blk-mq.c 48.7 KB
Newer Older
1 2 3 4 5 6
/*
 * Block multiqueue core code
 *
 * Copyright (C) 2013-2014 Jens Axboe
 * Copyright (C) 2013-2014 Christoph Hellwig
 */
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
#include <linux/llist.h>
#include <linux/list_sort.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
#include <linux/delay.h>
23
#include <linux/crash_dump.h>
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43

#include <trace/events/block.h>

#include <linux/blk-mq.h>
#include "blk.h"
#include "blk-mq.h"
#include "blk-mq-tag.h"

static DEFINE_MUTEX(all_q_mutex);
static LIST_HEAD(all_q_list);

static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);

/*
 * Check if any of the ctx's have pending work in this hardware queue
 */
static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
{
	unsigned int i;

44 45
	for (i = 0; i < hctx->ctx_map.map_size; i++)
		if (hctx->ctx_map.map[i].word)
46 47 48 49 50
			return true;

	return false;
}

51 52 53 54 55 56 57 58 59
static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx,
					      struct blk_mq_ctx *ctx)
{
	return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word];
}

#define CTX_TO_BIT(hctx, ctx)	\
	((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))

60 61 62 63 64 65
/*
 * Mark this ctx as having pending work in this hardware queue
 */
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
				     struct blk_mq_ctx *ctx)
{
66 67 68 69 70 71 72 73 74 75 76 77
	struct blk_align_bitmap *bm = get_bm(hctx, ctx);

	if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word))
		set_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
}

static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
				      struct blk_mq_ctx *ctx)
{
	struct blk_align_bitmap *bm = get_bm(hctx, ctx);

	clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
78 79 80 81
}

static int blk_mq_queue_enter(struct request_queue *q)
{
82 83
	while (true) {
		int ret;
84

85 86
		if (percpu_ref_tryget_live(&q->mq_usage_counter))
			return 0;
87

88 89 90 91 92 93 94
		ret = wait_event_interruptible(q->mq_freeze_wq,
				!q->mq_freeze_depth || blk_queue_dying(q));
		if (blk_queue_dying(q))
			return -ENODEV;
		if (ret)
			return ret;
	}
95 96 97 98
}

static void blk_mq_queue_exit(struct request_queue *q)
{
99 100 101 102 103 104 105 106 107
	percpu_ref_put(&q->mq_usage_counter);
}

static void blk_mq_usage_counter_release(struct percpu_ref *ref)
{
	struct request_queue *q =
		container_of(ref, struct request_queue, mq_usage_counter);

	wake_up_all(&q->mq_freeze_wq);
108 109
}

110
static void blk_mq_freeze_queue_start(struct request_queue *q)
111
{
112 113
	bool freeze;

114
	spin_lock_irq(q->queue_lock);
115
	freeze = !q->mq_freeze_depth++;
116 117
	spin_unlock_irq(q->queue_lock);

118
	if (freeze) {
119
		percpu_ref_kill(&q->mq_usage_counter);
120 121
		blk_mq_run_queues(q, false);
	}
122 123 124 125
}

static void blk_mq_freeze_queue_wait(struct request_queue *q)
{
126
	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->mq_usage_counter));
127 128
}

129 130 131 132 133 134 135 136 137 138
/*
 * Guarantee no request is in use, so we can change any data structure of
 * the queue afterward.
 */
void blk_mq_freeze_queue(struct request_queue *q)
{
	blk_mq_freeze_queue_start(q);
	blk_mq_freeze_queue_wait(q);
}

139 140
static void blk_mq_unfreeze_queue(struct request_queue *q)
{
141
	bool wake;
142 143

	spin_lock_irq(q->queue_lock);
144 145
	wake = !--q->mq_freeze_depth;
	WARN_ON_ONCE(q->mq_freeze_depth < 0);
146
	spin_unlock_irq(q->queue_lock);
147 148
	if (wake) {
		percpu_ref_reinit(&q->mq_usage_counter);
149
		wake_up_all(&q->mq_freeze_wq);
150
	}
151 152 153 154 155 156 157 158
}

bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
{
	return blk_mq_has_free_tags(hctx->tags);
}
EXPORT_SYMBOL(blk_mq_can_queue);

159 160
static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
			       struct request *rq, unsigned int rw_flags)
161
{
162 163 164
	if (blk_queue_io_stat(q))
		rw_flags |= REQ_IO_STAT;

165 166 167
	INIT_LIST_HEAD(&rq->queuelist);
	/* csd/requeue_work/fifo_time is initialized before use */
	rq->q = q;
168
	rq->mq_ctx = ctx;
169
	rq->cmd_flags |= rw_flags;
170 171 172 173 174 175
	/* do not touch atomic flags, it needs atomic ops against the timer */
	rq->cpu = -1;
	INIT_HLIST_NODE(&rq->hash);
	RB_CLEAR_NODE(&rq->rb_node);
	rq->rq_disk = NULL;
	rq->part = NULL;
176
	rq->start_time = jiffies;
177 178
#ifdef CONFIG_BLK_CGROUP
	rq->rl = NULL;
179
	set_start_time_ns(rq);
180 181 182 183 184 185 186 187 188 189
	rq->io_start_time_ns = 0;
#endif
	rq->nr_phys_segments = 0;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
	rq->nr_integrity_segments = 0;
#endif
	rq->special = NULL;
	/* tag was already set */
	rq->errors = 0;

190 191
	rq->cmd = rq->__cmd;

192 193 194 195 196 197
	rq->extra_len = 0;
	rq->sense_len = 0;
	rq->resid_len = 0;
	rq->sense = NULL;

	INIT_LIST_HEAD(&rq->timeout_list);
198 199
	rq->timeout = 0;

200 201 202 203
	rq->end_io = NULL;
	rq->end_io_data = NULL;
	rq->next_rq = NULL;

204 205 206
	ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
}

207
static struct request *
208
__blk_mq_alloc_request(struct blk_mq_alloc_data *data, int rw)
209 210 211 212
{
	struct request *rq;
	unsigned int tag;

213
	tag = blk_mq_get_tag(data);
214
	if (tag != BLK_MQ_TAG_FAIL) {
215
		rq = data->hctx->tags->rqs[tag];
216

217
		if (blk_mq_tag_busy(data->hctx)) {
218
			rq->cmd_flags = REQ_MQ_INFLIGHT;
219
			atomic_inc(&data->hctx->nr_active);
220 221 222
		}

		rq->tag = tag;
223
		blk_mq_rq_ctx_init(data->q, data->ctx, rq, rw);
224 225 226 227 228 229
		return rq;
	}

	return NULL;
}

230 231
struct request *blk_mq_alloc_request(struct request_queue *q, int rw, gfp_t gfp,
		bool reserved)
232
{
233 234
	struct blk_mq_ctx *ctx;
	struct blk_mq_hw_ctx *hctx;
235
	struct request *rq;
236
	struct blk_mq_alloc_data alloc_data;
237
	int ret;
238

239 240 241
	ret = blk_mq_queue_enter(q);
	if (ret)
		return ERR_PTR(ret);
242

243 244
	ctx = blk_mq_get_ctx(q);
	hctx = q->mq_ops->map_queue(q, ctx->cpu);
245 246
	blk_mq_set_alloc_data(&alloc_data, q, gfp & ~__GFP_WAIT,
			reserved, ctx, hctx);
247

248
	rq = __blk_mq_alloc_request(&alloc_data, rw);
249 250 251 252 253 254
	if (!rq && (gfp & __GFP_WAIT)) {
		__blk_mq_run_hw_queue(hctx);
		blk_mq_put_ctx(ctx);

		ctx = blk_mq_get_ctx(q);
		hctx = q->mq_ops->map_queue(q, ctx->cpu);
255 256 257 258
		blk_mq_set_alloc_data(&alloc_data, q, gfp, reserved, ctx,
				hctx);
		rq =  __blk_mq_alloc_request(&alloc_data, rw);
		ctx = alloc_data.ctx;
259 260
	}
	blk_mq_put_ctx(ctx);
261 262
	if (!rq)
		return ERR_PTR(-EWOULDBLOCK);
263 264
	return rq;
}
265
EXPORT_SYMBOL(blk_mq_alloc_request);
266 267 268 269 270 271 272

static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
				  struct blk_mq_ctx *ctx, struct request *rq)
{
	const int tag = rq->tag;
	struct request_queue *q = rq->q;

273 274
	if (rq->cmd_flags & REQ_MQ_INFLIGHT)
		atomic_dec(&hctx->nr_active);
275
	rq->cmd_flags = 0;
276

277
	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
278
	blk_mq_put_tag(hctx, tag, &ctx->last_tag);
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
	blk_mq_queue_exit(q);
}

void blk_mq_free_request(struct request *rq)
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx;
	struct request_queue *q = rq->q;

	ctx->rq_completed[rq_is_sync(rq)]++;

	hctx = q->mq_ops->map_queue(q, ctx->cpu);
	__blk_mq_free_request(hctx, ctx, rq);
}

294
inline void __blk_mq_end_request(struct request *rq, int error)
295
{
M
Ming Lei 已提交
296 297
	blk_account_io_done(rq);

C
Christoph Hellwig 已提交
298
	if (rq->end_io) {
299
		rq->end_io(rq, error);
C
Christoph Hellwig 已提交
300 301 302
	} else {
		if (unlikely(blk_bidi_rq(rq)))
			blk_mq_free_request(rq->next_rq);
303
		blk_mq_free_request(rq);
C
Christoph Hellwig 已提交
304
	}
305
}
306
EXPORT_SYMBOL(__blk_mq_end_request);
307

308
void blk_mq_end_request(struct request *rq, int error)
309 310 311
{
	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
		BUG();
312
	__blk_mq_end_request(rq, error);
313
}
314
EXPORT_SYMBOL(blk_mq_end_request);
315

316
static void __blk_mq_complete_request_remote(void *data)
317
{
318
	struct request *rq = data;
319

320
	rq->q->softirq_done_fn(rq);
321 322
}

323
static void blk_mq_ipi_complete_request(struct request *rq)
324 325
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
C
Christoph Hellwig 已提交
326
	bool shared = false;
327 328
	int cpu;

C
Christoph Hellwig 已提交
329
	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
330 331 332
		rq->q->softirq_done_fn(rq);
		return;
	}
333 334

	cpu = get_cpu();
C
Christoph Hellwig 已提交
335 336 337 338
	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
		shared = cpus_share_cache(cpu, ctx->cpu);

	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
339
		rq->csd.func = __blk_mq_complete_request_remote;
340 341
		rq->csd.info = rq;
		rq->csd.flags = 0;
342
		smp_call_function_single_async(ctx->cpu, &rq->csd);
343
	} else {
344
		rq->q->softirq_done_fn(rq);
345
	}
346 347
	put_cpu();
}
348

349 350 351 352 353
void __blk_mq_complete_request(struct request *rq)
{
	struct request_queue *q = rq->q;

	if (!q->softirq_done_fn)
354
		blk_mq_end_request(rq, rq->errors);
355 356 357 358
	else
		blk_mq_ipi_complete_request(rq);
}

359 360 361 362 363 364 365 366 367 368
/**
 * blk_mq_complete_request - end I/O on a request
 * @rq:		the request being processed
 *
 * Description:
 *	Ends all I/O on a request. It does not handle partial completions.
 *	The actual completion happens out-of-order, through a IPI handler.
 **/
void blk_mq_complete_request(struct request *rq)
{
369 370 371
	struct request_queue *q = rq->q;

	if (unlikely(blk_should_fake_timeout(q)))
372
		return;
373 374
	if (!blk_mark_rq_complete(rq))
		__blk_mq_complete_request(rq);
375 376
}
EXPORT_SYMBOL(blk_mq_complete_request);
377

378
void blk_mq_start_request(struct request *rq)
379 380 381 382 383
{
	struct request_queue *q = rq->q;

	trace_block_rq_issue(q, rq);

C
Christoph Hellwig 已提交
384
	rq->resid_len = blk_rq_bytes(rq);
C
Christoph Hellwig 已提交
385 386
	if (unlikely(blk_bidi_rq(rq)))
		rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
C
Christoph Hellwig 已提交
387

388
	blk_add_timer(rq);
389

390 391 392 393 394 395
	/*
	 * Ensure that ->deadline is visible before set the started
	 * flag and clear the completed flag.
	 */
	smp_mb__before_atomic();

396 397 398 399 400 401
	/*
	 * Mark us as started and clear complete. Complete might have been
	 * set if requeue raced with timeout, which then marked it as
	 * complete. So be sure to clear complete again when we start
	 * the request, otherwise we'll ignore the completion event.
	 */
402 403 404 405
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
		set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
	if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
		clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
406 407 408 409 410 411 412 413 414

	if (q->dma_drain_size && blk_rq_bytes(rq)) {
		/*
		 * Make sure space for the drain appears.  We know we can do
		 * this because max_hw_segments has been adjusted to be one
		 * fewer than the device can handle.
		 */
		rq->nr_phys_segments++;
	}
415
}
416
EXPORT_SYMBOL(blk_mq_start_request);
417

418
static void __blk_mq_requeue_request(struct request *rq)
419 420 421 422
{
	struct request_queue *q = rq->q;

	trace_block_rq_requeue(q, rq);
423

424 425 426 427
	if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
		if (q->dma_drain_size && blk_rq_bytes(rq))
			rq->nr_phys_segments--;
	}
428 429
}

430 431 432 433 434
void blk_mq_requeue_request(struct request *rq)
{
	__blk_mq_requeue_request(rq);

	BUG_ON(blk_queued_rq(rq));
435
	blk_mq_add_to_requeue_list(rq, true);
436 437 438
}
EXPORT_SYMBOL(blk_mq_requeue_request);

439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
static void blk_mq_requeue_work(struct work_struct *work)
{
	struct request_queue *q =
		container_of(work, struct request_queue, requeue_work);
	LIST_HEAD(rq_list);
	struct request *rq, *next;
	unsigned long flags;

	spin_lock_irqsave(&q->requeue_lock, flags);
	list_splice_init(&q->requeue_list, &rq_list);
	spin_unlock_irqrestore(&q->requeue_lock, flags);

	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
		if (!(rq->cmd_flags & REQ_SOFTBARRIER))
			continue;

		rq->cmd_flags &= ~REQ_SOFTBARRIER;
		list_del_init(&rq->queuelist);
		blk_mq_insert_request(rq, true, false, false);
	}

	while (!list_empty(&rq_list)) {
		rq = list_entry(rq_list.next, struct request, queuelist);
		list_del_init(&rq->queuelist);
		blk_mq_insert_request(rq, false, false, false);
	}

466 467 468 469 470
	/*
	 * Use the start variant of queue running here, so that running
	 * the requeue work will kick stopped queues.
	 */
	blk_mq_start_hw_queues(q);
471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
}

void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
{
	struct request_queue *q = rq->q;
	unsigned long flags;

	/*
	 * We abuse this flag that is otherwise used by the I/O scheduler to
	 * request head insertation from the workqueue.
	 */
	BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER);

	spin_lock_irqsave(&q->requeue_lock, flags);
	if (at_head) {
		rq->cmd_flags |= REQ_SOFTBARRIER;
		list_add(&rq->queuelist, &q->requeue_list);
	} else {
		list_add_tail(&rq->queuelist, &q->requeue_list);
	}
	spin_unlock_irqrestore(&q->requeue_lock, flags);
}
EXPORT_SYMBOL(blk_mq_add_to_requeue_list);

void blk_mq_kick_requeue_list(struct request_queue *q)
{
	kblockd_schedule_work(&q->requeue_work);
}
EXPORT_SYMBOL(blk_mq_kick_requeue_list);

501 502
static inline bool is_flush_request(struct request *rq,
		struct blk_flush_queue *fq, unsigned int tag)
503
{
504
	return ((rq->cmd_flags & REQ_FLUSH_SEQ) &&
505
			fq->flush_rq->tag == tag);
506 507 508 509 510
}

struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
{
	struct request *rq = tags->rqs[tag];
511 512
	/* mq_ctx of flush rq is always cloned from the corresponding req */
	struct blk_flush_queue *fq = blk_get_flush_queue(rq->q, rq->mq_ctx);
513

514
	if (!is_flush_request(rq, fq, tag))
515
		return rq;
516

517
	return fq->flush_rq;
518 519 520
}
EXPORT_SYMBOL(blk_mq_tag_to_rq);

521
struct blk_mq_timeout_data {
522 523
	unsigned long next;
	unsigned int next_set;
524 525
};

526
void blk_mq_rq_timed_out(struct request *req, bool reserved)
527
{
528 529
	struct blk_mq_ops *ops = req->q->mq_ops;
	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
530 531 532 533 534 535 536 537 538 539

	/*
	 * We know that complete is set at this point. If STARTED isn't set
	 * anymore, then the request isn't active and the "timeout" should
	 * just be ignored. This can happen due to the bitflag ordering.
	 * Timeout first checks if STARTED is set, and if it is, assumes
	 * the request is active. But if we race with completion, then
	 * we both flags will get cleared. So check here again, and ignore
	 * a timeout event with a request that isn't active.
	 */
540 541
	if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
		return;
542

543
	if (ops->timeout)
544
		ret = ops->timeout(req, reserved);
545 546 547 548 549 550 551 552 553 554 555 556 557 558 559

	switch (ret) {
	case BLK_EH_HANDLED:
		__blk_mq_complete_request(req);
		break;
	case BLK_EH_RESET_TIMER:
		blk_add_timer(req);
		blk_clear_rq_complete(req);
		break;
	case BLK_EH_NOT_HANDLED:
		break;
	default:
		printk(KERN_ERR "block: bad eh return: %d\n", ret);
		break;
	}
560
}
561 562 563 564 565
		
static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
		struct request *rq, void *priv, bool reserved)
{
	struct blk_mq_timeout_data *data = priv;
566

567 568
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
		return;
569

570 571
	if (time_after_eq(jiffies, rq->deadline)) {
		if (!blk_mark_rq_complete(rq))
572
			blk_mq_rq_timed_out(rq, reserved);
573 574 575 576
	} else if (!data->next_set || time_after(data->next, rq->deadline)) {
		data->next = rq->deadline;
		data->next_set = 1;
	}
577 578
}

579
static void blk_mq_rq_timer(unsigned long priv)
580
{
581 582 583 584 585
	struct request_queue *q = (struct request_queue *)priv;
	struct blk_mq_timeout_data data = {
		.next		= 0,
		.next_set	= 0,
	};
586
	struct blk_mq_hw_ctx *hctx;
587
	int i;
588

589 590 591 592 593 594 595 596
	queue_for_each_hw_ctx(q, hctx, i) {
		/*
		 * If not software queues are currently mapped to this
		 * hardware queue, there's nothing to check
		 */
		if (!hctx->nr_ctx || !hctx->tags)
			continue;

597
		blk_mq_tag_busy_iter(hctx, blk_mq_check_expired, &data);
598
	}
599

600 601 602
	if (data.next_set) {
		data.next = blk_rq_timeout(round_jiffies_up(data.next));
		mod_timer(&q->timeout, data.next);
603 604 605 606
	} else {
		queue_for_each_hw_ctx(q, hctx, i)
			blk_mq_tag_idle(hctx);
	}
607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647
}

/*
 * Reverse check our software queue for entries that we could potentially
 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
 * too much time checking for merges.
 */
static bool blk_mq_attempt_merge(struct request_queue *q,
				 struct blk_mq_ctx *ctx, struct bio *bio)
{
	struct request *rq;
	int checked = 8;

	list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
		int el_ret;

		if (!checked--)
			break;

		if (!blk_rq_merge_ok(rq, bio))
			continue;

		el_ret = blk_try_merge(rq, bio);
		if (el_ret == ELEVATOR_BACK_MERGE) {
			if (bio_attempt_back_merge(q, rq, bio)) {
				ctx->rq_merged++;
				return true;
			}
			break;
		} else if (el_ret == ELEVATOR_FRONT_MERGE) {
			if (bio_attempt_front_merge(q, rq, bio)) {
				ctx->rq_merged++;
				return true;
			}
			break;
		}
	}

	return false;
}

648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681
/*
 * Process software queues that have been marked busy, splicing them
 * to the for-dispatch
 */
static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
{
	struct blk_mq_ctx *ctx;
	int i;

	for (i = 0; i < hctx->ctx_map.map_size; i++) {
		struct blk_align_bitmap *bm = &hctx->ctx_map.map[i];
		unsigned int off, bit;

		if (!bm->word)
			continue;

		bit = 0;
		off = i * hctx->ctx_map.bits_per_word;
		do {
			bit = find_next_bit(&bm->word, bm->depth, bit);
			if (bit >= bm->depth)
				break;

			ctx = hctx->ctxs[bit + off];
			clear_bit(bit, &bm->word);
			spin_lock(&ctx->lock);
			list_splice_tail_init(&ctx->rq_list, list);
			spin_unlock(&ctx->lock);

			bit++;
		} while (1);
	}
}

682 683 684 685 686 687 688 689 690 691 692
/*
 * Run this hardware queue, pulling any software queues mapped to it in.
 * Note that this function currently has various problems around ordering
 * of IO. In particular, we'd like FIFO behaviour on handling existing
 * items on the hctx->dispatch list. Ignore that for now.
 */
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	struct request_queue *q = hctx->queue;
	struct request *rq;
	LIST_HEAD(rq_list);
693
	int queued;
694

695
	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask));
696

697
	if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
698 699 700 701 702 703 704
		return;

	hctx->run++;

	/*
	 * Touch any software queue that has pending entries.
	 */
705
	flush_busy_ctxs(hctx, &rq_list);
706 707 708 709 710 711 712 713 714 715 716 717 718 719 720

	/*
	 * If we have previous entries on our dispatch list, grab them
	 * and stuff them at the front for more fair dispatch.
	 */
	if (!list_empty_careful(&hctx->dispatch)) {
		spin_lock(&hctx->lock);
		if (!list_empty(&hctx->dispatch))
			list_splice_init(&hctx->dispatch, &rq_list);
		spin_unlock(&hctx->lock);
	}

	/*
	 * Now process all the entries, sending them to the driver.
	 */
721
	queued = 0;
722 723 724 725 726 727
	while (!list_empty(&rq_list)) {
		int ret;

		rq = list_first_entry(&rq_list, struct request, queuelist);
		list_del_init(&rq->queuelist);

C
Christoph Hellwig 已提交
728
		ret = q->mq_ops->queue_rq(hctx, rq, list_empty(&rq_list));
729 730 731 732 733 734
		switch (ret) {
		case BLK_MQ_RQ_QUEUE_OK:
			queued++;
			continue;
		case BLK_MQ_RQ_QUEUE_BUSY:
			list_add(&rq->queuelist, &rq_list);
735
			__blk_mq_requeue_request(rq);
736 737 738 739
			break;
		default:
			pr_err("blk-mq: bad return on queue: %d\n", ret);
		case BLK_MQ_RQ_QUEUE_ERROR:
740
			rq->errors = -EIO;
741
			blk_mq_end_request(rq, rq->errors);
742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
			break;
		}

		if (ret == BLK_MQ_RQ_QUEUE_BUSY)
			break;
	}

	if (!queued)
		hctx->dispatched[0]++;
	else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
		hctx->dispatched[ilog2(queued) + 1]++;

	/*
	 * Any items that need requeuing? Stuff them into hctx->dispatch,
	 * that is where we will continue on next queue run.
	 */
	if (!list_empty(&rq_list)) {
		spin_lock(&hctx->lock);
		list_splice(&rq_list, &hctx->dispatch);
		spin_unlock(&hctx->lock);
	}
}

765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788
/*
 * It'd be great if the workqueue API had a way to pass
 * in a mask and had some smarts for more clever placement.
 * For now we just round-robin here, switching for every
 * BLK_MQ_CPU_WORK_BATCH queued items.
 */
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
	int cpu = hctx->next_cpu;

	if (--hctx->next_cpu_batch <= 0) {
		int next_cpu;

		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
		if (next_cpu >= nr_cpu_ids)
			next_cpu = cpumask_first(hctx->cpumask);

		hctx->next_cpu = next_cpu;
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}

	return cpu;
}

789 790
void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
791
	if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
792 793
		return;

794
	if (!async && cpumask_test_cpu(smp_processor_id(), hctx->cpumask))
795
		__blk_mq_run_hw_queue(hctx);
796
	else if (hctx->queue->nr_hw_queues == 1)
797
		kblockd_schedule_delayed_work(&hctx->run_work, 0);
798 799 800
	else {
		unsigned int cpu;

801
		cpu = blk_mq_hctx_next_cpu(hctx);
802
		kblockd_schedule_delayed_work_on(cpu, &hctx->run_work, 0);
803
	}
804 805 806 807 808 809 810 811 812 813
}

void blk_mq_run_queues(struct request_queue *q, bool async)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if ((!blk_mq_hctx_has_pending(hctx) &&
		    list_empty_careful(&hctx->dispatch)) ||
814
		    test_bit(BLK_MQ_S_STOPPED, &hctx->state))
815 816
			continue;

817
		preempt_disable();
818
		blk_mq_run_hw_queue(hctx, async);
819
		preempt_enable();
820 821 822 823 824 825
	}
}
EXPORT_SYMBOL(blk_mq_run_queues);

void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
826 827
	cancel_delayed_work(&hctx->run_work);
	cancel_delayed_work(&hctx->delay_work);
828 829 830 831
	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queue);

832 833 834 835 836 837 838 839 840 841
void blk_mq_stop_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_stop_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);

842 843 844
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
845 846

	preempt_disable();
847
	blk_mq_run_hw_queue(hctx, false);
848
	preempt_enable();
849 850 851
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);

852 853 854 855 856 857 858 859 860 861 862
void blk_mq_start_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);


863
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
864 865 866 867 868 869 870 871 872
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
			continue;

		clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
873
		preempt_disable();
874
		blk_mq_run_hw_queue(hctx, async);
875
		preempt_enable();
876 877 878 879
	}
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);

880
static void blk_mq_run_work_fn(struct work_struct *work)
881 882 883
{
	struct blk_mq_hw_ctx *hctx;

884
	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
885

886 887 888
	__blk_mq_run_hw_queue(hctx);
}

889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907
static void blk_mq_delay_work_fn(struct work_struct *work)
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);

	if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
		__blk_mq_run_hw_queue(hctx);
}

void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
	unsigned long tmo = msecs_to_jiffies(msecs);

	if (hctx->queue->nr_hw_queues == 1)
		kblockd_schedule_delayed_work(&hctx->delay_work, tmo);
	else {
		unsigned int cpu;

908
		cpu = blk_mq_hctx_next_cpu(hctx);
909 910 911 912 913
		kblockd_schedule_delayed_work_on(cpu, &hctx->delay_work, tmo);
	}
}
EXPORT_SYMBOL(blk_mq_delay_queue);

914
static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
915
				    struct request *rq, bool at_head)
916 917 918
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

919 920
	trace_block_rq_insert(hctx->queue, rq);

921 922 923 924
	if (at_head)
		list_add(&rq->queuelist, &ctx->rq_list);
	else
		list_add_tail(&rq->queuelist, &ctx->rq_list);
925

926 927 928
	blk_mq_hctx_mark_pending(hctx, ctx);
}

929 930
void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
		bool async)
931
{
932
	struct request_queue *q = rq->q;
933
	struct blk_mq_hw_ctx *hctx;
934 935 936 937 938
	struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx;

	current_ctx = blk_mq_get_ctx(q);
	if (!cpu_online(ctx->cpu))
		rq->mq_ctx = ctx = current_ctx;
939 940 941

	hctx = q->mq_ops->map_queue(q, ctx->cpu);

942 943 944
	spin_lock(&ctx->lock);
	__blk_mq_insert_request(hctx, rq, at_head);
	spin_unlock(&ctx->lock);
945 946 947

	if (run_queue)
		blk_mq_run_hw_queue(hctx, async);
948 949

	blk_mq_put_ctx(current_ctx);
950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980
}

static void blk_mq_insert_requests(struct request_queue *q,
				     struct blk_mq_ctx *ctx,
				     struct list_head *list,
				     int depth,
				     bool from_schedule)

{
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *current_ctx;

	trace_block_unplug(q, depth, !from_schedule);

	current_ctx = blk_mq_get_ctx(q);

	if (!cpu_online(ctx->cpu))
		ctx = current_ctx;
	hctx = q->mq_ops->map_queue(q, ctx->cpu);

	/*
	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
	 * offline now
	 */
	spin_lock(&ctx->lock);
	while (!list_empty(list)) {
		struct request *rq;

		rq = list_first_entry(list, struct request, queuelist);
		list_del_init(&rq->queuelist);
		rq->mq_ctx = ctx;
981
		__blk_mq_insert_request(hctx, rq, false);
982 983 984 985
	}
	spin_unlock(&ctx->lock);

	blk_mq_run_hw_queue(hctx, from_schedule);
986
	blk_mq_put_ctx(current_ctx);
987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
}

static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct request *rqa = container_of(a, struct request, queuelist);
	struct request *rqb = container_of(b, struct request, queuelist);

	return !(rqa->mq_ctx < rqb->mq_ctx ||
		 (rqa->mq_ctx == rqb->mq_ctx &&
		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
}

void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	struct blk_mq_ctx *this_ctx;
	struct request_queue *this_q;
	struct request *rq;
	LIST_HEAD(list);
	LIST_HEAD(ctx_list);
	unsigned int depth;

	list_splice_init(&plug->mq_list, &list);

	list_sort(NULL, &list, plug_ctx_cmp);

	this_q = NULL;
	this_ctx = NULL;
	depth = 0;

	while (!list_empty(&list)) {
		rq = list_entry_rq(list.next);
		list_del_init(&rq->queuelist);
		BUG_ON(!rq->q);
		if (rq->mq_ctx != this_ctx) {
			if (this_ctx) {
				blk_mq_insert_requests(this_q, this_ctx,
							&ctx_list, depth,
							from_schedule);
			}

			this_ctx = rq->mq_ctx;
			this_q = rq->q;
			depth = 0;
		}

		depth++;
		list_add_tail(&rq->queuelist, &ctx_list);
	}

	/*
	 * If 'this_ctx' is set, we know we have entries to complete
	 * on 'ctx_list'. Do those.
	 */
	if (this_ctx) {
		blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
				       from_schedule);
	}
}

static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
{
	init_request_from_bio(rq, bio);
1049

1050
	if (blk_do_io_stat(rq))
1051
		blk_account_io_start(rq, 1);
1052 1053
}

1054 1055 1056 1057 1058 1059
static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
{
	return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
		!blk_queue_nomerges(hctx->queue);
}

1060 1061 1062
static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
					 struct blk_mq_ctx *ctx,
					 struct request *rq, struct bio *bio)
1063
{
1064
	if (!hctx_allow_merges(hctx)) {
1065 1066 1067 1068 1069 1070 1071
		blk_mq_bio_to_request(rq, bio);
		spin_lock(&ctx->lock);
insert_rq:
		__blk_mq_insert_request(hctx, rq, false);
		spin_unlock(&ctx->lock);
		return false;
	} else {
1072 1073
		struct request_queue *q = hctx->queue;

1074 1075 1076 1077 1078
		spin_lock(&ctx->lock);
		if (!blk_mq_attempt_merge(q, ctx, bio)) {
			blk_mq_bio_to_request(rq, bio);
			goto insert_rq;
		}
1079

1080 1081 1082
		spin_unlock(&ctx->lock);
		__blk_mq_free_request(hctx, ctx, rq);
		return true;
1083
	}
1084
}
1085

1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098
struct blk_map_ctx {
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
};

static struct request *blk_mq_map_request(struct request_queue *q,
					  struct bio *bio,
					  struct blk_map_ctx *data)
{
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
	struct request *rq;
	int rw = bio_data_dir(bio);
1099
	struct blk_mq_alloc_data alloc_data;
1100

1101
	if (unlikely(blk_mq_queue_enter(q))) {
1102
		bio_endio(bio, -EIO);
1103
		return NULL;
1104 1105 1106 1107 1108
	}

	ctx = blk_mq_get_ctx(q);
	hctx = q->mq_ops->map_queue(q, ctx->cpu);

1109
	if (rw_is_sync(bio->bi_rw))
S
Shaohua Li 已提交
1110
		rw |= REQ_SYNC;
1111

1112
	trace_block_getrq(q, bio, rw);
1113 1114 1115
	blk_mq_set_alloc_data(&alloc_data, q, GFP_ATOMIC, false, ctx,
			hctx);
	rq = __blk_mq_alloc_request(&alloc_data, rw);
1116
	if (unlikely(!rq)) {
1117
		__blk_mq_run_hw_queue(hctx);
1118 1119
		blk_mq_put_ctx(ctx);
		trace_block_sleeprq(q, bio, rw);
1120 1121

		ctx = blk_mq_get_ctx(q);
1122
		hctx = q->mq_ops->map_queue(q, ctx->cpu);
1123 1124 1125 1126 1127
		blk_mq_set_alloc_data(&alloc_data, q,
				__GFP_WAIT|GFP_ATOMIC, false, ctx, hctx);
		rq = __blk_mq_alloc_request(&alloc_data, rw);
		ctx = alloc_data.ctx;
		hctx = alloc_data.hctx;
1128 1129 1130
	}

	hctx->queued++;
1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174
	data->hctx = hctx;
	data->ctx = ctx;
	return rq;
}

/*
 * Multiple hardware queue variant. This will not use per-process plugs,
 * but will attempt to bypass the hctx queueing if we can go straight to
 * hardware for SYNC IO.
 */
static void blk_mq_make_request(struct request_queue *q, struct bio *bio)
{
	const int is_sync = rw_is_sync(bio->bi_rw);
	const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
	struct blk_map_ctx data;
	struct request *rq;

	blk_queue_bounce(q, &bio);

	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
		bio_endio(bio, -EIO);
		return;
	}

	rq = blk_mq_map_request(q, bio, &data);
	if (unlikely(!rq))
		return;

	if (unlikely(is_flush_fua)) {
		blk_mq_bio_to_request(rq, bio);
		blk_insert_flush(rq);
		goto run_queue;
	}

	if (is_sync) {
		int ret;

		blk_mq_bio_to_request(rq, bio);

		/*
		 * For OK queue, we are done. For error, kill it. Any other
		 * error (busy), just add it to our list as we previously
		 * would have done
		 */
C
Christoph Hellwig 已提交
1175
		ret = q->mq_ops->queue_rq(data.hctx, rq, true);
1176 1177 1178 1179 1180 1181 1182
		if (ret == BLK_MQ_RQ_QUEUE_OK)
			goto done;
		else {
			__blk_mq_requeue_request(rq);

			if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
				rq->errors = -EIO;
1183
				blk_mq_end_request(rq, rq->errors);
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
				goto done;
			}
		}
	}

	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
		/*
		 * For a SYNC request, send it to the hardware immediately. For
		 * an ASYNC request, just ensure that we run it later on. The
		 * latter allows for merging opportunities and more efficient
		 * dispatching.
		 */
run_queue:
		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
	}
done:
	blk_mq_put_ctx(data.ctx);
}

/*
 * Single hardware queue variant. This will attempt to use any per-process
 * plug for merging and IO deferral.
 */
static void blk_sq_make_request(struct request_queue *q, struct bio *bio)
{
	const int is_sync = rw_is_sync(bio->bi_rw);
	const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
	unsigned int use_plug, request_count = 0;
	struct blk_map_ctx data;
	struct request *rq;

	/*
	 * If we have multiple hardware queues, just go directly to
	 * one of those for sync IO.
	 */
	use_plug = !is_flush_fua && !is_sync;

	blk_queue_bounce(q, &bio);

	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
		bio_endio(bio, -EIO);
		return;
	}

	if (use_plug && !blk_queue_nomerges(q) &&
	    blk_attempt_plug_merge(q, bio, &request_count))
		return;

	rq = blk_mq_map_request(q, bio, &data);
1233 1234
	if (unlikely(!rq))
		return;
1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251

	if (unlikely(is_flush_fua)) {
		blk_mq_bio_to_request(rq, bio);
		blk_insert_flush(rq);
		goto run_queue;
	}

	/*
	 * A task plug currently exists. Since this is completely lockless,
	 * utilize that to temporarily store requests until the task is
	 * either done or scheduled away.
	 */
	if (use_plug) {
		struct blk_plug *plug = current->plug;

		if (plug) {
			blk_mq_bio_to_request(rq, bio);
S
Shaohua Li 已提交
1252
			if (list_empty(&plug->mq_list))
1253 1254 1255 1256 1257 1258
				trace_block_plug(q);
			else if (request_count >= BLK_MAX_REQUEST_COUNT) {
				blk_flush_plug_list(plug, false);
				trace_block_plug(q);
			}
			list_add_tail(&rq->queuelist, &plug->mq_list);
1259
			blk_mq_put_ctx(data.ctx);
1260 1261 1262 1263
			return;
		}
	}

1264 1265 1266 1267 1268 1269 1270 1271 1272
	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
		/*
		 * For a SYNC request, send it to the hardware immediately. For
		 * an ASYNC request, just ensure that we run it later on. The
		 * latter allows for merging opportunities and more efficient
		 * dispatching.
		 */
run_queue:
		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1273 1274
	}

1275
	blk_mq_put_ctx(data.ctx);
1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
}

/*
 * Default mapping to a software queue, since we use one per CPU.
 */
struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
{
	return q->queue_hw_ctx[q->mq_map[cpu]];
}
EXPORT_SYMBOL(blk_mq_map_queue);

1287 1288
static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
		struct blk_mq_tags *tags, unsigned int hctx_idx)
1289
{
1290
	struct page *page;
1291

1292
	if (tags->rqs && set->ops->exit_request) {
1293
		int i;
1294

1295 1296
		for (i = 0; i < tags->nr_tags; i++) {
			if (!tags->rqs[i])
1297
				continue;
1298 1299
			set->ops->exit_request(set->driver_data, tags->rqs[i],
						hctx_idx, i);
1300
			tags->rqs[i] = NULL;
1301
		}
1302 1303
	}

1304 1305
	while (!list_empty(&tags->page_list)) {
		page = list_first_entry(&tags->page_list, struct page, lru);
1306
		list_del_init(&page->lru);
1307 1308 1309
		__free_pages(page, page->private);
	}

1310
	kfree(tags->rqs);
1311

1312
	blk_mq_free_tags(tags);
1313 1314 1315 1316
}

static size_t order_to_size(unsigned int order)
{
1317
	return (size_t)PAGE_SIZE << order;
1318 1319
}

1320 1321
static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
		unsigned int hctx_idx)
1322
{
1323
	struct blk_mq_tags *tags;
1324 1325 1326
	unsigned int i, j, entries_per_page, max_order = 4;
	size_t rq_size, left;

1327 1328 1329 1330
	tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
				set->numa_node);
	if (!tags)
		return NULL;
1331

1332 1333
	INIT_LIST_HEAD(&tags->page_list);

1334 1335 1336
	tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *),
				 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
				 set->numa_node);
1337 1338 1339 1340
	if (!tags->rqs) {
		blk_mq_free_tags(tags);
		return NULL;
	}
1341 1342 1343 1344 1345

	/*
	 * rq_size is the size of the request plus driver payload, rounded
	 * to the cacheline size
	 */
1346
	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1347
				cache_line_size());
1348
	left = rq_size * set->queue_depth;
1349

1350
	for (i = 0; i < set->queue_depth; ) {
1351 1352 1353 1354 1355 1356 1357 1358 1359
		int this_order = max_order;
		struct page *page;
		int to_do;
		void *p;

		while (left < order_to_size(this_order - 1) && this_order)
			this_order--;

		do {
1360 1361 1362
			page = alloc_pages_node(set->numa_node,
				GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
				this_order);
1363 1364 1365 1366 1367 1368 1369 1370 1371
			if (page)
				break;
			if (!this_order--)
				break;
			if (order_to_size(this_order) < rq_size)
				break;
		} while (1);

		if (!page)
1372
			goto fail;
1373 1374

		page->private = this_order;
1375
		list_add_tail(&page->lru, &tags->page_list);
1376 1377 1378

		p = page_address(page);
		entries_per_page = order_to_size(this_order) / rq_size;
1379
		to_do = min(entries_per_page, set->queue_depth - i);
1380 1381
		left -= to_do * rq_size;
		for (j = 0; j < to_do; j++) {
1382
			tags->rqs[i] = p;
1383 1384
			tags->rqs[i]->atomic_flags = 0;
			tags->rqs[i]->cmd_flags = 0;
1385 1386 1387
			if (set->ops->init_request) {
				if (set->ops->init_request(set->driver_data,
						tags->rqs[i], hctx_idx, i,
1388 1389
						set->numa_node)) {
					tags->rqs[i] = NULL;
1390
					goto fail;
1391
				}
1392 1393
			}

1394 1395 1396 1397 1398
			p += rq_size;
			i++;
		}
	}

1399
	return tags;
1400

1401 1402 1403
fail:
	blk_mq_free_rq_map(set, tags, hctx_idx);
	return NULL;
1404 1405
}

1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433
static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap)
{
	kfree(bitmap->map);
}

static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node)
{
	unsigned int bpw = 8, total, num_maps, i;

	bitmap->bits_per_word = bpw;

	num_maps = ALIGN(nr_cpu_ids, bpw) / bpw;
	bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap),
					GFP_KERNEL, node);
	if (!bitmap->map)
		return -ENOMEM;

	bitmap->map_size = num_maps;

	total = nr_cpu_ids;
	for (i = 0; i < num_maps; i++) {
		bitmap->map[i].depth = min(total, bitmap->bits_per_word);
		total -= bitmap->map[i].depth;
	}

	return 0;
}

1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504
static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu)
{
	struct request_queue *q = hctx->queue;
	struct blk_mq_ctx *ctx;
	LIST_HEAD(tmp);

	/*
	 * Move ctx entries to new CPU, if this one is going away.
	 */
	ctx = __blk_mq_get_ctx(q, cpu);

	spin_lock(&ctx->lock);
	if (!list_empty(&ctx->rq_list)) {
		list_splice_init(&ctx->rq_list, &tmp);
		blk_mq_hctx_clear_pending(hctx, ctx);
	}
	spin_unlock(&ctx->lock);

	if (list_empty(&tmp))
		return NOTIFY_OK;

	ctx = blk_mq_get_ctx(q);
	spin_lock(&ctx->lock);

	while (!list_empty(&tmp)) {
		struct request *rq;

		rq = list_first_entry(&tmp, struct request, queuelist);
		rq->mq_ctx = ctx;
		list_move_tail(&rq->queuelist, &ctx->rq_list);
	}

	hctx = q->mq_ops->map_queue(q, ctx->cpu);
	blk_mq_hctx_mark_pending(hctx, ctx);

	spin_unlock(&ctx->lock);

	blk_mq_run_hw_queue(hctx, true);
	blk_mq_put_ctx(ctx);
	return NOTIFY_OK;
}

static int blk_mq_hctx_cpu_online(struct blk_mq_hw_ctx *hctx, int cpu)
{
	struct request_queue *q = hctx->queue;
	struct blk_mq_tag_set *set = q->tag_set;

	if (set->tags[hctx->queue_num])
		return NOTIFY_OK;

	set->tags[hctx->queue_num] = blk_mq_init_rq_map(set, hctx->queue_num);
	if (!set->tags[hctx->queue_num])
		return NOTIFY_STOP;

	hctx->tags = set->tags[hctx->queue_num];
	return NOTIFY_OK;
}

static int blk_mq_hctx_notify(void *data, unsigned long action,
			      unsigned int cpu)
{
	struct blk_mq_hw_ctx *hctx = data;

	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
		return blk_mq_hctx_cpu_offline(hctx, cpu);
	else if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN)
		return blk_mq_hctx_cpu_online(hctx, cpu);

	return NOTIFY_OK;
}

1505 1506 1507 1508
static void blk_mq_exit_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
1509 1510
	unsigned flush_start_tag = set->queue_depth;

1511 1512
	blk_mq_tag_idle(hctx);

1513 1514 1515 1516 1517
	if (set->ops->exit_request)
		set->ops->exit_request(set->driver_data,
				       hctx->fq->flush_rq, hctx_idx,
				       flush_start_tag + hctx_idx);

1518 1519 1520 1521
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);

	blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1522
	blk_free_flush_queue(hctx->fq);
1523 1524 1525 1526
	kfree(hctx->ctxs);
	blk_mq_free_bitmap(&hctx->ctx_map);
}

M
Ming Lei 已提交
1527 1528 1529 1530 1531 1532 1533 1534 1535
static void blk_mq_exit_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set, int nr_queue)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (i == nr_queue)
			break;
1536
		blk_mq_exit_hctx(q, set, hctx, i);
M
Ming Lei 已提交
1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547
	}
}

static void blk_mq_free_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		free_cpumask_var(hctx->cpumask);
1548
		kfree(hctx);
M
Ming Lei 已提交
1549 1550 1551
	}
}

1552 1553 1554
static int blk_mq_init_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1555
{
1556
	int node;
1557
	unsigned flush_start_tag = set->queue_depth;
1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576

	node = hctx->numa_node;
	if (node == NUMA_NO_NODE)
		node = hctx->numa_node = set->numa_node;

	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
	INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
	spin_lock_init(&hctx->lock);
	INIT_LIST_HEAD(&hctx->dispatch);
	hctx->queue = q;
	hctx->queue_num = hctx_idx;
	hctx->flags = set->flags;
	hctx->cmd_size = set->cmd_size;

	blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
					blk_mq_hctx_notify, hctx);
	blk_mq_register_cpu_notifier(&hctx->cpu_notifier);

	hctx->tags = set->tags[hctx_idx];
1577 1578

	/*
1579 1580
	 * Allocate space for all possible cpus to avoid allocation at
	 * runtime
1581
	 */
1582 1583 1584 1585
	hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
					GFP_KERNEL, node);
	if (!hctx->ctxs)
		goto unregister_cpu_notifier;
1586

1587 1588
	if (blk_mq_alloc_bitmap(&hctx->ctx_map, node))
		goto free_ctxs;
1589

1590
	hctx->nr_ctx = 0;
1591

1592 1593 1594
	if (set->ops->init_hctx &&
	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
		goto free_bitmap;
1595

1596 1597 1598
	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
	if (!hctx->fq)
		goto exit_hctx;
1599

1600 1601 1602 1603 1604
	if (set->ops->init_request &&
	    set->ops->init_request(set->driver_data,
				   hctx->fq->flush_rq, hctx_idx,
				   flush_start_tag + hctx_idx, node))
		goto free_fq;
1605

1606
	return 0;
1607

1608 1609 1610 1611 1612
 free_fq:
	kfree(hctx->fq);
 exit_hctx:
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);
1613 1614 1615 1616 1617 1618
 free_bitmap:
	blk_mq_free_bitmap(&hctx->ctx_map);
 free_ctxs:
	kfree(hctx->ctxs);
 unregister_cpu_notifier:
	blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1619

1620 1621
	return -1;
}
1622

1623 1624 1625 1626 1627
static int blk_mq_init_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;
1628

1629 1630 1631 1632 1633
	/*
	 * Initialize hardware queues
	 */
	queue_for_each_hw_ctx(q, hctx, i) {
		if (blk_mq_init_hctx(q, set, hctx, i))
1634 1635 1636 1637 1638 1639 1640 1641 1642
			break;
	}

	if (i == q->nr_hw_queues)
		return 0;

	/*
	 * Init failed
	 */
M
Ming Lei 已提交
1643
	blk_mq_exit_hw_queues(q, set, i);
1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666

	return 1;
}

static void blk_mq_init_cpu_queues(struct request_queue *q,
				   unsigned int nr_hw_queues)
{
	unsigned int i;

	for_each_possible_cpu(i) {
		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
		struct blk_mq_hw_ctx *hctx;

		memset(__ctx, 0, sizeof(*__ctx));
		__ctx->cpu = i;
		spin_lock_init(&__ctx->lock);
		INIT_LIST_HEAD(&__ctx->rq_list);
		__ctx->queue = q;

		/* If the cpu isn't online, the cpu is mapped to first hctx */
		if (!cpu_online(i))
			continue;

1667 1668 1669 1670
		hctx = q->mq_ops->map_queue(q, i);
		cpumask_set_cpu(i, hctx->cpumask);
		hctx->nr_ctx++;

1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686
		/*
		 * Set local node, IFF we have more than one hw queue. If
		 * not, we remain on the home node of the device
		 */
		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
			hctx->numa_node = cpu_to_node(i);
	}
}

static void blk_mq_map_swqueue(struct request_queue *q)
{
	unsigned int i;
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;

	queue_for_each_hw_ctx(q, hctx, i) {
1687
		cpumask_clear(hctx->cpumask);
1688 1689 1690 1691 1692 1693 1694 1695
		hctx->nr_ctx = 0;
	}

	/*
	 * Map software to hardware queues
	 */
	queue_for_each_ctx(q, ctx, i) {
		/* If the cpu isn't online, the cpu is mapped to first hctx */
1696 1697 1698
		if (!cpu_online(i))
			continue;

1699
		hctx = q->mq_ops->map_queue(q, i);
1700
		cpumask_set_cpu(i, hctx->cpumask);
1701 1702 1703
		ctx->index_hw = hctx->nr_ctx;
		hctx->ctxs[hctx->nr_ctx++] = ctx;
	}
1704 1705

	queue_for_each_hw_ctx(q, hctx, i) {
1706
		/*
1707 1708
		 * If no software queues are mapped to this hardware queue,
		 * disable it and free the request entries.
1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723
		 */
		if (!hctx->nr_ctx) {
			struct blk_mq_tag_set *set = q->tag_set;

			if (set->tags[i]) {
				blk_mq_free_rq_map(set, set->tags[i], i);
				set->tags[i] = NULL;
				hctx->tags = NULL;
			}
			continue;
		}

		/*
		 * Initialize batch roundrobin counts
		 */
1724 1725 1726
		hctx->next_cpu = cpumask_first(hctx->cpumask);
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}
1727 1728
}

1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774
static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set)
{
	struct blk_mq_hw_ctx *hctx;
	struct request_queue *q;
	bool shared;
	int i;

	if (set->tag_list.next == set->tag_list.prev)
		shared = false;
	else
		shared = true;

	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_freeze_queue(q);

		queue_for_each_hw_ctx(q, hctx, i) {
			if (shared)
				hctx->flags |= BLK_MQ_F_TAG_SHARED;
			else
				hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
		}
		blk_mq_unfreeze_queue(q);
	}
}

static void blk_mq_del_queue_tag_set(struct request_queue *q)
{
	struct blk_mq_tag_set *set = q->tag_set;

	mutex_lock(&set->tag_list_lock);
	list_del_init(&q->tag_set_list);
	blk_mq_update_tag_set_depth(set);
	mutex_unlock(&set->tag_list_lock);
}

static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
				     struct request_queue *q)
{
	q->tag_set = set;

	mutex_lock(&set->tag_list_lock);
	list_add_tail(&q->tag_set_list, &set->tag_list);
	blk_mq_update_tag_set_depth(set);
	mutex_unlock(&set->tag_list_lock);
}

1775
struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
1776 1777
{
	struct blk_mq_hw_ctx **hctxs;
1778
	struct blk_mq_ctx __percpu *ctx;
1779
	struct request_queue *q;
1780
	unsigned int *map;
1781 1782 1783 1784 1785 1786
	int i;

	ctx = alloc_percpu(struct blk_mq_ctx);
	if (!ctx)
		return ERR_PTR(-ENOMEM);

1787 1788 1789 1790 1791 1792 1793 1794 1795 1796
	/*
	 * If a crashdump is active, then we are potentially in a very
	 * memory constrained environment. Limit us to 1 queue and
	 * 64 tags to prevent using too much memory.
	 */
	if (is_kdump_kernel()) {
		set->nr_hw_queues = 1;
		set->queue_depth = min(64U, set->queue_depth);
	}

1797 1798
	hctxs = kmalloc_node(set->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL,
			set->numa_node);
1799 1800 1801 1802

	if (!hctxs)
		goto err_percpu;

1803 1804 1805 1806
	map = blk_mq_make_queue_map(set);
	if (!map)
		goto err_map;

1807
	for (i = 0; i < set->nr_hw_queues; i++) {
1808 1809
		int node = blk_mq_hw_queue_to_node(map, i);

1810 1811
		hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
					GFP_KERNEL, node);
1812 1813 1814
		if (!hctxs[i])
			goto err_hctxs;

1815 1816
		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
						node))
1817 1818
			goto err_hctxs;

1819
		atomic_set(&hctxs[i]->nr_active, 0);
1820
		hctxs[i]->numa_node = node;
1821 1822 1823
		hctxs[i]->queue_num = i;
	}

1824
	q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
1825 1826 1827
	if (!q)
		goto err_hctxs;

1828 1829 1830 1831
	/*
	 * Init percpu_ref in atomic mode so that it's faster to shutdown.
	 * See blk_register_queue() for details.
	 */
1832
	if (percpu_ref_init(&q->mq_usage_counter, blk_mq_usage_counter_release,
1833
			    PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
1834 1835
		goto err_map;

1836 1837 1838 1839
	setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q);
	blk_queue_rq_timeout(q, 30000);

	q->nr_queues = nr_cpu_ids;
1840
	q->nr_hw_queues = set->nr_hw_queues;
1841
	q->mq_map = map;
1842 1843 1844 1845

	q->queue_ctx = ctx;
	q->queue_hw_ctx = hctxs;

1846
	q->mq_ops = set->ops;
1847
	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
1848

1849 1850 1851
	if (!(set->flags & BLK_MQ_F_SG_MERGE))
		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;

1852 1853
	q->sg_reserved_size = INT_MAX;

1854 1855 1856 1857
	INIT_WORK(&q->requeue_work, blk_mq_requeue_work);
	INIT_LIST_HEAD(&q->requeue_list);
	spin_lock_init(&q->requeue_lock);

1858 1859 1860 1861 1862
	if (q->nr_hw_queues > 1)
		blk_queue_make_request(q, blk_mq_make_request);
	else
		blk_queue_make_request(q, blk_sq_make_request);

1863 1864
	if (set->timeout)
		blk_queue_rq_timeout(q, set->timeout);
1865

1866 1867 1868 1869 1870
	/*
	 * Do this after blk_queue_make_request() overrides it...
	 */
	q->nr_requests = set->queue_depth;

1871 1872
	if (set->ops->complete)
		blk_queue_softirq_done(q, set->ops->complete);
1873

1874
	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
1875

1876
	if (blk_mq_init_hw_queues(q, set))
1877
		goto err_hw;
1878

1879 1880 1881 1882
	mutex_lock(&all_q_mutex);
	list_add_tail(&q->all_q_node, &all_q_list);
	mutex_unlock(&all_q_mutex);

1883 1884
	blk_mq_add_queue_tag_set(set, q);

1885 1886
	blk_mq_map_swqueue(q);

1887
	return q;
1888

1889 1890 1891
err_hw:
	blk_cleanup_queue(q);
err_hctxs:
1892
	kfree(map);
1893
	for (i = 0; i < set->nr_hw_queues; i++) {
1894 1895
		if (!hctxs[i])
			break;
1896
		free_cpumask_var(hctxs[i]->cpumask);
1897
		kfree(hctxs[i]);
1898
	}
1899
err_map:
1900 1901 1902 1903 1904 1905 1906 1907 1908
	kfree(hctxs);
err_percpu:
	free_percpu(ctx);
	return ERR_PTR(-ENOMEM);
}
EXPORT_SYMBOL(blk_mq_init_queue);

void blk_mq_free_queue(struct request_queue *q)
{
M
Ming Lei 已提交
1909
	struct blk_mq_tag_set	*set = q->tag_set;
1910

1911 1912
	blk_mq_del_queue_tag_set(q);

M
Ming Lei 已提交
1913 1914
	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
	blk_mq_free_hw_queues(q, set);
1915

1916
	percpu_ref_exit(&q->mq_usage_counter);
1917

1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931
	free_percpu(q->queue_ctx);
	kfree(q->queue_hw_ctx);
	kfree(q->mq_map);

	q->queue_ctx = NULL;
	q->queue_hw_ctx = NULL;
	q->mq_map = NULL;

	mutex_lock(&all_q_mutex);
	list_del_init(&q->all_q_node);
	mutex_unlock(&all_q_mutex);
}

/* Basically redo blk_mq_init_queue with queue frozen */
1932
static void blk_mq_queue_reinit(struct request_queue *q)
1933
{
1934
	WARN_ON_ONCE(!q->mq_freeze_depth);
1935

1936 1937
	blk_mq_sysfs_unregister(q);

1938 1939 1940 1941 1942 1943 1944 1945 1946 1947
	blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues);

	/*
	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
	 * we should change hctx numa_node according to new topology (this
	 * involves free and re-allocate memory, worthy doing?)
	 */

	blk_mq_map_swqueue(q);

1948
	blk_mq_sysfs_register(q);
1949 1950
}

1951 1952
static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
				      unsigned long action, void *hcpu)
1953 1954 1955 1956
{
	struct request_queue *q;

	/*
1957 1958 1959 1960
	 * Before new mappings are established, hotadded cpu might already
	 * start handling requests. This doesn't break anything as we map
	 * offline CPUs to first hardware queue. We will re-init the queue
	 * below to get optimal settings.
1961 1962 1963 1964 1965 1966
	 */
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN &&
	    action != CPU_ONLINE && action != CPU_ONLINE_FROZEN)
		return NOTIFY_OK;

	mutex_lock(&all_q_mutex);
1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979

	/*
	 * We need to freeze and reinit all existing queues.  Freezing
	 * involves synchronous wait for an RCU grace period and doing it
	 * one by one may take a long time.  Start freezing all queues in
	 * one swoop and then wait for the completions so that freezing can
	 * take place in parallel.
	 */
	list_for_each_entry(q, &all_q_list, all_q_node)
		blk_mq_freeze_queue_start(q);
	list_for_each_entry(q, &all_q_list, all_q_node)
		blk_mq_freeze_queue_wait(q);

1980 1981
	list_for_each_entry(q, &all_q_list, all_q_node)
		blk_mq_queue_reinit(q);
1982 1983 1984 1985

	list_for_each_entry(q, &all_q_list, all_q_node)
		blk_mq_unfreeze_queue(q);

1986 1987 1988 1989
	mutex_unlock(&all_q_mutex);
	return NOTIFY_OK;
}

1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043
static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	int i;

	for (i = 0; i < set->nr_hw_queues; i++) {
		set->tags[i] = blk_mq_init_rq_map(set, i);
		if (!set->tags[i])
			goto out_unwind;
	}

	return 0;

out_unwind:
	while (--i >= 0)
		blk_mq_free_rq_map(set, set->tags[i], i);

	return -ENOMEM;
}

/*
 * Allocate the request maps associated with this tag_set. Note that this
 * may reduce the depth asked for, if memory is tight. set->queue_depth
 * will be updated to reflect the allocated depth.
 */
static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	unsigned int depth;
	int err;

	depth = set->queue_depth;
	do {
		err = __blk_mq_alloc_rq_maps(set);
		if (!err)
			break;

		set->queue_depth >>= 1;
		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
			err = -ENOMEM;
			break;
		}
	} while (set->queue_depth);

	if (!set->queue_depth || err) {
		pr_err("blk-mq: failed to allocate request map\n");
		return -ENOMEM;
	}

	if (depth != set->queue_depth)
		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
						depth, set->queue_depth);

	return 0;
}

2044 2045 2046 2047 2048 2049
/*
 * Alloc a tag set to be associated with one or more request queues.
 * May fail with EINVAL for various error conditions. May adjust the
 * requested depth down, if if it too large. In that case, the set
 * value will be stored in set->queue_depth.
 */
2050 2051 2052 2053
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
	if (!set->nr_hw_queues)
		return -EINVAL;
2054
	if (!set->queue_depth)
2055 2056 2057 2058
		return -EINVAL;
	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
		return -EINVAL;

2059
	if (!set->nr_hw_queues || !set->ops->queue_rq || !set->ops->map_queue)
2060 2061
		return -EINVAL;

2062 2063 2064 2065 2066
	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
		pr_info("blk-mq: reduced tag depth to %u\n",
			BLK_MQ_MAX_DEPTH);
		set->queue_depth = BLK_MQ_MAX_DEPTH;
	}
2067

M
Ming Lei 已提交
2068 2069
	set->tags = kmalloc_node(set->nr_hw_queues *
				 sizeof(struct blk_mq_tags *),
2070 2071
				 GFP_KERNEL, set->numa_node);
	if (!set->tags)
2072
		return -ENOMEM;
2073

2074 2075
	if (blk_mq_alloc_rq_maps(set))
		goto enomem;
2076

2077 2078 2079
	mutex_init(&set->tag_list_lock);
	INIT_LIST_HEAD(&set->tag_list);

2080
	return 0;
2081
enomem:
2082 2083
	kfree(set->tags);
	set->tags = NULL;
2084 2085 2086 2087 2088 2089 2090 2091
	return -ENOMEM;
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);

void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
	int i;

2092 2093 2094 2095 2096
	for (i = 0; i < set->nr_hw_queues; i++) {
		if (set->tags[i])
			blk_mq_free_rq_map(set, set->tags[i], i);
	}

M
Ming Lei 已提交
2097
	kfree(set->tags);
2098
	set->tags = NULL;
2099 2100 2101
}
EXPORT_SYMBOL(blk_mq_free_tag_set);

2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
	int i, ret;

	if (!set || nr > set->queue_depth)
		return -EINVAL;

	ret = 0;
	queue_for_each_hw_ctx(q, hctx, i) {
		ret = blk_mq_tag_update_depth(hctx->tags, nr);
		if (ret)
			break;
	}

	if (!ret)
		q->nr_requests = nr;

	return ret;
}

2124 2125 2126 2127 2128 2129 2130 2131 2132 2133
void blk_mq_disable_hotplug(void)
{
	mutex_lock(&all_q_mutex);
}

void blk_mq_enable_hotplug(void)
{
	mutex_unlock(&all_q_mutex);
}

2134 2135 2136 2137
static int __init blk_mq_init(void)
{
	blk_mq_cpu_init();

2138
	hotcpu_notifier(blk_mq_queue_reinit_notify, 0);
2139 2140 2141 2142

	return 0;
}
subsys_initcall(blk_mq_init);