb_dec_loop4
	cmp $16, LEN
	jb .Lecb_dec_ret
.align 4
.Lecb_dec_loop1:
	movups (INP), STATE1
	call _aesni_dec1
	movups STATE1, (OUTP)
	sub $16, LEN
	add $16, INP
	add $16, OUTP
	cmp $16, LEN
	jge .Lecb_dec_loop1
.Lecb_dec_ret:
2364 2365 2366 2367 2368
#ifndef __x86_64__
	popl KLEN
	popl KEYP
	popl LEN
#endif
2369 2370 2371 2372 2373 2374 2375
	ret

/*
 * void aesni_cbc_enc(struct crypto_aes_ctx *ctx, const u8 *dst, u8 *src,
 *		      size_t len, u8 *iv)
 */
ENTRY(aesni_cbc_enc)
2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386
#ifndef __x86_64__
	pushl IVP
	pushl LEN
	pushl KEYP
	pushl KLEN
	movl 20(%esp), KEYP
	movl 24(%esp), OUTP
	movl 28(%esp), INP
	movl 32(%esp), LEN
	movl 36(%esp), IVP
#endif
2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403
	cmp $16, LEN
	jb .Lcbc_enc_ret
	mov 480(KEYP), KLEN
	movups (IVP), STATE	# load iv as initial state
.align 4
.Lcbc_enc_loop:
	movups (INP), IN	# load input
	pxor IN, STATE
	call _aesni_enc1
	movups STATE, (OUTP)	# store output
	sub $16, LEN
	add $16, INP
	add $16, OUTP
	cmp $16, LEN
	jge .Lcbc_enc_loop
	movups STATE, (IVP)
.Lcbc_enc_ret:
2404 2405 2406 2407 2408 2409
#ifndef __x86_64__
	popl KLEN
	popl KEYP
	popl LEN
	popl IVP
#endif
2410 2411 2412 2413 2414 2415 2416
	ret

/*
 * void aesni_cbc_dec(struct crypto_aes_ctx *ctx, const u8 *dst, u8 *src,
 *		      size_t len, u8 *iv)
 */
ENTRY(aesni_cbc_dec)
2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427
#ifndef __x86_64__
	pushl IVP
	pushl LEN
	pushl KEYP
	pushl KLEN
	movl 20(%esp), KEYP
	movl 24(%esp), OUTP
	movl 28(%esp), INP
	movl 32(%esp), LEN
	movl 36(%esp), IVP
#endif
2428
	cmp $16, LEN
2429
	jb .Lcbc_dec_just_ret
2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440
	mov 480(KEYP), KLEN
	add $240, KEYP
	movups (IVP), IV
	cmp $64, LEN
	jb .Lcbc_dec_loop1
.align 4
.Lcbc_dec_loop4:
	movups (INP), IN1
	movaps IN1, STATE1
	movups 0x10(INP), IN2
	movaps IN2, STATE2
2441
#ifdef __x86_64__
2442 2443 2444 2445
	movups 0x20(INP), IN3
	movaps IN3, STATE3
	movups 0x30(INP), IN4
	movaps IN4, STATE4
2446 2447 2448 2449 2450 2451
#else
	movups 0x20(INP), IN1
	movaps IN1, STATE3
	movups 0x30(INP), IN2
	movaps IN2, STATE4
#endif
2452 2453
	call _aesni_dec4
	pxor IV, STATE1
2454
#ifdef __x86_64__
2455 2456 2457 2458
	pxor IN1, STATE2
	pxor IN2, STATE3
	pxor IN3, STATE4
	movaps IN4, IV
2459 2460 2461 2462 2463 2464
#else
	pxor (INP), STATE2
	pxor 0x10(INP), STATE3
	pxor IN1, STATE4
	movaps IN2, IV
#endif
2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489
	movups STATE1, (OUTP)
	movups STATE2, 0x10(OUTP)
	movups STATE3, 0x20(OUTP)
	movups STATE4, 0x30(OUTP)
	sub $64, LEN
	add $64, INP
	add $64, OUTP
	cmp $64, LEN
	jge .Lcbc_dec_loop4
	cmp $16, LEN
	jb .Lcbc_dec_ret
.align 4
.Lcbc_dec_loop1:
	movups (INP), IN
	movaps IN, STATE
	call _aesni_dec1
	pxor IV, STATE
	movups STATE, (OUTP)
	movaps IN, IV
	sub $16, LEN
	add $16, INP
	add $16, OUTP
	cmp $16, LEN
	jge .Lcbc_dec_loop1
.Lcbc_dec_ret:
2490 2491
	movups IV, (IVP)
.Lcbc_dec_just_ret:
2492 2493 2494 2495 2496 2497
#ifndef __x86_64__
	popl KLEN
	popl KEYP
	popl LEN
	popl IVP
#endif
2498
	ret
2499

2500
#ifdef __x86_64__
2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515
.align 16
.Lbswap_mask:
	.byte 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0

/*
 * _aesni_inc_init:	internal ABI
 *	setup registers used by _aesni_inc
 * input:
 *	IV
 * output:
 *	CTR:	== IV, in little endian
 *	TCTR_LOW: == lower qword of CTR
 *	INC:	== 1, in little endian
 *	BSWAP_MASK == endian swapping mask
 */
2516
.align 4
2517 2518 2519 2520 2521
_aesni_inc_init:
	movaps .Lbswap_mask, BSWAP_MASK
	movaps IV, CTR
	PSHUFB_XMM BSWAP_MASK CTR
	mov $1, TCTR_LOW
2522 2523
	MOVQ_R64_XMM TCTR_LOW INC
	MOVQ_R64_XMM CTR TCTR_LOW
2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540
	ret

/*
 * _aesni_inc:		internal ABI
 *	Increase IV by 1, IV is in big endian
 * input:
 *	IV
 *	CTR:	== IV, in little endian
 *	TCTR_LOW: == lower qword of CTR
 *	INC:	== 1, in little endian
 *	BSWAP_MASK == endian swapping mask
 * output:
 *	IV:	Increase by 1
 * changed:
 *	CTR:	== output IV, in little endian
 *	TCTR_LOW: == lower qword of CTR
 */
2541
.align 4
2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612
_aesni_inc:
	paddq INC, CTR
	add $1, TCTR_LOW
	jnc .Linc_low
	pslldq $8, INC
	paddq INC, CTR
	psrldq $8, INC
.Linc_low:
	movaps CTR, IV
	PSHUFB_XMM BSWAP_MASK IV
	ret

/*
 * void aesni_ctr_enc(struct crypto_aes_ctx *ctx, const u8 *dst, u8 *src,
 *		      size_t len, u8 *iv)
 */
ENTRY(aesni_ctr_enc)
	cmp $16, LEN
	jb .Lctr_enc_just_ret
	mov 480(KEYP), KLEN
	movups (IVP), IV
	call _aesni_inc_init
	cmp $64, LEN
	jb .Lctr_enc_loop1
.align 4
.Lctr_enc_loop4:
	movaps IV, STATE1
	call _aesni_inc
	movups (INP), IN1
	movaps IV, STATE2
	call _aesni_inc
	movups 0x10(INP), IN2
	movaps IV, STATE3
	call _aesni_inc
	movups 0x20(INP), IN3
	movaps IV, STATE4
	call _aesni_inc
	movups 0x30(INP), IN4
	call _aesni_enc4
	pxor IN1, STATE1
	movups STATE1, (OUTP)
	pxor IN2, STATE2
	movups STATE2, 0x10(OUTP)
	pxor IN3, STATE3
	movups STATE3, 0x20(OUTP)
	pxor IN4, STATE4
	movups STATE4, 0x30(OUTP)
	sub $64, LEN
	add $64, INP
	add $64, OUTP
	cmp $64, LEN
	jge .Lctr_enc_loop4
	cmp $16, LEN
	jb .Lctr_enc_ret
.align 4
.Lctr_enc_loop1:
	movaps IV, STATE
	call _aesni_inc
	movups (INP), IN
	call _aesni_enc1
	pxor IN, STATE
	movups STATE, (OUTP)
	sub $16, LEN
	add $16, INP
	add $16, OUTP
	cmp $16, LEN
	jge .Lctr_enc_loop1
.Lctr_enc_ret:
	movups IV, (IVP)
.Lctr_enc_just_ret:
	ret
2613
#endif