ordered-data.c 31.4 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
C
Chris Mason 已提交
2 3 4 5 6
/*
 * Copyright (C) 2007 Oracle.  All rights reserved.
 */

#include <linux/slab.h>
7
#include <linux/blkdev.h>
8
#include <linux/writeback.h>
9
#include <linux/sched/mm.h>
10
#include "misc.h"
C
Chris Mason 已提交
11 12 13
#include "ctree.h"
#include "transaction.h"
#include "btrfs_inode.h"
14
#include "extent_io.h"
15
#include "disk-io.h"
16
#include "compression.h"
17
#include "delalloc-space.h"
18
#include "qgroup.h"
19
#include "subpage.h"
C
Chris Mason 已提交
20

21 22
static struct kmem_cache *btrfs_ordered_extent_cache;

23
static u64 entry_end(struct btrfs_ordered_extent *entry)
C
Chris Mason 已提交
24
{
25
	if (entry->file_offset + entry->num_bytes < entry->file_offset)
26
		return (u64)-1;
27
	return entry->file_offset + entry->num_bytes;
C
Chris Mason 已提交
28 29
}

C
Chris Mason 已提交
30 31 32
/* returns NULL if the insertion worked, or it returns the node it did find
 * in the tree
 */
33 34
static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
				   struct rb_node *node)
C
Chris Mason 已提交
35
{
C
Chris Mason 已提交
36 37
	struct rb_node **p = &root->rb_node;
	struct rb_node *parent = NULL;
38
	struct btrfs_ordered_extent *entry;
C
Chris Mason 已提交
39

C
Chris Mason 已提交
40
	while (*p) {
C
Chris Mason 已提交
41
		parent = *p;
42
		entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
C
Chris Mason 已提交
43

44
		if (file_offset < entry->file_offset)
C
Chris Mason 已提交
45
			p = &(*p)->rb_left;
46
		else if (file_offset >= entry_end(entry))
C
Chris Mason 已提交
47 48 49 50 51 52 53 54 55 56
			p = &(*p)->rb_right;
		else
			return parent;
	}

	rb_link_node(node, parent, p);
	rb_insert_color(node, root);
	return NULL;
}

C
Chris Mason 已提交
57 58 59 60
/*
 * look for a given offset in the tree, and if it can't be found return the
 * first lesser offset
 */
61 62
static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
				     struct rb_node **prev_ret)
C
Chris Mason 已提交
63
{
C
Chris Mason 已提交
64
	struct rb_node *n = root->rb_node;
C
Chris Mason 已提交
65
	struct rb_node *prev = NULL;
66 67 68
	struct rb_node *test;
	struct btrfs_ordered_extent *entry;
	struct btrfs_ordered_extent *prev_entry = NULL;
C
Chris Mason 已提交
69

C
Chris Mason 已提交
70
	while (n) {
71
		entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
C
Chris Mason 已提交
72 73 74
		prev = n;
		prev_entry = entry;

75
		if (file_offset < entry->file_offset)
C
Chris Mason 已提交
76
			n = n->rb_left;
77
		else if (file_offset >= entry_end(entry))
C
Chris Mason 已提交
78 79 80 81 82 83 84
			n = n->rb_right;
		else
			return n;
	}
	if (!prev_ret)
		return NULL;

C
Chris Mason 已提交
85
	while (prev && file_offset >= entry_end(prev_entry)) {
86 87 88 89 90 91 92 93 94 95 96 97 98
		test = rb_next(prev);
		if (!test)
			break;
		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
				      rb_node);
		if (file_offset < entry_end(prev_entry))
			break;

		prev = test;
	}
	if (prev)
		prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
				      rb_node);
C
Chris Mason 已提交
99
	while (prev && file_offset < entry_end(prev_entry)) {
100 101 102 103 104 105
		test = rb_prev(prev);
		if (!test)
			break;
		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
				      rb_node);
		prev = test;
C
Chris Mason 已提交
106 107 108 109 110
	}
	*prev_ret = prev;
	return NULL;
}

111 112 113 114
static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
			  u64 len)
{
	if (file_offset + len <= entry->file_offset ||
115
	    entry->file_offset + entry->num_bytes <= file_offset)
116 117 118 119
		return 0;
	return 1;
}

C
Chris Mason 已提交
120 121 122 123
/*
 * look find the first ordered struct that has this offset, otherwise
 * the first one less than this offset
 */
124 125
static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
					  u64 file_offset)
C
Chris Mason 已提交
126
{
127
	struct rb_root *root = &tree->tree;
128
	struct rb_node *prev = NULL;
C
Chris Mason 已提交
129
	struct rb_node *ret;
130 131 132 133 134
	struct btrfs_ordered_extent *entry;

	if (tree->last) {
		entry = rb_entry(tree->last, struct btrfs_ordered_extent,
				 rb_node);
135
		if (in_range(file_offset, entry->file_offset, entry->num_bytes))
136 137 138
			return tree->last;
	}
	ret = __tree_search(root, file_offset, &prev);
C
Chris Mason 已提交
139
	if (!ret)
140 141 142
		ret = prev;
	if (ret)
		tree->last = ret;
C
Chris Mason 已提交
143 144 145
	return ret;
}

146 147
/*
 * Allocate and add a new ordered_extent into the per-inode tree.
148 149 150 151
 *
 * The tree is given a single reference on the ordered extent that was
 * inserted.
 */
152
static int __btrfs_add_ordered_extent(struct btrfs_inode *inode, u64 file_offset,
153 154 155
				      u64 disk_bytenr, u64 num_bytes,
				      u64 disk_num_bytes, int type, int dio,
				      int compress_type)
C
Chris Mason 已提交
156
{
157 158 159
	struct btrfs_root *root = inode->root;
	struct btrfs_fs_info *fs_info = root->fs_info;
	struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
160 161
	struct rb_node *node;
	struct btrfs_ordered_extent *entry;
162 163 164 165
	int ret;

	if (type == BTRFS_ORDERED_NOCOW || type == BTRFS_ORDERED_PREALLOC) {
		/* For nocow write, we can release the qgroup rsv right now */
166
		ret = btrfs_qgroup_free_data(inode, NULL, file_offset, num_bytes);
167 168 169 170 171 172 173 174
		if (ret < 0)
			return ret;
		ret = 0;
	} else {
		/*
		 * The ordered extent has reserved qgroup space, release now
		 * and pass the reserved number for qgroup_record to free.
		 */
175
		ret = btrfs_qgroup_release_data(inode, file_offset, num_bytes);
176 177 178
		if (ret < 0)
			return ret;
	}
179
	entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
C
Chris Mason 已提交
180 181 182
	if (!entry)
		return -ENOMEM;

183
	entry->file_offset = file_offset;
184 185 186 187
	entry->disk_bytenr = disk_bytenr;
	entry->num_bytes = num_bytes;
	entry->disk_num_bytes = disk_num_bytes;
	entry->bytes_left = num_bytes;
188
	entry->inode = igrab(&inode->vfs_inode);
189
	entry->compress_type = compress_type;
190
	entry->truncated_len = (u64)-1;
191
	entry->qgroup_rsv = ret;
192
	entry->physical = (u64)-1;
193 194 195 196 197 198

	ASSERT(type == BTRFS_ORDERED_REGULAR ||
	       type == BTRFS_ORDERED_NOCOW ||
	       type == BTRFS_ORDERED_PREALLOC ||
	       type == BTRFS_ORDERED_COMPRESSED);
	set_bit(type, &entry->flags);
199

200 201 202 203
	percpu_counter_add_batch(&fs_info->ordered_bytes, num_bytes,
				 fs_info->delalloc_batch);

	if (dio)
204 205
		set_bit(BTRFS_ORDERED_DIRECT, &entry->flags);

206
	/* one ref for the tree */
207
	refcount_set(&entry->refs, 1);
208 209
	init_waitqueue_head(&entry->wait);
	INIT_LIST_HEAD(&entry->list);
210
	INIT_LIST_HEAD(&entry->log_list);
211
	INIT_LIST_HEAD(&entry->root_extent_list);
212 213
	INIT_LIST_HEAD(&entry->work_list);
	init_completion(&entry->completion);
C
Chris Mason 已提交
214

215
	trace_btrfs_ordered_extent_add(inode, entry);
216

217
	spin_lock_irq(&tree->lock);
218 219
	node = tree_insert(&tree->tree, file_offset,
			   &entry->rb_node);
220
	if (node)
221 222 223
		btrfs_panic(fs_info, -EEXIST,
				"inconsistency in ordered tree at offset %llu",
				file_offset);
224
	spin_unlock_irq(&tree->lock);
C
Chris Mason 已提交
225

226
	spin_lock(&root->ordered_extent_lock);
227
	list_add_tail(&entry->root_extent_list,
228 229 230
		      &root->ordered_extents);
	root->nr_ordered_extents++;
	if (root->nr_ordered_extents == 1) {
231
		spin_lock(&fs_info->ordered_root_lock);
232
		BUG_ON(!list_empty(&root->ordered_root));
233 234
		list_add_tail(&root->ordered_root, &fs_info->ordered_roots);
		spin_unlock(&fs_info->ordered_root_lock);
235 236
	}
	spin_unlock(&root->ordered_extent_lock);
237

J
Josef Bacik 已提交
238 239 240 241 242
	/*
	 * We don't need the count_max_extents here, we can assume that all of
	 * that work has been done at higher layers, so this is truly the
	 * smallest the extent is going to get.
	 */
243 244 245
	spin_lock(&inode->lock);
	btrfs_mod_outstanding_extents(inode, 1);
	spin_unlock(&inode->lock);
J
Josef Bacik 已提交
246

C
Chris Mason 已提交
247 248 249
	return 0;
}

250
int btrfs_add_ordered_extent(struct btrfs_inode *inode, u64 file_offset,
251 252
			     u64 disk_bytenr, u64 num_bytes, u64 disk_num_bytes,
			     int type)
253
{
254 255 256
	ASSERT(type == BTRFS_ORDERED_REGULAR ||
	       type == BTRFS_ORDERED_NOCOW ||
	       type == BTRFS_ORDERED_PREALLOC);
257
	return __btrfs_add_ordered_extent(inode, file_offset, disk_bytenr,
258
					  num_bytes, disk_num_bytes, type, 0,
259
					  BTRFS_COMPRESS_NONE);
260 261
}

262
int btrfs_add_ordered_extent_dio(struct btrfs_inode *inode, u64 file_offset,
263 264
				 u64 disk_bytenr, u64 num_bytes,
				 u64 disk_num_bytes, int type)
265
{
266 267 268
	ASSERT(type == BTRFS_ORDERED_REGULAR ||
	       type == BTRFS_ORDERED_NOCOW ||
	       type == BTRFS_ORDERED_PREALLOC);
269
	return __btrfs_add_ordered_extent(inode, file_offset, disk_bytenr,
270
					  num_bytes, disk_num_bytes, type, 1,
271 272 273
					  BTRFS_COMPRESS_NONE);
}

274
int btrfs_add_ordered_extent_compress(struct btrfs_inode *inode, u64 file_offset,
275
				      u64 disk_bytenr, u64 num_bytes,
276
				      u64 disk_num_bytes, int compress_type)
277
{
278
	ASSERT(compress_type != BTRFS_COMPRESS_NONE);
279
	return __btrfs_add_ordered_extent(inode, file_offset, disk_bytenr,
280 281
					  num_bytes, disk_num_bytes,
					  BTRFS_ORDERED_COMPRESSED, 0,
282
					  compress_type);
283 284
}

285 286
/*
 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
287 288
 * when an ordered extent is finished.  If the list covers more than one
 * ordered extent, it is split across multiples.
289
 */
290
void btrfs_add_ordered_sum(struct btrfs_ordered_extent *entry,
291
			   struct btrfs_ordered_sum *sum)
C
Chris Mason 已提交
292
{
293
	struct btrfs_ordered_inode_tree *tree;
C
Chris Mason 已提交
294

295
	tree = &BTRFS_I(entry->inode)->ordered_tree;
296
	spin_lock_irq(&tree->lock);
297
	list_add_tail(&sum->list, &entry->list);
298
	spin_unlock_irq(&tree->lock);
C
Chris Mason 已提交
299 300
}

301
/*
302
 * Mark all ordered extents io inside the specified range finished.
303
 *
304 305 306 307 308 309 310 311
 * @page:	 The invovled page for the opeartion.
 *		 For uncompressed buffered IO, the page status also needs to be
 *		 updated to indicate whether the pending ordered io is finished.
 *		 Can be NULL for direct IO and compressed write.
 *		 For these cases, callers are ensured they won't execute the
 *		 endio function twice.
 * @finish_func: The function to be executed when all the IO of an ordered
 *		 extent are finished.
312
 *
313 314
 * This function is called for endio, thus the range must have ordered
 * extent(s) coveri it.
315
 */
316 317 318 319
void btrfs_mark_ordered_io_finished(struct btrfs_inode *inode,
				struct page *page, u64 file_offset,
				u64 num_bytes, btrfs_func_t finish_func,
				bool uptodate)
320
{
321
	struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
322 323
	struct btrfs_fs_info *fs_info = inode->root->fs_info;
	struct btrfs_workqueue *wq;
324 325
	struct rb_node *node;
	struct btrfs_ordered_extent *entry = NULL;
326
	unsigned long flags;
327 328 329 330 331 332 333 334 335 336
	u64 cur = file_offset;

	if (btrfs_is_free_space_inode(inode))
		wq = fs_info->endio_freespace_worker;
	else
		wq = fs_info->endio_write_workers;

	if (page)
		ASSERT(page->mapping && page_offset(page) <= file_offset &&
		       file_offset + num_bytes <= page_offset(page) + PAGE_SIZE);
337

338
	spin_lock_irqsave(&tree->lock, flags);
339 340 341 342 343 344 345 346 347
	while (cur < file_offset + num_bytes) {
		u64 entry_end;
		u64 end;
		u32 len;

		node = tree_search(tree, cur);
		/* No ordered extents at all */
		if (!node)
			break;
348

349 350
		entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
		entry_end = entry->file_offset + entry->num_bytes;
351
		/*
352 353 354
		 * |<-- OE --->|  |
		 *		  cur
		 * Go to next OE.
355
		 */
356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
		if (cur >= entry_end) {
			node = rb_next(node);
			/* No more ordered extents, exit */
			if (!node)
				break;
			entry = rb_entry(node, struct btrfs_ordered_extent,
					 rb_node);

			/* Go to next ordered extent and continue */
			cur = entry->file_offset;
			continue;
		}
		/*
		 * |	|<--- OE --->|
		 * cur
		 * Go to the start of OE.
		 */
		if (cur < entry->file_offset) {
			cur = entry->file_offset;
			continue;
		}

		/*
		 * Now we are definitely inside one ordered extent.
		 *
		 * |<--- OE --->|
		 *	|
		 *	cur
		 */
		end = min(entry->file_offset + entry->num_bytes,
			  file_offset + num_bytes) - 1;
		ASSERT(end + 1 - cur < U32_MAX);
		len = end + 1 - cur;

		if (page) {
			/*
392 393
			 * Ordered (Private2) bit indicates whether we still
			 * have pending io unfinished for the ordered extent.
394 395 396
			 *
			 * If there's no such bit, we need to skip to next range.
			 */
397
			if (!btrfs_page_test_ordered(fs_info, page, cur, len)) {
398 399 400
				cur += len;
				continue;
			}
401
			btrfs_page_clear_ordered(fs_info, page, cur, len);
402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
		}

		/* Now we're fine to update the accounting */
		if (unlikely(len > entry->bytes_left)) {
			WARN_ON(1);
			btrfs_crit(fs_info,
"bad ordered extent accounting, root=%llu ino=%llu OE offset=%llu OE len=%llu to_dec=%u left=%llu",
				   inode->root->root_key.objectid,
				   btrfs_ino(inode),
				   entry->file_offset,
				   entry->num_bytes,
				   len, entry->bytes_left);
			entry->bytes_left = 0;
		} else {
			entry->bytes_left -= len;
		}

		if (!uptodate)
			set_bit(BTRFS_ORDERED_IOERR, &entry->flags);

		/*
		 * All the IO of the ordered extent is finished, we need to queue
		 * the finish_func to be executed.
		 */
		if (entry->bytes_left == 0) {
			set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
			cond_wake_up(&entry->wait);
			refcount_inc(&entry->refs);
			spin_unlock_irqrestore(&tree->lock, flags);
			btrfs_init_work(&entry->work, finish_func, NULL, NULL);
			btrfs_queue_work(wq, &entry->work);
			spin_lock_irqsave(&tree->lock, flags);
		}
		cur += len;
436
	}
437
	spin_unlock_irqrestore(&tree->lock, flags);
438 439
}

440
/*
441 442 443 444 445 446 447 448 449
 * Finish IO for one ordered extent across a given range.  The range can only
 * contain one ordered extent.
 *
 * @cached:	 The cached ordered extent. If not NULL, we can skip the tree
 *               search and use the ordered extent directly.
 * 		 Will be also used to store the finished ordered extent.
 * @file_offset: File offset for the finished IO
 * @io_size:	 Length of the finish IO range
 * @uptodate:	 If the IO finishes without problem
450
 *
451 452 453 454 455 456
 * Return true if the ordered extent is finished in the range, and update
 * @cached.
 * Return false otherwise.
 *
 * NOTE: The range can NOT cross multiple ordered extents.
 * Thus caller should ensure the range doesn't cross ordered extents.
457
 */
458 459 460
bool btrfs_dec_test_ordered_pending(struct btrfs_inode *inode,
				    struct btrfs_ordered_extent **cached,
				    u64 file_offset, u64 io_size, int uptodate)
C
Chris Mason 已提交
461
{
462
	struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
C
Chris Mason 已提交
463
	struct rb_node *node;
464
	struct btrfs_ordered_extent *entry = NULL;
465
	unsigned long flags;
466
	bool finished = false;
467

468 469 470 471 472 473
	spin_lock_irqsave(&tree->lock, flags);
	if (cached && *cached) {
		entry = *cached;
		goto have_entry;
	}

474
	node = tree_search(tree, file_offset);
475
	if (!node)
476
		goto out;
C
Chris Mason 已提交
477

478
	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
479
have_entry:
480
	if (!in_range(file_offset, entry->file_offset, entry->num_bytes))
481 482
		goto out;

483
	if (io_size > entry->bytes_left)
484
		btrfs_crit(inode->root->fs_info,
485
			   "bad ordered accounting left %llu size %llu",
486
		       entry->bytes_left, io_size);
487

488
	entry->bytes_left -= io_size;
489 490 491
	if (!uptodate)
		set_bit(BTRFS_ORDERED_IOERR, &entry->flags);

492
	if (entry->bytes_left == 0) {
493 494 495 496 497
		/*
		 * Ensure only one caller can set the flag and finished_ret
		 * accordingly
		 */
		finished = !test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
498 499
		/* test_and_set_bit implies a barrier */
		cond_wake_up_nomb(&entry->wait);
500
	}
501
out:
502
	if (finished && cached && entry) {
503
		*cached = entry;
504
		refcount_inc(&entry->refs);
505
	}
506
	spin_unlock_irqrestore(&tree->lock, flags);
507
	return finished;
508
}
C
Chris Mason 已提交
509

510 511 512 513
/*
 * used to drop a reference on an ordered extent.  This will free
 * the extent if the last reference is dropped
 */
514
void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
515
{
516 517 518
	struct list_head *cur;
	struct btrfs_ordered_sum *sum;

519
	trace_btrfs_ordered_extent_put(BTRFS_I(entry->inode), entry);
520

521
	if (refcount_dec_and_test(&entry->refs)) {
522
		ASSERT(list_empty(&entry->root_extent_list));
523
		ASSERT(list_empty(&entry->log_list));
524
		ASSERT(RB_EMPTY_NODE(&entry->rb_node));
525 526
		if (entry->inode)
			btrfs_add_delayed_iput(entry->inode);
C
Chris Mason 已提交
527
		while (!list_empty(&entry->list)) {
528 529 530
			cur = entry->list.next;
			sum = list_entry(cur, struct btrfs_ordered_sum, list);
			list_del(&sum->list);
531
			kvfree(sum);
532
		}
533
		kmem_cache_free(btrfs_ordered_extent_cache, entry);
534
	}
C
Chris Mason 已提交
535
}
536

537 538
/*
 * remove an ordered extent from the tree.  No references are dropped
539
 * and waiters are woken up.
540
 */
541
void btrfs_remove_ordered_extent(struct btrfs_inode *btrfs_inode,
542
				 struct btrfs_ordered_extent *entry)
543
{
544
	struct btrfs_ordered_inode_tree *tree;
J
Josef Bacik 已提交
545
	struct btrfs_root *root = btrfs_inode->root;
546
	struct btrfs_fs_info *fs_info = root->fs_info;
547
	struct rb_node *node;
548
	bool pending;
549

J
Josef Bacik 已提交
550 551 552 553 554
	/* This is paired with btrfs_add_ordered_extent. */
	spin_lock(&btrfs_inode->lock);
	btrfs_mod_outstanding_extents(btrfs_inode, -1);
	spin_unlock(&btrfs_inode->lock);
	if (root != fs_info->tree_root)
555 556
		btrfs_delalloc_release_metadata(btrfs_inode, entry->num_bytes,
						false);
J
Josef Bacik 已提交
557

558 559
	percpu_counter_add_batch(&fs_info->ordered_bytes, -entry->num_bytes,
				 fs_info->delalloc_batch);
J
Josef Bacik 已提交
560

J
Josef Bacik 已提交
561
	tree = &btrfs_inode->ordered_tree;
562
	spin_lock_irq(&tree->lock);
563
	node = &entry->rb_node;
564
	rb_erase(node, &tree->tree);
565
	RB_CLEAR_NODE(node);
566 567
	if (tree->last == node)
		tree->last = NULL;
568
	set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
569
	pending = test_and_clear_bit(BTRFS_ORDERED_PENDING, &entry->flags);
570
	spin_unlock_irq(&tree->lock);
571

572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598
	/*
	 * The current running transaction is waiting on us, we need to let it
	 * know that we're complete and wake it up.
	 */
	if (pending) {
		struct btrfs_transaction *trans;

		/*
		 * The checks for trans are just a formality, it should be set,
		 * but if it isn't we don't want to deref/assert under the spin
		 * lock, so be nice and check if trans is set, but ASSERT() so
		 * if it isn't set a developer will notice.
		 */
		spin_lock(&fs_info->trans_lock);
		trans = fs_info->running_transaction;
		if (trans)
			refcount_inc(&trans->use_count);
		spin_unlock(&fs_info->trans_lock);

		ASSERT(trans);
		if (trans) {
			if (atomic_dec_and_test(&trans->pending_ordered))
				wake_up(&trans->pending_wait);
			btrfs_put_transaction(trans);
		}
	}

599
	spin_lock(&root->ordered_extent_lock);
600
	list_del_init(&entry->root_extent_list);
601
	root->nr_ordered_extents--;
602

603
	trace_btrfs_ordered_extent_remove(btrfs_inode, entry);
604

605
	if (!root->nr_ordered_extents) {
606
		spin_lock(&fs_info->ordered_root_lock);
607 608
		BUG_ON(list_empty(&root->ordered_root));
		list_del_init(&root->ordered_root);
609
		spin_unlock(&fs_info->ordered_root_lock);
610 611
	}
	spin_unlock(&root->ordered_extent_lock);
612
	wake_up(&entry->wait);
613 614
}

615
static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
616 617 618 619
{
	struct btrfs_ordered_extent *ordered;

	ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
620
	btrfs_start_ordered_extent(ordered, 1);
621 622 623
	complete(&ordered->completion);
}

C
Chris Mason 已提交
624 625 626 627
/*
 * wait for all the ordered extents in a root.  This is done when balancing
 * space between drives.
 */
628
u64 btrfs_wait_ordered_extents(struct btrfs_root *root, u64 nr,
629
			       const u64 range_start, const u64 range_len)
630
{
631
	struct btrfs_fs_info *fs_info = root->fs_info;
632 633 634
	LIST_HEAD(splice);
	LIST_HEAD(skipped);
	LIST_HEAD(works);
635
	struct btrfs_ordered_extent *ordered, *next;
636
	u64 count = 0;
637
	const u64 range_end = range_start + range_len;
638

639
	mutex_lock(&root->ordered_extent_mutex);
640 641
	spin_lock(&root->ordered_extent_lock);
	list_splice_init(&root->ordered_extents, &splice);
642
	while (!list_empty(&splice) && nr) {
643 644
		ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
					   root_extent_list);
645

646 647
		if (range_end <= ordered->disk_bytenr ||
		    ordered->disk_bytenr + ordered->disk_num_bytes <= range_start) {
648 649 650 651 652
			list_move_tail(&ordered->root_extent_list, &skipped);
			cond_resched_lock(&root->ordered_extent_lock);
			continue;
		}

653 654
		list_move_tail(&ordered->root_extent_list,
			       &root->ordered_extents);
655
		refcount_inc(&ordered->refs);
656
		spin_unlock(&root->ordered_extent_lock);
657

658 659
		btrfs_init_work(&ordered->flush_work,
				btrfs_run_ordered_extent_work, NULL, NULL);
660
		list_add_tail(&ordered->work_list, &works);
661
		btrfs_queue_work(fs_info->flush_workers, &ordered->flush_work);
662

663
		cond_resched();
664
		spin_lock(&root->ordered_extent_lock);
665
		if (nr != U64_MAX)
666 667
			nr--;
		count++;
668
	}
669
	list_splice_tail(&skipped, &root->ordered_extents);
670
	list_splice_tail(&splice, &root->ordered_extents);
671
	spin_unlock(&root->ordered_extent_lock);
672 673 674 675 676 677 678

	list_for_each_entry_safe(ordered, next, &works, work_list) {
		list_del_init(&ordered->work_list);
		wait_for_completion(&ordered->completion);
		btrfs_put_ordered_extent(ordered);
		cond_resched();
	}
679
	mutex_unlock(&root->ordered_extent_mutex);
680 681

	return count;
682 683
}

684
void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, u64 nr,
685
			     const u64 range_start, const u64 range_len)
686 687 688
{
	struct btrfs_root *root;
	struct list_head splice;
689
	u64 done;
690 691 692

	INIT_LIST_HEAD(&splice);

693
	mutex_lock(&fs_info->ordered_operations_mutex);
694 695
	spin_lock(&fs_info->ordered_root_lock);
	list_splice_init(&fs_info->ordered_roots, &splice);
696
	while (!list_empty(&splice) && nr) {
697 698
		root = list_first_entry(&splice, struct btrfs_root,
					ordered_root);
699
		root = btrfs_grab_root(root);
700 701 702 703 704
		BUG_ON(!root);
		list_move_tail(&root->ordered_root,
			       &fs_info->ordered_roots);
		spin_unlock(&fs_info->ordered_root_lock);

705 706
		done = btrfs_wait_ordered_extents(root, nr,
						  range_start, range_len);
707
		btrfs_put_root(root);
708 709

		spin_lock(&fs_info->ordered_root_lock);
710
		if (nr != U64_MAX) {
711 712
			nr -= done;
		}
713
	}
714
	list_splice_tail(&splice, &fs_info->ordered_roots);
715
	spin_unlock(&fs_info->ordered_root_lock);
716
	mutex_unlock(&fs_info->ordered_operations_mutex);
717 718
}

719 720 721 722 723 724 725
/*
 * Used to start IO or wait for a given ordered extent to finish.
 *
 * If wait is one, this effectively waits on page writeback for all the pages
 * in the extent, and it waits on the io completion code to insert
 * metadata into the btree corresponding to the extent
 */
726
void btrfs_start_ordered_extent(struct btrfs_ordered_extent *entry, int wait)
727 728
{
	u64 start = entry->file_offset;
729
	u64 end = start + entry->num_bytes - 1;
730
	struct btrfs_inode *inode = BTRFS_I(entry->inode);
731

732
	trace_btrfs_ordered_extent_start(inode, entry);
733

734 735 736
	/*
	 * pages in the range can be dirty, clean or writeback.  We
	 * start IO on any dirty ones so the wait doesn't stall waiting
737
	 * for the flusher thread to find them
738
	 */
739
	if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
740
		filemap_fdatawrite_range(inode->vfs_inode.i_mapping, start, end);
C
Chris Mason 已提交
741
	if (wait) {
742 743
		wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
						 &entry->flags));
C
Chris Mason 已提交
744
	}
745
}
746

747 748 749
/*
 * Used to wait on ordered extents across a large range of bytes.
 */
750
int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
751
{
752
	int ret = 0;
753
	int ret_wb = 0;
754
	u64 end;
755
	u64 orig_end;
756
	struct btrfs_ordered_extent *ordered;
757 758

	if (start + len < start) {
759
		orig_end = INT_LIMIT(loff_t);
760 761
	} else {
		orig_end = start + len - 1;
762 763
		if (orig_end > INT_LIMIT(loff_t))
			orig_end = INT_LIMIT(loff_t);
764
	}
765

766 767 768
	/* start IO across the range first to instantiate any delalloc
	 * extents
	 */
769
	ret = btrfs_fdatawrite_range(inode, start, orig_end);
770 771
	if (ret)
		return ret;
772

773 774 775 776 777 778 779 780
	/*
	 * If we have a writeback error don't return immediately. Wait first
	 * for any ordered extents that haven't completed yet. This is to make
	 * sure no one can dirty the same page ranges and call writepages()
	 * before the ordered extents complete - to avoid failures (-EEXIST)
	 * when adding the new ordered extents to the ordered tree.
	 */
	ret_wb = filemap_fdatawait_range(inode->i_mapping, start, orig_end);
781

782
	end = orig_end;
C
Chris Mason 已提交
783
	while (1) {
784
		ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode), end);
C
Chris Mason 已提交
785
		if (!ordered)
786
			break;
787
		if (ordered->file_offset > orig_end) {
788 789 790
			btrfs_put_ordered_extent(ordered);
			break;
		}
791
		if (ordered->file_offset + ordered->num_bytes <= start) {
792 793 794
			btrfs_put_ordered_extent(ordered);
			break;
		}
795
		btrfs_start_ordered_extent(ordered, 1);
796
		end = ordered->file_offset;
797 798 799 800 801
		/*
		 * If the ordered extent had an error save the error but don't
		 * exit without waiting first for all other ordered extents in
		 * the range to complete.
		 */
802 803
		if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
			ret = -EIO;
804
		btrfs_put_ordered_extent(ordered);
805
		if (end == 0 || end == start)
806 807 808
			break;
		end--;
	}
809
	return ret_wb ? ret_wb : ret;
810 811
}

812 813 814 815
/*
 * find an ordered extent corresponding to file_offset.  return NULL if
 * nothing is found, otherwise take a reference on the extent and return it
 */
816
struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct btrfs_inode *inode,
817 818 819 820 821
							 u64 file_offset)
{
	struct btrfs_ordered_inode_tree *tree;
	struct rb_node *node;
	struct btrfs_ordered_extent *entry = NULL;
822
	unsigned long flags;
823

824
	tree = &inode->ordered_tree;
825
	spin_lock_irqsave(&tree->lock, flags);
826 827 828 829 830
	node = tree_search(tree, file_offset);
	if (!node)
		goto out;

	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
831
	if (!in_range(file_offset, entry->file_offset, entry->num_bytes))
832 833
		entry = NULL;
	if (entry)
834
		refcount_inc(&entry->refs);
835
out:
836
	spin_unlock_irqrestore(&tree->lock, flags);
837 838 839
	return entry;
}

840 841 842
/* Since the DIO code tries to lock a wide area we need to look for any ordered
 * extents that exist in the range, rather than just the start of the range.
 */
843 844
struct btrfs_ordered_extent *btrfs_lookup_ordered_range(
		struct btrfs_inode *inode, u64 file_offset, u64 len)
845 846 847 848 849
{
	struct btrfs_ordered_inode_tree *tree;
	struct rb_node *node;
	struct btrfs_ordered_extent *entry = NULL;

850
	tree = &inode->ordered_tree;
851
	spin_lock_irq(&tree->lock);
852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874
	node = tree_search(tree, file_offset);
	if (!node) {
		node = tree_search(tree, file_offset + len);
		if (!node)
			goto out;
	}

	while (1) {
		entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
		if (range_overlaps(entry, file_offset, len))
			break;

		if (entry->file_offset >= file_offset + len) {
			entry = NULL;
			break;
		}
		entry = NULL;
		node = rb_next(node);
		if (!node)
			break;
	}
out:
	if (entry)
875
		refcount_inc(&entry->refs);
876
	spin_unlock_irq(&tree->lock);
877 878 879
	return entry;
}

880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907
/*
 * Adds all ordered extents to the given list. The list ends up sorted by the
 * file_offset of the ordered extents.
 */
void btrfs_get_ordered_extents_for_logging(struct btrfs_inode *inode,
					   struct list_head *list)
{
	struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
	struct rb_node *n;

	ASSERT(inode_is_locked(&inode->vfs_inode));

	spin_lock_irq(&tree->lock);
	for (n = rb_first(&tree->tree); n; n = rb_next(n)) {
		struct btrfs_ordered_extent *ordered;

		ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node);

		if (test_bit(BTRFS_ORDERED_LOGGED, &ordered->flags))
			continue;

		ASSERT(list_empty(&ordered->log_list));
		list_add_tail(&ordered->log_list, list);
		refcount_inc(&ordered->refs);
	}
	spin_unlock_irq(&tree->lock);
}

908 909 910 911
/*
 * lookup and return any extent before 'file_offset'.  NULL is returned
 * if none is found
 */
912
struct btrfs_ordered_extent *
913
btrfs_lookup_first_ordered_extent(struct btrfs_inode *inode, u64 file_offset)
914 915 916 917 918
{
	struct btrfs_ordered_inode_tree *tree;
	struct rb_node *node;
	struct btrfs_ordered_extent *entry = NULL;

919
	tree = &inode->ordered_tree;
920
	spin_lock_irq(&tree->lock);
921 922 923 924 925
	node = tree_search(tree, file_offset);
	if (!node)
		goto out;

	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
926
	refcount_inc(&entry->refs);
927
out:
928
	spin_unlock_irq(&tree->lock);
929
	return entry;
930
}
931

932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006
/*
 * Lookup the first ordered extent that overlaps the range
 * [@file_offset, @file_offset + @len).
 *
 * The difference between this and btrfs_lookup_first_ordered_extent() is
 * that this one won't return any ordered extent that does not overlap the range.
 * And the difference against btrfs_lookup_ordered_extent() is, this function
 * ensures the first ordered extent gets returned.
 */
struct btrfs_ordered_extent *btrfs_lookup_first_ordered_range(
			struct btrfs_inode *inode, u64 file_offset, u64 len)
{
	struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
	struct rb_node *node;
	struct rb_node *cur;
	struct rb_node *prev;
	struct rb_node *next;
	struct btrfs_ordered_extent *entry = NULL;

	spin_lock_irq(&tree->lock);
	node = tree->tree.rb_node;
	/*
	 * Here we don't want to use tree_search() which will use tree->last
	 * and screw up the search order.
	 * And __tree_search() can't return the adjacent ordered extents
	 * either, thus here we do our own search.
	 */
	while (node) {
		entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);

		if (file_offset < entry->file_offset) {
			node = node->rb_left;
		} else if (file_offset >= entry_end(entry)) {
			node = node->rb_right;
		} else {
			/*
			 * Direct hit, got an ordered extent that starts at
			 * @file_offset
			 */
			goto out;
		}
	}
	if (!entry) {
		/* Empty tree */
		goto out;
	}

	cur = &entry->rb_node;
	/* We got an entry around @file_offset, check adjacent entries */
	if (entry->file_offset < file_offset) {
		prev = cur;
		next = rb_next(cur);
	} else {
		prev = rb_prev(cur);
		next = cur;
	}
	if (prev) {
		entry = rb_entry(prev, struct btrfs_ordered_extent, rb_node);
		if (range_overlaps(entry, file_offset, len))
			goto out;
	}
	if (next) {
		entry = rb_entry(next, struct btrfs_ordered_extent, rb_node);
		if (range_overlaps(entry, file_offset, len))
			goto out;
	}
	/* No ordered extent in the range */
	entry = NULL;
out:
	if (entry)
		refcount_inc(&entry->refs);
	spin_unlock_irq(&tree->lock);
	return entry;
}

1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
/*
 * btrfs_flush_ordered_range - Lock the passed range and ensures all pending
 * ordered extents in it are run to completion.
 *
 * @inode:        Inode whose ordered tree is to be searched
 * @start:        Beginning of range to flush
 * @end:          Last byte of range to lock
 * @cached_state: If passed, will return the extent state responsible for the
 * locked range. It's the caller's responsibility to free the cached state.
 *
 * This function always returns with the given range locked, ensuring after it's
 * called no order extent can be pending.
 */
1020
void btrfs_lock_and_flush_ordered_range(struct btrfs_inode *inode, u64 start,
1021 1022 1023 1024
					u64 end,
					struct extent_state **cached_state)
{
	struct btrfs_ordered_extent *ordered;
1025 1026
	struct extent_state *cache = NULL;
	struct extent_state **cachedp = &cache;
1027 1028

	if (cached_state)
1029
		cachedp = cached_state;
1030 1031

	while (1) {
1032
		lock_extent_bits(&inode->io_tree, start, end, cachedp);
1033 1034
		ordered = btrfs_lookup_ordered_range(inode, start,
						     end - start + 1);
1035 1036 1037 1038 1039 1040 1041
		if (!ordered) {
			/*
			 * If no external cached_state has been passed then
			 * decrement the extra ref taken for cachedp since we
			 * aren't exposing it outside of this function
			 */
			if (!cached_state)
1042
				refcount_dec(&cache->refs);
1043
			break;
1044
		}
1045
		unlock_extent_cached(&inode->io_tree, start, end, cachedp);
1046
		btrfs_start_ordered_extent(ordered, 1);
1047 1048 1049 1050
		btrfs_put_ordered_extent(ordered);
	}
}

1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
static int clone_ordered_extent(struct btrfs_ordered_extent *ordered, u64 pos,
				u64 len)
{
	struct inode *inode = ordered->inode;
	u64 file_offset = ordered->file_offset + pos;
	u64 disk_bytenr = ordered->disk_bytenr + pos;
	u64 num_bytes = len;
	u64 disk_num_bytes = len;
	int type;
	unsigned long flags_masked = ordered->flags & ~(1 << BTRFS_ORDERED_DIRECT);
	int compress_type = ordered->compress_type;
	unsigned long weight;
	int ret;

	weight = hweight_long(flags_masked);
	WARN_ON_ONCE(weight > 1);
	if (!weight)
		type = 0;
	else
		type = __ffs(flags_masked);

	if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered->flags)) {
		WARN_ON_ONCE(1);
		ret = btrfs_add_ordered_extent_compress(BTRFS_I(inode),
				file_offset, disk_bytenr, num_bytes,
				disk_num_bytes, compress_type);
	} else if (test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) {
		ret = btrfs_add_ordered_extent_dio(BTRFS_I(inode), file_offset,
				disk_bytenr, num_bytes, disk_num_bytes, type);
	} else {
		ret = btrfs_add_ordered_extent(BTRFS_I(inode), file_offset,
				disk_bytenr, num_bytes, disk_num_bytes, type);
	}

	return ret;
}

int btrfs_split_ordered_extent(struct btrfs_ordered_extent *ordered, u64 pre,
				u64 post)
{
	struct inode *inode = ordered->inode;
	struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
	struct rb_node *node;
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
	int ret = 0;

	spin_lock_irq(&tree->lock);
	/* Remove from tree once */
	node = &ordered->rb_node;
	rb_erase(node, &tree->tree);
	RB_CLEAR_NODE(node);
	if (tree->last == node)
		tree->last = NULL;

	ordered->file_offset += pre;
	ordered->disk_bytenr += pre;
	ordered->num_bytes -= (pre + post);
	ordered->disk_num_bytes -= (pre + post);
	ordered->bytes_left -= (pre + post);

	/* Re-insert the node */
	node = tree_insert(&tree->tree, ordered->file_offset, &ordered->rb_node);
	if (node)
		btrfs_panic(fs_info, -EEXIST,
			"zoned: inconsistency in ordered tree at offset %llu",
			    ordered->file_offset);

	spin_unlock_irq(&tree->lock);

	if (pre)
		ret = clone_ordered_extent(ordered, 0, pre);
1122
	if (ret == 0 && post)
1123 1124 1125 1126 1127 1128
		ret = clone_ordered_extent(ordered, pre + ordered->disk_num_bytes,
					   post);

	return ret;
}

1129 1130 1131 1132
int __init ordered_data_init(void)
{
	btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent",
				     sizeof(struct btrfs_ordered_extent), 0,
1133
				     SLAB_MEM_SPREAD,
1134 1135 1136
				     NULL);
	if (!btrfs_ordered_extent_cache)
		return -ENOMEM;
1137

1138 1139 1140
	return 0;
}

1141
void __cold ordered_data_exit(void)
1142
{
1143
	kmem_cache_destroy(btrfs_ordered_extent_cache);
1144
}