core.c 134.5 KB
Newer Older
1
/*
2 3 4 5
 * Per core/cpu state
 *
 * Used to coordinate shared registers between HT threads or
 * among events on a single PMU.
6
 */
7

8 9
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

10 11 12 13
#include <linux/stddef.h>
#include <linux/types.h>
#include <linux/init.h>
#include <linux/slab.h>
14
#include <linux/export.h>
15
#include <linux/nmi.h>
16

17
#include <asm/cpufeature.h>
18
#include <asm/hardirq.h>
19
#include <asm/intel-family.h>
20
#include <asm/apic.h>
21
#include <asm/cpu_device_id.h>
22

23
#include "../perf_event.h"
24

25
/*
26
 * Intel PerfMon, used on Core and later.
27
 */
28
static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
29
{
30 31 32 33 34 35 36 37
	[PERF_COUNT_HW_CPU_CYCLES]		= 0x003c,
	[PERF_COUNT_HW_INSTRUCTIONS]		= 0x00c0,
	[PERF_COUNT_HW_CACHE_REFERENCES]	= 0x4f2e,
	[PERF_COUNT_HW_CACHE_MISSES]		= 0x412e,
	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS]	= 0x00c4,
	[PERF_COUNT_HW_BRANCH_MISSES]		= 0x00c5,
	[PERF_COUNT_HW_BUS_CYCLES]		= 0x013c,
	[PERF_COUNT_HW_REF_CPU_CYCLES]		= 0x0300, /* pseudo-encoding */
38 39
};

40
static struct event_constraint intel_core_event_constraints[] __read_mostly =
41 42 43 44 45 46 47 48 49 50
{
	INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
	INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
	INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
	INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
	INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
	INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
	EVENT_CONSTRAINT_END
};

51
static struct event_constraint intel_core2_event_constraints[] __read_mostly =
52
{
53 54
	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
55
	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
56 57 58 59 60 61 62 63
	INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
	INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
	INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
	INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
	INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
	INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
	INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
	INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
64
	INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
65 66 67 68
	INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
	EVENT_CONSTRAINT_END
};

69
static struct event_constraint intel_nehalem_event_constraints[] __read_mostly =
70
{
71 72
	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
73
	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
74 75 76 77 78 79 80 81 82 83 84
	INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
	INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
	INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
	INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
	INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
	INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
	INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
	INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
	EVENT_CONSTRAINT_END
};

85
static struct extra_reg intel_nehalem_extra_regs[] __read_mostly =
86
{
87 88
	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
89
	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
90 91 92
	EVENT_EXTRA_END
};

93
static struct event_constraint intel_westmere_event_constraints[] __read_mostly =
94
{
95 96
	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
97
	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
98 99 100
	INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
	INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
	INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
101
	INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
102 103 104
	EVENT_CONSTRAINT_END
};

105
static struct event_constraint intel_snb_event_constraints[] __read_mostly =
106 107 108
{
	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
109
	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
110 111 112 113
	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
	INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
	INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
	INTEL_UEVENT_CONSTRAINT(0x06a3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
114 115 116
	INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
	INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
	INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
117 118
	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
	INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
119

120 121 122 123
	/*
	 * When HT is off these events can only run on the bottom 4 counters
	 * When HT is on, they are impacted by the HT bug and require EXCL access
	 */
124 125 126 127 128
	INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
	INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
	INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
	INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */

129 130 131
	EVENT_CONSTRAINT_END
};

132 133 134 135 136 137 138 139
static struct event_constraint intel_ivb_event_constraints[] __read_mostly =
{
	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
	INTEL_UEVENT_CONSTRAINT(0x0148, 0x4), /* L1D_PEND_MISS.PENDING */
	INTEL_UEVENT_CONSTRAINT(0x0279, 0xf), /* IDQ.EMTPY */
	INTEL_UEVENT_CONSTRAINT(0x019c, 0xf), /* IDQ_UOPS_NOT_DELIVERED.CORE */
140
	INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_LDM_PENDING */
141 142 143 144 145 146
	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
	INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
	INTEL_UEVENT_CONSTRAINT(0x06a3, 0xf), /* CYCLE_ACTIVITY.STALLS_LDM_PENDING */
	INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
	INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
	INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
147

148 149 150 151
	/*
	 * When HT is off these events can only run on the bottom 4 counters
	 * When HT is on, they are impacted by the HT bug and require EXCL access
	 */
152 153 154 155 156
	INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
	INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
	INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
	INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */

157 158 159
	EVENT_CONSTRAINT_END
};

160
static struct extra_reg intel_westmere_extra_regs[] __read_mostly =
161
{
162 163 164
	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1),
165
	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
166 167 168
	EVENT_EXTRA_END
};

169 170 171 172 173
static struct event_constraint intel_v1_event_constraints[] __read_mostly =
{
	EVENT_CONSTRAINT_END
};

174
static struct event_constraint intel_gen_event_constraints[] __read_mostly =
175
{
176 177
	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
178
	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
179 180 181
	EVENT_CONSTRAINT_END
};

182 183 184 185 186 187 188 189
static struct event_constraint intel_slm_event_constraints[] __read_mostly =
{
	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */
	EVENT_CONSTRAINT_END
};

190
static struct event_constraint intel_skl_event_constraints[] = {
191 192 193 194
	FIXED_EVENT_CONSTRAINT(0x00c0, 0),	/* INST_RETIRED.ANY */
	FIXED_EVENT_CONSTRAINT(0x003c, 1),	/* CPU_CLK_UNHALTED.CORE */
	FIXED_EVENT_CONSTRAINT(0x0300, 2),	/* CPU_CLK_UNHALTED.REF */
	INTEL_UEVENT_CONSTRAINT(0x1c0, 0x2),	/* INST_RETIRED.PREC_DIST */
195 196 197 198 199 200 201 202 203 204

	/*
	 * when HT is off, these can only run on the bottom 4 counters
	 */
	INTEL_EVENT_CONSTRAINT(0xd0, 0xf),	/* MEM_INST_RETIRED.* */
	INTEL_EVENT_CONSTRAINT(0xd1, 0xf),	/* MEM_LOAD_RETIRED.* */
	INTEL_EVENT_CONSTRAINT(0xd2, 0xf),	/* MEM_LOAD_L3_HIT_RETIRED.* */
	INTEL_EVENT_CONSTRAINT(0xcd, 0xf),	/* MEM_TRANS_RETIRED.* */
	INTEL_EVENT_CONSTRAINT(0xc6, 0xf),	/* FRONTEND_RETIRED.* */

205 206 207
	EVENT_CONSTRAINT_END
};

208
static struct extra_reg intel_knl_extra_regs[] __read_mostly = {
209 210
	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x799ffbb6e7ull, RSP_0),
	INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x399ffbffe7ull, RSP_1),
211 212 213
	EVENT_EXTRA_END
};

214
static struct extra_reg intel_snb_extra_regs[] __read_mostly = {
215 216 217
	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3f807f8fffull, RSP_0),
	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3f807f8fffull, RSP_1),
218
	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
219 220 221 222
	EVENT_EXTRA_END
};

static struct extra_reg intel_snbep_extra_regs[] __read_mostly = {
223 224 225
	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
226
	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
227 228 229
	EVENT_EXTRA_END
};

230 231 232 233
static struct extra_reg intel_skl_extra_regs[] __read_mostly = {
	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
234 235 236 237 238
	/*
	 * Note the low 8 bits eventsel code is not a continuous field, containing
	 * some #GPing bits. These are masked out.
	 */
	INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
239 240 241
	EVENT_EXTRA_END
};

242 243 244
EVENT_ATTR_STR(mem-loads,	mem_ld_nhm,	"event=0x0b,umask=0x10,ldlat=3");
EVENT_ATTR_STR(mem-loads,	mem_ld_snb,	"event=0xcd,umask=0x1,ldlat=3");
EVENT_ATTR_STR(mem-stores,	mem_st_snb,	"event=0xcd,umask=0x2");
245

246
static struct attribute *nhm_mem_events_attrs[] = {
247 248 249 250
	EVENT_PTR(mem_ld_nhm),
	NULL,
};

251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
/*
 * topdown events for Intel Core CPUs.
 *
 * The events are all in slots, which is a free slot in a 4 wide
 * pipeline. Some events are already reported in slots, for cycle
 * events we multiply by the pipeline width (4).
 *
 * With Hyper Threading on, topdown metrics are either summed or averaged
 * between the threads of a core: (count_t0 + count_t1).
 *
 * For the average case the metric is always scaled to pipeline width,
 * so we use factor 2 ((count_t0 + count_t1) / 2 * 4)
 */

EVENT_ATTR_STR_HT(topdown-total-slots, td_total_slots,
	"event=0x3c,umask=0x0",			/* cpu_clk_unhalted.thread */
	"event=0x3c,umask=0x0,any=1");		/* cpu_clk_unhalted.thread_any */
EVENT_ATTR_STR_HT(topdown-total-slots.scale, td_total_slots_scale, "4", "2");
EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued,
	"event=0xe,umask=0x1");			/* uops_issued.any */
EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired,
	"event=0xc2,umask=0x2");		/* uops_retired.retire_slots */
EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles,
	"event=0x9c,umask=0x1");		/* idq_uops_not_delivered_core */
EVENT_ATTR_STR_HT(topdown-recovery-bubbles, td_recovery_bubbles,
	"event=0xd,umask=0x3,cmask=1",		/* int_misc.recovery_cycles */
	"event=0xd,umask=0x3,cmask=1,any=1");	/* int_misc.recovery_cycles_any */
EVENT_ATTR_STR_HT(topdown-recovery-bubbles.scale, td_recovery_bubbles_scale,
	"4", "2");

281
static struct attribute *snb_events_attrs[] = {
282 283 284 285 286 287 288
	EVENT_PTR(td_slots_issued),
	EVENT_PTR(td_slots_retired),
	EVENT_PTR(td_fetch_bubbles),
	EVENT_PTR(td_total_slots),
	EVENT_PTR(td_total_slots_scale),
	EVENT_PTR(td_recovery_bubbles),
	EVENT_PTR(td_recovery_bubbles_scale),
289 290 291
	NULL,
};

292 293 294 295 296 297
static struct attribute *snb_mem_events_attrs[] = {
	EVENT_PTR(mem_ld_snb),
	EVENT_PTR(mem_st_snb),
	NULL,
};

298 299 300 301
static struct event_constraint intel_hsw_event_constraints[] = {
	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
302
	INTEL_UEVENT_CONSTRAINT(0x148, 0x4),	/* L1D_PEND_MISS.PENDING */
303 304 305
	INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
	INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
	/* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
306
	INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4),
307
	/* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
308
	INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4),
309
	/* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
310
	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf),
311

312 313 314 315
	/*
	 * When HT is off these events can only run on the bottom 4 counters
	 * When HT is on, they are impacted by the HT bug and require EXCL access
	 */
316 317 318 319 320
	INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
	INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
	INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
	INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */

321 322 323
	EVENT_CONSTRAINT_END
};

324
static struct event_constraint intel_bdw_event_constraints[] = {
325 326 327 328
	FIXED_EVENT_CONSTRAINT(0x00c0, 0),	/* INST_RETIRED.ANY */
	FIXED_EVENT_CONSTRAINT(0x003c, 1),	/* CPU_CLK_UNHALTED.CORE */
	FIXED_EVENT_CONSTRAINT(0x0300, 2),	/* CPU_CLK_UNHALTED.REF */
	INTEL_UEVENT_CONSTRAINT(0x148, 0x4),	/* L1D_PEND_MISS.PENDING */
329
	INTEL_UBIT_EVENT_CONSTRAINT(0x8a3, 0x4),	/* CYCLE_ACTIVITY.CYCLES_L1D_MISS */
330 331 332 333 334 335 336
	/*
	 * when HT is off, these can only run on the bottom 4 counters
	 */
	INTEL_EVENT_CONSTRAINT(0xd0, 0xf),	/* MEM_INST_RETIRED.* */
	INTEL_EVENT_CONSTRAINT(0xd1, 0xf),	/* MEM_LOAD_RETIRED.* */
	INTEL_EVENT_CONSTRAINT(0xd2, 0xf),	/* MEM_LOAD_L3_HIT_RETIRED.* */
	INTEL_EVENT_CONSTRAINT(0xcd, 0xf),	/* MEM_TRANS_RETIRED.* */
337 338 339
	EVENT_CONSTRAINT_END
};

340 341 342 343 344
static u64 intel_pmu_event_map(int hw_event)
{
	return intel_perfmon_event_map[hw_event];
}

345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
/*
 * Notes on the events:
 * - data reads do not include code reads (comparable to earlier tables)
 * - data counts include speculative execution (except L1 write, dtlb, bpu)
 * - remote node access includes remote memory, remote cache, remote mmio.
 * - prefetches are not included in the counts.
 * - icache miss does not include decoded icache
 */

#define SKL_DEMAND_DATA_RD		BIT_ULL(0)
#define SKL_DEMAND_RFO			BIT_ULL(1)
#define SKL_ANY_RESPONSE		BIT_ULL(16)
#define SKL_SUPPLIER_NONE		BIT_ULL(17)
#define SKL_L3_MISS_LOCAL_DRAM		BIT_ULL(26)
#define SKL_L3_MISS_REMOTE_HOP0_DRAM	BIT_ULL(27)
#define SKL_L3_MISS_REMOTE_HOP1_DRAM	BIT_ULL(28)
#define SKL_L3_MISS_REMOTE_HOP2P_DRAM	BIT_ULL(29)
#define SKL_L3_MISS			(SKL_L3_MISS_LOCAL_DRAM| \
					 SKL_L3_MISS_REMOTE_HOP0_DRAM| \
					 SKL_L3_MISS_REMOTE_HOP1_DRAM| \
					 SKL_L3_MISS_REMOTE_HOP2P_DRAM)
#define SKL_SPL_HIT			BIT_ULL(30)
#define SKL_SNOOP_NONE			BIT_ULL(31)
#define SKL_SNOOP_NOT_NEEDED		BIT_ULL(32)
#define SKL_SNOOP_MISS			BIT_ULL(33)
#define SKL_SNOOP_HIT_NO_FWD		BIT_ULL(34)
#define SKL_SNOOP_HIT_WITH_FWD		BIT_ULL(35)
#define SKL_SNOOP_HITM			BIT_ULL(36)
#define SKL_SNOOP_NON_DRAM		BIT_ULL(37)
#define SKL_ANY_SNOOP			(SKL_SPL_HIT|SKL_SNOOP_NONE| \
					 SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
					 SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
					 SKL_SNOOP_HITM|SKL_SNOOP_NON_DRAM)
#define SKL_DEMAND_READ			SKL_DEMAND_DATA_RD
#define SKL_SNOOP_DRAM			(SKL_SNOOP_NONE| \
					 SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
					 SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
					 SKL_SNOOP_HITM|SKL_SPL_HIT)
#define SKL_DEMAND_WRITE		SKL_DEMAND_RFO
#define SKL_LLC_ACCESS			SKL_ANY_RESPONSE
#define SKL_L3_MISS_REMOTE		(SKL_L3_MISS_REMOTE_HOP0_DRAM| \
					 SKL_L3_MISS_REMOTE_HOP1_DRAM| \
					 SKL_L3_MISS_REMOTE_HOP2P_DRAM)

static __initconst const u64 skl_hw_cache_event_ids
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(L1D ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x81d0,	/* MEM_INST_RETIRED.ALL_LOADS */
		[ C(RESULT_MISS)   ] = 0x151,	/* L1D.REPLACEMENT */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x82d0,	/* MEM_INST_RETIRED.ALL_STORES */
		[ C(RESULT_MISS)   ] = 0x0,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(L1I ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x283,	/* ICACHE_64B.MISS */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(LL  ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(DTLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x81d0,	/* MEM_INST_RETIRED.ALL_LOADS */
439
		[ C(RESULT_MISS)   ] = 0xe08,	/* DTLB_LOAD_MISSES.WALK_COMPLETED */
440 441 442
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x82d0,	/* MEM_INST_RETIRED.ALL_STORES */
443
		[ C(RESULT_MISS)   ] = 0xe49,	/* DTLB_STORE_MISSES.WALK_COMPLETED */
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(ITLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x2085,	/* ITLB_MISSES.STLB_HIT */
		[ C(RESULT_MISS)   ] = 0xe85,	/* ITLB_MISSES.WALK_COMPLETED */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
 [ C(BPU ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0xc4,	/* BR_INST_RETIRED.ALL_BRANCHES */
		[ C(RESULT_MISS)   ] = 0xc5,	/* BR_MISP_RETIRED.ALL_BRANCHES */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
 [ C(NODE) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
};

static __initconst const u64 skl_hw_cache_extra_regs
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(LL  ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
				       SKL_LLC_ACCESS|SKL_ANY_SNOOP,
		[ C(RESULT_MISS)   ] = SKL_DEMAND_READ|
				       SKL_L3_MISS|SKL_ANY_SNOOP|
				       SKL_SUPPLIER_NONE,
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
				       SKL_LLC_ACCESS|SKL_ANY_SNOOP,
		[ C(RESULT_MISS)   ] = SKL_DEMAND_WRITE|
				       SKL_L3_MISS|SKL_ANY_SNOOP|
				       SKL_SUPPLIER_NONE,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(NODE) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
				       SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
		[ C(RESULT_MISS)   ] = SKL_DEMAND_READ|
				       SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
				       SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
		[ C(RESULT_MISS)   ] = SKL_DEMAND_WRITE|
				       SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
};

539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616
#define SNB_DMND_DATA_RD	(1ULL << 0)
#define SNB_DMND_RFO		(1ULL << 1)
#define SNB_DMND_IFETCH		(1ULL << 2)
#define SNB_DMND_WB		(1ULL << 3)
#define SNB_PF_DATA_RD		(1ULL << 4)
#define SNB_PF_RFO		(1ULL << 5)
#define SNB_PF_IFETCH		(1ULL << 6)
#define SNB_LLC_DATA_RD		(1ULL << 7)
#define SNB_LLC_RFO		(1ULL << 8)
#define SNB_LLC_IFETCH		(1ULL << 9)
#define SNB_BUS_LOCKS		(1ULL << 10)
#define SNB_STRM_ST		(1ULL << 11)
#define SNB_OTHER		(1ULL << 15)
#define SNB_RESP_ANY		(1ULL << 16)
#define SNB_NO_SUPP		(1ULL << 17)
#define SNB_LLC_HITM		(1ULL << 18)
#define SNB_LLC_HITE		(1ULL << 19)
#define SNB_LLC_HITS		(1ULL << 20)
#define SNB_LLC_HITF		(1ULL << 21)
#define SNB_LOCAL		(1ULL << 22)
#define SNB_REMOTE		(0xffULL << 23)
#define SNB_SNP_NONE		(1ULL << 31)
#define SNB_SNP_NOT_NEEDED	(1ULL << 32)
#define SNB_SNP_MISS		(1ULL << 33)
#define SNB_NO_FWD		(1ULL << 34)
#define SNB_SNP_FWD		(1ULL << 35)
#define SNB_HITM		(1ULL << 36)
#define SNB_NON_DRAM		(1ULL << 37)

#define SNB_DMND_READ		(SNB_DMND_DATA_RD|SNB_LLC_DATA_RD)
#define SNB_DMND_WRITE		(SNB_DMND_RFO|SNB_LLC_RFO)
#define SNB_DMND_PREFETCH	(SNB_PF_DATA_RD|SNB_PF_RFO)

#define SNB_SNP_ANY		(SNB_SNP_NONE|SNB_SNP_NOT_NEEDED| \
				 SNB_SNP_MISS|SNB_NO_FWD|SNB_SNP_FWD| \
				 SNB_HITM)

#define SNB_DRAM_ANY		(SNB_LOCAL|SNB_REMOTE|SNB_SNP_ANY)
#define SNB_DRAM_REMOTE		(SNB_REMOTE|SNB_SNP_ANY)

#define SNB_L3_ACCESS		SNB_RESP_ANY
#define SNB_L3_MISS		(SNB_DRAM_ANY|SNB_NON_DRAM)

static __initconst const u64 snb_hw_cache_extra_regs
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(LL  ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_L3_ACCESS,
		[ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_L3_MISS,
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_L3_ACCESS,
		[ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_L3_MISS,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_L3_ACCESS,
		[ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_L3_MISS,
	},
 },
 [ C(NODE) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_DRAM_ANY,
		[ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_DRAM_REMOTE,
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_DRAM_ANY,
		[ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_DRAM_REMOTE,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_DRAM_ANY,
		[ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_DRAM_REMOTE,
	},
 },
};

617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651
static __initconst const u64 snb_hw_cache_event_ids
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(L1D) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS        */
		[ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPLACEMENT              */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES       */
		[ C(RESULT_MISS)   ] = 0x0851, /* L1D.ALL_M_REPLACEMENT        */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x024e, /* HW_PRE_REQ.DL1_MISS          */
	},
 },
 [ C(L1I ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0280, /* ICACHE.MISSES */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(LL  ) ] = {
	[ C(OP_READ) ] = {
652
		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
653
		[ C(RESULT_ACCESS) ] = 0x01b7,
654 655
		/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
		[ C(RESULT_MISS)   ] = 0x01b7,
656 657
	},
	[ C(OP_WRITE) ] = {
658
		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
659
		[ C(RESULT_ACCESS) ] = 0x01b7,
660 661
		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
		[ C(RESULT_MISS)   ] = 0x01b7,
662 663
	},
	[ C(OP_PREFETCH) ] = {
664
		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
665
		[ C(RESULT_ACCESS) ] = 0x01b7,
666 667
		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
		[ C(RESULT_MISS)   ] = 0x01b7,
668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711
	},
 },
 [ C(DTLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
		[ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
		[ C(RESULT_MISS)   ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(ITLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT         */
		[ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK    */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
 [ C(BPU ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
		[ C(RESULT_MISS)   ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
712 713
 [ C(NODE) ] = {
	[ C(OP_READ) ] = {
714 715
		[ C(RESULT_ACCESS) ] = 0x01b7,
		[ C(RESULT_MISS)   ] = 0x01b7,
716 717
	},
	[ C(OP_WRITE) ] = {
718 719
		[ C(RESULT_ACCESS) ] = 0x01b7,
		[ C(RESULT_MISS)   ] = 0x01b7,
720 721
	},
	[ C(OP_PREFETCH) ] = {
722 723
		[ C(RESULT_ACCESS) ] = 0x01b7,
		[ C(RESULT_MISS)   ] = 0x01b7,
724 725 726
	},
 },

727 728
};

729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766
/*
 * Notes on the events:
 * - data reads do not include code reads (comparable to earlier tables)
 * - data counts include speculative execution (except L1 write, dtlb, bpu)
 * - remote node access includes remote memory, remote cache, remote mmio.
 * - prefetches are not included in the counts because they are not
 *   reliably counted.
 */

#define HSW_DEMAND_DATA_RD		BIT_ULL(0)
#define HSW_DEMAND_RFO			BIT_ULL(1)
#define HSW_ANY_RESPONSE		BIT_ULL(16)
#define HSW_SUPPLIER_NONE		BIT_ULL(17)
#define HSW_L3_MISS_LOCAL_DRAM		BIT_ULL(22)
#define HSW_L3_MISS_REMOTE_HOP0		BIT_ULL(27)
#define HSW_L3_MISS_REMOTE_HOP1		BIT_ULL(28)
#define HSW_L3_MISS_REMOTE_HOP2P	BIT_ULL(29)
#define HSW_L3_MISS			(HSW_L3_MISS_LOCAL_DRAM| \
					 HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
					 HSW_L3_MISS_REMOTE_HOP2P)
#define HSW_SNOOP_NONE			BIT_ULL(31)
#define HSW_SNOOP_NOT_NEEDED		BIT_ULL(32)
#define HSW_SNOOP_MISS			BIT_ULL(33)
#define HSW_SNOOP_HIT_NO_FWD		BIT_ULL(34)
#define HSW_SNOOP_HIT_WITH_FWD		BIT_ULL(35)
#define HSW_SNOOP_HITM			BIT_ULL(36)
#define HSW_SNOOP_NON_DRAM		BIT_ULL(37)
#define HSW_ANY_SNOOP			(HSW_SNOOP_NONE| \
					 HSW_SNOOP_NOT_NEEDED|HSW_SNOOP_MISS| \
					 HSW_SNOOP_HIT_NO_FWD|HSW_SNOOP_HIT_WITH_FWD| \
					 HSW_SNOOP_HITM|HSW_SNOOP_NON_DRAM)
#define HSW_SNOOP_DRAM			(HSW_ANY_SNOOP & ~HSW_SNOOP_NON_DRAM)
#define HSW_DEMAND_READ			HSW_DEMAND_DATA_RD
#define HSW_DEMAND_WRITE		HSW_DEMAND_RFO
#define HSW_L3_MISS_REMOTE		(HSW_L3_MISS_REMOTE_HOP0|\
					 HSW_L3_MISS_REMOTE_HOP1|HSW_L3_MISS_REMOTE_HOP2P)
#define HSW_LLC_ACCESS			HSW_ANY_RESPONSE

767 768 769 770 771 772
#define BDW_L3_MISS_LOCAL		BIT(26)
#define BDW_L3_MISS			(BDW_L3_MISS_LOCAL| \
					 HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
					 HSW_L3_MISS_REMOTE_HOP2P)


773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924
static __initconst const u64 hsw_hw_cache_event_ids
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(L1D ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
		[ C(RESULT_MISS)   ] = 0x151,	/* L1D.REPLACEMENT */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
		[ C(RESULT_MISS)   ] = 0x0,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(L1I ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x280,	/* ICACHE.MISSES */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(LL  ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(DTLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
		[ C(RESULT_MISS)   ] = 0x108,	/* DTLB_LOAD_MISSES.MISS_CAUSES_A_WALK */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
		[ C(RESULT_MISS)   ] = 0x149,	/* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(ITLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x6085,	/* ITLB_MISSES.STLB_HIT */
		[ C(RESULT_MISS)   ] = 0x185,	/* ITLB_MISSES.MISS_CAUSES_A_WALK */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
 [ C(BPU ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0xc4,	/* BR_INST_RETIRED.ALL_BRANCHES */
		[ C(RESULT_MISS)   ] = 0xc5,	/* BR_MISP_RETIRED.ALL_BRANCHES */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
 [ C(NODE) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
};

static __initconst const u64 hsw_hw_cache_extra_regs
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(LL  ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
				       HSW_LLC_ACCESS,
		[ C(RESULT_MISS)   ] = HSW_DEMAND_READ|
				       HSW_L3_MISS|HSW_ANY_SNOOP,
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
				       HSW_LLC_ACCESS,
		[ C(RESULT_MISS)   ] = HSW_DEMAND_WRITE|
				       HSW_L3_MISS|HSW_ANY_SNOOP,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(NODE) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
				       HSW_L3_MISS_LOCAL_DRAM|
				       HSW_SNOOP_DRAM,
		[ C(RESULT_MISS)   ] = HSW_DEMAND_READ|
				       HSW_L3_MISS_REMOTE|
				       HSW_SNOOP_DRAM,
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
				       HSW_L3_MISS_LOCAL_DRAM|
				       HSW_SNOOP_DRAM,
		[ C(RESULT_MISS)   ] = HSW_DEMAND_WRITE|
				       HSW_L3_MISS_REMOTE|
				       HSW_SNOOP_DRAM,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
};

925
static __initconst const u64 westmere_hw_cache_event_ids
926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(L1D) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
		[ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
		[ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
		[ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
	},
 },
 [ C(L1I ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
		[ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(LL  ) ] = {
	[ C(OP_READ) ] = {
960
		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
961
		[ C(RESULT_ACCESS) ] = 0x01b7,
962 963
		/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
		[ C(RESULT_MISS)   ] = 0x01b7,
964
	},
965 966 967 968
	/*
	 * Use RFO, not WRITEBACK, because a write miss would typically occur
	 * on RFO.
	 */
969
	[ C(OP_WRITE) ] = {
970 971 972
		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
		[ C(RESULT_ACCESS) ] = 0x01b7,
		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
973
		[ C(RESULT_MISS)   ] = 0x01b7,
974 975
	},
	[ C(OP_PREFETCH) ] = {
976
		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
977
		[ C(RESULT_ACCESS) ] = 0x01b7,
978 979
		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
		[ C(RESULT_MISS)   ] = 0x01b7,
980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
	},
 },
 [ C(DTLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
		[ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
		[ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(ITLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
		[ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.ANY              */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
 [ C(BPU ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
		[ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
 [ C(NODE) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x01b7,
		[ C(RESULT_MISS)   ] = 0x01b7,
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x01b7,
		[ C(RESULT_MISS)   ] = 0x01b7,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x01b7,
		[ C(RESULT_MISS)   ] = 0x01b7,
	},
 },
1038 1039
};

1040
/*
1041 1042
 * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
 * See IA32 SDM Vol 3B 30.6.1.3
1043 1044
 */

1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
#define NHM_DMND_DATA_RD	(1 << 0)
#define NHM_DMND_RFO		(1 << 1)
#define NHM_DMND_IFETCH		(1 << 2)
#define NHM_DMND_WB		(1 << 3)
#define NHM_PF_DATA_RD		(1 << 4)
#define NHM_PF_DATA_RFO		(1 << 5)
#define NHM_PF_IFETCH		(1 << 6)
#define NHM_OFFCORE_OTHER	(1 << 7)
#define NHM_UNCORE_HIT		(1 << 8)
#define NHM_OTHER_CORE_HIT_SNP	(1 << 9)
#define NHM_OTHER_CORE_HITM	(1 << 10)
        			/* reserved */
#define NHM_REMOTE_CACHE_FWD	(1 << 12)
#define NHM_REMOTE_DRAM		(1 << 13)
#define NHM_LOCAL_DRAM		(1 << 14)
#define NHM_NON_DRAM		(1 << 15)

1062 1063
#define NHM_LOCAL		(NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD)
#define NHM_REMOTE		(NHM_REMOTE_DRAM)
1064 1065 1066 1067 1068 1069

#define NHM_DMND_READ		(NHM_DMND_DATA_RD)
#define NHM_DMND_WRITE		(NHM_DMND_RFO|NHM_DMND_WB)
#define NHM_DMND_PREFETCH	(NHM_PF_DATA_RD|NHM_PF_DATA_RFO)

#define NHM_L3_HIT	(NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
1070
#define NHM_L3_MISS	(NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD)
1071
#define NHM_L3_ACCESS	(NHM_L3_HIT|NHM_L3_MISS)
1072 1073 1074 1075 1076 1077 1078 1079

static __initconst const u64 nehalem_hw_cache_extra_regs
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(LL  ) ] = {
	[ C(OP_READ) ] = {
1080 1081
		[ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS,
		[ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_L3_MISS,
1082 1083
	},
	[ C(OP_WRITE) ] = {
1084 1085
		[ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS,
		[ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_L3_MISS,
1086 1087
	},
	[ C(OP_PREFETCH) ] = {
1088 1089
		[ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS,
		[ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_L3_MISS,
1090
	},
1091 1092 1093
 },
 [ C(NODE) ] = {
	[ C(OP_READ) ] = {
1094 1095
		[ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE,
		[ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_REMOTE,
1096 1097
	},
	[ C(OP_WRITE) ] = {
1098 1099
		[ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE,
		[ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_REMOTE,
1100 1101
	},
	[ C(OP_PREFETCH) ] = {
1102 1103
		[ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE,
		[ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_REMOTE,
1104 1105
	},
 },
1106 1107
};

1108
static __initconst const u64 nehalem_hw_cache_event_ids
1109 1110 1111 1112 1113 1114
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(L1D) ] = {
	[ C(OP_READ) ] = {
1115 1116
		[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
		[ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
1117 1118
	},
	[ C(OP_WRITE) ] = {
1119 1120
		[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
		[ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
		[ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
	},
 },
 [ C(L1I ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
		[ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(LL  ) ] = {
	[ C(OP_READ) ] = {
1143 1144 1145 1146
		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
		[ C(RESULT_ACCESS) ] = 0x01b7,
		/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
		[ C(RESULT_MISS)   ] = 0x01b7,
1147
	},
1148 1149 1150 1151
	/*
	 * Use RFO, not WRITEBACK, because a write miss would typically occur
	 * on RFO.
	 */
1152
	[ C(OP_WRITE) ] = {
1153 1154 1155 1156
		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
		[ C(RESULT_ACCESS) ] = 0x01b7,
		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
		[ C(RESULT_MISS)   ] = 0x01b7,
1157 1158
	},
	[ C(OP_PREFETCH) ] = {
1159 1160 1161 1162
		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
		[ C(RESULT_ACCESS) ] = 0x01b7,
		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
		[ C(RESULT_MISS)   ] = 0x01b7,
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
	},
 },
 [ C(DTLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI   (alias)  */
		[ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI   (alias)  */
		[ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(ITLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
		[ C(RESULT_MISS)   ] = 0x20c8, /* ITLB_MISS_RETIRED            */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
 [ C(BPU ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
		[ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220
 [ C(NODE) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x01b7,
		[ C(RESULT_MISS)   ] = 0x01b7,
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x01b7,
		[ C(RESULT_MISS)   ] = 0x01b7,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x01b7,
		[ C(RESULT_MISS)   ] = 0x01b7,
	},
 },
1221 1222
};

1223
static __initconst const u64 core2_hw_cache_event_ids
1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(L1D) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI          */
		[ C(RESULT_MISS)   ] = 0x0140, /* L1D_CACHE_LD.I_STATE       */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI          */
		[ C(RESULT_MISS)   ] = 0x0141, /* L1D_CACHE_ST.I_STATE       */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS      */
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(L1I ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS                  */
		[ C(RESULT_MISS)   ] = 0x0081, /* L1I.MISSES                 */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(LL  ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
		[ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
		[ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(DTLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI  (alias) */
		[ C(RESULT_MISS)   ] = 0x0208, /* DTLB_MISSES.MISS_LD        */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI  (alias) */
		[ C(RESULT_MISS)   ] = 0x0808, /* DTLB_MISSES.MISS_ST        */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(ITLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
		[ C(RESULT_MISS)   ] = 0x1282, /* ITLBMISSES                 */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
 [ C(BPU ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
		[ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
};

1314
static __initconst const u64 atom_hw_cache_event_ids
1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(L1D) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD               */
		[ C(RESULT_MISS)   ] = 0,
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST               */
		[ C(RESULT_MISS)   ] = 0,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(L1I ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                  */
		[ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                 */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(LL  ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
		[ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
		[ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(DTLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI  (alias) */
		[ C(RESULT_MISS)   ] = 0x0508, /* DTLB_MISSES.MISS_LD        */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI  (alias) */
		[ C(RESULT_MISS)   ] = 0x0608, /* DTLB_MISSES.MISS_ST        */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(ITLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
		[ C(RESULT_MISS)   ] = 0x0282, /* ITLB.MISSES                */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
 [ C(BPU ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
		[ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
};

1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427
EVENT_ATTR_STR(topdown-total-slots, td_total_slots_slm, "event=0x3c");
EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_slm, "2");
/* no_alloc_cycles.not_delivered */
EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_slm,
	       "event=0xca,umask=0x50");
EVENT_ATTR_STR(topdown-fetch-bubbles.scale, td_fetch_bubbles_scale_slm, "2");
/* uops_retired.all */
EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_slm,
	       "event=0xc2,umask=0x10");
/* uops_retired.all */
EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_slm,
	       "event=0xc2,umask=0x10");

static struct attribute *slm_events_attrs[] = {
	EVENT_PTR(td_total_slots_slm),
	EVENT_PTR(td_total_slots_scale_slm),
	EVENT_PTR(td_fetch_bubbles_slm),
	EVENT_PTR(td_fetch_bubbles_scale_slm),
	EVENT_PTR(td_slots_issued_slm),
	EVENT_PTR(td_slots_retired_slm),
	NULL
};

1428 1429 1430
static struct extra_reg intel_slm_extra_regs[] __read_mostly =
{
	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1431
	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x768005ffffull, RSP_0),
1432
	INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x368005ffffull, RSP_1),
1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451
	EVENT_EXTRA_END
};

#define SLM_DMND_READ		SNB_DMND_DATA_RD
#define SLM_DMND_WRITE		SNB_DMND_RFO
#define SLM_DMND_PREFETCH	(SNB_PF_DATA_RD|SNB_PF_RFO)

#define SLM_SNP_ANY		(SNB_SNP_NONE|SNB_SNP_MISS|SNB_NO_FWD|SNB_HITM)
#define SLM_LLC_ACCESS		SNB_RESP_ANY
#define SLM_LLC_MISS		(SLM_SNP_ANY|SNB_NON_DRAM)

static __initconst const u64 slm_hw_cache_extra_regs
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(LL  ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = SLM_DMND_READ|SLM_LLC_ACCESS,
1452
		[ C(RESULT_MISS)   ] = 0,
1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = SLM_DMND_WRITE|SLM_LLC_ACCESS,
		[ C(RESULT_MISS)   ] = SLM_DMND_WRITE|SLM_LLC_MISS,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = SLM_DMND_PREFETCH|SLM_LLC_ACCESS,
		[ C(RESULT_MISS)   ] = SLM_DMND_PREFETCH|SLM_LLC_MISS,
	},
 },
};

static __initconst const u64 slm_hw_cache_event_ids
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(L1D) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0x0104, /* LD_DCU_MISS */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(L1I ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0380, /* ICACHE.ACCESSES */
		[ C(RESULT_MISS)   ] = 0x0280, /* ICACGE.MISSES */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(LL  ) ] = {
	[ C(OP_READ) ] = {
		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
		[ C(RESULT_ACCESS) ] = 0x01b7,
1502
		[ C(RESULT_MISS)   ] = 0,
1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533
	},
	[ C(OP_WRITE) ] = {
		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
		[ C(RESULT_ACCESS) ] = 0x01b7,
		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
		[ C(RESULT_MISS)   ] = 0x01b7,
	},
	[ C(OP_PREFETCH) ] = {
		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
		[ C(RESULT_ACCESS) ] = 0x01b7,
		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
		[ C(RESULT_MISS)   ] = 0x01b7,
	},
 },
 [ C(DTLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0x0804, /* LD_DTLB_MISS */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(ITLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1534
		[ C(RESULT_MISS)   ] = 0x40205, /* PAGE_WALKS.I_SIDE_WALKS */
1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
 [ C(BPU ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
		[ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
};

1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581
EVENT_ATTR_STR(topdown-total-slots, td_total_slots_glm, "event=0x3c");
EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_glm, "3");
/* UOPS_NOT_DELIVERED.ANY */
EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_glm, "event=0x9c");
/* ISSUE_SLOTS_NOT_CONSUMED.RECOVERY */
EVENT_ATTR_STR(topdown-recovery-bubbles, td_recovery_bubbles_glm, "event=0xca,umask=0x02");
/* UOPS_RETIRED.ANY */
EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_glm, "event=0xc2");
/* UOPS_ISSUED.ANY */
EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_glm, "event=0x0e");

static struct attribute *glm_events_attrs[] = {
	EVENT_PTR(td_total_slots_glm),
	EVENT_PTR(td_total_slots_scale_glm),
	EVENT_PTR(td_fetch_bubbles_glm),
	EVENT_PTR(td_recovery_bubbles_glm),
	EVENT_PTR(td_slots_issued_glm),
	EVENT_PTR(td_slots_retired_glm),
	NULL
};

1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715
static struct extra_reg intel_glm_extra_regs[] __read_mostly = {
	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x760005ffbfull, RSP_0),
	INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x360005ffbfull, RSP_1),
	EVENT_EXTRA_END
};

#define GLM_DEMAND_DATA_RD		BIT_ULL(0)
#define GLM_DEMAND_RFO			BIT_ULL(1)
#define GLM_ANY_RESPONSE		BIT_ULL(16)
#define GLM_SNP_NONE_OR_MISS		BIT_ULL(33)
#define GLM_DEMAND_READ			GLM_DEMAND_DATA_RD
#define GLM_DEMAND_WRITE		GLM_DEMAND_RFO
#define GLM_DEMAND_PREFETCH		(SNB_PF_DATA_RD|SNB_PF_RFO)
#define GLM_LLC_ACCESS			GLM_ANY_RESPONSE
#define GLM_SNP_ANY			(GLM_SNP_NONE_OR_MISS|SNB_NO_FWD|SNB_HITM)
#define GLM_LLC_MISS			(GLM_SNP_ANY|SNB_NON_DRAM)

static __initconst const u64 glm_hw_cache_event_ids
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
	[C(L1D)] = {
		[C(OP_READ)] = {
			[C(RESULT_ACCESS)]	= 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
			[C(RESULT_MISS)]	= 0x0,
		},
		[C(OP_WRITE)] = {
			[C(RESULT_ACCESS)]	= 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
			[C(RESULT_MISS)]	= 0x0,
		},
		[C(OP_PREFETCH)] = {
			[C(RESULT_ACCESS)]	= 0x0,
			[C(RESULT_MISS)]	= 0x0,
		},
	},
	[C(L1I)] = {
		[C(OP_READ)] = {
			[C(RESULT_ACCESS)]	= 0x0380,	/* ICACHE.ACCESSES */
			[C(RESULT_MISS)]	= 0x0280,	/* ICACHE.MISSES */
		},
		[C(OP_WRITE)] = {
			[C(RESULT_ACCESS)]	= -1,
			[C(RESULT_MISS)]	= -1,
		},
		[C(OP_PREFETCH)] = {
			[C(RESULT_ACCESS)]	= 0x0,
			[C(RESULT_MISS)]	= 0x0,
		},
	},
	[C(LL)] = {
		[C(OP_READ)] = {
			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
		},
		[C(OP_WRITE)] = {
			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
		},
		[C(OP_PREFETCH)] = {
			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
		},
	},
	[C(DTLB)] = {
		[C(OP_READ)] = {
			[C(RESULT_ACCESS)]	= 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
			[C(RESULT_MISS)]	= 0x0,
		},
		[C(OP_WRITE)] = {
			[C(RESULT_ACCESS)]	= 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
			[C(RESULT_MISS)]	= 0x0,
		},
		[C(OP_PREFETCH)] = {
			[C(RESULT_ACCESS)]	= 0x0,
			[C(RESULT_MISS)]	= 0x0,
		},
	},
	[C(ITLB)] = {
		[C(OP_READ)] = {
			[C(RESULT_ACCESS)]	= 0x00c0,	/* INST_RETIRED.ANY_P */
			[C(RESULT_MISS)]	= 0x0481,	/* ITLB.MISS */
		},
		[C(OP_WRITE)] = {
			[C(RESULT_ACCESS)]	= -1,
			[C(RESULT_MISS)]	= -1,
		},
		[C(OP_PREFETCH)] = {
			[C(RESULT_ACCESS)]	= -1,
			[C(RESULT_MISS)]	= -1,
		},
	},
	[C(BPU)] = {
		[C(OP_READ)] = {
			[C(RESULT_ACCESS)]	= 0x00c4,	/* BR_INST_RETIRED.ALL_BRANCHES */
			[C(RESULT_MISS)]	= 0x00c5,	/* BR_MISP_RETIRED.ALL_BRANCHES */
		},
		[C(OP_WRITE)] = {
			[C(RESULT_ACCESS)]	= -1,
			[C(RESULT_MISS)]	= -1,
		},
		[C(OP_PREFETCH)] = {
			[C(RESULT_ACCESS)]	= -1,
			[C(RESULT_MISS)]	= -1,
		},
	},
};

static __initconst const u64 glm_hw_cache_extra_regs
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
	[C(LL)] = {
		[C(OP_READ)] = {
			[C(RESULT_ACCESS)]	= GLM_DEMAND_READ|
						  GLM_LLC_ACCESS,
			[C(RESULT_MISS)]	= GLM_DEMAND_READ|
						  GLM_LLC_MISS,
		},
		[C(OP_WRITE)] = {
			[C(RESULT_ACCESS)]	= GLM_DEMAND_WRITE|
						  GLM_LLC_ACCESS,
			[C(RESULT_MISS)]	= GLM_DEMAND_WRITE|
						  GLM_LLC_MISS,
		},
		[C(OP_PREFETCH)] = {
			[C(RESULT_ACCESS)]	= GLM_DEMAND_PREFETCH|
						  GLM_LLC_ACCESS,
			[C(RESULT_MISS)]	= GLM_DEMAND_PREFETCH|
						  GLM_LLC_MISS,
		},
	},
};

1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829
static __initconst const u64 glp_hw_cache_event_ids
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
	[C(L1D)] = {
		[C(OP_READ)] = {
			[C(RESULT_ACCESS)]	= 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
			[C(RESULT_MISS)]	= 0x0,
		},
		[C(OP_WRITE)] = {
			[C(RESULT_ACCESS)]	= 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
			[C(RESULT_MISS)]	= 0x0,
		},
		[C(OP_PREFETCH)] = {
			[C(RESULT_ACCESS)]	= 0x0,
			[C(RESULT_MISS)]	= 0x0,
		},
	},
	[C(L1I)] = {
		[C(OP_READ)] = {
			[C(RESULT_ACCESS)]	= 0x0380,	/* ICACHE.ACCESSES */
			[C(RESULT_MISS)]	= 0x0280,	/* ICACHE.MISSES */
		},
		[C(OP_WRITE)] = {
			[C(RESULT_ACCESS)]	= -1,
			[C(RESULT_MISS)]	= -1,
		},
		[C(OP_PREFETCH)] = {
			[C(RESULT_ACCESS)]	= 0x0,
			[C(RESULT_MISS)]	= 0x0,
		},
	},
	[C(LL)] = {
		[C(OP_READ)] = {
			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
		},
		[C(OP_WRITE)] = {
			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
		},
		[C(OP_PREFETCH)] = {
			[C(RESULT_ACCESS)]	= 0x0,
			[C(RESULT_MISS)]	= 0x0,
		},
	},
	[C(DTLB)] = {
		[C(OP_READ)] = {
			[C(RESULT_ACCESS)]	= 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
			[C(RESULT_MISS)]	= 0xe08,	/* DTLB_LOAD_MISSES.WALK_COMPLETED */
		},
		[C(OP_WRITE)] = {
			[C(RESULT_ACCESS)]	= 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
			[C(RESULT_MISS)]	= 0xe49,	/* DTLB_STORE_MISSES.WALK_COMPLETED */
		},
		[C(OP_PREFETCH)] = {
			[C(RESULT_ACCESS)]	= 0x0,
			[C(RESULT_MISS)]	= 0x0,
		},
	},
	[C(ITLB)] = {
		[C(OP_READ)] = {
			[C(RESULT_ACCESS)]	= 0x00c0,	/* INST_RETIRED.ANY_P */
			[C(RESULT_MISS)]	= 0x0481,	/* ITLB.MISS */
		},
		[C(OP_WRITE)] = {
			[C(RESULT_ACCESS)]	= -1,
			[C(RESULT_MISS)]	= -1,
		},
		[C(OP_PREFETCH)] = {
			[C(RESULT_ACCESS)]	= -1,
			[C(RESULT_MISS)]	= -1,
		},
	},
	[C(BPU)] = {
		[C(OP_READ)] = {
			[C(RESULT_ACCESS)]	= 0x00c4,	/* BR_INST_RETIRED.ALL_BRANCHES */
			[C(RESULT_MISS)]	= 0x00c5,	/* BR_MISP_RETIRED.ALL_BRANCHES */
		},
		[C(OP_WRITE)] = {
			[C(RESULT_ACCESS)]	= -1,
			[C(RESULT_MISS)]	= -1,
		},
		[C(OP_PREFETCH)] = {
			[C(RESULT_ACCESS)]	= -1,
			[C(RESULT_MISS)]	= -1,
		},
	},
};

static __initconst const u64 glp_hw_cache_extra_regs
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
	[C(LL)] = {
		[C(OP_READ)] = {
			[C(RESULT_ACCESS)]	= GLM_DEMAND_READ|
						  GLM_LLC_ACCESS,
			[C(RESULT_MISS)]	= GLM_DEMAND_READ|
						  GLM_LLC_MISS,
		},
		[C(OP_WRITE)] = {
			[C(RESULT_ACCESS)]	= GLM_DEMAND_WRITE|
						  GLM_LLC_ACCESS,
			[C(RESULT_MISS)]	= GLM_DEMAND_WRITE|
						  GLM_LLC_MISS,
		},
		[C(OP_PREFETCH)] = {
			[C(RESULT_ACCESS)]	= 0x0,
			[C(RESULT_MISS)]	= 0x0,
		},
	},
};

1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865
#define KNL_OT_L2_HITE		BIT_ULL(19) /* Other Tile L2 Hit */
#define KNL_OT_L2_HITF		BIT_ULL(20) /* Other Tile L2 Hit */
#define KNL_MCDRAM_LOCAL	BIT_ULL(21)
#define KNL_MCDRAM_FAR		BIT_ULL(22)
#define KNL_DDR_LOCAL		BIT_ULL(23)
#define KNL_DDR_FAR		BIT_ULL(24)
#define KNL_DRAM_ANY		(KNL_MCDRAM_LOCAL | KNL_MCDRAM_FAR | \
				    KNL_DDR_LOCAL | KNL_DDR_FAR)
#define KNL_L2_READ		SLM_DMND_READ
#define KNL_L2_WRITE		SLM_DMND_WRITE
#define KNL_L2_PREFETCH		SLM_DMND_PREFETCH
#define KNL_L2_ACCESS		SLM_LLC_ACCESS
#define KNL_L2_MISS		(KNL_OT_L2_HITE | KNL_OT_L2_HITF | \
				   KNL_DRAM_ANY | SNB_SNP_ANY | \
						  SNB_NON_DRAM)

static __initconst const u64 knl_hw_cache_extra_regs
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
	[C(LL)] = {
		[C(OP_READ)] = {
			[C(RESULT_ACCESS)] = KNL_L2_READ | KNL_L2_ACCESS,
			[C(RESULT_MISS)]   = 0,
		},
		[C(OP_WRITE)] = {
			[C(RESULT_ACCESS)] = KNL_L2_WRITE | KNL_L2_ACCESS,
			[C(RESULT_MISS)]   = KNL_L2_WRITE | KNL_L2_MISS,
		},
		[C(OP_PREFETCH)] = {
			[C(RESULT_ACCESS)] = KNL_L2_PREFETCH | KNL_L2_ACCESS,
			[C(RESULT_MISS)]   = KNL_L2_PREFETCH | KNL_L2_MISS,
		},
	},
};

1866
/*
1867 1868 1869 1870 1871 1872
 * Used from PMIs where the LBRs are already disabled.
 *
 * This function could be called consecutively. It is required to remain in
 * disabled state if called consecutively.
 *
 * During consecutive calls, the same disable value will be written to related
1873 1874 1875 1876 1877
 * registers, so the PMU state remains unchanged.
 *
 * intel_bts events don't coexist with intel PMU's BTS events because of
 * x86_add_exclusive(x86_lbr_exclusive_lbr); there's no need to keep them
 * disabled around intel PMU's event batching etc, only inside the PMI handler.
1878 1879
 */
static void __intel_pmu_disable_all(void)
1880
{
1881
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1882 1883 1884

	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);

1885
	if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask))
1886
		intel_pmu_disable_bts();
1887 1888

	intel_pmu_pebs_disable_all();
1889 1890 1891 1892 1893
}

static void intel_pmu_disable_all(void)
{
	__intel_pmu_disable_all();
1894
	intel_pmu_lbr_disable_all();
1895 1896
}

1897
static void __intel_pmu_enable_all(int added, bool pmi)
1898
{
1899
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1900

1901
	intel_pmu_pebs_enable_all();
1902
	intel_pmu_lbr_enable_all(pmi);
1903 1904
	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL,
			x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask);
1905

1906
	if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
1907
		struct perf_event *event =
1908
			cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
1909 1910 1911 1912 1913

		if (WARN_ON_ONCE(!event))
			return;

		intel_pmu_enable_bts(event->hw.config);
1914
	}
1915 1916
}

1917 1918 1919 1920 1921
static void intel_pmu_enable_all(int added)
{
	__intel_pmu_enable_all(added, false);
}

1922 1923 1924 1925
/*
 * Workaround for:
 *   Intel Errata AAK100 (model 26)
 *   Intel Errata AAP53  (model 30)
1926
 *   Intel Errata BD53   (model 44)
1927
 *
1928 1929 1930 1931 1932 1933
 * The official story:
 *   These chips need to be 'reset' when adding counters by programming the
 *   magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
 *   in sequence on the same PMC or on different PMCs.
 *
 * In practise it appears some of these events do in fact count, and
I
Ingo Molnar 已提交
1934
 * we need to program all 4 events.
1935
 */
1936
static void intel_pmu_nhm_workaround(void)
1937
{
1938
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1939 1940 1941 1942 1943 1944 1945 1946
	static const unsigned long nhm_magic[4] = {
		0x4300B5,
		0x4300D2,
		0x4300B1,
		0x4300B1
	};
	struct perf_event *event;
	int i;
1947

1948 1949 1950 1951 1952 1953 1954 1955 1956
	/*
	 * The Errata requires below steps:
	 * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
	 * 2) Configure 4 PERFEVTSELx with the magic events and clear
	 *    the corresponding PMCx;
	 * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
	 * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
	 * 5) Clear 4 pairs of ERFEVTSELx and PMCx;
	 */
1957

1958 1959 1960 1961 1962 1963 1964 1965 1966 1967
	/*
	 * The real steps we choose are a little different from above.
	 * A) To reduce MSR operations, we don't run step 1) as they
	 *    are already cleared before this function is called;
	 * B) Call x86_perf_event_update to save PMCx before configuring
	 *    PERFEVTSELx with magic number;
	 * C) With step 5), we do clear only when the PERFEVTSELx is
	 *    not used currently.
	 * D) Call x86_perf_event_set_period to restore PMCx;
	 */
1968

1969 1970 1971 1972 1973 1974
	/* We always operate 4 pairs of PERF Counters */
	for (i = 0; i < 4; i++) {
		event = cpuc->events[i];
		if (event)
			x86_perf_event_update(event);
	}
1975

1976 1977 1978 1979 1980 1981 1982
	for (i = 0; i < 4; i++) {
		wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
		wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
	}

	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
1983

1984 1985 1986 1987 1988
	for (i = 0; i < 4; i++) {
		event = cpuc->events[i];

		if (event) {
			x86_perf_event_set_period(event);
1989
			__x86_pmu_enable_event(&event->hw,
1990 1991 1992
					ARCH_PERFMON_EVENTSEL_ENABLE);
		} else
			wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
1993
	}
1994 1995 1996 1997 1998 1999
}

static void intel_pmu_nhm_enable_all(int added)
{
	if (added)
		intel_pmu_nhm_workaround();
2000 2001 2002
	intel_pmu_enable_all(added);
}

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035
static void intel_set_tfa(struct cpu_hw_events *cpuc, bool on)
{
	u64 val = on ? MSR_TFA_RTM_FORCE_ABORT : 0;

	if (cpuc->tfa_shadow != val) {
		cpuc->tfa_shadow = val;
		wrmsrl(MSR_TSX_FORCE_ABORT, val);
	}
}

static void intel_tfa_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
{
	/*
	 * We're going to use PMC3, make sure TFA is set before we touch it.
	 */
	if (cntr == 3 && !cpuc->is_fake)
		intel_set_tfa(cpuc, true);
}

static void intel_tfa_pmu_enable_all(int added)
{
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);

	/*
	 * If we find PMC3 is no longer used when we enable the PMU, we can
	 * clear TFA.
	 */
	if (!test_bit(3, cpuc->active_mask))
		intel_set_tfa(cpuc, false);

	intel_pmu_enable_all(added);
}

2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047
static void enable_counter_freeze(void)
{
	update_debugctlmsr(get_debugctlmsr() |
			DEBUGCTLMSR_FREEZE_PERFMON_ON_PMI);
}

static void disable_counter_freeze(void)
{
	update_debugctlmsr(get_debugctlmsr() &
			~DEBUGCTLMSR_FREEZE_PERFMON_ON_PMI);
}

2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061
static inline u64 intel_pmu_get_status(void)
{
	u64 status;

	rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);

	return status;
}

static inline void intel_pmu_ack_status(u64 ack)
{
	wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
}

2062
static void intel_pmu_disable_fixed(struct hw_perf_event *hwc)
2063
{
2064
	int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
2065 2066 2067 2068 2069 2070
	u64 ctrl_val, mask;

	mask = 0xfULL << (idx * 4);

	rdmsrl(hwc->config_base, ctrl_val);
	ctrl_val &= ~mask;
2071
	wrmsrl(hwc->config_base, ctrl_val);
2072 2073
}

2074 2075 2076 2077 2078
static inline bool event_is_checkpointed(struct perf_event *event)
{
	return (event->hw.config & HSW_IN_TX_CHECKPOINTED) != 0;
}

2079
static void intel_pmu_disable_event(struct perf_event *event)
2080
{
2081
	struct hw_perf_event *hwc = &event->hw;
2082
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2083

2084
	if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
2085 2086 2087 2088 2089
		intel_pmu_disable_bts();
		intel_pmu_drain_bts_buffer();
		return;
	}

2090 2091
	cpuc->intel_ctrl_guest_mask &= ~(1ull << hwc->idx);
	cpuc->intel_ctrl_host_mask &= ~(1ull << hwc->idx);
2092
	cpuc->intel_cp_status &= ~(1ull << hwc->idx);
2093

2094 2095 2096
	if (unlikely(event->attr.precise_ip))
		intel_pmu_pebs_disable(event);

2097
	if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
2098
		intel_pmu_disable_fixed(hwc);
2099 2100 2101
		return;
	}

2102
	x86_pmu_disable_event(event);
2103 2104
}

2105 2106 2107 2108 2109 2110 2111 2112
static void intel_pmu_del_event(struct perf_event *event)
{
	if (needs_branch_stack(event))
		intel_pmu_lbr_del(event);
	if (event->attr.precise_ip)
		intel_pmu_pebs_del(event);
}

2113 2114 2115 2116 2117 2118 2119 2120
static void intel_pmu_read_event(struct perf_event *event)
{
	if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)
		intel_pmu_auto_reload_read(event);
	else
		x86_perf_event_update(event);
}

2121
static void intel_pmu_enable_fixed(struct perf_event *event)
2122
{
2123
	struct hw_perf_event *hwc = &event->hw;
2124
	int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
2125
	u64 ctrl_val, mask, bits = 0;
2126 2127

	/*
2128
	 * Enable IRQ generation (0x8), if not PEBS,
2129 2130 2131
	 * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
	 * if requested:
	 */
2132 2133
	if (!event->attr.precise_ip)
		bits |= 0x8;
2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150
	if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
		bits |= 0x2;
	if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
		bits |= 0x1;

	/*
	 * ANY bit is supported in v3 and up
	 */
	if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
		bits |= 0x4;

	bits <<= (idx * 4);
	mask = 0xfULL << (idx * 4);

	rdmsrl(hwc->config_base, ctrl_val);
	ctrl_val &= ~mask;
	ctrl_val |= bits;
2151
	wrmsrl(hwc->config_base, ctrl_val);
2152 2153
}

2154
static void intel_pmu_enable_event(struct perf_event *event)
2155
{
2156
	struct hw_perf_event *hwc = &event->hw;
2157
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2158

2159
	if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
T
Tejun Heo 已提交
2160
		if (!__this_cpu_read(cpu_hw_events.enabled))
2161 2162 2163 2164 2165 2166
			return;

		intel_pmu_enable_bts(hwc->config);
		return;
	}

2167 2168 2169 2170 2171
	if (event->attr.exclude_host)
		cpuc->intel_ctrl_guest_mask |= (1ull << hwc->idx);
	if (event->attr.exclude_guest)
		cpuc->intel_ctrl_host_mask |= (1ull << hwc->idx);

2172 2173 2174
	if (unlikely(event_is_checkpointed(event)))
		cpuc->intel_cp_status |= (1ull << hwc->idx);

2175 2176 2177
	if (unlikely(event->attr.precise_ip))
		intel_pmu_pebs_enable(event);

2178
	if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
2179
		intel_pmu_enable_fixed(event);
2180 2181 2182
		return;
	}

2183
	__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
2184 2185
}

2186 2187 2188 2189 2190 2191 2192 2193
static void intel_pmu_add_event(struct perf_event *event)
{
	if (event->attr.precise_ip)
		intel_pmu_pebs_add(event);
	if (needs_branch_stack(event))
		intel_pmu_lbr_add(event);
}

2194 2195 2196 2197
/*
 * Save and restart an expired event. Called by NMI contexts,
 * so it has to be careful about preempting normal event ops:
 */
2198
int intel_pmu_save_and_restart(struct perf_event *event)
2199
{
2200
	x86_perf_event_update(event);
2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211
	/*
	 * For a checkpointed counter always reset back to 0.  This
	 * avoids a situation where the counter overflows, aborts the
	 * transaction and is then set back to shortly before the
	 * overflow, and overflows and aborts again.
	 */
	if (unlikely(event_is_checkpointed(event))) {
		/* No race with NMIs because the counter should not be armed */
		wrmsrl(event->hw.event_base, 0);
		local64_set(&event->hw.prev_count, 0);
	}
2212
	return x86_perf_event_set_period(event);
2213 2214 2215 2216
}

static void intel_pmu_reset(void)
{
T
Tejun Heo 已提交
2217
	struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
2218 2219 2220
	unsigned long flags;
	int idx;

2221
	if (!x86_pmu.num_counters)
2222 2223 2224 2225
		return;

	local_irq_save(flags);

2226
	pr_info("clearing PMU state on CPU#%d\n", smp_processor_id());
2227

2228
	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
2229 2230
		wrmsrl_safe(x86_pmu_config_addr(idx), 0ull);
		wrmsrl_safe(x86_pmu_event_addr(idx),  0ull);
2231
	}
2232
	for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++)
2233
		wrmsrl_safe(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
2234

2235 2236 2237
	if (ds)
		ds->bts_index = ds->bts_buffer_base;

2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249
	/* Ack all overflows and disable fixed counters */
	if (x86_pmu.version >= 2) {
		intel_pmu_ack_status(intel_pmu_get_status());
		wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
	}

	/* Reset LBRs and LBR freezing */
	if (x86_pmu.lbr_nr) {
		update_debugctlmsr(get_debugctlmsr() &
			~(DEBUGCTLMSR_FREEZE_LBRS_ON_PMI|DEBUGCTLMSR_LBR));
	}

2250 2251 2252
	local_irq_restore(flags);
}

2253
static int handle_pmi_common(struct pt_regs *regs, u64 status)
2254 2255
{
	struct perf_sample_data data;
2256 2257 2258
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
	int bit;
	int handled = 0;
2259 2260

	inc_irq_stat(apic_perf_irqs);
2261

2262
	/*
2263 2264
	 * Ignore a range of extra bits in status that do not indicate
	 * overflow by themselves.
2265
	 */
2266 2267 2268 2269
	status &= ~(GLOBAL_STATUS_COND_CHG |
		    GLOBAL_STATUS_ASIF |
		    GLOBAL_STATUS_LBRS_FROZEN);
	if (!status)
2270
		return 0;
2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290
	/*
	 * In case multiple PEBS events are sampled at the same time,
	 * it is possible to have GLOBAL_STATUS bit 62 set indicating
	 * PEBS buffer overflow and also seeing at most 3 PEBS counters
	 * having their bits set in the status register. This is a sign
	 * that there was at least one PEBS record pending at the time
	 * of the PMU interrupt. PEBS counters must only be processed
	 * via the drain_pebs() calls and not via the regular sample
	 * processing loop coming after that the function, otherwise
	 * phony regular samples may be generated in the sampling buffer
	 * not marked with the EXACT tag. Another possibility is to have
	 * one PEBS event and at least one non-PEBS event whic hoverflows
	 * while PEBS has armed. In this case, bit 62 of GLOBAL_STATUS will
	 * not be set, yet the overflow status bit for the PEBS counter will
	 * be on Skylake.
	 *
	 * To avoid this problem, we systematically ignore the PEBS-enabled
	 * counters from the GLOBAL_STATUS mask and we always process PEBS
	 * events via drain_pebs().
	 */
2291 2292 2293 2294
	if (x86_pmu.flags & PMU_FL_PEBS_ALL)
		status &= ~cpuc->pebs_enabled;
	else
		status &= ~(cpuc->pebs_enabled & PEBS_COUNTER_MASK);
2295

2296 2297 2298
	/*
	 * PEBS overflow sets bit 62 in the global status register
	 */
2299 2300
	if (__test_and_clear_bit(62, (unsigned long *)&status)) {
		handled++;
2301
		x86_pmu.drain_pebs(regs);
2302
		status &= x86_pmu.intel_ctrl | GLOBAL_STATUS_TRACE_TOPAPMI;
2303
	}
2304

2305 2306 2307 2308 2309 2310 2311 2312
	/*
	 * Intel PT
	 */
	if (__test_and_clear_bit(55, (unsigned long *)&status)) {
		handled++;
		intel_pt_interrupt();
	}

2313
	/*
2314 2315 2316
	 * Checkpointed counters can lead to 'spurious' PMIs because the
	 * rollback caused by the PMI will have cleared the overflow status
	 * bit. Therefore always force probe these counters.
2317
	 */
2318
	status |= cpuc->intel_cp_status;
2319

2320
	for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
2321 2322
		struct perf_event *event = cpuc->events[bit];

2323 2324
		handled++;

2325 2326 2327 2328 2329 2330
		if (!test_bit(bit, cpuc->active_mask))
			continue;

		if (!intel_pmu_save_and_restart(event))
			continue;

2331
		perf_sample_data_init(&data, 0, event->hw.last_period);
2332

2333 2334 2335
		if (has_branch_stack(event))
			data.br_stack = &cpuc->lbr_stack;

2336
		if (perf_event_overflow(event, &data, regs))
P
Peter Zijlstra 已提交
2337
			x86_pmu_stop(event, 0);
2338 2339
	}

2340 2341 2342
	return handled;
}

2343
static bool disable_counter_freezing = true;
2344 2345
static int __init intel_perf_counter_freezing_setup(char *s)
{
2346 2347 2348 2349 2350 2351
	bool res;

	if (kstrtobool(s, &res))
		return -EINVAL;

	disable_counter_freezing = !res;
2352 2353
	return 1;
}
2354
__setup("perf_v4_pmi=", intel_perf_counter_freezing_setup);
2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431

/*
 * Simplified handler for Arch Perfmon v4:
 * - We rely on counter freezing/unfreezing to enable/disable the PMU.
 * This is done automatically on PMU ack.
 * - Ack the PMU only after the APIC.
 */

static int intel_pmu_handle_irq_v4(struct pt_regs *regs)
{
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
	int handled = 0;
	bool bts = false;
	u64 status;
	int pmu_enabled = cpuc->enabled;
	int loops = 0;

	/* PMU has been disabled because of counter freezing */
	cpuc->enabled = 0;
	if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
		bts = true;
		intel_bts_disable_local();
		handled = intel_pmu_drain_bts_buffer();
		handled += intel_bts_interrupt();
	}
	status = intel_pmu_get_status();
	if (!status)
		goto done;
again:
	intel_pmu_lbr_read();
	if (++loops > 100) {
		static bool warned;

		if (!warned) {
			WARN(1, "perfevents: irq loop stuck!\n");
			perf_event_print_debug();
			warned = true;
		}
		intel_pmu_reset();
		goto done;
	}


	handled += handle_pmi_common(regs, status);
done:
	/* Ack the PMI in the APIC */
	apic_write(APIC_LVTPC, APIC_DM_NMI);

	/*
	 * The counters start counting immediately while ack the status.
	 * Make it as close as possible to IRET. This avoids bogus
	 * freezing on Skylake CPUs.
	 */
	if (status) {
		intel_pmu_ack_status(status);
	} else {
		/*
		 * CPU may issues two PMIs very close to each other.
		 * When the PMI handler services the first one, the
		 * GLOBAL_STATUS is already updated to reflect both.
		 * When it IRETs, the second PMI is immediately
		 * handled and it sees clear status. At the meantime,
		 * there may be a third PMI, because the freezing bit
		 * isn't set since the ack in first PMI handlers.
		 * Double check if there is more work to be done.
		 */
		status = intel_pmu_get_status();
		if (status)
			goto again;
	}

	if (bts)
		intel_bts_enable_local();
	cpuc->enabled = pmu_enabled;
	return handled;
}

2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483
/*
 * This handler is triggered by the local APIC, so the APIC IRQ handling
 * rules apply:
 */
static int intel_pmu_handle_irq(struct pt_regs *regs)
{
	struct cpu_hw_events *cpuc;
	int loops;
	u64 status;
	int handled;
	int pmu_enabled;

	cpuc = this_cpu_ptr(&cpu_hw_events);

	/*
	 * Save the PMU state.
	 * It needs to be restored when leaving the handler.
	 */
	pmu_enabled = cpuc->enabled;
	/*
	 * No known reason to not always do late ACK,
	 * but just in case do it opt-in.
	 */
	if (!x86_pmu.late_ack)
		apic_write(APIC_LVTPC, APIC_DM_NMI);
	intel_bts_disable_local();
	cpuc->enabled = 0;
	__intel_pmu_disable_all();
	handled = intel_pmu_drain_bts_buffer();
	handled += intel_bts_interrupt();
	status = intel_pmu_get_status();
	if (!status)
		goto done;

	loops = 0;
again:
	intel_pmu_lbr_read();
	intel_pmu_ack_status(status);
	if (++loops > 100) {
		static bool warned;

		if (!warned) {
			WARN(1, "perfevents: irq loop stuck!\n");
			perf_event_print_debug();
			warned = true;
		}
		intel_pmu_reset();
		goto done;
	}

	handled += handle_pmi_common(regs, status);

2484 2485 2486 2487 2488 2489 2490
	/*
	 * Repeat if there is more work to be done:
	 */
	status = intel_pmu_get_status();
	if (status)
		goto again;

2491
done:
2492
	/* Only restore PMU state when it's active. See x86_pmu_disable(). */
2493 2494
	cpuc->enabled = pmu_enabled;
	if (pmu_enabled)
2495
		__intel_pmu_enable_all(0, true);
2496
	intel_bts_enable_local();
2497

2498 2499 2500 2501 2502 2503 2504
	/*
	 * Only unmask the NMI after the overflow counters
	 * have been reset. This avoids spurious NMIs on
	 * Haswell CPUs.
	 */
	if (x86_pmu.late_ack)
		apic_write(APIC_LVTPC, APIC_DM_NMI);
2505
	return handled;
2506 2507 2508
}

static struct event_constraint *
2509
intel_bts_constraints(struct perf_event *event)
2510
{
2511
	if (unlikely(intel_pmu_has_bts(event)))
2512
		return &bts_constraint;
2513

2514 2515 2516
	return NULL;
}

2517
static int intel_alt_er(int idx, u64 config)
2518
{
2519 2520
	int alt_idx = idx;

2521
	if (!(x86_pmu.flags & PMU_FL_HAS_RSP_1))
2522
		return idx;
2523

2524
	if (idx == EXTRA_REG_RSP_0)
2525
		alt_idx = EXTRA_REG_RSP_1;
2526 2527

	if (idx == EXTRA_REG_RSP_1)
2528
		alt_idx = EXTRA_REG_RSP_0;
2529

2530 2531 2532 2533
	if (config & ~x86_pmu.extra_regs[alt_idx].valid_mask)
		return idx;

	return alt_idx;
2534 2535 2536 2537 2538 2539 2540
}

static void intel_fixup_er(struct perf_event *event, int idx)
{
	event->hw.extra_reg.idx = idx;

	if (idx == EXTRA_REG_RSP_0) {
2541
		event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
2542
		event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_0].event;
2543
		event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0;
2544 2545
	} else if (idx == EXTRA_REG_RSP_1) {
		event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
2546
		event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_1].event;
2547
		event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1;
2548 2549 2550
	}
}

2551 2552 2553 2554 2555 2556 2557
/*
 * manage allocation of shared extra msr for certain events
 *
 * sharing can be:
 * per-cpu: to be shared between the various events on a single PMU
 * per-core: per-cpu + shared by HT threads
 */
2558
static struct event_constraint *
2559
__intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc,
2560 2561
				   struct perf_event *event,
				   struct hw_perf_event_extra *reg)
2562
{
2563
	struct event_constraint *c = &emptyconstraint;
2564
	struct er_account *era;
2565
	unsigned long flags;
2566
	int idx = reg->idx;
2567

2568 2569 2570 2571 2572 2573
	/*
	 * reg->alloc can be set due to existing state, so for fake cpuc we
	 * need to ignore this, otherwise we might fail to allocate proper fake
	 * state for this extra reg constraint. Also see the comment below.
	 */
	if (reg->alloc && !cpuc->is_fake)
2574
		return NULL; /* call x86_get_event_constraint() */
2575

2576
again:
2577
	era = &cpuc->shared_regs->regs[idx];
2578 2579 2580 2581 2582
	/*
	 * we use spin_lock_irqsave() to avoid lockdep issues when
	 * passing a fake cpuc
	 */
	raw_spin_lock_irqsave(&era->lock, flags);
2583 2584 2585

	if (!atomic_read(&era->ref) || era->config == reg->config) {

2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608
		/*
		 * If its a fake cpuc -- as per validate_{group,event}() we
		 * shouldn't touch event state and we can avoid doing so
		 * since both will only call get_event_constraints() once
		 * on each event, this avoids the need for reg->alloc.
		 *
		 * Not doing the ER fixup will only result in era->reg being
		 * wrong, but since we won't actually try and program hardware
		 * this isn't a problem either.
		 */
		if (!cpuc->is_fake) {
			if (idx != reg->idx)
				intel_fixup_er(event, idx);

			/*
			 * x86_schedule_events() can call get_event_constraints()
			 * multiple times on events in the case of incremental
			 * scheduling(). reg->alloc ensures we only do the ER
			 * allocation once.
			 */
			reg->alloc = 1;
		}

2609 2610 2611 2612 2613 2614 2615
		/* lock in msr value */
		era->config = reg->config;
		era->reg = reg->reg;

		/* one more user */
		atomic_inc(&era->ref);

2616
		/*
2617 2618
		 * need to call x86_get_event_constraint()
		 * to check if associated event has constraints
2619
		 */
2620
		c = NULL;
2621
	} else {
2622
		idx = intel_alt_er(idx, reg->config);
2623 2624 2625 2626
		if (idx != reg->idx) {
			raw_spin_unlock_irqrestore(&era->lock, flags);
			goto again;
		}
2627
	}
2628
	raw_spin_unlock_irqrestore(&era->lock, flags);
2629

2630 2631 2632 2633 2634 2635 2636 2637 2638 2639
	return c;
}

static void
__intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc,
				   struct hw_perf_event_extra *reg)
{
	struct er_account *era;

	/*
2640 2641 2642 2643 2644 2645
	 * Only put constraint if extra reg was actually allocated. Also takes
	 * care of event which do not use an extra shared reg.
	 *
	 * Also, if this is a fake cpuc we shouldn't touch any event state
	 * (reg->alloc) and we don't care about leaving inconsistent cpuc state
	 * either since it'll be thrown out.
2646
	 */
2647
	if (!reg->alloc || cpuc->is_fake)
2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662
		return;

	era = &cpuc->shared_regs->regs[reg->idx];

	/* one fewer user */
	atomic_dec(&era->ref);

	/* allocate again next time */
	reg->alloc = 0;
}

static struct event_constraint *
intel_shared_regs_constraints(struct cpu_hw_events *cpuc,
			      struct perf_event *event)
{
2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679
	struct event_constraint *c = NULL, *d;
	struct hw_perf_event_extra *xreg, *breg;

	xreg = &event->hw.extra_reg;
	if (xreg->idx != EXTRA_REG_NONE) {
		c = __intel_shared_reg_get_constraints(cpuc, event, xreg);
		if (c == &emptyconstraint)
			return c;
	}
	breg = &event->hw.branch_reg;
	if (breg->idx != EXTRA_REG_NONE) {
		d = __intel_shared_reg_get_constraints(cpuc, event, breg);
		if (d == &emptyconstraint) {
			__intel_shared_reg_put_constraints(cpuc, xreg);
			c = d;
		}
	}
2680
	return c;
2681 2682
}

2683
struct event_constraint *
2684 2685
x86_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
			  struct perf_event *event)
2686 2687 2688 2689 2690
{
	struct event_constraint *c;

	if (x86_pmu.event_constraints) {
		for_each_event_constraint(c, x86_pmu.event_constraints) {
2691 2692
			if ((event->hw.config & c->cmask) == c->code) {
				event->hw.flags |= c->flags;
2693
				return c;
2694
			}
2695 2696 2697 2698 2699 2700
		}
	}

	return &unconstrained;
}

2701
static struct event_constraint *
2702
__intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2703
			    struct perf_event *event)
2704 2705 2706
{
	struct event_constraint *c;

2707 2708 2709 2710
	c = intel_bts_constraints(event);
	if (c)
		return c;

2711
	c = intel_shared_regs_constraints(cpuc, event);
2712 2713 2714
	if (c)
		return c;

2715
	c = intel_pebs_constraints(event);
2716 2717 2718
	if (c)
		return c;

2719
	return x86_get_event_constraints(cpuc, idx, event);
2720 2721
}

2722 2723 2724 2725
static void
intel_start_scheduling(struct cpu_hw_events *cpuc)
{
	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2726
	struct intel_excl_states *xl;
2727 2728 2729 2730 2731
	int tid = cpuc->excl_thread_id;

	/*
	 * nothing needed if in group validation mode
	 */
2732
	if (cpuc->is_fake || !is_ht_workaround_enabled())
2733
		return;
2734

2735 2736 2737
	/*
	 * no exclusion needed
	 */
2738
	if (WARN_ON_ONCE(!excl_cntrs))
2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751
		return;

	xl = &excl_cntrs->states[tid];

	xl->sched_started = true;
	/*
	 * lock shared state until we are done scheduling
	 * in stop_event_scheduling()
	 * makes scheduling appear as a transaction
	 */
	raw_spin_lock(&excl_cntrs->lock);
}

2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771
static void intel_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
{
	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
	struct event_constraint *c = cpuc->event_constraint[idx];
	struct intel_excl_states *xl;
	int tid = cpuc->excl_thread_id;

	if (cpuc->is_fake || !is_ht_workaround_enabled())
		return;

	if (WARN_ON_ONCE(!excl_cntrs))
		return;

	if (!(c->flags & PERF_X86_EVENT_DYNAMIC))
		return;

	xl = &excl_cntrs->states[tid];

	lockdep_assert_held(&excl_cntrs->lock);

2772
	if (c->flags & PERF_X86_EVENT_EXCL)
2773
		xl->state[cntr] = INTEL_EXCL_EXCLUSIVE;
2774
	else
2775
		xl->state[cntr] = INTEL_EXCL_SHARED;
2776 2777
}

2778 2779 2780 2781
static void
intel_stop_scheduling(struct cpu_hw_events *cpuc)
{
	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2782
	struct intel_excl_states *xl;
2783 2784 2785 2786 2787
	int tid = cpuc->excl_thread_id;

	/*
	 * nothing needed if in group validation mode
	 */
2788
	if (cpuc->is_fake || !is_ht_workaround_enabled())
2789 2790 2791 2792
		return;
	/*
	 * no exclusion needed
	 */
2793
	if (WARN_ON_ONCE(!excl_cntrs))
2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804
		return;

	xl = &excl_cntrs->states[tid];

	xl->sched_started = false;
	/*
	 * release shared state lock (acquired in intel_start_scheduling())
	 */
	raw_spin_unlock(&excl_cntrs->lock);
}

2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833
static struct event_constraint *
dyn_constraint(struct cpu_hw_events *cpuc, struct event_constraint *c, int idx)
{
	WARN_ON_ONCE(!cpuc->constraint_list);

	if (!(c->flags & PERF_X86_EVENT_DYNAMIC)) {
		struct event_constraint *cx;

		/*
		 * grab pre-allocated constraint entry
		 */
		cx = &cpuc->constraint_list[idx];

		/*
		 * initialize dynamic constraint
		 * with static constraint
		 */
		*cx = *c;

		/*
		 * mark constraint as dynamic
		 */
		cx->flags |= PERF_X86_EVENT_DYNAMIC;
		c = cx;
	}

	return c;
}

2834 2835 2836 2837 2838
static struct event_constraint *
intel_get_excl_constraints(struct cpu_hw_events *cpuc, struct perf_event *event,
			   int idx, struct event_constraint *c)
{
	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2839
	struct intel_excl_states *xlo;
2840
	int tid = cpuc->excl_thread_id;
2841
	int is_excl, i;
2842 2843 2844 2845 2846

	/*
	 * validating a group does not require
	 * enforcing cross-thread  exclusion
	 */
2847 2848 2849 2850 2851 2852
	if (cpuc->is_fake || !is_ht_workaround_enabled())
		return c;

	/*
	 * no exclusion needed
	 */
2853
	if (WARN_ON_ONCE(!excl_cntrs))
2854 2855 2856 2857 2858 2859 2860 2861 2862 2863
		return c;

	/*
	 * because we modify the constraint, we need
	 * to make a copy. Static constraints come
	 * from static const tables.
	 *
	 * only needed when constraint has not yet
	 * been cloned (marked dynamic)
	 */
2864
	c = dyn_constraint(cpuc, c, idx);
2865 2866 2867 2868 2869 2870 2871 2872

	/*
	 * From here on, the constraint is dynamic.
	 * Either it was just allocated above, or it
	 * was allocated during a earlier invocation
	 * of this function
	 */

2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888
	/*
	 * state of sibling HT
	 */
	xlo = &excl_cntrs->states[tid ^ 1];

	/*
	 * event requires exclusive counter access
	 * across HT threads
	 */
	is_excl = c->flags & PERF_X86_EVENT_EXCL;
	if (is_excl && !(event->hw.flags & PERF_X86_EVENT_EXCL_ACCT)) {
		event->hw.flags |= PERF_X86_EVENT_EXCL_ACCT;
		if (!cpuc->n_excl++)
			WRITE_ONCE(excl_cntrs->has_exclusive[tid], 1);
	}

2889 2890 2891 2892 2893 2894 2895 2896
	/*
	 * Modify static constraint with current dynamic
	 * state of thread
	 *
	 * EXCLUSIVE: sibling counter measuring exclusive event
	 * SHARED   : sibling counter measuring non-exclusive event
	 * UNUSED   : sibling counter unused
	 */
2897
	for_each_set_bit(i, c->idxmsk, X86_PMC_IDX_MAX) {
2898 2899 2900 2901 2902
		/*
		 * exclusive event in sibling counter
		 * our corresponding counter cannot be used
		 * regardless of our event
		 */
2903
		if (xlo->state[i] == INTEL_EXCL_EXCLUSIVE)
2904
			__clear_bit(i, c->idxmsk);
2905 2906 2907 2908 2909
		/*
		 * if measuring an exclusive event, sibling
		 * measuring non-exclusive, then counter cannot
		 * be used
		 */
2910
		if (is_excl && xlo->state[i] == INTEL_EXCL_SHARED)
2911
			__clear_bit(i, c->idxmsk);
2912 2913 2914 2915 2916
	}

	/*
	 * recompute actual bit weight for scheduling algorithm
	 */
2917
	c->weight = hweight64(c->idxmsk64);
2918 2919 2920 2921 2922 2923

	/*
	 * if we return an empty mask, then switch
	 * back to static empty constraint to avoid
	 * the cost of freeing later on
	 */
2924 2925
	if (c->weight == 0)
		c = &emptyconstraint;
2926

2927
	return c;
2928 2929 2930 2931 2932 2933
}

static struct event_constraint *
intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
			    struct perf_event *event)
{
2934
	struct event_constraint *c1 = NULL;
2935
	struct event_constraint *c2;
2936

2937 2938 2939
	if (idx >= 0) /* fake does < 0 */
		c1 = cpuc->event_constraint[idx];

2940 2941 2942 2943 2944
	/*
	 * first time only
	 * - static constraint: no change across incremental scheduling calls
	 * - dynamic constraint: handled by intel_get_excl_constraints()
	 */
2945 2946 2947 2948 2949 2950
	c2 = __intel_get_event_constraints(cpuc, idx, event);
	if (c1 && (c1->flags & PERF_X86_EVENT_DYNAMIC)) {
		bitmap_copy(c1->idxmsk, c2->idxmsk, X86_PMC_IDX_MAX);
		c1->weight = c2->weight;
		c2 = c1;
	}
2951 2952

	if (cpuc->excl_cntrs)
2953
		return intel_get_excl_constraints(cpuc, event, idx, c2);
2954

2955
	return c2;
2956 2957 2958 2959 2960 2961 2962 2963
}

static void intel_put_excl_constraints(struct cpu_hw_events *cpuc,
		struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;
	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
	int tid = cpuc->excl_thread_id;
2964
	struct intel_excl_states *xl;
2965 2966 2967 2968 2969 2970 2971

	/*
	 * nothing needed if in group validation mode
	 */
	if (cpuc->is_fake)
		return;

2972
	if (WARN_ON_ONCE(!excl_cntrs))
2973 2974
		return;

2975 2976 2977 2978 2979
	if (hwc->flags & PERF_X86_EVENT_EXCL_ACCT) {
		hwc->flags &= ~PERF_X86_EVENT_EXCL_ACCT;
		if (!--cpuc->n_excl)
			WRITE_ONCE(excl_cntrs->has_exclusive[tid], 0);
	}
2980 2981

	/*
2982 2983
	 * If event was actually assigned, then mark the counter state as
	 * unused now.
2984
	 */
2985 2986 2987 2988 2989 2990 2991 2992 2993 2994
	if (hwc->idx >= 0) {
		xl = &excl_cntrs->states[tid];

		/*
		 * put_constraint may be called from x86_schedule_events()
		 * which already has the lock held so here make locking
		 * conditional.
		 */
		if (!xl->sched_started)
			raw_spin_lock(&excl_cntrs->lock);
2995

2996
		xl->state[hwc->idx] = INTEL_EXCL_UNUSED;
2997

2998 2999 3000
		if (!xl->sched_started)
			raw_spin_unlock(&excl_cntrs->lock);
	}
3001 3002
}

3003 3004
static void
intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc,
3005 3006
					struct perf_event *event)
{
3007
	struct hw_perf_event_extra *reg;
3008

3009 3010 3011
	reg = &event->hw.extra_reg;
	if (reg->idx != EXTRA_REG_NONE)
		__intel_shared_reg_put_constraints(cpuc, reg);
3012 3013 3014 3015

	reg = &event->hw.branch_reg;
	if (reg->idx != EXTRA_REG_NONE)
		__intel_shared_reg_put_constraints(cpuc, reg);
3016
}
3017

3018 3019 3020 3021
static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
					struct perf_event *event)
{
	intel_put_shared_regs_event_constraints(cpuc, event);
3022 3023 3024 3025 3026 3027

	/*
	 * is PMU has exclusive counter restrictions, then
	 * all events are subject to and must call the
	 * put_excl_constraints() routine
	 */
3028
	if (cpuc->excl_cntrs)
3029 3030 3031
		intel_put_excl_constraints(cpuc, event);
}

3032
static void intel_pebs_aliases_core2(struct perf_event *event)
3033
{
3034
	if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052
		/*
		 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
		 * (0x003c) so that we can use it with PEBS.
		 *
		 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
		 * PEBS capable. However we can use INST_RETIRED.ANY_P
		 * (0x00c0), which is a PEBS capable event, to get the same
		 * count.
		 *
		 * INST_RETIRED.ANY_P counts the number of cycles that retires
		 * CNTMASK instructions. By setting CNTMASK to a value (16)
		 * larger than the maximum number of instructions that can be
		 * retired per cycle (4) and then inverting the condition, we
		 * count all cycles that retire 16 or less instructions, which
		 * is every cycle.
		 *
		 * Thereby we gain a PEBS capable cycle counter.
		 */
3053 3054
		u64 alt_config = X86_CONFIG(.event=0xc0, .inv=1, .cmask=16);

3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081
		alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
		event->hw.config = alt_config;
	}
}

static void intel_pebs_aliases_snb(struct perf_event *event)
{
	if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
		/*
		 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
		 * (0x003c) so that we can use it with PEBS.
		 *
		 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
		 * PEBS capable. However we can use UOPS_RETIRED.ALL
		 * (0x01c2), which is a PEBS capable event, to get the same
		 * count.
		 *
		 * UOPS_RETIRED.ALL counts the number of cycles that retires
		 * CNTMASK micro-ops. By setting CNTMASK to a value (16)
		 * larger than the maximum number of micro-ops that can be
		 * retired per cycle (4) and then inverting the condition, we
		 * count all cycles that retire 16 or less micro-ops, which
		 * is every cycle.
		 *
		 * Thereby we gain a PEBS capable cycle counter.
		 */
		u64 alt_config = X86_CONFIG(.event=0xc2, .umask=0x01, .inv=1, .cmask=16);
3082 3083 3084 3085

		alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
		event->hw.config = alt_config;
	}
3086 3087
}

3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125
static void intel_pebs_aliases_precdist(struct perf_event *event)
{
	if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
		/*
		 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
		 * (0x003c) so that we can use it with PEBS.
		 *
		 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
		 * PEBS capable. However we can use INST_RETIRED.PREC_DIST
		 * (0x01c0), which is a PEBS capable event, to get the same
		 * count.
		 *
		 * The PREC_DIST event has special support to minimize sample
		 * shadowing effects. One drawback is that it can be
		 * only programmed on counter 1, but that seems like an
		 * acceptable trade off.
		 */
		u64 alt_config = X86_CONFIG(.event=0xc0, .umask=0x01, .inv=1, .cmask=16);

		alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
		event->hw.config = alt_config;
	}
}

static void intel_pebs_aliases_ivb(struct perf_event *event)
{
	if (event->attr.precise_ip < 3)
		return intel_pebs_aliases_snb(event);
	return intel_pebs_aliases_precdist(event);
}

static void intel_pebs_aliases_skl(struct perf_event *event)
{
	if (event->attr.precise_ip < 3)
		return intel_pebs_aliases_core2(event);
	return intel_pebs_aliases_precdist(event);
}

3126
static unsigned long intel_pmu_large_pebs_flags(struct perf_event *event)
3127
{
3128
	unsigned long flags = x86_pmu.large_pebs_flags;
3129 3130 3131

	if (event->attr.use_clockid)
		flags &= ~PERF_SAMPLE_TIME;
3132 3133 3134 3135
	if (!event->attr.exclude_kernel)
		flags &= ~PERF_SAMPLE_REGS_USER;
	if (event->attr.sample_regs_user & ~PEBS_REGS)
		flags &= ~(PERF_SAMPLE_REGS_USER | PERF_SAMPLE_REGS_INTR);
3136 3137 3138
	return flags;
}

3139 3140 3141 3142
static int intel_pmu_bts_config(struct perf_event *event)
{
	struct perf_event_attr *attr = &event->attr;

3143
	if (unlikely(intel_pmu_has_bts(event))) {
3144 3145 3146 3147 3148 3149 3150 3151
		/* BTS is not supported by this architecture. */
		if (!x86_pmu.bts_active)
			return -EOPNOTSUPP;

		/* BTS is currently only allowed for user-mode. */
		if (!attr->exclude_kernel)
			return -EOPNOTSUPP;

3152 3153 3154 3155
		/* BTS is not allowed for precise events. */
		if (attr->precise_ip)
			return -EOPNOTSUPP;

3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175
		/* disallow bts if conflicting events are present */
		if (x86_add_exclusive(x86_lbr_exclusive_lbr))
			return -EBUSY;

		event->destroy = hw_perf_lbr_event_destroy;
	}

	return 0;
}

static int core_pmu_hw_config(struct perf_event *event)
{
	int ret = x86_pmu_hw_config(event);

	if (ret)
		return ret;

	return intel_pmu_bts_config(event);
}

3176 3177 3178 3179
static int intel_pmu_hw_config(struct perf_event *event)
{
	int ret = x86_pmu_hw_config(event);

3180 3181 3182 3183
	if (ret)
		return ret;

	ret = intel_pmu_bts_config(event);
3184 3185 3186
	if (ret)
		return ret;

3187
	if (event->attr.precise_ip) {
3188
		if (!event->attr.freq) {
3189
			event->hw.flags |= PERF_X86_EVENT_AUTO_RELOAD;
3190
			if (!(event->attr.sample_type &
3191 3192
			      ~intel_pmu_large_pebs_flags(event)))
				event->hw.flags |= PERF_X86_EVENT_LARGE_PEBS;
3193
		}
3194 3195
		if (x86_pmu.pebs_aliases)
			x86_pmu.pebs_aliases(event);
3196 3197 3198

		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			event->attr.sample_type |= __PERF_SAMPLE_CALLCHAIN_EARLY;
3199
	}
3200

3201
	if (needs_branch_stack(event)) {
3202 3203 3204
		ret = intel_pmu_setup_lbr_filter(event);
		if (ret)
			return ret;
3205 3206 3207 3208

		/*
		 * BTS is set up earlier in this path, so don't account twice
		 */
3209
		if (!unlikely(intel_pmu_has_bts(event))) {
3210 3211 3212 3213 3214 3215
			/* disallow lbr if conflicting events are present */
			if (x86_add_exclusive(x86_lbr_exclusive_lbr))
				return -EBUSY;

			event->destroy = hw_perf_lbr_event_destroy;
		}
3216 3217
	}

3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234
	if (event->attr.type != PERF_TYPE_RAW)
		return 0;

	if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
		return 0;

	if (x86_pmu.version < 3)
		return -EINVAL;

	if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
		return -EACCES;

	event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;

	return 0;
}

3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245
struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr)
{
	if (x86_pmu.guest_get_msrs)
		return x86_pmu.guest_get_msrs(nr);
	*nr = 0;
	return NULL;
}
EXPORT_SYMBOL_GPL(perf_guest_get_msrs);

static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr)
{
3246
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3247 3248 3249 3250 3251
	struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;

	arr[0].msr = MSR_CORE_PERF_GLOBAL_CTRL;
	arr[0].host = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask;
	arr[0].guest = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_host_mask;
3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271
	if (x86_pmu.flags & PMU_FL_PEBS_ALL)
		arr[0].guest &= ~cpuc->pebs_enabled;
	else
		arr[0].guest &= ~(cpuc->pebs_enabled & PEBS_COUNTER_MASK);
	*nr = 1;

	if (x86_pmu.pebs && x86_pmu.pebs_no_isolation) {
		/*
		 * If PMU counter has PEBS enabled it is not enough to
		 * disable counter on a guest entry since PEBS memory
		 * write can overshoot guest entry and corrupt guest
		 * memory. Disabling PEBS solves the problem.
		 *
		 * Don't do this if the CPU already enforces it.
		 */
		arr[1].msr = MSR_IA32_PEBS_ENABLE;
		arr[1].host = cpuc->pebs_enabled;
		arr[1].guest = 0;
		*nr = 2;
	}
3272 3273 3274 3275 3276 3277

	return arr;
}

static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr)
{
3278
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311
	struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
	int idx;

	for (idx = 0; idx < x86_pmu.num_counters; idx++)  {
		struct perf_event *event = cpuc->events[idx];

		arr[idx].msr = x86_pmu_config_addr(idx);
		arr[idx].host = arr[idx].guest = 0;

		if (!test_bit(idx, cpuc->active_mask))
			continue;

		arr[idx].host = arr[idx].guest =
			event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE;

		if (event->attr.exclude_host)
			arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
		else if (event->attr.exclude_guest)
			arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
	}

	*nr = x86_pmu.num_counters;
	return arr;
}

static void core_pmu_enable_event(struct perf_event *event)
{
	if (!event->attr.exclude_host)
		x86_pmu_enable_event(event);
}

static void core_pmu_enable_all(int added)
{
3312
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325
	int idx;

	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
		struct hw_perf_event *hwc = &cpuc->events[idx]->hw;

		if (!test_bit(idx, cpuc->active_mask) ||
				cpuc->events[idx]->attr.exclude_host)
			continue;

		__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
	}
}

3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345
static int hsw_hw_config(struct perf_event *event)
{
	int ret = intel_pmu_hw_config(event);

	if (ret)
		return ret;
	if (!boot_cpu_has(X86_FEATURE_RTM) && !boot_cpu_has(X86_FEATURE_HLE))
		return 0;
	event->hw.config |= event->attr.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED);

	/*
	 * IN_TX/IN_TX-CP filters are not supported by the Haswell PMU with
	 * PEBS or in ANY thread mode. Since the results are non-sensical forbid
	 * this combination.
	 */
	if ((event->hw.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED)) &&
	     ((event->hw.config & ARCH_PERFMON_EVENTSEL_ANY) ||
	      event->attr.precise_ip > 0))
		return -EOPNOTSUPP;

3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359
	if (event_is_checkpointed(event)) {
		/*
		 * Sampling of checkpointed events can cause situations where
		 * the CPU constantly aborts because of a overflow, which is
		 * then checkpointed back and ignored. Forbid checkpointing
		 * for sampling.
		 *
		 * But still allow a long sampling period, so that perf stat
		 * from KVM works.
		 */
		if (event->attr.sample_period > 0 &&
		    event->attr.sample_period < 0x7fffffff)
			return -EOPNOTSUPP;
	}
3360 3361 3362
	return 0;
}

3363 3364 3365
static struct event_constraint counter0_constraint =
			INTEL_ALL_EVENT_CONSTRAINT(0, 0x1);

3366 3367 3368 3369
static struct event_constraint counter2_constraint =
			EVENT_CONSTRAINT(0, 0x4, 0);

static struct event_constraint *
3370 3371
hsw_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
			  struct perf_event *event)
3372
{
3373 3374 3375
	struct event_constraint *c;

	c = intel_get_event_constraints(cpuc, idx, event);
3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386

	/* Handle special quirk on in_tx_checkpointed only in counter 2 */
	if (event->hw.config & HSW_IN_TX_CHECKPOINTED) {
		if (c->idxmsk64 & (1U << 2))
			return &counter2_constraint;
		return &emptyconstraint;
	}

	return c;
}

3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401
static struct event_constraint *
glp_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
			  struct perf_event *event)
{
	struct event_constraint *c;

	/* :ppp means to do reduced skid PEBS which is PMC0 only. */
	if (event->attr.precise_ip == 3)
		return &counter0_constraint;

	c = intel_get_event_constraints(cpuc, idx, event);

	return c;
}

3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421
static bool allow_tsx_force_abort = true;

static struct event_constraint *
tfa_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
			  struct perf_event *event)
{
	struct event_constraint *c = hsw_get_event_constraints(cpuc, idx, event);

	/*
	 * Without TFA we must not use PMC3.
	 */
	if (!allow_tsx_force_abort && test_bit(3, c->idxmsk)) {
		c = dyn_constraint(cpuc, c, idx);
		c->idxmsk64 &= ~(1ULL << 3);
		c->weight--;
	}

	return c;
}

3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436
/*
 * Broadwell:
 *
 * The INST_RETIRED.ALL period always needs to have lowest 6 bits cleared
 * (BDM55) and it must not use a period smaller than 100 (BDM11). We combine
 * the two to enforce a minimum period of 128 (the smallest value that has bits
 * 0-5 cleared and >= 100).
 *
 * Because of how the code in x86_perf_event_set_period() works, the truncation
 * of the lower 6 bits is 'harmless' as we'll occasionally add a longer period
 * to make up for the 'lost' events due to carrying the 'error' in period_left.
 *
 * Therefore the effective (average) period matches the requested period,
 * despite coarser hardware granularity.
 */
3437
static u64 bdw_limit_period(struct perf_event *event, u64 left)
3438 3439 3440 3441 3442
{
	if ((event->hw.config & INTEL_ARCH_EVENT_MASK) ==
			X86_CONFIG(.event=0xc0, .umask=0x01)) {
		if (left < 128)
			left = 128;
3443
		left &= ~0x3fULL;
3444 3445 3446 3447
	}
	return left;
}

3448 3449 3450 3451 3452 3453 3454
PMU_FORMAT_ATTR(event,	"config:0-7"	);
PMU_FORMAT_ATTR(umask,	"config:8-15"	);
PMU_FORMAT_ATTR(edge,	"config:18"	);
PMU_FORMAT_ATTR(pc,	"config:19"	);
PMU_FORMAT_ATTR(any,	"config:21"	); /* v3 + */
PMU_FORMAT_ATTR(inv,	"config:23"	);
PMU_FORMAT_ATTR(cmask,	"config:24-31"	);
3455 3456
PMU_FORMAT_ATTR(in_tx,  "config:32");
PMU_FORMAT_ATTR(in_tx_cp, "config:33");
3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467

static struct attribute *intel_arch_formats_attr[] = {
	&format_attr_event.attr,
	&format_attr_umask.attr,
	&format_attr_edge.attr,
	&format_attr_pc.attr,
	&format_attr_inv.attr,
	&format_attr_cmask.attr,
	NULL,
};

3468 3469 3470 3471 3472 3473 3474
ssize_t intel_event_sysfs_show(char *page, u64 config)
{
	u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT);

	return x86_event_sysfs_show(page, config, event);
}

3475
static struct intel_shared_regs *allocate_shared_regs(int cpu)
3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493
{
	struct intel_shared_regs *regs;
	int i;

	regs = kzalloc_node(sizeof(struct intel_shared_regs),
			    GFP_KERNEL, cpu_to_node(cpu));
	if (regs) {
		/*
		 * initialize the locks to keep lockdep happy
		 */
		for (i = 0; i < EXTRA_REG_MAX; i++)
			raw_spin_lock_init(&regs->regs[i].lock);

		regs->core_id = -1;
	}
	return regs;
}

3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506
static struct intel_excl_cntrs *allocate_excl_cntrs(int cpu)
{
	struct intel_excl_cntrs *c;

	c = kzalloc_node(sizeof(struct intel_excl_cntrs),
			 GFP_KERNEL, cpu_to_node(cpu));
	if (c) {
		raw_spin_lock_init(&c->lock);
		c->core_id = -1;
	}
	return c;
}

3507

3508 3509
int intel_cpuc_prepare(struct cpu_hw_events *cpuc, int cpu)
{
3510 3511 3512
	if (x86_pmu.extra_regs || x86_pmu.lbr_sel_map) {
		cpuc->shared_regs = allocate_shared_regs(cpu);
		if (!cpuc->shared_regs)
3513
			goto err;
3514
	}
3515

3516
	if (x86_pmu.flags & (PMU_FL_EXCL_CNTRS | PMU_FL_TFA)) {
3517 3518
		size_t sz = X86_PMC_IDX_MAX * sizeof(struct event_constraint);

3519
		cpuc->constraint_list = kzalloc_node(sz, GFP_KERNEL, cpu_to_node(cpu));
3520
		if (!cpuc->constraint_list)
3521
			goto err_shared_regs;
3522
	}
3523

3524
	if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
3525
		cpuc->excl_cntrs = allocate_excl_cntrs(cpu);
3526 3527 3528
		if (!cpuc->excl_cntrs)
			goto err_constraint_list;

3529 3530
		cpuc->excl_thread_id = 0;
	}
3531

3532
	return 0;
3533 3534 3535 3536 3537 3538 3539 3540 3541 3542

err_constraint_list:
	kfree(cpuc->constraint_list);
	cpuc->constraint_list = NULL;

err_shared_regs:
	kfree(cpuc->shared_regs);
	cpuc->shared_regs = NULL;

err:
3543
	return -ENOMEM;
3544 3545
}

3546 3547 3548 3549 3550
static int intel_pmu_cpu_prepare(int cpu)
{
	return intel_cpuc_prepare(&per_cpu(cpu_hw_events, cpu), cpu);
}

3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563
static void flip_smm_bit(void *data)
{
	unsigned long set = *(unsigned long *)data;

	if (set > 0) {
		msr_set_bit(MSR_IA32_DEBUGCTLMSR,
			    DEBUGCTLMSR_FREEZE_IN_SMM_BIT);
	} else {
		msr_clear_bit(MSR_IA32_DEBUGCTLMSR,
			      DEBUGCTLMSR_FREEZE_IN_SMM_BIT);
	}
}

3564 3565
static void intel_pmu_cpu_starting(int cpu)
{
3566 3567 3568 3569
	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
	int core_id = topology_core_id(cpu);
	int i;

3570 3571 3572 3573 3574 3575
	init_debug_store_on_cpu(cpu);
	/*
	 * Deal with CPUs that don't clear their LBRs on power-up.
	 */
	intel_pmu_lbr_reset();

3576 3577
	cpuc->lbr_sel = NULL;

3578 3579
	if (x86_pmu.version > 1)
		flip_smm_bit(&x86_pmu.attr_freeze_on_smi);
3580

3581 3582 3583
	if (x86_pmu.counter_freezing)
		enable_counter_freeze();

3584
	if (!cpuc->shared_regs)
3585 3586
		return;

3587
	if (!(x86_pmu.flags & PMU_FL_NO_HT_SHARING)) {
3588
		for_each_cpu(i, topology_sibling_cpumask(cpu)) {
3589
			struct intel_shared_regs *pc;
3590

3591 3592
			pc = per_cpu(cpu_hw_events, i).shared_regs;
			if (pc && pc->core_id == core_id) {
P
Peter Zijlstra 已提交
3593
				cpuc->kfree_on_online[0] = cpuc->shared_regs;
3594 3595 3596
				cpuc->shared_regs = pc;
				break;
			}
3597
		}
3598 3599
		cpuc->shared_regs->core_id = core_id;
		cpuc->shared_regs->refcnt++;
3600 3601
	}

3602 3603
	if (x86_pmu.lbr_sel_map)
		cpuc->lbr_sel = &cpuc->shared_regs->regs[EXTRA_REG_LBR];
3604 3605

	if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
3606
		for_each_cpu(i, topology_sibling_cpumask(cpu)) {
3607
			struct cpu_hw_events *sibling;
3608 3609
			struct intel_excl_cntrs *c;

3610 3611
			sibling = &per_cpu(cpu_hw_events, i);
			c = sibling->excl_cntrs;
3612 3613 3614
			if (c && c->core_id == core_id) {
				cpuc->kfree_on_online[1] = cpuc->excl_cntrs;
				cpuc->excl_cntrs = c;
3615 3616
				if (!sibling->excl_thread_id)
					cpuc->excl_thread_id = 1;
3617 3618 3619 3620 3621 3622
				break;
			}
		}
		cpuc->excl_cntrs->core_id = core_id;
		cpuc->excl_cntrs->refcnt++;
	}
3623 3624
}

3625
static void free_excl_cntrs(struct cpu_hw_events *cpuc)
3626
{
3627
	struct intel_excl_cntrs *c;
3628

3629 3630 3631 3632 3633 3634
	c = cpuc->excl_cntrs;
	if (c) {
		if (c->core_id == -1 || --c->refcnt == 0)
			kfree(c);
		cpuc->excl_cntrs = NULL;
	}
3635 3636 3637

	kfree(cpuc->constraint_list);
	cpuc->constraint_list = NULL;
3638
}
3639

3640
static void intel_pmu_cpu_dying(int cpu)
3641 3642 3643 3644 3645 3646 3647
{
	fini_debug_store_on_cpu(cpu);

	if (x86_pmu.counter_freezing)
		disable_counter_freeze();
}

3648
void intel_cpuc_finish(struct cpu_hw_events *cpuc)
3649 3650 3651 3652 3653 3654 3655 3656
{
	struct intel_shared_regs *pc;

	pc = cpuc->shared_regs;
	if (pc) {
		if (pc->core_id == -1 || --pc->refcnt == 0)
			kfree(pc);
		cpuc->shared_regs = NULL;
3657 3658
	}

3659 3660 3661 3662 3663 3664
	free_excl_cntrs(cpuc);
}

static void intel_pmu_cpu_dead(int cpu)
{
	intel_cpuc_finish(&per_cpu(cpu_hw_events, cpu));
3665 3666
}

3667 3668 3669
static void intel_pmu_sched_task(struct perf_event_context *ctx,
				 bool sched_in)
{
3670 3671
	intel_pmu_pebs_sched_task(ctx, sched_in);
	intel_pmu_lbr_sched_task(ctx, sched_in);
3672 3673
}

3674 3675 3676 3677 3678
static int intel_pmu_check_period(struct perf_event *event, u64 value)
{
	return intel_pmu_has_bts_period(event, value) ? -EINVAL : 0;
}

3679 3680
PMU_FORMAT_ATTR(offcore_rsp, "config1:0-63");

3681 3682
PMU_FORMAT_ATTR(ldlat, "config1:0-15");

3683 3684
PMU_FORMAT_ATTR(frontend, "config1:0-23");

3685 3686 3687 3688 3689 3690 3691 3692
static struct attribute *intel_arch3_formats_attr[] = {
	&format_attr_event.attr,
	&format_attr_umask.attr,
	&format_attr_edge.attr,
	&format_attr_pc.attr,
	&format_attr_any.attr,
	&format_attr_inv.attr,
	&format_attr_cmask.attr,
3693 3694 3695 3696
	NULL,
};

static struct attribute *hsw_format_attr[] = {
3697 3698
	&format_attr_in_tx.attr,
	&format_attr_in_tx_cp.attr,
3699 3700 3701 3702
	&format_attr_offcore_rsp.attr,
	&format_attr_ldlat.attr,
	NULL
};
3703

3704 3705 3706 3707 3708 3709 3710 3711 3712
static struct attribute *nhm_format_attr[] = {
	&format_attr_offcore_rsp.attr,
	&format_attr_ldlat.attr,
	NULL
};

static struct attribute *slm_format_attr[] = {
	&format_attr_offcore_rsp.attr,
	NULL
3713 3714
};

3715 3716 3717 3718 3719
static struct attribute *skl_format_attr[] = {
	&format_attr_frontend.attr,
	NULL,
};

3720 3721 3722 3723 3724 3725 3726
static __initconst const struct x86_pmu core_pmu = {
	.name			= "core",
	.handle_irq		= x86_pmu_handle_irq,
	.disable_all		= x86_pmu_disable_all,
	.enable_all		= core_pmu_enable_all,
	.enable			= core_pmu_enable_event,
	.disable		= x86_pmu_disable_event,
3727
	.hw_config		= core_pmu_hw_config,
3728 3729 3730 3731 3732 3733
	.schedule_events	= x86_schedule_events,
	.eventsel		= MSR_ARCH_PERFMON_EVENTSEL0,
	.perfctr		= MSR_ARCH_PERFMON_PERFCTR0,
	.event_map		= intel_pmu_event_map,
	.max_events		= ARRAY_SIZE(intel_perfmon_event_map),
	.apic			= 1,
3734
	.large_pebs_flags	= LARGE_PEBS_FLAGS,
3735

3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757
	/*
	 * Intel PMCs cannot be accessed sanely above 32-bit width,
	 * so we install an artificial 1<<31 period regardless of
	 * the generic event period:
	 */
	.max_period		= (1ULL<<31) - 1,
	.get_event_constraints	= intel_get_event_constraints,
	.put_event_constraints	= intel_put_event_constraints,
	.event_constraints	= intel_core_event_constraints,
	.guest_get_msrs		= core_guest_get_msrs,
	.format_attrs		= intel_arch_formats_attr,
	.events_sysfs_show	= intel_event_sysfs_show,

	/*
	 * Virtual (or funny metal) CPU can define x86_pmu.extra_regs
	 * together with PMU version 1 and thus be using core_pmu with
	 * shared_regs. We need following callbacks here to allocate
	 * it properly.
	 */
	.cpu_prepare		= intel_pmu_cpu_prepare,
	.cpu_starting		= intel_pmu_cpu_starting,
	.cpu_dying		= intel_pmu_cpu_dying,
3758
	.cpu_dead		= intel_pmu_cpu_dead,
3759 3760

	.check_period		= intel_pmu_check_period,
3761 3762
};

3763 3764
static struct attribute *intel_pmu_attrs[];

3765
static __initconst const struct x86_pmu intel_pmu = {
3766 3767 3768 3769 3770 3771
	.name			= "Intel",
	.handle_irq		= intel_pmu_handle_irq,
	.disable_all		= intel_pmu_disable_all,
	.enable_all		= intel_pmu_enable_all,
	.enable			= intel_pmu_enable_event,
	.disable		= intel_pmu_disable_event,
3772 3773
	.add			= intel_pmu_add_event,
	.del			= intel_pmu_del_event,
3774
	.read			= intel_pmu_read_event,
3775
	.hw_config		= intel_pmu_hw_config,
3776
	.schedule_events	= x86_schedule_events,
3777 3778 3779 3780 3781
	.eventsel		= MSR_ARCH_PERFMON_EVENTSEL0,
	.perfctr		= MSR_ARCH_PERFMON_PERFCTR0,
	.event_map		= intel_pmu_event_map,
	.max_events		= ARRAY_SIZE(intel_perfmon_event_map),
	.apic			= 1,
3782
	.large_pebs_flags	= LARGE_PEBS_FLAGS,
3783 3784 3785 3786 3787 3788
	/*
	 * Intel PMCs cannot be accessed sanely above 32 bit width,
	 * so we install an artificial 1<<31 period regardless of
	 * the generic event period:
	 */
	.max_period		= (1ULL << 31) - 1,
3789
	.get_event_constraints	= intel_get_event_constraints,
3790
	.put_event_constraints	= intel_put_event_constraints,
3791
	.pebs_aliases		= intel_pebs_aliases_core2,
3792

3793
	.format_attrs		= intel_arch3_formats_attr,
3794
	.events_sysfs_show	= intel_event_sysfs_show,
3795

3796 3797
	.attrs			= intel_pmu_attrs,

3798
	.cpu_prepare		= intel_pmu_cpu_prepare,
3799 3800
	.cpu_starting		= intel_pmu_cpu_starting,
	.cpu_dying		= intel_pmu_cpu_dying,
3801 3802
	.cpu_dead		= intel_pmu_cpu_dead,

3803
	.guest_get_msrs		= intel_guest_get_msrs,
3804
	.sched_task		= intel_pmu_sched_task,
3805 3806

	.check_period		= intel_pmu_check_period,
3807 3808
};

3809
static __init void intel_clovertown_quirk(void)
3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824
{
	/*
	 * PEBS is unreliable due to:
	 *
	 *   AJ67  - PEBS may experience CPL leaks
	 *   AJ68  - PEBS PMI may be delayed by one event
	 *   AJ69  - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
	 *   AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
	 *
	 * AJ67 could be worked around by restricting the OS/USR flags.
	 * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
	 *
	 * AJ106 could possibly be worked around by not allowing LBR
	 *       usage from PEBS, including the fixup.
	 * AJ68  could possibly be worked around by always programming
3825
	 *	 a pebs_event_reset[0] value and coping with the lost events.
3826 3827 3828 3829
	 *
	 * But taken together it might just make sense to not enable PEBS on
	 * these chips.
	 */
3830
	pr_warn("PEBS disabled due to CPU errata\n");
3831 3832 3833 3834
	x86_pmu.pebs = 0;
	x86_pmu.pebs_constraints = NULL;
}

3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875
static const struct x86_cpu_desc isolation_ucodes[] = {
	INTEL_CPU_DESC(INTEL_FAM6_HASWELL_CORE,		 3, 0x0000001f),
	INTEL_CPU_DESC(INTEL_FAM6_HASWELL_ULT,		 1, 0x0000001e),
	INTEL_CPU_DESC(INTEL_FAM6_HASWELL_GT3E,		 1, 0x00000015),
	INTEL_CPU_DESC(INTEL_FAM6_HASWELL_X,		 2, 0x00000037),
	INTEL_CPU_DESC(INTEL_FAM6_HASWELL_X,		 4, 0x0000000a),
	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_CORE,	 4, 0x00000023),
	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_GT3E,	 1, 0x00000014),
	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_XEON_D,	 2, 0x00000010),
	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_XEON_D,	 3, 0x07000009),
	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_XEON_D,	 4, 0x0f000009),
	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_XEON_D,	 5, 0x0e000002),
	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_X,		 2, 0x0b000014),
	INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,		 3, 0x00000021),
	INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,		 4, 0x00000000),
	INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_MOBILE,	 3, 0x0000007c),
	INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_DESKTOP,	 3, 0x0000007c),
	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_DESKTOP,	 9, 0x0000004e),
	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_MOBILE,	 9, 0x0000004e),
	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_MOBILE,	10, 0x0000004e),
	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_MOBILE,	11, 0x0000004e),
	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_MOBILE,	12, 0x0000004e),
	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_DESKTOP,	10, 0x0000004e),
	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_DESKTOP,	11, 0x0000004e),
	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_DESKTOP,	12, 0x0000004e),
	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_DESKTOP,	13, 0x0000004e),
	{}
};

static void intel_check_pebs_isolation(void)
{
	x86_pmu.pebs_no_isolation = !x86_cpu_has_min_microcode_rev(isolation_ucodes);
}

static __init void intel_pebs_isolation_quirk(void)
{
	WARN_ON_ONCE(x86_pmu.check_microcode);
	x86_pmu.check_microcode = intel_check_pebs_isolation;
	intel_check_pebs_isolation();
}

3876 3877 3878 3879 3880 3881
static const struct x86_cpu_desc pebs_ucodes[] = {
	INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE,		7, 0x00000028),
	INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE_X,	6, 0x00000618),
	INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE_X,	7, 0x0000070c),
	{}
};
3882

3883 3884 3885
static bool intel_snb_pebs_broken(void)
{
	return !x86_cpu_has_min_microcode_rev(pebs_ucodes);
3886 3887 3888 3889
}

static void intel_snb_check_microcode(void)
{
3890
	if (intel_snb_pebs_broken() == x86_pmu.pebs_broken)
3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904
		return;

	/*
	 * Serialized by the microcode lock..
	 */
	if (x86_pmu.pebs_broken) {
		pr_info("PEBS enabled due to microcode update\n");
		x86_pmu.pebs_broken = 0;
	} else {
		pr_info("PEBS disabled due to CPU errata, please upgrade microcode\n");
		x86_pmu.pebs_broken = 1;
	}
}

3905 3906 3907 3908 3909 3910 3911
static bool is_lbr_from(unsigned long msr)
{
	unsigned long lbr_from_nr = x86_pmu.lbr_from + x86_pmu.lbr_nr;

	return x86_pmu.lbr_from <= msr && msr < lbr_from_nr;
}

3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931
/*
 * Under certain circumstances, access certain MSR may cause #GP.
 * The function tests if the input MSR can be safely accessed.
 */
static bool check_msr(unsigned long msr, u64 mask)
{
	u64 val_old, val_new, val_tmp;

	/*
	 * Read the current value, change it and read it back to see if it
	 * matches, this is needed to detect certain hardware emulators
	 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
	 */
	if (rdmsrl_safe(msr, &val_old))
		return false;

	/*
	 * Only change the bits which can be updated by wrmsrl.
	 */
	val_tmp = val_old ^ mask;
3932 3933 3934 3935

	if (is_lbr_from(msr))
		val_tmp = lbr_from_signext_quirk_wr(val_tmp);

3936 3937 3938 3939
	if (wrmsrl_safe(msr, val_tmp) ||
	    rdmsrl_safe(msr, &val_new))
		return false;

3940 3941 3942 3943
	/*
	 * Quirk only affects validation in wrmsr(), so wrmsrl()'s value
	 * should equal rdmsrl()'s even with the quirk.
	 */
3944 3945 3946
	if (val_new != val_tmp)
		return false;

3947 3948 3949
	if (is_lbr_from(msr))
		val_old = lbr_from_signext_quirk_wr(val_old);

3950 3951 3952 3953 3954 3955 3956 3957
	/* Here it's sure that the MSR can be safely accessed.
	 * Restore the old value and return.
	 */
	wrmsrl(msr, val_old);

	return true;
}

3958
static __init void intel_sandybridge_quirk(void)
3959
{
3960
	x86_pmu.check_microcode = intel_snb_check_microcode;
3961
	cpus_read_lock();
3962
	intel_snb_check_microcode();
3963
	cpus_read_unlock();
3964 3965
}

3966 3967 3968 3969 3970 3971 3972 3973
static const struct { int id; char *name; } intel_arch_events_map[] __initconst = {
	{ PERF_COUNT_HW_CPU_CYCLES, "cpu cycles" },
	{ PERF_COUNT_HW_INSTRUCTIONS, "instructions" },
	{ PERF_COUNT_HW_BUS_CYCLES, "bus cycles" },
	{ PERF_COUNT_HW_CACHE_REFERENCES, "cache references" },
	{ PERF_COUNT_HW_CACHE_MISSES, "cache misses" },
	{ PERF_COUNT_HW_BRANCH_INSTRUCTIONS, "branch instructions" },
	{ PERF_COUNT_HW_BRANCH_MISSES, "branch misses" },
3974 3975
};

3976 3977 3978 3979 3980 3981 3982
static __init void intel_arch_events_quirk(void)
{
	int bit;

	/* disable event that reported as not presend by cpuid */
	for_each_set_bit(bit, x86_pmu.events_mask, ARRAY_SIZE(intel_arch_events_map)) {
		intel_perfmon_event_map[intel_arch_events_map[bit].id] = 0;
3983 3984
		pr_warn("CPUID marked event: \'%s\' unavailable\n",
			intel_arch_events_map[bit].name);
3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002
	}
}

static __init void intel_nehalem_quirk(void)
{
	union cpuid10_ebx ebx;

	ebx.full = x86_pmu.events_maskl;
	if (ebx.split.no_branch_misses_retired) {
		/*
		 * Erratum AAJ80 detected, we work it around by using
		 * the BR_MISP_EXEC.ANY event. This will over-count
		 * branch-misses, but it's still much better than the
		 * architectural event which is often completely bogus:
		 */
		intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89;
		ebx.split.no_branch_misses_retired = 0;
		x86_pmu.events_maskl = ebx.full;
4003
		pr_info("CPU erratum AAJ80 worked around\n");
4004 4005 4006
	}
}

4007
static const struct x86_cpu_desc counter_freezing_ucodes[] = {
4008 4009 4010 4011 4012 4013
	INTEL_CPU_DESC(INTEL_FAM6_ATOM_GOLDMONT,	 2, 0x0000000e),
	INTEL_CPU_DESC(INTEL_FAM6_ATOM_GOLDMONT,	 9, 0x0000002e),
	INTEL_CPU_DESC(INTEL_FAM6_ATOM_GOLDMONT,	10, 0x00000008),
	INTEL_CPU_DESC(INTEL_FAM6_ATOM_GOLDMONT_X,	 1, 0x00000028),
	INTEL_CPU_DESC(INTEL_FAM6_ATOM_GOLDMONT_PLUS,	 1, 0x00000028),
	INTEL_CPU_DESC(INTEL_FAM6_ATOM_GOLDMONT_PLUS,	 8, 0x00000006),
4014 4015
	{}
};
4016

4017 4018 4019
static bool intel_counter_freezing_broken(void)
{
	return !x86_cpu_has_min_microcode_rev(counter_freezing_ucodes);
4020 4021
}

4022
static __init void intel_counter_freezing_quirk(void)
4023 4024 4025 4026 4027 4028 4029 4030 4031
{
	/* Check if it's already disabled */
	if (disable_counter_freezing)
		return;

	/*
	 * If the system starts with the wrong ucode, leave the
	 * counter-freezing feature permanently disabled.
	 */
4032
	if (intel_counter_freezing_broken()) {
4033 4034 4035 4036 4037 4038 4039
		pr_info("PMU counter freezing disabled due to CPU errata,"
			"please upgrade microcode\n");
		x86_pmu.counter_freezing = false;
		x86_pmu.handle_irq = intel_pmu_handle_irq;
	}
}

4040 4041 4042 4043 4044 4045 4046
/*
 * enable software workaround for errata:
 * SNB: BJ122
 * IVB: BV98
 * HSW: HSD29
 *
 * Only needed when HT is enabled. However detecting
4047 4048 4049 4050
 * if HT is enabled is difficult (model specific). So instead,
 * we enable the workaround in the early boot, and verify if
 * it is needed in a later initcall phase once we have valid
 * topology information to check if HT is actually enabled
4051 4052 4053
 */
static __init void intel_ht_bug(void)
{
4054
	x86_pmu.flags |= PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED;
4055 4056

	x86_pmu.start_scheduling = intel_start_scheduling;
4057
	x86_pmu.commit_scheduling = intel_commit_scheduling;
4058 4059 4060
	x86_pmu.stop_scheduling = intel_stop_scheduling;
}

4061 4062
EVENT_ATTR_STR(mem-loads,	mem_ld_hsw,	"event=0xcd,umask=0x1,ldlat=3");
EVENT_ATTR_STR(mem-stores,	mem_st_hsw,	"event=0xd0,umask=0x82")
4063

4064
/* Haswell special events */
4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076
EVENT_ATTR_STR(tx-start,	tx_start,	"event=0xc9,umask=0x1");
EVENT_ATTR_STR(tx-commit,	tx_commit,	"event=0xc9,umask=0x2");
EVENT_ATTR_STR(tx-abort,	tx_abort,	"event=0xc9,umask=0x4");
EVENT_ATTR_STR(tx-capacity,	tx_capacity,	"event=0x54,umask=0x2");
EVENT_ATTR_STR(tx-conflict,	tx_conflict,	"event=0x54,umask=0x1");
EVENT_ATTR_STR(el-start,	el_start,	"event=0xc8,umask=0x1");
EVENT_ATTR_STR(el-commit,	el_commit,	"event=0xc8,umask=0x2");
EVENT_ATTR_STR(el-abort,	el_abort,	"event=0xc8,umask=0x4");
EVENT_ATTR_STR(el-capacity,	el_capacity,	"event=0x54,umask=0x2");
EVENT_ATTR_STR(el-conflict,	el_conflict,	"event=0x54,umask=0x1");
EVENT_ATTR_STR(cycles-t,	cycles_t,	"event=0x3c,in_tx=1");
EVENT_ATTR_STR(cycles-ct,	cycles_ct,	"event=0x3c,in_tx=1,in_tx_cp=1");
4077

4078
static struct attribute *hsw_events_attrs[] = {
4079 4080 4081 4082 4083 4084 4085 4086 4087 4088
	EVENT_PTR(td_slots_issued),
	EVENT_PTR(td_slots_retired),
	EVENT_PTR(td_fetch_bubbles),
	EVENT_PTR(td_total_slots),
	EVENT_PTR(td_total_slots_scale),
	EVENT_PTR(td_recovery_bubbles),
	EVENT_PTR(td_recovery_bubbles_scale),
	NULL
};

4089 4090 4091 4092 4093 4094
static struct attribute *hsw_mem_events_attrs[] = {
	EVENT_PTR(mem_ld_hsw),
	EVENT_PTR(mem_st_hsw),
	NULL,
};

4095
static struct attribute *hsw_tsx_events_attrs[] = {
4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107
	EVENT_PTR(tx_start),
	EVENT_PTR(tx_commit),
	EVENT_PTR(tx_abort),
	EVENT_PTR(tx_capacity),
	EVENT_PTR(tx_conflict),
	EVENT_PTR(el_start),
	EVENT_PTR(el_commit),
	EVENT_PTR(el_abort),
	EVENT_PTR(el_capacity),
	EVENT_PTR(el_conflict),
	EVENT_PTR(cycles_t),
	EVENT_PTR(cycles_ct),
4108 4109 4110
	NULL
};

4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151
static ssize_t freeze_on_smi_show(struct device *cdev,
				  struct device_attribute *attr,
				  char *buf)
{
	return sprintf(buf, "%lu\n", x86_pmu.attr_freeze_on_smi);
}

static DEFINE_MUTEX(freeze_on_smi_mutex);

static ssize_t freeze_on_smi_store(struct device *cdev,
				   struct device_attribute *attr,
				   const char *buf, size_t count)
{
	unsigned long val;
	ssize_t ret;

	ret = kstrtoul(buf, 0, &val);
	if (ret)
		return ret;

	if (val > 1)
		return -EINVAL;

	mutex_lock(&freeze_on_smi_mutex);

	if (x86_pmu.attr_freeze_on_smi == val)
		goto done;

	x86_pmu.attr_freeze_on_smi = val;

	get_online_cpus();
	on_each_cpu(flip_smm_bit, &val, 1);
	put_online_cpus();
done:
	mutex_unlock(&freeze_on_smi_mutex);

	return count;
}

static DEVICE_ATTR_RW(freeze_on_smi);

4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177
static ssize_t branches_show(struct device *cdev,
			     struct device_attribute *attr,
			     char *buf)
{
	return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu.lbr_nr);
}

static DEVICE_ATTR_RO(branches);

static struct attribute *lbr_attrs[] = {
	&dev_attr_branches.attr,
	NULL
};

static char pmu_name_str[30];

static ssize_t pmu_name_show(struct device *cdev,
			     struct device_attribute *attr,
			     char *buf)
{
	return snprintf(buf, PAGE_SIZE, "%s\n", pmu_name_str);
}

static DEVICE_ATTR_RO(pmu_name);

static struct attribute *intel_pmu_caps_attrs[] = {
P
Peter Zijlstra 已提交
4178 4179
       &dev_attr_pmu_name.attr,
       NULL
4180 4181
};

4182 4183
DEVICE_BOOL_ATTR(allow_tsx_force_abort, 0644, allow_tsx_force_abort);

4184 4185
static struct attribute *intel_pmu_attrs[] = {
	&dev_attr_freeze_on_smi.attr,
4186
	NULL, /* &dev_attr_allow_tsx_force_abort.attr.attr */
4187 4188 4189
	NULL,
};

4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210
static __init struct attribute **
get_events_attrs(struct attribute **base,
		 struct attribute **mem,
		 struct attribute **tsx)
{
	struct attribute **attrs = base;
	struct attribute **old;

	if (mem && x86_pmu.pebs)
		attrs = merge_attr(attrs, mem);

	if (tsx && boot_cpu_has(X86_FEATURE_RTM)) {
		old = attrs;
		attrs = merge_attr(attrs, tsx);
		if (old != base)
			kfree(old);
	}

	return attrs;
}

4211
__init int intel_pmu_init(void)
4212
{
4213
	struct attribute **extra_attr = NULL;
4214 4215
	struct attribute **mem_attr = NULL;
	struct attribute **tsx_attr = NULL;
4216
	struct attribute **to_free = NULL;
4217 4218
	union cpuid10_edx edx;
	union cpuid10_eax eax;
4219
	union cpuid10_ebx ebx;
4220
	struct event_constraint *c;
4221
	unsigned int unused;
4222 4223
	struct extra_reg *er;
	int version, i;
4224
	char *name;
4225 4226

	if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
4227 4228 4229
		switch (boot_cpu_data.x86) {
		case 0x6:
			return p6_pmu_init();
4230 4231
		case 0xb:
			return knc_pmu_init();
4232 4233 4234
		case 0xf:
			return p4_pmu_init();
		}
4235 4236 4237 4238 4239 4240 4241
		return -ENODEV;
	}

	/*
	 * Check whether the Architectural PerfMon supports
	 * Branch Misses Retired hw_event or not.
	 */
4242 4243
	cpuid(10, &eax.full, &ebx.full, &unused, &edx.full);
	if (eax.split.mask_length < ARCH_PERFMON_EVENTS_COUNT)
4244 4245 4246 4247 4248 4249 4250 4251 4252
		return -ENODEV;

	version = eax.split.version_id;
	if (version < 2)
		x86_pmu = core_pmu;
	else
		x86_pmu = intel_pmu;

	x86_pmu.version			= version;
4253 4254 4255
	x86_pmu.num_counters		= eax.split.num_counters;
	x86_pmu.cntval_bits		= eax.split.bit_width;
	x86_pmu.cntval_mask		= (1ULL << eax.split.bit_width) - 1;
4256

4257 4258 4259
	x86_pmu.events_maskl		= ebx.full;
	x86_pmu.events_mask_len		= eax.split.mask_length;

4260 4261
	x86_pmu.max_pebs_events		= min_t(unsigned, MAX_PEBS_EVENTS, x86_pmu.num_counters);

4262 4263
	/*
	 * Quirk: v2 perfmon does not report fixed-purpose events, so
4264
	 * assume at least 3 events, when not running in a hypervisor:
4265
	 */
4266 4267 4268 4269 4270 4271
	if (version > 1) {
		int assume = 3 * !boot_cpu_has(X86_FEATURE_HYPERVISOR);

		x86_pmu.num_counters_fixed =
			max((int)edx.split.num_counters_fixed, assume);
	}
4272

4273 4274 4275
	if (version >= 4)
		x86_pmu.counter_freezing = !disable_counter_freezing;

4276
	if (boot_cpu_has(X86_FEATURE_PDCM)) {
4277 4278 4279 4280 4281 4282
		u64 capabilities;

		rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities);
		x86_pmu.intel_cap.capabilities = capabilities;
	}

4283 4284
	intel_ds_init();

4285 4286
	x86_add_quirk(intel_arch_events_quirk); /* Install first, so it runs last */

4287 4288 4289 4290
	/*
	 * Install the hw-cache-events table:
	 */
	switch (boot_cpu_data.x86_model) {
4291
	case INTEL_FAM6_CORE_YONAH:
4292
		pr_cont("Core events, ");
4293
		name = "core";
4294 4295
		break;

4296
	case INTEL_FAM6_CORE2_MEROM:
4297
		x86_add_quirk(intel_clovertown_quirk);
4298 4299
		/* fall through */

4300 4301 4302
	case INTEL_FAM6_CORE2_MEROM_L:
	case INTEL_FAM6_CORE2_PENRYN:
	case INTEL_FAM6_CORE2_DUNNINGTON:
4303 4304 4305
		memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
		       sizeof(hw_cache_event_ids));

4306 4307
		intel_pmu_lbr_init_core();

4308
		x86_pmu.event_constraints = intel_core2_event_constraints;
4309
		x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints;
4310
		pr_cont("Core2 events, ");
4311
		name = "core2";
4312 4313
		break;

4314 4315 4316
	case INTEL_FAM6_NEHALEM:
	case INTEL_FAM6_NEHALEM_EP:
	case INTEL_FAM6_NEHALEM_EX:
4317 4318
		memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
		       sizeof(hw_cache_event_ids));
4319 4320
		memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
		       sizeof(hw_cache_extra_regs));
4321

4322 4323
		intel_pmu_lbr_init_nhm();

4324
		x86_pmu.event_constraints = intel_nehalem_event_constraints;
4325
		x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints;
4326
		x86_pmu.enable_all = intel_pmu_nhm_enable_all;
4327
		x86_pmu.extra_regs = intel_nehalem_extra_regs;
4328

4329
		mem_attr = nhm_mem_events_attrs;
4330

4331
		/* UOPS_ISSUED.STALLED_CYCLES */
4332 4333
		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
4334
		/* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
4335 4336
		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
			X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
4337

4338
		intel_pmu_pebs_data_source_nhm();
4339
		x86_add_quirk(intel_nehalem_quirk);
4340
		x86_pmu.pebs_no_tlb = 1;
4341
		extra_attr = nhm_format_attr;
4342

4343
		pr_cont("Nehalem events, ");
4344
		name = "nehalem";
4345
		break;
4346

4347 4348 4349 4350 4351
	case INTEL_FAM6_ATOM_BONNELL:
	case INTEL_FAM6_ATOM_BONNELL_MID:
	case INTEL_FAM6_ATOM_SALTWELL:
	case INTEL_FAM6_ATOM_SALTWELL_MID:
	case INTEL_FAM6_ATOM_SALTWELL_TABLET:
4352 4353 4354
		memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
		       sizeof(hw_cache_event_ids));

4355 4356
		intel_pmu_lbr_init_atom();

4357
		x86_pmu.event_constraints = intel_gen_event_constraints;
4358
		x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints;
4359
		x86_pmu.pebs_aliases = intel_pebs_aliases_core2;
4360
		pr_cont("Atom events, ");
4361
		name = "bonnell";
4362 4363
		break;

4364 4365 4366
	case INTEL_FAM6_ATOM_SILVERMONT:
	case INTEL_FAM6_ATOM_SILVERMONT_X:
	case INTEL_FAM6_ATOM_SILVERMONT_MID:
4367
	case INTEL_FAM6_ATOM_AIRMONT:
4368
	case INTEL_FAM6_ATOM_AIRMONT_MID:
4369 4370 4371 4372 4373
		memcpy(hw_cache_event_ids, slm_hw_cache_event_ids,
			sizeof(hw_cache_event_ids));
		memcpy(hw_cache_extra_regs, slm_hw_cache_extra_regs,
		       sizeof(hw_cache_extra_regs));

4374
		intel_pmu_lbr_init_slm();
4375 4376 4377 4378

		x86_pmu.event_constraints = intel_slm_event_constraints;
		x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
		x86_pmu.extra_regs = intel_slm_extra_regs;
4379
		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4380
		x86_pmu.cpu_events = slm_events_attrs;
4381
		extra_attr = slm_format_attr;
4382
		pr_cont("Silvermont events, ");
4383
		name = "silvermont";
4384 4385
		break;

4386
	case INTEL_FAM6_ATOM_GOLDMONT:
4387
	case INTEL_FAM6_ATOM_GOLDMONT_X:
4388
		x86_add_quirk(intel_counter_freezing_quirk);
4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405
		memcpy(hw_cache_event_ids, glm_hw_cache_event_ids,
		       sizeof(hw_cache_event_ids));
		memcpy(hw_cache_extra_regs, glm_hw_cache_extra_regs,
		       sizeof(hw_cache_extra_regs));

		intel_pmu_lbr_init_skl();

		x86_pmu.event_constraints = intel_slm_event_constraints;
		x86_pmu.pebs_constraints = intel_glm_pebs_event_constraints;
		x86_pmu.extra_regs = intel_glm_extra_regs;
		/*
		 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
		 * for precise cycles.
		 * :pp is identical to :ppp
		 */
		x86_pmu.pebs_aliases = NULL;
		x86_pmu.pebs_prec_dist = true;
4406
		x86_pmu.lbr_pt_coexist = true;
4407
		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4408
		x86_pmu.cpu_events = glm_events_attrs;
4409
		extra_attr = slm_format_attr;
4410
		pr_cont("Goldmont events, ");
4411
		name = "goldmont";
4412 4413
		break;

4414
	case INTEL_FAM6_ATOM_GOLDMONT_PLUS:
4415
		x86_add_quirk(intel_counter_freezing_quirk);
4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432
		memcpy(hw_cache_event_ids, glp_hw_cache_event_ids,
		       sizeof(hw_cache_event_ids));
		memcpy(hw_cache_extra_regs, glp_hw_cache_extra_regs,
		       sizeof(hw_cache_extra_regs));

		intel_pmu_lbr_init_skl();

		x86_pmu.event_constraints = intel_slm_event_constraints;
		x86_pmu.extra_regs = intel_glm_extra_regs;
		/*
		 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
		 * for precise cycles.
		 */
		x86_pmu.pebs_aliases = NULL;
		x86_pmu.pebs_prec_dist = true;
		x86_pmu.lbr_pt_coexist = true;
		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4433
		x86_pmu.flags |= PMU_FL_PEBS_ALL;
4434 4435 4436 4437
		x86_pmu.get_event_constraints = glp_get_event_constraints;
		x86_pmu.cpu_events = glm_events_attrs;
		/* Goldmont Plus has 4-wide pipeline */
		event_attr_td_total_slots_scale_glm.event_str = "4";
4438
		extra_attr = slm_format_attr;
4439
		pr_cont("Goldmont plus events, ");
4440
		name = "goldmont_plus";
4441 4442
		break;

4443 4444 4445
	case INTEL_FAM6_WESTMERE:
	case INTEL_FAM6_WESTMERE_EP:
	case INTEL_FAM6_WESTMERE_EX:
4446 4447
		memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
		       sizeof(hw_cache_event_ids));
4448 4449
		memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
		       sizeof(hw_cache_extra_regs));
4450

4451 4452
		intel_pmu_lbr_init_nhm();

4453
		x86_pmu.event_constraints = intel_westmere_event_constraints;
4454
		x86_pmu.enable_all = intel_pmu_nhm_enable_all;
4455
		x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints;
4456
		x86_pmu.extra_regs = intel_westmere_extra_regs;
4457
		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4458

4459
		mem_attr = nhm_mem_events_attrs;
4460

4461
		/* UOPS_ISSUED.STALLED_CYCLES */
4462 4463
		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
4464
		/* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
4465 4466
		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
			X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
4467

4468
		intel_pmu_pebs_data_source_nhm();
4469
		extra_attr = nhm_format_attr;
4470
		pr_cont("Westmere events, ");
4471
		name = "westmere";
4472
		break;
4473

4474 4475
	case INTEL_FAM6_SANDYBRIDGE:
	case INTEL_FAM6_SANDYBRIDGE_X:
4476
		x86_add_quirk(intel_sandybridge_quirk);
4477
		x86_add_quirk(intel_ht_bug);
4478 4479
		memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
		       sizeof(hw_cache_event_ids));
4480 4481
		memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
		       sizeof(hw_cache_extra_regs));
4482

4483
		intel_pmu_lbr_init_snb();
4484 4485

		x86_pmu.event_constraints = intel_snb_event_constraints;
4486
		x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints;
4487
		x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
4488
		if (boot_cpu_data.x86_model == INTEL_FAM6_SANDYBRIDGE_X)
4489 4490 4491
			x86_pmu.extra_regs = intel_snbep_extra_regs;
		else
			x86_pmu.extra_regs = intel_snb_extra_regs;
4492 4493


4494
		/* all extra regs are per-cpu when HT is on */
4495 4496
		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
4497

4498
		x86_pmu.cpu_events = snb_events_attrs;
4499
		mem_attr = snb_mem_events_attrs;
4500

4501
		/* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
4502 4503
		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
4504
		/* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
4505 4506
		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
			X86_CONFIG(.event=0xb1, .umask=0x01, .inv=1, .cmask=1);
4507

4508 4509
		extra_attr = nhm_format_attr;

4510
		pr_cont("SandyBridge events, ");
4511
		name = "sandybridge";
4512
		break;
4513

4514 4515
	case INTEL_FAM6_IVYBRIDGE:
	case INTEL_FAM6_IVYBRIDGE_X:
4516
		x86_add_quirk(intel_ht_bug);
4517 4518
		memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
		       sizeof(hw_cache_event_ids));
4519 4520 4521
		/* dTLB-load-misses on IVB is different than SNB */
		hw_cache_event_ids[C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = 0x8108; /* DTLB_LOAD_MISSES.DEMAND_LD_MISS_CAUSES_A_WALK */

4522 4523 4524 4525 4526
		memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
		       sizeof(hw_cache_extra_regs));

		intel_pmu_lbr_init_snb();

4527
		x86_pmu.event_constraints = intel_ivb_event_constraints;
4528
		x86_pmu.pebs_constraints = intel_ivb_pebs_event_constraints;
4529 4530
		x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
		x86_pmu.pebs_prec_dist = true;
4531
		if (boot_cpu_data.x86_model == INTEL_FAM6_IVYBRIDGE_X)
4532 4533 4534
			x86_pmu.extra_regs = intel_snbep_extra_regs;
		else
			x86_pmu.extra_regs = intel_snb_extra_regs;
4535
		/* all extra regs are per-cpu when HT is on */
4536 4537
		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
4538

4539
		x86_pmu.cpu_events = snb_events_attrs;
4540
		mem_attr = snb_mem_events_attrs;
4541

4542 4543 4544 4545
		/* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);

4546 4547
		extra_attr = nhm_format_attr;

4548
		pr_cont("IvyBridge events, ");
4549
		name = "ivybridge";
4550 4551
		break;

4552

4553 4554 4555 4556
	case INTEL_FAM6_HASWELL_CORE:
	case INTEL_FAM6_HASWELL_X:
	case INTEL_FAM6_HASWELL_ULT:
	case INTEL_FAM6_HASWELL_GT3E:
4557
		x86_add_quirk(intel_ht_bug);
4558
		x86_add_quirk(intel_pebs_isolation_quirk);
4559
		x86_pmu.late_ack = true;
4560 4561
		memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
		memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
4562

4563
		intel_pmu_lbr_init_hsw();
4564 4565

		x86_pmu.event_constraints = intel_hsw_event_constraints;
4566
		x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints;
4567
		x86_pmu.extra_regs = intel_snbep_extra_regs;
4568 4569
		x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
		x86_pmu.pebs_prec_dist = true;
4570
		/* all extra regs are per-cpu when HT is on */
4571 4572
		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
4573 4574 4575

		x86_pmu.hw_config = hsw_hw_config;
		x86_pmu.get_event_constraints = hsw_get_event_constraints;
4576
		x86_pmu.cpu_events = hsw_events_attrs;
4577
		x86_pmu.lbr_double_abort = true;
4578 4579
		extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
			hsw_format_attr : nhm_format_attr;
4580 4581
		mem_attr = hsw_mem_events_attrs;
		tsx_attr = hsw_tsx_events_attrs;
4582
		pr_cont("Haswell events, ");
4583
		name = "haswell";
4584 4585
		break;

4586 4587 4588 4589
	case INTEL_FAM6_BROADWELL_CORE:
	case INTEL_FAM6_BROADWELL_XEON_D:
	case INTEL_FAM6_BROADWELL_GT3E:
	case INTEL_FAM6_BROADWELL_X:
4590
		x86_add_quirk(intel_pebs_isolation_quirk);
4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604
		x86_pmu.late_ack = true;
		memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
		memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));

		/* L3_MISS_LOCAL_DRAM is BIT(26) in Broadwell */
		hw_cache_extra_regs[C(LL)][C(OP_READ)][C(RESULT_MISS)] = HSW_DEMAND_READ |
									 BDW_L3_MISS|HSW_SNOOP_DRAM;
		hw_cache_extra_regs[C(LL)][C(OP_WRITE)][C(RESULT_MISS)] = HSW_DEMAND_WRITE|BDW_L3_MISS|
									  HSW_SNOOP_DRAM;
		hw_cache_extra_regs[C(NODE)][C(OP_READ)][C(RESULT_ACCESS)] = HSW_DEMAND_READ|
									     BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
		hw_cache_extra_regs[C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = HSW_DEMAND_WRITE|
									      BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;

4605
		intel_pmu_lbr_init_hsw();
4606 4607

		x86_pmu.event_constraints = intel_bdw_event_constraints;
4608
		x86_pmu.pebs_constraints = intel_bdw_pebs_event_constraints;
4609
		x86_pmu.extra_regs = intel_snbep_extra_regs;
4610 4611
		x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
		x86_pmu.pebs_prec_dist = true;
4612
		/* all extra regs are per-cpu when HT is on */
4613 4614
		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
4615 4616 4617

		x86_pmu.hw_config = hsw_hw_config;
		x86_pmu.get_event_constraints = hsw_get_event_constraints;
4618
		x86_pmu.cpu_events = hsw_events_attrs;
4619
		x86_pmu.limit_period = bdw_limit_period;
4620 4621
		extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
			hsw_format_attr : nhm_format_attr;
4622 4623
		mem_attr = hsw_mem_events_attrs;
		tsx_attr = hsw_tsx_events_attrs;
4624
		pr_cont("Broadwell events, ");
4625
		name = "broadwell";
4626 4627
		break;

4628
	case INTEL_FAM6_XEON_PHI_KNL:
P
Piotr Luc 已提交
4629
	case INTEL_FAM6_XEON_PHI_KNM:
4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642
		memcpy(hw_cache_event_ids,
		       slm_hw_cache_event_ids, sizeof(hw_cache_event_ids));
		memcpy(hw_cache_extra_regs,
		       knl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
		intel_pmu_lbr_init_knl();

		x86_pmu.event_constraints = intel_slm_event_constraints;
		x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
		x86_pmu.extra_regs = intel_knl_extra_regs;

		/* all extra regs are per-cpu when HT is on */
		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
4643
		extra_attr = slm_format_attr;
P
Piotr Luc 已提交
4644
		pr_cont("Knights Landing/Mill events, ");
4645
		name = "knights-landing";
4646 4647
		break;

4648 4649 4650 4651 4652
	case INTEL_FAM6_SKYLAKE_MOBILE:
	case INTEL_FAM6_SKYLAKE_DESKTOP:
	case INTEL_FAM6_SKYLAKE_X:
	case INTEL_FAM6_KABYLAKE_MOBILE:
	case INTEL_FAM6_KABYLAKE_DESKTOP:
4653
		x86_add_quirk(intel_pebs_isolation_quirk);
4654 4655 4656 4657 4658
		x86_pmu.late_ack = true;
		memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
		memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
		intel_pmu_lbr_init_skl();

4659 4660 4661 4662 4663 4664
		/* INT_MISC.RECOVERY_CYCLES has umask 1 in Skylake */
		event_attr_td_recovery_bubbles.event_str_noht =
			"event=0xd,umask=0x1,cmask=1";
		event_attr_td_recovery_bubbles.event_str_ht =
			"event=0xd,umask=0x1,cmask=1,any=1";

4665 4666 4667
		x86_pmu.event_constraints = intel_skl_event_constraints;
		x86_pmu.pebs_constraints = intel_skl_pebs_event_constraints;
		x86_pmu.extra_regs = intel_skl_extra_regs;
4668 4669
		x86_pmu.pebs_aliases = intel_pebs_aliases_skl;
		x86_pmu.pebs_prec_dist = true;
4670 4671 4672 4673 4674 4675
		/* all extra regs are per-cpu when HT is on */
		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;

		x86_pmu.hw_config = hsw_hw_config;
		x86_pmu.get_event_constraints = hsw_get_event_constraints;
4676 4677 4678
		extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
			hsw_format_attr : nhm_format_attr;
		extra_attr = merge_attr(extra_attr, skl_format_attr);
4679
		to_free = extra_attr;
4680 4681 4682
		x86_pmu.cpu_events = hsw_events_attrs;
		mem_attr = hsw_mem_events_attrs;
		tsx_attr = hsw_tsx_events_attrs;
4683 4684
		intel_pmu_pebs_data_source_skl(
			boot_cpu_data.x86_model == INTEL_FAM6_SKYLAKE_X);
4685 4686 4687 4688 4689 4690 4691 4692 4693

		if (boot_cpu_has(X86_FEATURE_TSX_FORCE_ABORT)) {
			x86_pmu.flags |= PMU_FL_TFA;
			x86_pmu.get_event_constraints = tfa_get_event_constraints;
			x86_pmu.enable_all = intel_tfa_pmu_enable_all;
			x86_pmu.commit_scheduling = intel_tfa_commit_scheduling;
			intel_pmu_attrs[1] = &dev_attr_allow_tsx_force_abort.attr.attr;
		}

4694
		pr_cont("Skylake events, ");
4695
		name = "skylake";
4696 4697
		break;

4698
	default:
4699 4700 4701 4702
		switch (x86_pmu.version) {
		case 1:
			x86_pmu.event_constraints = intel_v1_event_constraints;
			pr_cont("generic architected perfmon v1, ");
4703
			name = "generic_arch_v1";
4704 4705 4706 4707 4708 4709 4710
			break;
		default:
			/*
			 * default constraints for v2 and up
			 */
			x86_pmu.event_constraints = intel_gen_event_constraints;
			pr_cont("generic architected perfmon, ");
4711
			name = "generic_arch_v2+";
4712 4713
			break;
		}
4714
	}
4715

4716
	snprintf(pmu_name_str, sizeof(pmu_name_str), "%s", name);
4717

4718 4719 4720 4721 4722 4723
	if (version >= 2 && extra_attr) {
		x86_pmu.format_attrs = merge_attr(intel_arch3_formats_attr,
						  extra_attr);
		WARN_ON(!x86_pmu.format_attrs);
	}

4724 4725 4726
	x86_pmu.cpu_events = get_events_attrs(x86_pmu.cpu_events,
					      mem_attr, tsx_attr);

4727 4728 4729 4730 4731
	if (x86_pmu.num_counters > INTEL_PMC_MAX_GENERIC) {
		WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
		     x86_pmu.num_counters, INTEL_PMC_MAX_GENERIC);
		x86_pmu.num_counters = INTEL_PMC_MAX_GENERIC;
	}
4732
	x86_pmu.intel_ctrl = (1ULL << x86_pmu.num_counters) - 1;
4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748

	if (x86_pmu.num_counters_fixed > INTEL_PMC_MAX_FIXED) {
		WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
		     x86_pmu.num_counters_fixed, INTEL_PMC_MAX_FIXED);
		x86_pmu.num_counters_fixed = INTEL_PMC_MAX_FIXED;
	}

	x86_pmu.intel_ctrl |=
		((1LL << x86_pmu.num_counters_fixed)-1) << INTEL_PMC_IDX_FIXED;

	if (x86_pmu.event_constraints) {
		/*
		 * event on fixed counter2 (REF_CYCLES) only works on this
		 * counter, so do not extend mask to generic counters
		 */
		for_each_event_constraint(c, x86_pmu.event_constraints) {
4749 4750 4751
			if (c->cmask == FIXED_EVENT_FLAGS
			    && c->idxmsk64 != INTEL_PMC_MSK_FIXED_REF_CYCLES) {
				c->idxmsk64 |= (1ULL << x86_pmu.num_counters) - 1;
4752
			}
4753
			c->idxmsk64 &=
4754
				~(~0ULL << (INTEL_PMC_IDX_FIXED + x86_pmu.num_counters_fixed));
4755
			c->weight = hweight64(c->idxmsk64);
4756 4757 4758
		}
	}

4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772
	/*
	 * Access LBR MSR may cause #GP under certain circumstances.
	 * E.g. KVM doesn't support LBR MSR
	 * Check all LBT MSR here.
	 * Disable LBR access if any LBR MSRs can not be accessed.
	 */
	if (x86_pmu.lbr_nr && !check_msr(x86_pmu.lbr_tos, 0x3UL))
		x86_pmu.lbr_nr = 0;
	for (i = 0; i < x86_pmu.lbr_nr; i++) {
		if (!(check_msr(x86_pmu.lbr_from + i, 0xffffUL) &&
		      check_msr(x86_pmu.lbr_to + i, 0xffffUL)))
			x86_pmu.lbr_nr = 0;
	}

4773 4774 4775 4776
	x86_pmu.caps_attrs = intel_pmu_caps_attrs;

	if (x86_pmu.lbr_nr) {
		x86_pmu.caps_attrs = merge_attr(x86_pmu.caps_attrs, lbr_attrs);
4777
		pr_cont("%d-deep LBR, ", x86_pmu.lbr_nr);
4778 4779
	}

4780 4781 4782 4783 4784 4785 4786
	/*
	 * Access extra MSR may cause #GP under certain circumstances.
	 * E.g. KVM doesn't support offcore event
	 * Check all extra_regs here.
	 */
	if (x86_pmu.extra_regs) {
		for (er = x86_pmu.extra_regs; er->msr; er++) {
4787
			er->extra_msr_access = check_msr(er->msr, 0x11UL);
4788 4789 4790 4791 4792 4793
			/* Disable LBR select mapping */
			if ((er->idx == EXTRA_REG_LBR) && !er->extra_msr_access)
				x86_pmu.lbr_sel_map = NULL;
		}
	}

4794 4795
	/* Support full width counters using alternative MSR range */
	if (x86_pmu.intel_cap.full_width_write) {
4796
		x86_pmu.max_period = x86_pmu.cntval_mask >> 1;
4797 4798 4799 4800
		x86_pmu.perfctr = MSR_IA32_PMC0;
		pr_cont("full-width counters, ");
	}

4801 4802 4803 4804 4805 4806 4807
	/*
	 * For arch perfmon 4 use counter freezing to avoid
	 * several MSR accesses in the PMI.
	 */
	if (x86_pmu.counter_freezing)
		x86_pmu.handle_irq = intel_pmu_handle_irq_v4;

4808
	kfree(to_free);
4809 4810
	return 0;
}
4811 4812 4813 4814 4815 4816 4817 4818 4819

/*
 * HT bug: phase 2 init
 * Called once we have valid topology information to check
 * whether or not HT is enabled
 * If HT is off, then we disable the workaround
 */
static __init int fixup_ht_bug(void)
{
4820
	int c;
4821 4822 4823 4824 4825 4826
	/*
	 * problem not present on this CPU model, nothing to do
	 */
	if (!(x86_pmu.flags & PMU_FL_EXCL_ENABLED))
		return 0;

4827
	if (topology_max_smt_threads() > 1) {
4828 4829 4830 4831
		pr_info("PMU erratum BJ122, BV98, HSD29 worked around, HT is on\n");
		return 0;
	}

4832 4833 4834
	cpus_read_lock();

	hardlockup_detector_perf_stop();
4835 4836 4837 4838

	x86_pmu.flags &= ~(PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED);

	x86_pmu.start_scheduling = NULL;
4839
	x86_pmu.commit_scheduling = NULL;
4840 4841
	x86_pmu.stop_scheduling = NULL;

4842
	hardlockup_detector_perf_restart();
4843

4844
	for_each_online_cpu(c)
4845
		free_excl_cntrs(&per_cpu(cpu_hw_events, c));
4846

4847
	cpus_read_unlock();
4848 4849 4850 4851
	pr_info("PMU erratum BJ122, BV98, HSD29 workaround disabled, HT off\n");
	return 0;
}
subsys_initcall(fixup_ht_bug)