blk-mq.c 37.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
#include <linux/llist.h>
#include <linux/list_sort.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
#include <linux/delay.h>

#include <trace/events/block.h>

#include <linux/blk-mq.h>
#include "blk.h"
#include "blk-mq.h"
#include "blk-mq-tag.h"

static DEFINE_MUTEX(all_q_mutex);
static LIST_HEAD(all_q_list);

static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);

static struct blk_mq_ctx *__blk_mq_get_ctx(struct request_queue *q,
					   unsigned int cpu)
{
	return per_cpu_ptr(q->queue_ctx, cpu);
}

/*
 * This assumes per-cpu software queueing queues. They could be per-node
 * as well, for instance. For now this is hardcoded as-is. Note that we don't
 * care about preemption, since we know the ctx's are persistent. This does
 * mean that we can't rely on ctx always matching the currently running CPU.
 */
static struct blk_mq_ctx *blk_mq_get_ctx(struct request_queue *q)
{
	return __blk_mq_get_ctx(q, get_cpu());
}

static void blk_mq_put_ctx(struct blk_mq_ctx *ctx)
{
	put_cpu();
}

/*
 * Check if any of the ctx's have pending work in this hardware queue
 */
static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
{
	unsigned int i;

	for (i = 0; i < hctx->nr_ctx_map; i++)
		if (hctx->ctx_map[i])
			return true;

	return false;
}

/*
 * Mark this ctx as having pending work in this hardware queue
 */
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
				     struct blk_mq_ctx *ctx)
{
	if (!test_bit(ctx->index_hw, hctx->ctx_map))
		set_bit(ctx->index_hw, hctx->ctx_map);
}

76 77
static struct request *__blk_mq_alloc_request(struct blk_mq_hw_ctx *hctx,
					      gfp_t gfp, bool reserved)
78 79 80 81 82 83
{
	struct request *rq;
	unsigned int tag;

	tag = blk_mq_get_tag(hctx->tags, gfp, reserved);
	if (tag != BLK_MQ_TAG_FAIL) {
84
		rq = hctx->tags->rqs[tag];
85
		blk_rq_init(hctx->queue, rq);
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
		rq->tag = tag;

		return rq;
	}

	return NULL;
}

static int blk_mq_queue_enter(struct request_queue *q)
{
	int ret;

	__percpu_counter_add(&q->mq_usage_counter, 1, 1000000);
	smp_wmb();
	/* we have problems to freeze the queue if it's initializing */
	if (!blk_queue_bypass(q) || !blk_queue_init_done(q))
		return 0;

	__percpu_counter_add(&q->mq_usage_counter, -1, 1000000);

	spin_lock_irq(q->queue_lock);
	ret = wait_event_interruptible_lock_irq(q->mq_freeze_wq,
108 109
		!blk_queue_bypass(q) || blk_queue_dying(q),
		*q->queue_lock);
110
	/* inc usage with lock hold to avoid freeze_queue runs here */
111
	if (!ret && !blk_queue_dying(q))
112
		__percpu_counter_add(&q->mq_usage_counter, 1, 1000000);
113 114
	else if (blk_queue_dying(q))
		ret = -ENODEV;
115 116 117 118 119 120 121 122 123 124
	spin_unlock_irq(q->queue_lock);

	return ret;
}

static void blk_mq_queue_exit(struct request_queue *q)
{
	__percpu_counter_add(&q->mq_usage_counter, -1, 1000000);
}

125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
static void __blk_mq_drain_queue(struct request_queue *q)
{
	while (true) {
		s64 count;

		spin_lock_irq(q->queue_lock);
		count = percpu_counter_sum(&q->mq_usage_counter);
		spin_unlock_irq(q->queue_lock);

		if (count == 0)
			break;
		blk_mq_run_queues(q, false);
		msleep(10);
	}
}

141 142 143 144 145 146 147 148 149 150 151 152 153
/*
 * Guarantee no request is in use, so we can change any data structure of
 * the queue afterward.
 */
static void blk_mq_freeze_queue(struct request_queue *q)
{
	bool drain;

	spin_lock_irq(q->queue_lock);
	drain = !q->bypass_depth++;
	queue_flag_set(QUEUE_FLAG_BYPASS, q);
	spin_unlock_irq(q->queue_lock);

154 155 156
	if (drain)
		__blk_mq_drain_queue(q);
}
157

158 159 160
void blk_mq_drain_queue(struct request_queue *q)
{
	__blk_mq_drain_queue(q);
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
}

static void blk_mq_unfreeze_queue(struct request_queue *q)
{
	bool wake = false;

	spin_lock_irq(q->queue_lock);
	if (!--q->bypass_depth) {
		queue_flag_clear(QUEUE_FLAG_BYPASS, q);
		wake = true;
	}
	WARN_ON_ONCE(q->bypass_depth < 0);
	spin_unlock_irq(q->queue_lock);
	if (wake)
		wake_up_all(&q->mq_freeze_wq);
}

bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
{
	return blk_mq_has_free_tags(hctx->tags);
}
EXPORT_SYMBOL(blk_mq_can_queue);

184 185
static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
			       struct request *rq, unsigned int rw_flags)
186
{
187 188 189
	if (blk_queue_io_stat(q))
		rw_flags |= REQ_IO_STAT;

190 191
	rq->mq_ctx = ctx;
	rq->cmd_flags = rw_flags;
192 193
	rq->start_time = jiffies;
	set_start_time_ns(rq);
194 195 196 197 198 199 200 201 202 203 204 205 206
	ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
}

static struct request *blk_mq_alloc_request_pinned(struct request_queue *q,
						   int rw, gfp_t gfp,
						   bool reserved)
{
	struct request *rq;

	do {
		struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
		struct blk_mq_hw_ctx *hctx = q->mq_ops->map_queue(q, ctx->cpu);

207
		rq = __blk_mq_alloc_request(hctx, gfp & ~__GFP_WAIT, reserved);
208
		if (rq) {
209
			blk_mq_rq_ctx_init(q, ctx, rq, rw);
210
			break;
211
		}
212

213 214 215 216 217
		if (gfp & __GFP_WAIT) {
			__blk_mq_run_hw_queue(hctx);
			blk_mq_put_ctx(ctx);
		} else {
			blk_mq_put_ctx(ctx);
218
			break;
219
		}
220

221
		blk_mq_wait_for_tags(hctx->tags, reserved);
222 223 224 225 226
	} while (1);

	return rq;
}

227
struct request *blk_mq_alloc_request(struct request_queue *q, int rw, gfp_t gfp)
228 229 230 231 232 233
{
	struct request *rq;

	if (blk_mq_queue_enter(q))
		return NULL;

234
	rq = blk_mq_alloc_request_pinned(q, rw, gfp, false);
235 236
	if (rq)
		blk_mq_put_ctx(rq->mq_ctx);
237 238 239 240 241 242 243 244 245 246 247 248
	return rq;
}

struct request *blk_mq_alloc_reserved_request(struct request_queue *q, int rw,
					      gfp_t gfp)
{
	struct request *rq;

	if (blk_mq_queue_enter(q))
		return NULL;

	rq = blk_mq_alloc_request_pinned(q, rw, gfp, true);
249 250
	if (rq)
		blk_mq_put_ctx(rq->mq_ctx);
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
	return rq;
}
EXPORT_SYMBOL(blk_mq_alloc_reserved_request);

static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
				  struct blk_mq_ctx *ctx, struct request *rq)
{
	const int tag = rq->tag;
	struct request_queue *q = rq->q;

	blk_mq_put_tag(hctx->tags, tag);
	blk_mq_queue_exit(q);
}

void blk_mq_free_request(struct request *rq)
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx;
	struct request_queue *q = rq->q;

	ctx->rq_completed[rq_is_sync(rq)]++;

	hctx = q->mq_ops->map_queue(q, ctx->cpu);
	__blk_mq_free_request(hctx, ctx, rq);
}

277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
/*
 * Clone all relevant state from a request that has been put on hold in
 * the flush state machine into the preallocated flush request that hangs
 * off the request queue.
 *
 * For a driver the flush request should be invisible, that's why we are
 * impersonating the original request here.
 */
void blk_mq_clone_flush_request(struct request *flush_rq,
		struct request *orig_rq)
{
	struct blk_mq_hw_ctx *hctx =
		orig_rq->q->mq_ops->map_queue(orig_rq->q, orig_rq->mq_ctx->cpu);

	flush_rq->mq_ctx = orig_rq->mq_ctx;
	flush_rq->tag = orig_rq->tag;
	memcpy(blk_mq_rq_to_pdu(flush_rq), blk_mq_rq_to_pdu(orig_rq),
		hctx->cmd_size);
}

297
inline void __blk_mq_end_io(struct request *rq, int error)
298
{
M
Ming Lei 已提交
299 300
	blk_account_io_done(rq);

C
Christoph Hellwig 已提交
301
	if (rq->end_io) {
302
		rq->end_io(rq, error);
C
Christoph Hellwig 已提交
303 304 305
	} else {
		if (unlikely(blk_bidi_rq(rq)))
			blk_mq_free_request(rq->next_rq);
306
		blk_mq_free_request(rq);
C
Christoph Hellwig 已提交
307
	}
308
}
309 310 311 312 313 314 315 316 317
EXPORT_SYMBOL(__blk_mq_end_io);

void blk_mq_end_io(struct request *rq, int error)
{
	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
		BUG();
	__blk_mq_end_io(rq, error);
}
EXPORT_SYMBOL(blk_mq_end_io);
318

319
static void __blk_mq_complete_request_remote(void *data)
320
{
321
	struct request *rq = data;
322

323
	rq->q->softirq_done_fn(rq);
324 325
}

326
void __blk_mq_complete_request(struct request *rq)
327 328
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
C
Christoph Hellwig 已提交
329
	bool shared = false;
330 331
	int cpu;

C
Christoph Hellwig 已提交
332
	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
333 334 335
		rq->q->softirq_done_fn(rq);
		return;
	}
336 337

	cpu = get_cpu();
C
Christoph Hellwig 已提交
338 339 340 341
	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
		shared = cpus_share_cache(cpu, ctx->cpu);

	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
342
		rq->csd.func = __blk_mq_complete_request_remote;
343 344
		rq->csd.info = rq;
		rq->csd.flags = 0;
345
		smp_call_function_single_async(ctx->cpu, &rq->csd);
346
	} else {
347
		rq->q->softirq_done_fn(rq);
348
	}
349 350
	put_cpu();
}
351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367

/**
 * blk_mq_complete_request - end I/O on a request
 * @rq:		the request being processed
 *
 * Description:
 *	Ends all I/O on a request. It does not handle partial completions.
 *	The actual completion happens out-of-order, through a IPI handler.
 **/
void blk_mq_complete_request(struct request *rq)
{
	if (unlikely(blk_should_fake_timeout(rq->q)))
		return;
	if (!blk_mark_rq_complete(rq))
		__blk_mq_complete_request(rq);
}
EXPORT_SYMBOL(blk_mq_complete_request);
368

369
static void blk_mq_start_request(struct request *rq, bool last)
370 371 372 373 374
{
	struct request_queue *q = rq->q;

	trace_block_rq_issue(q, rq);

C
Christoph Hellwig 已提交
375
	rq->resid_len = blk_rq_bytes(rq);
C
Christoph Hellwig 已提交
376 377
	if (unlikely(blk_bidi_rq(rq)))
		rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
C
Christoph Hellwig 已提交
378

379 380 381 382 383 384
	/*
	 * Just mark start time and set the started bit. Due to memory
	 * ordering, we know we'll see the correct deadline as long as
	 * REQ_ATOMIC_STARTED is seen.
	 */
	rq->deadline = jiffies + q->rq_timeout;
385 386 387 388 389 390 391

	/*
	 * Mark us as started and clear complete. Complete might have been
	 * set if requeue raced with timeout, which then marked it as
	 * complete. So be sure to clear complete again when we start
	 * the request, otherwise we'll ignore the completion event.
	 */
392
	set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
393
	clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412

	if (q->dma_drain_size && blk_rq_bytes(rq)) {
		/*
		 * Make sure space for the drain appears.  We know we can do
		 * this because max_hw_segments has been adjusted to be one
		 * fewer than the device can handle.
		 */
		rq->nr_phys_segments++;
	}

	/*
	 * Flag the last request in the series so that drivers know when IO
	 * should be kicked off, if they don't do it on a per-request basis.
	 *
	 * Note: the flag isn't the only condition drivers should do kick off.
	 * If drive is busy, the last request might not have the bit set.
	 */
	if (last)
		rq->cmd_flags |= REQ_END;
413 414
}

415
static void __blk_mq_requeue_request(struct request *rq)
416 417 418 419 420
{
	struct request_queue *q = rq->q;

	trace_block_rq_requeue(q, rq);
	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
421 422 423 424 425

	rq->cmd_flags &= ~REQ_END;

	if (q->dma_drain_size && blk_rq_bytes(rq))
		rq->nr_phys_segments--;
426 427
}

428 429 430 431 432 433 434 435 436 437
void blk_mq_requeue_request(struct request *rq)
{
	__blk_mq_requeue_request(rq);
	blk_clear_rq_complete(rq);

	BUG_ON(blk_queued_rq(rq));
	blk_mq_insert_request(rq, true, true, false);
}
EXPORT_SYMBOL(blk_mq_requeue_request);

438 439 440 441 442 443
struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
{
	return tags->rqs[tag];
}
EXPORT_SYMBOL(blk_mq_tag_to_rq);

444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
struct blk_mq_timeout_data {
	struct blk_mq_hw_ctx *hctx;
	unsigned long *next;
	unsigned int *next_set;
};

static void blk_mq_timeout_check(void *__data, unsigned long *free_tags)
{
	struct blk_mq_timeout_data *data = __data;
	struct blk_mq_hw_ctx *hctx = data->hctx;
	unsigned int tag;

	 /* It may not be in flight yet (this is where
	 * the REQ_ATOMIC_STARTED flag comes in). The requests are
	 * statically allocated, so we know it's always safe to access the
	 * memory associated with a bit offset into ->rqs[].
	 */
	tag = 0;
	do {
		struct request *rq;

465 466
		tag = find_next_zero_bit(free_tags, hctx->tags->nr_tags, tag);
		if (tag >= hctx->tags->nr_tags)
467 468
			break;

469 470 471
		rq = blk_mq_tag_to_rq(hctx->tags, tag++);
		if (rq->q != hctx->queue)
			continue;
472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
		if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
			continue;

		blk_rq_check_expired(rq, data->next, data->next_set);
	} while (1);
}

static void blk_mq_hw_ctx_check_timeout(struct blk_mq_hw_ctx *hctx,
					unsigned long *next,
					unsigned int *next_set)
{
	struct blk_mq_timeout_data data = {
		.hctx		= hctx,
		.next		= next,
		.next_set	= next_set,
	};

	/*
	 * Ask the tagging code to iterate busy requests, so we can
	 * check them for timeout.
	 */
	blk_mq_tag_busy_iter(hctx->tags, blk_mq_timeout_check, &data);
}

496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
static enum blk_eh_timer_return blk_mq_rq_timed_out(struct request *rq)
{
	struct request_queue *q = rq->q;

	/*
	 * We know that complete is set at this point. If STARTED isn't set
	 * anymore, then the request isn't active and the "timeout" should
	 * just be ignored. This can happen due to the bitflag ordering.
	 * Timeout first checks if STARTED is set, and if it is, assumes
	 * the request is active. But if we race with completion, then
	 * we both flags will get cleared. So check here again, and ignore
	 * a timeout event with a request that isn't active.
	 */
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
		return BLK_EH_NOT_HANDLED;

	if (!q->mq_ops->timeout)
		return BLK_EH_RESET_TIMER;

	return q->mq_ops->timeout(rq);
}

518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584
static void blk_mq_rq_timer(unsigned long data)
{
	struct request_queue *q = (struct request_queue *) data;
	struct blk_mq_hw_ctx *hctx;
	unsigned long next = 0;
	int i, next_set = 0;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_hw_ctx_check_timeout(hctx, &next, &next_set);

	if (next_set)
		mod_timer(&q->timeout, round_jiffies_up(next));
}

/*
 * Reverse check our software queue for entries that we could potentially
 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
 * too much time checking for merges.
 */
static bool blk_mq_attempt_merge(struct request_queue *q,
				 struct blk_mq_ctx *ctx, struct bio *bio)
{
	struct request *rq;
	int checked = 8;

	list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
		int el_ret;

		if (!checked--)
			break;

		if (!blk_rq_merge_ok(rq, bio))
			continue;

		el_ret = blk_try_merge(rq, bio);
		if (el_ret == ELEVATOR_BACK_MERGE) {
			if (bio_attempt_back_merge(q, rq, bio)) {
				ctx->rq_merged++;
				return true;
			}
			break;
		} else if (el_ret == ELEVATOR_FRONT_MERGE) {
			if (bio_attempt_front_merge(q, rq, bio)) {
				ctx->rq_merged++;
				return true;
			}
			break;
		}
	}

	return false;
}

/*
 * Run this hardware queue, pulling any software queues mapped to it in.
 * Note that this function currently has various problems around ordering
 * of IO. In particular, we'd like FIFO behaviour on handling existing
 * items on the hctx->dispatch list. Ignore that for now.
 */
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	struct request_queue *q = hctx->queue;
	struct blk_mq_ctx *ctx;
	struct request *rq;
	LIST_HEAD(rq_list);
	int bit, queued;

585
	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask));
586

587
	if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628
		return;

	hctx->run++;

	/*
	 * Touch any software queue that has pending entries.
	 */
	for_each_set_bit(bit, hctx->ctx_map, hctx->nr_ctx) {
		clear_bit(bit, hctx->ctx_map);
		ctx = hctx->ctxs[bit];

		spin_lock(&ctx->lock);
		list_splice_tail_init(&ctx->rq_list, &rq_list);
		spin_unlock(&ctx->lock);
	}

	/*
	 * If we have previous entries on our dispatch list, grab them
	 * and stuff them at the front for more fair dispatch.
	 */
	if (!list_empty_careful(&hctx->dispatch)) {
		spin_lock(&hctx->lock);
		if (!list_empty(&hctx->dispatch))
			list_splice_init(&hctx->dispatch, &rq_list);
		spin_unlock(&hctx->lock);
	}

	/*
	 * Delete and return all entries from our dispatch list
	 */
	queued = 0;

	/*
	 * Now process all the entries, sending them to the driver.
	 */
	while (!list_empty(&rq_list)) {
		int ret;

		rq = list_first_entry(&rq_list, struct request, queuelist);
		list_del_init(&rq->queuelist);

629
		blk_mq_start_request(rq, list_empty(&rq_list));
630 631 632 633 634 635 636 637 638 639 640 641 642

		ret = q->mq_ops->queue_rq(hctx, rq);
		switch (ret) {
		case BLK_MQ_RQ_QUEUE_OK:
			queued++;
			continue;
		case BLK_MQ_RQ_QUEUE_BUSY:
			/*
			 * FIXME: we should have a mechanism to stop the queue
			 * like blk_stop_queue, otherwise we will waste cpu
			 * time
			 */
			list_add(&rq->queuelist, &rq_list);
643
			__blk_mq_requeue_request(rq);
644 645 646 647
			break;
		default:
			pr_err("blk-mq: bad return on queue: %d\n", ret);
		case BLK_MQ_RQ_QUEUE_ERROR:
648
			rq->errors = -EIO;
649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672
			blk_mq_end_io(rq, rq->errors);
			break;
		}

		if (ret == BLK_MQ_RQ_QUEUE_BUSY)
			break;
	}

	if (!queued)
		hctx->dispatched[0]++;
	else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
		hctx->dispatched[ilog2(queued) + 1]++;

	/*
	 * Any items that need requeuing? Stuff them into hctx->dispatch,
	 * that is where we will continue on next queue run.
	 */
	if (!list_empty(&rq_list)) {
		spin_lock(&hctx->lock);
		list_splice(&rq_list, &hctx->dispatch);
		spin_unlock(&hctx->lock);
	}
}

673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696
/*
 * It'd be great if the workqueue API had a way to pass
 * in a mask and had some smarts for more clever placement.
 * For now we just round-robin here, switching for every
 * BLK_MQ_CPU_WORK_BATCH queued items.
 */
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
	int cpu = hctx->next_cpu;

	if (--hctx->next_cpu_batch <= 0) {
		int next_cpu;

		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
		if (next_cpu >= nr_cpu_ids)
			next_cpu = cpumask_first(hctx->cpumask);

		hctx->next_cpu = next_cpu;
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}

	return cpu;
}

697 698
void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
699
	if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
700 701
		return;

702
	if (!async && cpumask_test_cpu(smp_processor_id(), hctx->cpumask))
703
		__blk_mq_run_hw_queue(hctx);
704
	else if (hctx->queue->nr_hw_queues == 1)
705
		kblockd_schedule_delayed_work(&hctx->run_work, 0);
706 707 708
	else {
		unsigned int cpu;

709
		cpu = blk_mq_hctx_next_cpu(hctx);
710
		kblockd_schedule_delayed_work_on(cpu, &hctx->run_work, 0);
711
	}
712 713 714 715 716 717 718 719 720 721
}

void blk_mq_run_queues(struct request_queue *q, bool async)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if ((!blk_mq_hctx_has_pending(hctx) &&
		    list_empty_careful(&hctx->dispatch)) ||
722
		    test_bit(BLK_MQ_S_STOPPED, &hctx->state))
723 724
			continue;

725
		preempt_disable();
726
		blk_mq_run_hw_queue(hctx, async);
727
		preempt_enable();
728 729 730 731 732 733
	}
}
EXPORT_SYMBOL(blk_mq_run_queues);

void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
734 735
	cancel_delayed_work(&hctx->run_work);
	cancel_delayed_work(&hctx->delay_work);
736 737 738 739
	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queue);

740 741 742 743 744 745 746 747 748 749
void blk_mq_stop_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_stop_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);

750 751 752
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
753 754

	preempt_disable();
755
	__blk_mq_run_hw_queue(hctx);
756
	preempt_enable();
757 758 759
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);

760 761 762 763 764 765 766 767 768 769 770
void blk_mq_start_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);


771
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
772 773 774 775 776 777 778 779 780
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
			continue;

		clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
781
		preempt_disable();
782
		blk_mq_run_hw_queue(hctx, async);
783
		preempt_enable();
784 785 786 787
	}
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);

788
static void blk_mq_run_work_fn(struct work_struct *work)
789 790 791
{
	struct blk_mq_hw_ctx *hctx;

792
	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
793

794 795 796
	__blk_mq_run_hw_queue(hctx);
}

797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815
static void blk_mq_delay_work_fn(struct work_struct *work)
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);

	if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
		__blk_mq_run_hw_queue(hctx);
}

void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
	unsigned long tmo = msecs_to_jiffies(msecs);

	if (hctx->queue->nr_hw_queues == 1)
		kblockd_schedule_delayed_work(&hctx->delay_work, tmo);
	else {
		unsigned int cpu;

816
		cpu = blk_mq_hctx_next_cpu(hctx);
817 818 819 820 821
		kblockd_schedule_delayed_work_on(cpu, &hctx->delay_work, tmo);
	}
}
EXPORT_SYMBOL(blk_mq_delay_queue);

822
static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
823
				    struct request *rq, bool at_head)
824 825 826
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

827 828
	trace_block_rq_insert(hctx->queue, rq);

829 830 831 832
	if (at_head)
		list_add(&rq->queuelist, &ctx->rq_list);
	else
		list_add_tail(&rq->queuelist, &ctx->rq_list);
833 834 835 836 837
	blk_mq_hctx_mark_pending(hctx, ctx);

	/*
	 * We do this early, to ensure we are on the right CPU.
	 */
838
	blk_add_timer(rq);
839 840
}

841 842
void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
		bool async)
843
{
844
	struct request_queue *q = rq->q;
845
	struct blk_mq_hw_ctx *hctx;
846 847 848 849 850
	struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx;

	current_ctx = blk_mq_get_ctx(q);
	if (!cpu_online(ctx->cpu))
		rq->mq_ctx = ctx = current_ctx;
851 852 853

	hctx = q->mq_ops->map_queue(q, ctx->cpu);

854 855
	if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA) &&
	    !(rq->cmd_flags & (REQ_FLUSH_SEQ))) {
856 857 858
		blk_insert_flush(rq);
	} else {
		spin_lock(&ctx->lock);
859
		__blk_mq_insert_request(hctx, rq, at_head);
860 861 862 863 864
		spin_unlock(&ctx->lock);
	}

	if (run_queue)
		blk_mq_run_hw_queue(hctx, async);
865 866

	blk_mq_put_ctx(current_ctx);
867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897
}

static void blk_mq_insert_requests(struct request_queue *q,
				     struct blk_mq_ctx *ctx,
				     struct list_head *list,
				     int depth,
				     bool from_schedule)

{
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *current_ctx;

	trace_block_unplug(q, depth, !from_schedule);

	current_ctx = blk_mq_get_ctx(q);

	if (!cpu_online(ctx->cpu))
		ctx = current_ctx;
	hctx = q->mq_ops->map_queue(q, ctx->cpu);

	/*
	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
	 * offline now
	 */
	spin_lock(&ctx->lock);
	while (!list_empty(list)) {
		struct request *rq;

		rq = list_first_entry(list, struct request, queuelist);
		list_del_init(&rq->queuelist);
		rq->mq_ctx = ctx;
898
		__blk_mq_insert_request(hctx, rq, false);
899 900 901 902
	}
	spin_unlock(&ctx->lock);

	blk_mq_run_hw_queue(hctx, from_schedule);
903
	blk_mq_put_ctx(current_ctx);
904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986
}

static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct request *rqa = container_of(a, struct request, queuelist);
	struct request *rqb = container_of(b, struct request, queuelist);

	return !(rqa->mq_ctx < rqb->mq_ctx ||
		 (rqa->mq_ctx == rqb->mq_ctx &&
		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
}

void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	struct blk_mq_ctx *this_ctx;
	struct request_queue *this_q;
	struct request *rq;
	LIST_HEAD(list);
	LIST_HEAD(ctx_list);
	unsigned int depth;

	list_splice_init(&plug->mq_list, &list);

	list_sort(NULL, &list, plug_ctx_cmp);

	this_q = NULL;
	this_ctx = NULL;
	depth = 0;

	while (!list_empty(&list)) {
		rq = list_entry_rq(list.next);
		list_del_init(&rq->queuelist);
		BUG_ON(!rq->q);
		if (rq->mq_ctx != this_ctx) {
			if (this_ctx) {
				blk_mq_insert_requests(this_q, this_ctx,
							&ctx_list, depth,
							from_schedule);
			}

			this_ctx = rq->mq_ctx;
			this_q = rq->q;
			depth = 0;
		}

		depth++;
		list_add_tail(&rq->queuelist, &ctx_list);
	}

	/*
	 * If 'this_ctx' is set, we know we have entries to complete
	 * on 'ctx_list'. Do those.
	 */
	if (this_ctx) {
		blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
				       from_schedule);
	}
}

static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
{
	init_request_from_bio(rq, bio);
	blk_account_io_start(rq, 1);
}

static void blk_mq_make_request(struct request_queue *q, struct bio *bio)
{
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
	const int is_sync = rw_is_sync(bio->bi_rw);
	const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
	int rw = bio_data_dir(bio);
	struct request *rq;
	unsigned int use_plug, request_count = 0;

	/*
	 * If we have multiple hardware queues, just go directly to
	 * one of those for sync IO.
	 */
	use_plug = !is_flush_fua && ((q->nr_hw_queues == 1) || !is_sync);

	blk_queue_bounce(q, &bio);

987 988 989 990 991
	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
		bio_endio(bio, -EIO);
		return;
	}

992 993 994 995 996 997 998 999 1000 1001 1002
	if (use_plug && blk_attempt_plug_merge(q, bio, &request_count))
		return;

	if (blk_mq_queue_enter(q)) {
		bio_endio(bio, -EIO);
		return;
	}

	ctx = blk_mq_get_ctx(q);
	hctx = q->mq_ops->map_queue(q, ctx->cpu);

S
Shaohua Li 已提交
1003 1004
	if (is_sync)
		rw |= REQ_SYNC;
1005
	trace_block_getrq(q, bio, rw);
1006
	rq = __blk_mq_alloc_request(hctx, GFP_ATOMIC, false);
1007
	if (likely(rq))
1008
		blk_mq_rq_ctx_init(q, ctx, rq, rw);
1009 1010 1011
	else {
		blk_mq_put_ctx(ctx);
		trace_block_sleeprq(q, bio, rw);
1012 1013
		rq = blk_mq_alloc_request_pinned(q, rw, __GFP_WAIT|GFP_ATOMIC,
							false);
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
		ctx = rq->mq_ctx;
		hctx = q->mq_ops->map_queue(q, ctx->cpu);
	}

	hctx->queued++;

	if (unlikely(is_flush_fua)) {
		blk_mq_bio_to_request(rq, bio);
		blk_insert_flush(rq);
		goto run_queue;
	}

	/*
	 * A task plug currently exists. Since this is completely lockless,
	 * utilize that to temporarily store requests until the task is
	 * either done or scheduled away.
	 */
	if (use_plug) {
		struct blk_plug *plug = current->plug;

		if (plug) {
			blk_mq_bio_to_request(rq, bio);
S
Shaohua Li 已提交
1036
			if (list_empty(&plug->mq_list))
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
				trace_block_plug(q);
			else if (request_count >= BLK_MAX_REQUEST_COUNT) {
				blk_flush_plug_list(plug, false);
				trace_block_plug(q);
			}
			list_add_tail(&rq->queuelist, &plug->mq_list);
			blk_mq_put_ctx(ctx);
			return;
		}
	}

1048 1049
	if (!(hctx->flags & BLK_MQ_F_SHOULD_MERGE)) {
		init_request_from_bio(rq, bio);
1050

1051 1052
		spin_lock(&ctx->lock);
insert_rq:
1053
		__blk_mq_insert_request(hctx, rq, false);
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
		spin_unlock(&ctx->lock);
		blk_account_io_start(rq, 1);
	} else {
		spin_lock(&ctx->lock);
		if (!blk_mq_attempt_merge(q, ctx, bio)) {
			init_request_from_bio(rq, bio);
			goto insert_rq;
		}

		spin_unlock(&ctx->lock);
		__blk_mq_free_request(hctx, ctx, rq);
1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
	}


	/*
	 * For a SYNC request, send it to the hardware immediately. For an
	 * ASYNC request, just ensure that we run it later on. The latter
	 * allows for merging opportunities and more efficient dispatching.
	 */
run_queue:
	blk_mq_run_hw_queue(hctx, !is_sync || is_flush_fua);
1075
	blk_mq_put_ctx(ctx);
1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
}

/*
 * Default mapping to a software queue, since we use one per CPU.
 */
struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
{
	return q->queue_hw_ctx[q->mq_map[cpu]];
}
EXPORT_SYMBOL(blk_mq_map_queue);

1087
struct blk_mq_hw_ctx *blk_mq_alloc_single_hw_queue(struct blk_mq_tag_set *set,
1088 1089 1090
						   unsigned int hctx_index)
{
	return kmalloc_node(sizeof(struct blk_mq_hw_ctx),
1091
				GFP_KERNEL | __GFP_ZERO, set->numa_node);
1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105
}
EXPORT_SYMBOL(blk_mq_alloc_single_hw_queue);

void blk_mq_free_single_hw_queue(struct blk_mq_hw_ctx *hctx,
				 unsigned int hctx_index)
{
	kfree(hctx);
}
EXPORT_SYMBOL(blk_mq_free_single_hw_queue);

static void blk_mq_hctx_notify(void *data, unsigned long action,
			       unsigned int cpu)
{
	struct blk_mq_hw_ctx *hctx = data;
1106
	struct request_queue *q = hctx->queue;
1107 1108 1109 1110 1111 1112 1113 1114 1115
	struct blk_mq_ctx *ctx;
	LIST_HEAD(tmp);

	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
		return;

	/*
	 * Move ctx entries to new CPU, if this one is going away.
	 */
1116
	ctx = __blk_mq_get_ctx(q, cpu);
1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127

	spin_lock(&ctx->lock);
	if (!list_empty(&ctx->rq_list)) {
		list_splice_init(&ctx->rq_list, &tmp);
		clear_bit(ctx->index_hw, hctx->ctx_map);
	}
	spin_unlock(&ctx->lock);

	if (list_empty(&tmp))
		return;

1128
	ctx = blk_mq_get_ctx(q);
1129 1130 1131 1132 1133 1134 1135 1136 1137 1138
	spin_lock(&ctx->lock);

	while (!list_empty(&tmp)) {
		struct request *rq;

		rq = list_first_entry(&tmp, struct request, queuelist);
		rq->mq_ctx = ctx;
		list_move_tail(&rq->queuelist, &ctx->rq_list);
	}

1139
	hctx = q->mq_ops->map_queue(q, ctx->cpu);
1140 1141 1142
	blk_mq_hctx_mark_pending(hctx, ctx);

	spin_unlock(&ctx->lock);
1143 1144

	blk_mq_run_hw_queue(hctx, true);
1145
	blk_mq_put_ctx(ctx);
1146 1147
}

1148 1149
static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
		struct blk_mq_tags *tags, unsigned int hctx_idx)
1150
{
1151
	struct page *page;
1152

1153
	if (tags->rqs && set->ops->exit_request) {
1154
		int i;
1155

1156 1157
		for (i = 0; i < tags->nr_tags; i++) {
			if (!tags->rqs[i])
1158
				continue;
1159 1160
			set->ops->exit_request(set->driver_data, tags->rqs[i],
						hctx_idx, i);
1161
		}
1162 1163
	}

1164 1165
	while (!list_empty(&tags->page_list)) {
		page = list_first_entry(&tags->page_list, struct page, lru);
1166
		list_del_init(&page->lru);
1167 1168 1169
		__free_pages(page, page->private);
	}

1170
	kfree(tags->rqs);
1171

1172
	blk_mq_free_tags(tags);
1173 1174 1175 1176
}

static size_t order_to_size(unsigned int order)
{
1177
	return (size_t)PAGE_SIZE << order;
1178 1179
}

1180 1181
static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
		unsigned int hctx_idx)
1182
{
1183
	struct blk_mq_tags *tags;
1184 1185 1186
	unsigned int i, j, entries_per_page, max_order = 4;
	size_t rq_size, left;

1187 1188 1189 1190
	tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
				set->numa_node);
	if (!tags)
		return NULL;
1191

1192 1193 1194 1195 1196 1197 1198 1199
	INIT_LIST_HEAD(&tags->page_list);

	tags->rqs = kmalloc_node(set->queue_depth * sizeof(struct request *),
					GFP_KERNEL, set->numa_node);
	if (!tags->rqs) {
		blk_mq_free_tags(tags);
		return NULL;
	}
1200 1201 1202 1203 1204

	/*
	 * rq_size is the size of the request plus driver payload, rounded
	 * to the cacheline size
	 */
1205
	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1206
				cache_line_size());
1207
	left = rq_size * set->queue_depth;
1208

1209
	for (i = 0; i < set->queue_depth; ) {
1210 1211 1212 1213 1214 1215 1216 1217 1218
		int this_order = max_order;
		struct page *page;
		int to_do;
		void *p;

		while (left < order_to_size(this_order - 1) && this_order)
			this_order--;

		do {
1219 1220
			page = alloc_pages_node(set->numa_node, GFP_KERNEL,
						this_order);
1221 1222 1223 1224 1225 1226 1227 1228 1229
			if (page)
				break;
			if (!this_order--)
				break;
			if (order_to_size(this_order) < rq_size)
				break;
		} while (1);

		if (!page)
1230
			goto fail;
1231 1232

		page->private = this_order;
1233
		list_add_tail(&page->lru, &tags->page_list);
1234 1235 1236

		p = page_address(page);
		entries_per_page = order_to_size(this_order) / rq_size;
1237
		to_do = min(entries_per_page, set->queue_depth - i);
1238 1239
		left -= to_do * rq_size;
		for (j = 0; j < to_do; j++) {
1240 1241 1242 1243 1244 1245
			tags->rqs[i] = p;
			if (set->ops->init_request) {
				if (set->ops->init_request(set->driver_data,
						tags->rqs[i], hctx_idx, i,
						set->numa_node))
					goto fail;
1246 1247
			}

1248 1249 1250 1251 1252
			p += rq_size;
			i++;
		}
	}

1253
	return tags;
1254

1255 1256 1257 1258
fail:
	pr_warn("%s: failed to allocate requests\n", __func__);
	blk_mq_free_rq_map(set, tags, hctx_idx);
	return NULL;
1259 1260 1261
}

static int blk_mq_init_hw_queues(struct request_queue *q,
1262
		struct blk_mq_tag_set *set)
1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i, j;

	/*
	 * Initialize hardware queues
	 */
	queue_for_each_hw_ctx(q, hctx, i) {
		unsigned int num_maps;
		int node;

		node = hctx->numa_node;
		if (node == NUMA_NO_NODE)
1276
			node = hctx->numa_node = set->numa_node;
1277

1278 1279
		INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
		INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1280 1281 1282 1283
		spin_lock_init(&hctx->lock);
		INIT_LIST_HEAD(&hctx->dispatch);
		hctx->queue = q;
		hctx->queue_num = i;
1284 1285
		hctx->flags = set->flags;
		hctx->cmd_size = set->cmd_size;
1286 1287 1288 1289 1290

		blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
						blk_mq_hctx_notify, hctx);
		blk_mq_register_cpu_notifier(&hctx->cpu_notifier);

1291
		hctx->tags = set->tags[i];
1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310

		/*
		 * Allocate space for all possible cpus to avoid allocation in
		 * runtime
		 */
		hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
						GFP_KERNEL, node);
		if (!hctx->ctxs)
			break;

		num_maps = ALIGN(nr_cpu_ids, BITS_PER_LONG) / BITS_PER_LONG;
		hctx->ctx_map = kzalloc_node(num_maps * sizeof(unsigned long),
						GFP_KERNEL, node);
		if (!hctx->ctx_map)
			break;

		hctx->nr_ctx_map = num_maps;
		hctx->nr_ctx = 0;

1311 1312
		if (set->ops->init_hctx &&
		    set->ops->init_hctx(hctx, set->driver_data, i))
1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
			break;
	}

	if (i == q->nr_hw_queues)
		return 0;

	/*
	 * Init failed
	 */
	queue_for_each_hw_ctx(q, hctx, j) {
		if (i == j)
			break;

1326 1327
		if (set->ops->exit_hctx)
			set->ops->exit_hctx(hctx, j);
1328 1329 1330

		blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
		kfree(hctx->ctxs);
1331
		kfree(hctx->ctx_map);
1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355
	}

	return 1;
}

static void blk_mq_init_cpu_queues(struct request_queue *q,
				   unsigned int nr_hw_queues)
{
	unsigned int i;

	for_each_possible_cpu(i) {
		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
		struct blk_mq_hw_ctx *hctx;

		memset(__ctx, 0, sizeof(*__ctx));
		__ctx->cpu = i;
		spin_lock_init(&__ctx->lock);
		INIT_LIST_HEAD(&__ctx->rq_list);
		__ctx->queue = q;

		/* If the cpu isn't online, the cpu is mapped to first hctx */
		if (!cpu_online(i))
			continue;

1356 1357 1358 1359
		hctx = q->mq_ops->map_queue(q, i);
		cpumask_set_cpu(i, hctx->cpumask);
		hctx->nr_ctx++;

1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
		/*
		 * Set local node, IFF we have more than one hw queue. If
		 * not, we remain on the home node of the device
		 */
		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
			hctx->numa_node = cpu_to_node(i);
	}
}

static void blk_mq_map_swqueue(struct request_queue *q)
{
	unsigned int i;
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;

	queue_for_each_hw_ctx(q, hctx, i) {
1376
		cpumask_clear(hctx->cpumask);
1377 1378 1379 1380 1381 1382 1383 1384
		hctx->nr_ctx = 0;
	}

	/*
	 * Map software to hardware queues
	 */
	queue_for_each_ctx(q, ctx, i) {
		/* If the cpu isn't online, the cpu is mapped to first hctx */
1385 1386 1387
		if (!cpu_online(i))
			continue;

1388
		hctx = q->mq_ops->map_queue(q, i);
1389
		cpumask_set_cpu(i, hctx->cpumask);
1390 1391 1392
		ctx->index_hw = hctx->nr_ctx;
		hctx->ctxs[hctx->nr_ctx++] = ctx;
	}
1393 1394 1395 1396 1397

	queue_for_each_hw_ctx(q, hctx, i) {
		hctx->next_cpu = cpumask_first(hctx->cpumask);
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}
1398 1399
}

1400
struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
1401 1402 1403 1404 1405 1406 1407 1408 1409 1410
{
	struct blk_mq_hw_ctx **hctxs;
	struct blk_mq_ctx *ctx;
	struct request_queue *q;
	int i;

	ctx = alloc_percpu(struct blk_mq_ctx);
	if (!ctx)
		return ERR_PTR(-ENOMEM);

1411 1412
	hctxs = kmalloc_node(set->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL,
			set->numa_node);
1413 1414 1415 1416

	if (!hctxs)
		goto err_percpu;

1417 1418
	for (i = 0; i < set->nr_hw_queues; i++) {
		hctxs[i] = set->ops->alloc_hctx(set, i);
1419 1420 1421
		if (!hctxs[i])
			goto err_hctxs;

1422 1423 1424
		if (!zalloc_cpumask_var(&hctxs[i]->cpumask, GFP_KERNEL))
			goto err_hctxs;

1425 1426 1427 1428
		hctxs[i]->numa_node = NUMA_NO_NODE;
		hctxs[i]->queue_num = i;
	}

1429
	q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
1430 1431 1432
	if (!q)
		goto err_hctxs;

1433
	q->mq_map = blk_mq_make_queue_map(set);
1434 1435 1436 1437 1438 1439 1440
	if (!q->mq_map)
		goto err_map;

	setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q);
	blk_queue_rq_timeout(q, 30000);

	q->nr_queues = nr_cpu_ids;
1441
	q->nr_hw_queues = set->nr_hw_queues;
1442 1443 1444 1445

	q->queue_ctx = ctx;
	q->queue_hw_ctx = hctxs;

1446
	q->mq_ops = set->ops;
1447
	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
1448

1449 1450
	q->sg_reserved_size = INT_MAX;

1451
	blk_queue_make_request(q, blk_mq_make_request);
1452
	blk_queue_rq_timed_out(q, blk_mq_rq_timed_out);
1453 1454
	if (set->timeout)
		blk_queue_rq_timeout(q, set->timeout);
1455

1456 1457
	if (set->ops->complete)
		blk_queue_softirq_done(q, set->ops->complete);
1458

1459
	blk_mq_init_flush(q);
1460
	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
1461

1462 1463 1464
	q->flush_rq = kzalloc(round_up(sizeof(struct request) +
				set->cmd_size, cache_line_size()),
				GFP_KERNEL);
1465
	if (!q->flush_rq)
1466 1467
		goto err_hw;

1468
	if (blk_mq_init_hw_queues(q, set))
1469 1470
		goto err_flush_rq;

1471 1472 1473 1474 1475 1476 1477
	blk_mq_map_swqueue(q);

	mutex_lock(&all_q_mutex);
	list_add_tail(&q->all_q_node, &all_q_list);
	mutex_unlock(&all_q_mutex);

	return q;
1478 1479 1480

err_flush_rq:
	kfree(q->flush_rq);
1481 1482 1483 1484 1485
err_hw:
	kfree(q->mq_map);
err_map:
	blk_cleanup_queue(q);
err_hctxs:
1486
	for (i = 0; i < set->nr_hw_queues; i++) {
1487 1488
		if (!hctxs[i])
			break;
1489
		free_cpumask_var(hctxs[i]->cpumask);
1490
		set->ops->free_hctx(hctxs[i], i);
1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509
	}
	kfree(hctxs);
err_percpu:
	free_percpu(ctx);
	return ERR_PTR(-ENOMEM);
}
EXPORT_SYMBOL(blk_mq_init_queue);

void blk_mq_free_queue(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		kfree(hctx->ctx_map);
		kfree(hctx->ctxs);
		blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
		if (q->mq_ops->exit_hctx)
			q->mq_ops->exit_hctx(hctx, i);
1510
		free_cpumask_var(hctx->cpumask);
1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527
		q->mq_ops->free_hctx(hctx, i);
	}

	free_percpu(q->queue_ctx);
	kfree(q->queue_hw_ctx);
	kfree(q->mq_map);

	q->queue_ctx = NULL;
	q->queue_hw_ctx = NULL;
	q->mq_map = NULL;

	mutex_lock(&all_q_mutex);
	list_del_init(&q->all_q_node);
	mutex_unlock(&all_q_mutex);
}

/* Basically redo blk_mq_init_queue with queue frozen */
1528
static void blk_mq_queue_reinit(struct request_queue *q)
1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544
{
	blk_mq_freeze_queue(q);

	blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues);

	/*
	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
	 * we should change hctx numa_node according to new topology (this
	 * involves free and re-allocate memory, worthy doing?)
	 */

	blk_mq_map_swqueue(q);

	blk_mq_unfreeze_queue(q);
}

1545 1546
static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
				      unsigned long action, void *hcpu)
1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566
{
	struct request_queue *q;

	/*
	 * Before new mapping is established, hotadded cpu might already start
	 * handling requests. This doesn't break anything as we map offline
	 * CPUs to first hardware queue. We will re-init queue below to get
	 * optimal settings.
	 */
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN &&
	    action != CPU_ONLINE && action != CPU_ONLINE_FROZEN)
		return NOTIFY_OK;

	mutex_lock(&all_q_mutex);
	list_for_each_entry(q, &all_q_list, all_q_node)
		blk_mq_queue_reinit(q);
	mutex_unlock(&all_q_mutex);
	return NOTIFY_OK;
}

1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
	int i;

	if (!set->nr_hw_queues)
		return -EINVAL;
	if (!set->queue_depth || set->queue_depth > BLK_MQ_MAX_DEPTH)
		return -EINVAL;
	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
		return -EINVAL;

	if (!set->nr_hw_queues ||
	    !set->ops->queue_rq || !set->ops->map_queue ||
	    !set->ops->alloc_hctx || !set->ops->free_hctx)
		return -EINVAL;


M
Ming Lei 已提交
1584 1585
	set->tags = kmalloc_node(set->nr_hw_queues *
				 sizeof(struct blk_mq_tags *),
1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611
				 GFP_KERNEL, set->numa_node);
	if (!set->tags)
		goto out;

	for (i = 0; i < set->nr_hw_queues; i++) {
		set->tags[i] = blk_mq_init_rq_map(set, i);
		if (!set->tags[i])
			goto out_unwind;
	}

	return 0;

out_unwind:
	while (--i >= 0)
		blk_mq_free_rq_map(set, set->tags[i], i);
out:
	return -ENOMEM;
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);

void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
	int i;

	for (i = 0; i < set->nr_hw_queues; i++)
		blk_mq_free_rq_map(set, set->tags[i], i);
M
Ming Lei 已提交
1612
	kfree(set->tags);
1613 1614 1615
}
EXPORT_SYMBOL(blk_mq_free_tag_set);

1616 1617 1618 1619 1620 1621 1622 1623 1624 1625
void blk_mq_disable_hotplug(void)
{
	mutex_lock(&all_q_mutex);
}

void blk_mq_enable_hotplug(void)
{
	mutex_unlock(&all_q_mutex);
}

1626 1627 1628 1629 1630 1631 1632 1633 1634 1635
static int __init blk_mq_init(void)
{
	blk_mq_cpu_init();

	/* Must be called after percpu_counter_hotcpu_callback() */
	hotcpu_notifier(blk_mq_queue_reinit_notify, -10);

	return 0;
}
subsys_initcall(blk_mq_init);