ordered-data.c 19.2 KB
Newer Older
C
Chris Mason 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/*
 * Copyright (C) 2007 Oracle.  All rights reserved.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public
 * License v2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public
 * License along with this program; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 021110-1307, USA.
 */

#include <linux/gfp.h>
#include <linux/slab.h>
21
#include <linux/blkdev.h>
22 23
#include <linux/writeback.h>
#include <linux/pagevec.h>
C
Chris Mason 已提交
24 25 26
#include "ctree.h"
#include "transaction.h"
#include "btrfs_inode.h"
27
#include "extent_io.h"
C
Chris Mason 已提交
28

29
static u64 entry_end(struct btrfs_ordered_extent *entry)
C
Chris Mason 已提交
30
{
31 32 33
	if (entry->file_offset + entry->len < entry->file_offset)
		return (u64)-1;
	return entry->file_offset + entry->len;
C
Chris Mason 已提交
34 35
}

C
Chris Mason 已提交
36 37 38
/* returns NULL if the insertion worked, or it returns the node it did find
 * in the tree
 */
39 40
static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
				   struct rb_node *node)
C
Chris Mason 已提交
41 42 43
{
	struct rb_node ** p = &root->rb_node;
	struct rb_node * parent = NULL;
44
	struct btrfs_ordered_extent *entry;
C
Chris Mason 已提交
45 46 47

	while(*p) {
		parent = *p;
48
		entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
C
Chris Mason 已提交
49

50
		if (file_offset < entry->file_offset)
C
Chris Mason 已提交
51
			p = &(*p)->rb_left;
52
		else if (file_offset >= entry_end(entry))
C
Chris Mason 已提交
53 54 55 56 57 58 59 60 61 62
			p = &(*p)->rb_right;
		else
			return parent;
	}

	rb_link_node(node, parent, p);
	rb_insert_color(node, root);
	return NULL;
}

C
Chris Mason 已提交
63 64 65 66
/*
 * look for a given offset in the tree, and if it can't be found return the
 * first lesser offset
 */
67 68
static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
				     struct rb_node **prev_ret)
C
Chris Mason 已提交
69 70 71
{
	struct rb_node * n = root->rb_node;
	struct rb_node *prev = NULL;
72 73 74
	struct rb_node *test;
	struct btrfs_ordered_extent *entry;
	struct btrfs_ordered_extent *prev_entry = NULL;
C
Chris Mason 已提交
75 76

	while(n) {
77
		entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
C
Chris Mason 已提交
78 79 80
		prev = n;
		prev_entry = entry;

81
		if (file_offset < entry->file_offset)
C
Chris Mason 已提交
82
			n = n->rb_left;
83
		else if (file_offset >= entry_end(entry))
C
Chris Mason 已提交
84 85 86 87 88 89 90
			n = n->rb_right;
		else
			return n;
	}
	if (!prev_ret)
		return NULL;

91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
	while(prev && file_offset >= entry_end(prev_entry)) {
		test = rb_next(prev);
		if (!test)
			break;
		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
				      rb_node);
		if (file_offset < entry_end(prev_entry))
			break;

		prev = test;
	}
	if (prev)
		prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
				      rb_node);
	while(prev && file_offset < entry_end(prev_entry)) {
		test = rb_prev(prev);
		if (!test)
			break;
		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
				      rb_node);
		prev = test;
C
Chris Mason 已提交
112 113 114 115 116
	}
	*prev_ret = prev;
	return NULL;
}

C
Chris Mason 已提交
117 118 119
/*
 * helper to check if a given offset is inside a given entry
 */
120 121 122 123 124 125 126 127
static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
{
	if (file_offset < entry->file_offset ||
	    entry->file_offset + entry->len <= file_offset)
		return 0;
	return 1;
}

C
Chris Mason 已提交
128 129 130 131
/*
 * look find the first ordered struct that has this offset, otherwise
 * the first one less than this offset
 */
132 133
static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
					  u64 file_offset)
C
Chris Mason 已提交
134
{
135
	struct rb_root *root = &tree->tree;
C
Chris Mason 已提交
136 137
	struct rb_node *prev;
	struct rb_node *ret;
138 139 140 141 142 143 144 145 146
	struct btrfs_ordered_extent *entry;

	if (tree->last) {
		entry = rb_entry(tree->last, struct btrfs_ordered_extent,
				 rb_node);
		if (offset_in_entry(entry, file_offset))
			return tree->last;
	}
	ret = __tree_search(root, file_offset, &prev);
C
Chris Mason 已提交
147
	if (!ret)
148 149 150
		ret = prev;
	if (ret)
		tree->last = ret;
C
Chris Mason 已提交
151 152 153
	return ret;
}

154 155 156 157 158 159 160 161 162 163 164 165 166
/* allocate and add a new ordered_extent into the per-inode tree.
 * file_offset is the logical offset in the file
 *
 * start is the disk block number of an extent already reserved in the
 * extent allocation tree
 *
 * len is the length of the extent
 *
 * This also sets the EXTENT_ORDERED bit on the range in the inode.
 *
 * The tree is given a single reference on the ordered extent that was
 * inserted.
 */
167
int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
168
			     u64 start, u64 len, int nocow)
C
Chris Mason 已提交
169 170
{
	struct btrfs_ordered_inode_tree *tree;
171 172
	struct rb_node *node;
	struct btrfs_ordered_extent *entry;
C
Chris Mason 已提交
173

174 175
	tree = &BTRFS_I(inode)->ordered_tree;
	entry = kzalloc(sizeof(*entry), GFP_NOFS);
C
Chris Mason 已提交
176 177 178
	if (!entry)
		return -ENOMEM;

179 180 181 182
	mutex_lock(&tree->mutex);
	entry->file_offset = file_offset;
	entry->start = start;
	entry->len = len;
183
	entry->inode = inode;
184 185
	if (nocow)
		set_bit(BTRFS_ORDERED_NOCOW, &entry->flags);
186

187 188 189 190
	/* one ref for the tree */
	atomic_set(&entry->refs, 1);
	init_waitqueue_head(&entry->wait);
	INIT_LIST_HEAD(&entry->list);
191
	INIT_LIST_HEAD(&entry->root_extent_list);
C
Chris Mason 已提交
192

193 194 195
	node = tree_insert(&tree->tree, file_offset,
			   &entry->rb_node);
	if (node) {
196 197
		printk("warning dup entry from add_ordered_extent\n");
		BUG();
198 199 200
	}
	set_extent_ordered(&BTRFS_I(inode)->io_tree, file_offset,
			   entry_end(entry) - 1, GFP_NOFS);
201

202 203 204 205 206
	spin_lock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
	list_add_tail(&entry->root_extent_list,
		      &BTRFS_I(inode)->root->fs_info->ordered_extents);
	spin_unlock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);

207 208
	mutex_unlock(&tree->mutex);
	BUG_ON(node);
C
Chris Mason 已提交
209 210 211
	return 0;
}

212 213
/*
 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
214 215
 * when an ordered extent is finished.  If the list covers more than one
 * ordered extent, it is split across multiples.
216
 */
217 218 219
int btrfs_add_ordered_sum(struct inode *inode,
			  struct btrfs_ordered_extent *entry,
			  struct btrfs_ordered_sum *sum)
C
Chris Mason 已提交
220
{
221
	struct btrfs_ordered_inode_tree *tree;
C
Chris Mason 已提交
222

223 224 225 226 227
	tree = &BTRFS_I(inode)->ordered_tree;
	mutex_lock(&tree->mutex);
	list_add_tail(&sum->list, &entry->list);
	mutex_unlock(&tree->mutex);
	return 0;
C
Chris Mason 已提交
228 229
}

230 231 232 233 234 235 236 237 238
/*
 * this is used to account for finished IO across a given range
 * of the file.  The IO should not span ordered extents.  If
 * a given ordered_extent is completely done, 1 is returned, otherwise
 * 0.
 *
 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
 * to make sure this function only returns 1 once for a given ordered extent.
 */
239 240
int btrfs_dec_test_ordered_pending(struct inode *inode,
				   u64 file_offset, u64 io_size)
C
Chris Mason 已提交
241
{
242
	struct btrfs_ordered_inode_tree *tree;
C
Chris Mason 已提交
243
	struct rb_node *node;
244 245 246 247 248 249 250 251 252
	struct btrfs_ordered_extent *entry;
	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
	int ret;

	tree = &BTRFS_I(inode)->ordered_tree;
	mutex_lock(&tree->mutex);
	clear_extent_ordered(io_tree, file_offset, file_offset + io_size - 1,
			     GFP_NOFS);
	node = tree_search(tree, file_offset);
C
Chris Mason 已提交
253
	if (!node) {
254 255
		ret = 1;
		goto out;
C
Chris Mason 已提交
256 257
	}

258 259 260 261
	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
	if (!offset_in_entry(entry, file_offset)) {
		ret = 1;
		goto out;
C
Chris Mason 已提交
262
	}
263 264 265 266 267 268 269 270 271 272

	ret = test_range_bit(io_tree, entry->file_offset,
			     entry->file_offset + entry->len - 1,
			     EXTENT_ORDERED, 0);
	if (ret == 0)
		ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
out:
	mutex_unlock(&tree->mutex);
	return ret == 0;
}
C
Chris Mason 已提交
273

274 275 276 277
/*
 * used to drop a reference on an ordered extent.  This will free
 * the extent if the last reference is dropped
 */
278 279
int btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
{
280 281 282 283 284 285 286 287 288 289
	struct list_head *cur;
	struct btrfs_ordered_sum *sum;

	if (atomic_dec_and_test(&entry->refs)) {
		while(!list_empty(&entry->list)) {
			cur = entry->list.next;
			sum = list_entry(cur, struct btrfs_ordered_sum, list);
			list_del(&sum->list);
			kfree(sum);
		}
290
		kfree(entry);
291
	}
292
	return 0;
C
Chris Mason 已提交
293
}
294

295 296 297 298
/*
 * remove an ordered extent from the tree.  No references are dropped
 * but, anyone waiting on this extent is woken up.
 */
299 300
int btrfs_remove_ordered_extent(struct inode *inode,
				struct btrfs_ordered_extent *entry)
301
{
302
	struct btrfs_ordered_inode_tree *tree;
303 304
	struct rb_node *node;

305 306 307
	tree = &BTRFS_I(inode)->ordered_tree;
	mutex_lock(&tree->mutex);
	node = &entry->rb_node;
308
	rb_erase(node, &tree->tree);
309 310
	tree->last = NULL;
	set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
311 312 313 314 315

	spin_lock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
	list_del_init(&entry->root_extent_list);
	spin_unlock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);

316 317 318
	mutex_unlock(&tree->mutex);
	wake_up(&entry->wait);
	return 0;
319 320
}

C
Chris Mason 已提交
321 322 323 324
/*
 * wait for all the ordered extents in a root.  This is done when balancing
 * space between drives.
 */
325
int btrfs_wait_ordered_extents(struct btrfs_root *root, int nocow_only)
326 327 328 329 330 331 332 333 334 335
{
	struct list_head splice;
	struct list_head *cur;
	struct btrfs_ordered_extent *ordered;
	struct inode *inode;

	INIT_LIST_HEAD(&splice);

	spin_lock(&root->fs_info->ordered_extent_lock);
	list_splice_init(&root->fs_info->ordered_extents, &splice);
336
	while (!list_empty(&splice)) {
337 338 339
		cur = splice.next;
		ordered = list_entry(cur, struct btrfs_ordered_extent,
				     root_extent_list);
340 341
		if (nocow_only &&
		    !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) {
342 343
			list_move(&ordered->root_extent_list,
				  &root->fs_info->ordered_extents);
344 345 346 347
			cond_resched_lock(&root->fs_info->ordered_extent_lock);
			continue;
		}

348 349 350 351
		list_del_init(&ordered->root_extent_list);
		atomic_inc(&ordered->refs);

		/*
352
		 * the inode may be getting freed (in sys_unlink path).
353
		 */
354 355
		inode = igrab(ordered->inode);

356 357
		spin_unlock(&root->fs_info->ordered_extent_lock);

358 359 360 361 362 363 364
		if (inode) {
			btrfs_start_ordered_extent(inode, ordered, 1);
			btrfs_put_ordered_extent(ordered);
			iput(inode);
		} else {
			btrfs_put_ordered_extent(ordered);
		}
365 366 367 368 369 370 371

		spin_lock(&root->fs_info->ordered_extent_lock);
	}
	spin_unlock(&root->fs_info->ordered_extent_lock);
	return 0;
}

372 373 374 375 376 377 378 379 380 381
/*
 * Used to start IO or wait for a given ordered extent to finish.
 *
 * If wait is one, this effectively waits on page writeback for all the pages
 * in the extent, and it waits on the io completion code to insert
 * metadata into the btree corresponding to the extent
 */
void btrfs_start_ordered_extent(struct inode *inode,
				       struct btrfs_ordered_extent *entry,
				       int wait)
382 383 384
{
	u64 start = entry->file_offset;
	u64 end = start + entry->len - 1;
385

386 387 388 389 390
	/*
	 * pages in the range can be dirty, clean or writeback.  We
	 * start IO on any dirty ones so the wait doesn't stall waiting
	 * for pdflush to find them
	 */
391
	btrfs_fdatawrite_range(inode->i_mapping, start, end, WB_SYNC_NONE);
392 393 394 395
	if (wait)
		wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
						 &entry->flags));
}
396

397 398 399
/*
 * Used to wait on ordered extents across a large range of bytes.
 */
400
int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
401 402
{
	u64 end;
403 404
	u64 orig_end;
	u64 wait_end;
405
	struct btrfs_ordered_extent *ordered;
406 407

	if (start + len < start) {
408
		orig_end = INT_LIMIT(loff_t);
409 410
	} else {
		orig_end = start + len - 1;
411 412
		if (orig_end > INT_LIMIT(loff_t))
			orig_end = INT_LIMIT(loff_t);
413
	}
414
	wait_end = orig_end;
C
Chris Mason 已提交
415
again:
416 417 418
	/* start IO across the range first to instantiate any delalloc
	 * extents
	 */
419 420 421 422 423
	btrfs_fdatawrite_range(inode->i_mapping, start, orig_end, WB_SYNC_NONE);

	btrfs_wait_on_page_writeback_range(inode->i_mapping,
					   start >> PAGE_CACHE_SHIFT,
					   orig_end >> PAGE_CACHE_SHIFT);
424

425
	end = orig_end;
426 427 428 429 430
	while(1) {
		ordered = btrfs_lookup_first_ordered_extent(inode, end);
		if (!ordered) {
			break;
		}
431
		if (ordered->file_offset > orig_end) {
432 433 434 435 436 437 438
			btrfs_put_ordered_extent(ordered);
			break;
		}
		if (ordered->file_offset + ordered->len < start) {
			btrfs_put_ordered_extent(ordered);
			break;
		}
439
		btrfs_start_ordered_extent(inode, ordered, 1);
440 441
		end = ordered->file_offset;
		btrfs_put_ordered_extent(ordered);
442
		if (end == 0 || end == start)
443 444 445
			break;
		end--;
	}
C
Chris Mason 已提交
446 447 448 449 450 451 452 453
	if (test_range_bit(&BTRFS_I(inode)->io_tree, start, orig_end,
			   EXTENT_ORDERED | EXTENT_DELALLOC, 0)) {
		printk("inode %lu still ordered or delalloc after wait "
		       "%llu %llu\n", inode->i_ino,
		       (unsigned long long)start,
		       (unsigned long long)orig_end);
		goto again;
	}
454
	return 0;
455 456
}

457 458 459 460
/*
 * find an ordered extent corresponding to file_offset.  return NULL if
 * nothing is found, otherwise take a reference on the extent and return it
 */
461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode,
							 u64 file_offset)
{
	struct btrfs_ordered_inode_tree *tree;
	struct rb_node *node;
	struct btrfs_ordered_extent *entry = NULL;

	tree = &BTRFS_I(inode)->ordered_tree;
	mutex_lock(&tree->mutex);
	node = tree_search(tree, file_offset);
	if (!node)
		goto out;

	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
	if (!offset_in_entry(entry, file_offset))
		entry = NULL;
	if (entry)
		atomic_inc(&entry->refs);
out:
	mutex_unlock(&tree->mutex);
	return entry;
}

484 485 486 487
/*
 * lookup and return any extent before 'file_offset'.  NULL is returned
 * if none is found
 */
488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
struct btrfs_ordered_extent *
btrfs_lookup_first_ordered_extent(struct inode * inode, u64 file_offset)
{
	struct btrfs_ordered_inode_tree *tree;
	struct rb_node *node;
	struct btrfs_ordered_extent *entry = NULL;

	tree = &BTRFS_I(inode)->ordered_tree;
	mutex_lock(&tree->mutex);
	node = tree_search(tree, file_offset);
	if (!node)
		goto out;

	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
	atomic_inc(&entry->refs);
out:
	mutex_unlock(&tree->mutex);
	return entry;
506
}
507

508 509 510 511
/*
 * After an extent is done, call this to conditionally update the on disk
 * i_size.  i_size is updated to cover any fully written part of the file.
 */
512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
int btrfs_ordered_update_i_size(struct inode *inode,
				struct btrfs_ordered_extent *ordered)
{
	struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
	u64 disk_i_size;
	u64 new_i_size;
	u64 i_size_test;
	struct rb_node *node;
	struct btrfs_ordered_extent *test;

	mutex_lock(&tree->mutex);
	disk_i_size = BTRFS_I(inode)->disk_i_size;

	/*
	 * if the disk i_size is already at the inode->i_size, or
	 * this ordered extent is inside the disk i_size, we're done
	 */
	if (disk_i_size >= inode->i_size ||
	    ordered->file_offset + ordered->len <= disk_i_size) {
		goto out;
	}

	/*
	 * we can't update the disk_isize if there are delalloc bytes
	 * between disk_i_size and  this ordered extent
	 */
	if (test_range_bit(io_tree, disk_i_size,
			   ordered->file_offset + ordered->len - 1,
			   EXTENT_DELALLOC, 0)) {
		goto out;
	}
	/*
	 * walk backward from this ordered extent to disk_i_size.
	 * if we find an ordered extent then we can't update disk i_size
	 * yet
	 */
549
	node = &ordered->rb_node;
550
	while(1) {
551
		node = rb_prev(node);
552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578
		if (!node)
			break;
		test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
		if (test->file_offset + test->len <= disk_i_size)
			break;
		if (test->file_offset >= inode->i_size)
			break;
		if (test->file_offset >= disk_i_size)
			goto out;
	}
	new_i_size = min_t(u64, entry_end(ordered), i_size_read(inode));

	/*
	 * at this point, we know we can safely update i_size to at least
	 * the offset from this ordered extent.  But, we need to
	 * walk forward and see if ios from higher up in the file have
	 * finished.
	 */
	node = rb_next(&ordered->rb_node);
	i_size_test = 0;
	if (node) {
		/*
		 * do we have an area where IO might have finished
		 * between our ordered extent and the next one.
		 */
		test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
		if (test->file_offset > entry_end(ordered)) {
Y
Yan Zheng 已提交
579
			i_size_test = test->file_offset;
580 581 582 583 584 585 586 587 588 589 590 591
		}
	} else {
		i_size_test = i_size_read(inode);
	}

	/*
	 * i_size_test is the end of a region after this ordered
	 * extent where there are no ordered extents.  As long as there
	 * are no delalloc bytes in this area, it is safe to update
	 * disk_i_size to the end of the region.
	 */
	if (i_size_test > entry_end(ordered) &&
Y
Yan Zheng 已提交
592
	    !test_range_bit(io_tree, entry_end(ordered), i_size_test - 1,
593 594 595 596 597 598 599 600
			   EXTENT_DELALLOC, 0)) {
		new_i_size = min_t(u64, i_size_test, i_size_read(inode));
	}
	BTRFS_I(inode)->disk_i_size = new_i_size;
out:
	mutex_unlock(&tree->mutex);
	return 0;
}
601

602 603 604 605 606
/*
 * search the ordered extents for one corresponding to 'offset' and
 * try to find a checksum.  This is used because we allow pages to
 * be reclaimed before their checksum is actually put into the btree
 */
607 608 609 610 611 612 613
int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u32 *sum)
{
	struct btrfs_ordered_sum *ordered_sum;
	struct btrfs_sector_sum *sector_sums;
	struct btrfs_ordered_extent *ordered;
	struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
	struct list_head *cur;
614 615 616
	unsigned long num_sectors;
	unsigned long i;
	u32 sectorsize = BTRFS_I(inode)->root->sectorsize;
617 618 619 620 621 622 623 624 625
	int ret = 1;

	ordered = btrfs_lookup_ordered_extent(inode, offset);
	if (!ordered)
		return 1;

	mutex_lock(&tree->mutex);
	list_for_each_prev(cur, &ordered->list) {
		ordered_sum = list_entry(cur, struct btrfs_ordered_sum, list);
626 627
		if (offset >= ordered_sum->file_offset) {
			num_sectors = ordered_sum->len / sectorsize;
628
			sector_sums = ordered_sum->sums;
629 630 631 632 633 634 635
			for (i = 0; i < num_sectors; i++) {
				if (sector_sums[i].offset == offset) {
					*sum = sector_sums[i].sum;
					ret = 0;
					goto out;
				}
			}
636 637 638 639
		}
	}
out:
	mutex_unlock(&tree->mutex);
640
	btrfs_put_ordered_extent(ordered);
641 642 643
	return ret;
}

644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727

/**
 * taken from mm/filemap.c because it isn't exported
 *
 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
 * @mapping:	address space structure to write
 * @start:	offset in bytes where the range starts
 * @end:	offset in bytes where the range ends (inclusive)
 * @sync_mode:	enable synchronous operation
 *
 * Start writeback against all of a mapping's dirty pages that lie
 * within the byte offsets <start, end> inclusive.
 *
 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
 * opposed to a regular memory cleansing writeback.  The difference between
 * these two operations is that if a dirty page/buffer is encountered, it must
 * be waited upon, and not just skipped over.
 */
int btrfs_fdatawrite_range(struct address_space *mapping, loff_t start,
			   loff_t end, int sync_mode)
{
	struct writeback_control wbc = {
		.sync_mode = sync_mode,
		.nr_to_write = mapping->nrpages * 2,
		.range_start = start,
		.range_end = end,
		.for_writepages = 1,
	};
	return btrfs_writepages(mapping, &wbc);
}

/**
 * taken from mm/filemap.c because it isn't exported
 *
 * wait_on_page_writeback_range - wait for writeback to complete
 * @mapping:	target address_space
 * @start:	beginning page index
 * @end:	ending page index
 *
 * Wait for writeback to complete against pages indexed by start->end
 * inclusive
 */
int btrfs_wait_on_page_writeback_range(struct address_space *mapping,
				       pgoff_t start, pgoff_t end)
{
	struct pagevec pvec;
	int nr_pages;
	int ret = 0;
	pgoff_t index;

	if (end < start)
		return 0;

	pagevec_init(&pvec, 0);
	index = start;
	while ((index <= end) &&
			(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
			PAGECACHE_TAG_WRITEBACK,
			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
		unsigned i;

		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

			/* until radix tree lookup accepts end_index */
			if (page->index > end)
				continue;

			wait_on_page_writeback(page);
			if (PageError(page))
				ret = -EIO;
		}
		pagevec_release(&pvec);
		cond_resched();
	}

	/* Check for outstanding write errors */
	if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
		ret = -ENOSPC;
	if (test_and_clear_bit(AS_EIO, &mapping->flags))
		ret = -EIO;

	return ret;
}