- 05 7月, 2019 1 次提交
-
-
由 Sean Christopherson 提交于
KVM does not have 100% coverage of VMX consistency checks, i.e. some checks that cause VM-Fail may only be detected by hardware during a nested VM-Entry. In such a case, KVM must restore L1's state to the pre-VM-Enter state as L2's state has already been loaded into KVM's software model. L1's CR3 and PDPTRs in particular are loaded from vmcs01.GUEST_*. But when EPT is disabled, the associated fields hold KVM's shadow values, not L1's "real" values. Fortunately, when EPT is disabled the PDPTRs come from memory, i.e. are not cached in the VMCS. Which leaves CR3 as the sole anomaly. A previously applied workaround to handle CR3 was to force nested early checks if EPT is disabled: commit 2b27924b ("KVM: nVMX: always use early vmcs check when EPT is disabled") Forcing nested early checks is undesirable as doing so adds hundreds of cycles to every nested VM-Entry. Rather than take this performance hit, handle CR3 by overwriting vmcs01.GUEST_CR3 with L1's CR3 during nested VM-Entry when EPT is disabled *and* nested early checks are disabled. By stuffing vmcs01.GUEST_CR3, nested_vmx_restore_host_state() will naturally restore the correct vcpu->arch.cr3 from vmcs01.GUEST_CR3. These shenanigans work because nested_vmx_restore_host_state() does a full kvm_mmu_reset_context(), i.e. unloads the current MMU, which guarantees vmcs01.GUEST_CR3 will be rewritten with a new shadow CR3 prior to re-entering L1. vcpu->arch.root_mmu.root_hpa is set to INVALID_PAGE via: nested_vmx_restore_host_state() -> kvm_mmu_reset_context() -> kvm_mmu_unload() -> kvm_mmu_free_roots() kvm_mmu_unload() has WARN_ON(root_hpa != INVALID_PAGE), i.e. we can bank on 'root_hpa == INVALID_PAGE' unless the implementation of kvm_mmu_reset_context() is changed. On the way into L1, VMCS.GUEST_CR3 is guaranteed to be written (on a successful entry) via: vcpu_enter_guest() -> kvm_mmu_reload() -> kvm_mmu_load() -> kvm_mmu_load_cr3() -> vmx_set_cr3() Stuff vmcs01.GUEST_CR3 if and only if nested early checks are disabled as a "late" VM-Fail should never happen win that case (KVM WARNs), and the conditional write avoids the need to restore the correct GUEST_CR3 when nested_vmx_check_vmentry_hw() fails. Signed-off-by: NSean Christopherson <sean.j.christopherson@intel.com> Message-Id: <20190607185534.24368-1-sean.j.christopherson@intel.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
- 03 7月, 2019 3 次提交
-
-
由 Jim Mattson 提交于
When L0 is executing handle_invept(), the TDP MMU is active. Emulating an L1 INVEPT does require synchronizing the appropriate shadow EPT root(s), but a call to kvm_mmu_sync_roots in this context won't do that. Similarly, the hardware TLB and paging-structure-cache entries associated with the appropriate shadow EPT root(s) must be flushed, but requesting a TLB_FLUSH from this context won't do that either. How did this ever work? KVM always does a sync_roots and TLB flush (in the correct context) when transitioning from L1 to L2. That isn't the best choice for nested VM performance, but it effectively papers over the mistakes here. Remove the unnecessary operations and leave a comment to try to do better in the future. Reported-by: NJunaid Shahid <junaids@google.com> Fixes: bfd0a56b ("nEPT: Nested INVEPT") Cc: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com> Cc: Nadav Har'El <nyh@il.ibm.com> Cc: Jun Nakajima <jun.nakajima@intel.com> Cc: Xinhao Xu <xinhao.xu@intel.com> Cc: Yang Zhang <yang.z.zhang@Intel.com> Cc: Gleb Natapov <gleb@redhat.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Reviewed-by Peter Shier <pshier@google.com> Reviewed-by: NJunaid Shahid <junaids@google.com> Signed-off-by: NJim Mattson <jmattson@google.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Vitaly Kuznetsov 提交于
When Enlightened VMCS is in use, it is valid to do VMCLEAR and, according to TLFS, this should "transition an enlightened VMCS from the active to the non-active state". It is, however, wrong to assume that it is only valid to do VMCLEAR for the eVMCS which is currently active on the vCPU performing VMCLEAR. Currently, the logic in handle_vmclear() is broken: in case, there is no active eVMCS on the vCPU doing VMCLEAR we treat the argument as a 'normal' VMCS and kvm_vcpu_write_guest() to the 'launch_state' field irreversibly corrupts the memory area. So, in case the VMCLEAR argument is not the current active eVMCS on the vCPU, how can we know if the area it is pointing to is a normal or an enlightened VMCS? Thanks to the bug in Hyper-V (see commit 72aeb60c ("KVM: nVMX: Verify eVMCS revision id match supported eVMCS version on eVMCS VMPTRLD")) we can not, the revision can't be used to distinguish between them. So let's assume it is always enlightened in case enlightened vmentry is enabled in the assist page. Also, check if vmx->nested.enlightened_vmcs_enabled to minimize the impact for 'unenlightened' workloads. Fixes: b8bbab92 ("KVM: nVMX: implement enlightened VMPTRLD and VMCLEAR") Signed-off-by: NVitaly Kuznetsov <vkuznets@redhat.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Vitaly Kuznetsov 提交于
Apparently, Windows doesn't maintain clean fields data after it does VMCLEAR for an enlightened VMCS so we can only use it on VMRESUME. The issue went unnoticed because currently we do nested_release_evmcs() in handle_vmclear() and the consecutive enlightened VMPTRLD invalidates clean fields when a new eVMCS is mapped but we're going to change the logic. Signed-off-by: NVitaly Kuznetsov <vkuznets@redhat.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
- 02 7月, 2019 2 次提交
-
-
由 Paolo Bonzini 提交于
Allow userspace to set a custom value for the VMFUNC controls MSR, as long as the capabilities it advertises do not exceed those of the host. Fixes: 27c42a1b ("KVM: nVMX: Enable VMFUNC for the L1 hypervisor", 2017-08-03) Reviewed-by: NLiran Alon <liran.alon@oracle.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Paolo Bonzini 提交于
Some secondary controls are automatically enabled/disabled based on the CPUID values that are set for the guest. However, they are still available at a global level and therefore should be present when KVM_GET_MSRS is sent to /dev/kvm. Fixes: 1389309c ("KVM: nVMX: expose VMX capabilities for nested hypervisors to userspace", 2018-02-26) Reviewed-by: NLiran Alon <liran.alon@oracle.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
- 18 6月, 2019 34 次提交
-
-
由 Sean Christopherson 提交于
VMWRITEs to the major VMCS controls, pin controls included, are deceptively expensive. CPUs with VMCS caching (Westmere and later) also optimize away consistency checks on VM-Entry, i.e. skip consistency checks if the relevant fields have not changed since the last successful VM-Entry (of the cached VMCS). Because uops are a precious commodity, uCode's dirty VMCS field tracking isn't as precise as software would prefer. Notably, writing any of the major VMCS fields effectively marks the entire VMCS dirty, i.e. causes the next VM-Entry to perform all consistency checks, which consumes several hundred cycles. As it pertains to KVM, toggling PIN_BASED_VMX_PREEMPTION_TIMER more than doubles the latency of the next VM-Entry (and again when/if the flag is toggled back). In a non-nested scenario, running a "standard" guest with the preemption timer enabled, toggling the timer flag is uncommon but not rare, e.g. roughly 1 in 10 entries. Disabling the preemption timer can change these numbers due to its use for "immediate exits", even when explicitly disabled by userspace. Nested virtualization in particular is painful, as the timer flag is set for the majority of VM-Enters, but prepare_vmcs02() initializes vmcs02's pin controls to *clear* the flag since its the timer's final state isn't known until vmx_vcpu_run(). I.e. the majority of nested VM-Enters end up unnecessarily writing pin controls *twice*. Rather than toggle the timer flag in pin controls, set the timer value itself to the largest allowed value to put it into a "soft disabled" state, and ignore any spurious preemption timer exits. Sadly, the timer is a 32-bit value and so theoretically it can fire before the head death of the universe, i.e. spurious exits are possible. But because KVM does *not* save the timer value on VM-Exit and because the timer runs at a slower rate than the TSC, the maximuma timer value is still sufficiently large for KVM's purposes. E.g. on a modern CPU with a timer that runs at 1/32 the frequency of a 2.4ghz constant-rate TSC, the timer will fire after ~55 seconds of *uninterrupted* guest execution. In other words, spurious VM-Exits are effectively only possible if the host is completely tickless on the logical CPU, the guest is not using the preemption timer, and the guest is not generating VM-Exits for any other reason. To be safe from bad/weird hardware, disable the preemption timer if its maximum delay is less than ten seconds. Ten seconds is mostly arbitrary and was selected in no small part because it's a nice round number. For simplicity and paranoia, fall back to __kvm_request_immediate_exit() if the preemption timer is disabled by KVM or userspace. Previously KVM continued to use the preemption timer to force immediate exits even when the timer was disabled by userspace. Now that KVM leaves the timer running instead of truly disabling it, allow userspace to kill it entirely in the unlikely event the timer (or KVM) malfunctions. Signed-off-by: NSean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Sean Christopherson 提交于
... now that it is fully redundant with the pin controls shadow. Signed-off-by: NSean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Sean Christopherson 提交于
KVM dynamically toggles SECONDARY_EXEC_DESC to intercept (a subset of) instructions that are subject to User-Mode Instruction Prevention, i.e. VMCS.SECONDARY_EXEC_DESC == CR4.UMIP when emulating UMIP. Preset the VMCS control when preparing vmcs02 to avoid unnecessarily VMWRITEs, e.g. KVM will clear VMCS.SECONDARY_EXEC_DESC in prepare_vmcs02_early() and then set it in vmx_set_cr4(). Signed-off-by: NSean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Sean Christopherson 提交于
KVM dynamically toggles the CPU_BASED_USE_MSR_BITMAPS execution control for nested guests based on whether or not both L0 and L1 want to pass through the same MSRs to L2. Preserve the last used value from vmcs02 so as to avoid multiple VMWRITEs to (re)set/(re)clear the bit on nested VM-Entry. Signed-off-by: NSean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Sean Christopherson 提交于
Or: Don't re-initialize vmcs02's controls on every nested VM-Entry. VMWRITEs to the major VMCS controls are deceptively expensive. Intel CPUs with VMCS caching (Westmere and later) also optimize away consistency checks on VM-Entry, i.e. skip consistency checks if the relevant fields have not changed since the last successful VM-Entry (of the cached VMCS). Because uops are a precious commodity, uCode's dirty VMCS field tracking isn't as precise as software would prefer. Notably, writing any of the major VMCS fields effectively marks the entire VMCS dirty, i.e. causes the next VM-Entry to perform all consistency checks, which consumes several hundred cycles. Zero out the controls' shadow copies during VMCS allocation and use the optimized setter when "initializing" controls. While this technically affects both non-nested and nested virtualization, nested virtualization is the primary beneficiary as avoid VMWRITEs when prepare vmcs02 allows hardware to optimizie away consistency checks. Signed-off-by: NSean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Sean Christopherson 提交于
... now that the shadow copies are per-VMCS. Signed-off-by: NSean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Sean Christopherson 提交于
Prepare to shadow all major control fields on a per-VMCS basis, which allows KVM to avoid costly VMWRITEs when switching between vmcs01 and vmcs02. Signed-off-by: NSean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Sean Christopherson 提交于
Prepare to shadow all major control fields on a per-VMCS basis, which allows KVM to avoid VMREADs when switching between vmcs01 and vmcs02, and more importantly can eliminate costly VMWRITEs to controls when preparing vmcs02. Shadowing exec controls also saves a VMREAD when opening virtual INTR/NMI windows, yay... Signed-off-by: NSean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Sean Christopherson 提交于
Prepare to shadow all major control fields on a per-VMCS basis, which allows KVM to avoid costly VMWRITEs when switching between vmcs01 and vmcs02. Shadowing pin controls also allows a future patch to remove the per-VMCS 'hv_timer_armed' flag, as the shadow copy is a superset of said flag. Signed-off-by: NSean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Sean Christopherson 提交于
KVM provides a module parameter to allow disabling virtual NMI support to simplify testing (hardware *without* virtual NMI support is hard to come by but it does have users). When preparing vmcs02, use the accessor for pin controls to ensure that the module param is respected for nested guests. Opportunistically swap the order of applying L0's and L1's pin controls to better align with other controls and to prepare for a future patche that will ignore L1's, but not L0's, preemption timer flag. Fixes: d02fcf50 ("kvm: vmx: Allow disabling virtual NMI support") Cc: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: NSean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Sean Christopherson 提交于
Per Intel's SDM: ... the logical processor uses PAE paging if CR0.PG=1, CR4.PAE=1 and IA32_EFER.LME=0. A VM entry to a guest that uses PAE paging loads the PDPTEs into internal, non-architectural registers based on the setting of the "enable EPT" VM-execution control. and: [GUEST_PDPTR] values are saved into the four PDPTE fields as follows: - If the "enable EPT" VM-execution control is 0 or the logical processor was not using PAE paging at the time of the VM exit, the values saved are undefined. In other words, if EPT is disabled or the guest isn't using PAE paging, then the PDPTRS aren't consumed by hardware on VM-Entry and are loaded with junk on VM-Exit. From a nesting perspective, all of the above hold true, i.e. KVM can effectively ignore the VMCS PDPTRs. E.g. KVM already loads the PDPTRs from memory when nested EPT is disabled (see nested_vmx_load_cr3()). Because KVM intercepts setting CR4.PAE, there is no danger of consuming a stale value or crushing L1's VMWRITEs regardless of whether L1 intercepts CR4.PAE. The vmcs12's values are unchanged up until the VM-Exit where L2 sets CR4.PAE, i.e. L0 will see the new PAE state on the subsequent VM-Entry and propagate the PDPTRs from vmcs12 to vmcs02. Signed-off-by: NSean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Paolo Bonzini 提交于
Checking for 32-bit PAE is quite common around code that fiddles with the PDPTRs. Add a function to compress all checks into a single invocation. Reviewed-by: NSean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Sean Christopherson 提交于
L1 is responsible for dirtying GUEST_GRP1 if it writes GUEST_BNDCFGS. Cc: Vitaly Kuznetsov <vkuznets@redhat.com> Signed-off-by: NSean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Sean Christopherson 提交于
KVM unconditionally intercepts WRMSR to MSR_IA32_DEBUGCTLMSR. In the unlikely event that L1 allows L2 to write L1's MSR_IA32_DEBUGCTLMSR, but but saves L2's value on VM-Exit, update vmcs12 during L2's WRMSR so as to eliminate the need to VMREAD the value from vmcs02 on nested VM-Exit. Signed-off-by: NSean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Sean Christopherson 提交于
For L2, KVM always intercepts WRMSR to SYSENTER MSRs. Update vmcs12 in the WRMSR handler so that they don't need to be (re)read from vmcs02 on every nested VM-Exit. Signed-off-by: NSean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Sean Christopherson 提交于
As alluded to by the TODO comment, KVM unconditionally intercepts writes to the PAT MSR. In the unlikely event that L1 allows L2 to write L1's PAT directly but saves L2's PAT on VM-Exit, update vmcs12 when L2 writes the PAT. This eliminates the need to VMREAD the value from vmcs02 on VM-Exit as vmcs12 is already up to date in all situations. Signed-off-by: NSean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Sean Christopherson 提交于
If nested_get_vmcs12_pages() fails to map L1's APIC_ACCESS_ADDR into L2, then it disables SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES in vmcs02. In other words, the APIC_ACCESS_ADDR in vmcs02 is guaranteed to be written with the correct value before being consumed by hardware, drop the unneessary VMWRITE. Signed-off-by: NSean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Sean Christopherson 提交于
The VIRTUAL_APIC_PAGE_ADDR in vmcs02 is guaranteed to be updated before it is consumed by hardware, either in nested_vmx_enter_non_root_mode() or via the KVM_REQ_GET_VMCS12_PAGES callback. Avoid an extra VMWRITE and only stuff a bad value into vmcs02 when mapping vmcs12's address fails. This also eliminates the need for extra comments to connect the dots between prepare_vmcs02_early() and nested_get_vmcs12_pages(). Signed-off-by: NSean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Sean Christopherson 提交于
... as a malicious userspace can run a toy guest to generate invalid virtual-APIC page addresses in L1, i.e. flood the kernel log with error messages. Fixes: 69090810 ("KVM: nVMX: allow tests to use bad virtual-APIC page address") Cc: stable@vger.kernel.org Cc: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: NSean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Sean Christopherson 提交于
When switching between vmcs01 and vmcs02, there is no need to update state tracking for values that aren't tied to any particular VMCS as the per-vCPU values are already up-to-date (vmx_switch_vmcs() can only be called when the vCPU is loaded). Avoiding the update eliminates a RDMSR, and potentially a RDPKRU and posted-interrupt update (cmpxchg64() and more). Signed-off-by: NSean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Sean Christopherson 提交于
When switching between vmcs01 and vmcs02, KVM isn't actually switching between guest and host. If guest state is already loaded (the likely, if not guaranteed, case), keep the guest state loaded and manually swap the loaded_cpu_state pointer after propagating saved host state to the new vmcs0{1,2}. Avoiding the switch between guest and host reduces the latency of switching between vmcs01 and vmcs02 by several hundred cycles, and reduces the roundtrip time of a nested VM by upwards of 1000 cycles. Signed-off-by: NSean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Sean Christopherson 提交于
Emulation of GUEST_PML_INDEX for a nested VMM is a bit weird. Because L0 flushes the PML on every VM-Exit, the value in vmcs02 at the time of VM-Enter is a constant -1, regardless of what L1 thinks/wants. Fixes: 09abe320 ("KVM: nVMX: split pieces of prepare_vmcs02() to prepare_vmcs02_early()") Signed-off-by: NSean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Sean Christopherson 提交于
KVM doesn't yet support SGX virtualization, i.e. writes a constant value to ENCLS_EXITING_BITMAP so that it can intercept ENCLS and inject a #UD. Fixes: 0b665d30 ("KVM: vmx: Inject #UD for SGX ENCLS instruction in guest") Signed-off-by: NSean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Sean Christopherson 提交于
If L1 does not set VM_ENTRY_LOAD_BNDCFGS, then L1's BNDCFGS value must be propagated to vmcs02 since KVM always runs with VM_ENTRY_LOAD_BNDCFGS when MPX is supported. Because the value effectively comes from vmcs01, vmcs02 must be updated even if vmcs12 is clean. Fixes: 62cf9bd8 ("KVM: nVMX: Fix emulation of VM_ENTRY_LOAD_BNDCFGS") Cc: stable@vger.kernel.org Cc: Liran Alon <liran.alon@oracle.com> Signed-off-by: NSean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Paolo Bonzini 提交于
These function do not prepare the entire state of the vmcs02, only the rarely needed parts. Rename them to make this clearer. Reviewed-by: NSean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Sean Christopherson 提交于
Many guest fields are rarely read (or written) by VMMs, i.e. likely aren't accessed between runs of a nested VMCS. Delay pulling rarely accessed guest fields from vmcs02 until they are VMREAD or until vmcs12 is dirtied. The latter case is necessary because nested VM-Entry will consume all manner of fields when vmcs12 is dirty, e.g. for consistency checks. Note, an alternative to synchronizing all guest fields on VMREAD would be to read *only* the field being accessed, but switching VMCS pointers is expensive and odds are good if one guest field is being accessed then others will soon follow, or that vmcs12 will be dirtied due to a VMWRITE (see above). And the full synchronization results in slightly cleaner code. Note, although GUEST_PDPTRs are relevant only for a 32-bit PAE guest, they are accessed quite frequently for said guests, and a separate patch is in flight to optimize away GUEST_PDTPR synchronziation for non-PAE guests. Skipping rarely accessed guest fields reduces the latency of a nested VM-Exit by ~200 cycles. Signed-off-by: NSean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Sean Christopherson 提交于
So that future optimizations related to shadowed fields don't need to define their own switch statement. Add a BUILD_BUG_ON() to ensure at least one of the types (RW vs RO) is defined when including vmcs_shadow_fields.h (guess who keeps mistyping SHADOW_FIELD_RO as SHADOW_FIELD_R0). Signed-off-by: NSean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Sean Christopherson 提交于
Nested virtualization involves copying data between many different types of VMCSes, e.g. vmcs02, vmcs12, shadow VMCS and eVMCS. Rename a variety of functions and flags to document both the source and destination of each sync. Signed-off-by: NSean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Sean Christopherson 提交于
... to make it more obvious that sync_vmcs12() is invoked on all nested VM-Exits, e.g. hiding sync_vmcs12() in prepare_vmcs12() makes it appear that guest state is NOT propagated to vmcs12 for a normal VM-Exit. Signed-off-by: NSean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Sean Christopherson 提交于
The vmcs12 fields offsets are constant and known at compile time. Store the associated offset for each shadowed field to avoid the costly lookup in vmcs_field_to_offset() when copying between vmcs12 and the shadow VMCS. Avoiding the costly lookup reduces the latency of copying by ~100 cycles in each direction. Signed-off-by: NSean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Sean Christopherson 提交于
VMMs frequently read the guest's CS and SS AR bytes to detect 64-bit mode and CPL respectively, but effectively never write said fields once the VM is initialized. Intercepting VMWRITEs for the two fields saves ~55 cycles in copy_shadow_to_vmcs12(). Because some Intel CPUs, e.g. Haswell, drop the reserved bits of the guest access rights fields on VMWRITE, exposing the fields to L1 for VMREAD but not VMWRITE leads to inconsistent behavior between L1 and L2. On hardware that drops the bits, L1 will see the stripped down value due to reading the value from hardware, while L2 will see the full original value as stored by KVM. To avoid such an inconsistency, emulate the behavior on all CPUS, but only for intercepted VMWRITEs so as to avoid introducing pointless latency into copy_shadow_to_vmcs12(), e.g. if the emulation were added to vmcs12_write_any(). Since the AR_BYTES emulation is done only for intercepted VMWRITE, if a future patch (re)exposed AR_BYTES for both VMWRITE and VMREAD, then KVM would end up with incosistent behavior on pre-Haswell hardware, e.g. KVM would drop the reserved bits on intercepted VMWRITE, but direct VMWRITE to the shadow VMCS would not drop the bits. Add a WARN in the shadow field initialization to detect any attempt to expose an AR_BYTES field without updating vmcs12_write_any(). Note, emulation of the AR_BYTES reserved bit behavior is based on a patch[1] from Jim Mattson that applied the emulation to all writes to vmcs12 so that live migration across different generations of hardware would not introduce divergent behavior. But given that live migration of nested state has already been enabled, that ship has sailed (not to mention that no sane VMM will be affected by this behavior). [1] https://patchwork.kernel.org/patch/10483321/ Cc: Jim Mattson <jmattson@google.com> Cc: Liran Alon <liran.alon@oracle.com> Signed-off-by: NSean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Sean Christopherson 提交于
Allowing L1 to VMWRITE read-only fields is only beneficial in a double nesting scenario, e.g. no sane VMM will VMWRITE VM_EXIT_REASON in normal non-nested operation. Intercepting RO fields means KVM doesn't need to sync them from the shadow VMCS to vmcs12 when running L2. The obvious downside is that L1 will VM-Exit more often when running L3, but it's likely safe to assume most folks would happily sacrifice a bit of L3 performance, which may not even be noticeable in the grande scheme, to improve L2 performance across the board. Not intercepting fields tagged read-only also allows for additional optimizations, e.g. marking GUEST_{CS,SS}_AR_BYTES as SHADOW_FIELD_RO since those fields are rarely written by a VMMs, but read frequently. When utilizing a shadow VMCS with asymmetric R/W and R/O bitmaps, fields that cause VM-Exit on VMWRITE but not VMREAD need to be propagated to the shadow VMCS during VMWRITE emulation, otherwise a subsequence VMREAD from L1 will consume a stale value. Note, KVM currently utilizes asymmetric bitmaps when "VMWRITE any field" is not exposed to L1, but only so that it can reject the VMWRITE, i.e. propagating the VMWRITE to the shadow VMCS is a new requirement, not a bug fix. Eliminating the copying of RO fields reduces the latency of nested VM-Entry (copy_shadow_to_vmcs12()) by ~100 cycles (plus 40-50 cycles if/when the AR_BYTES fields are exposed RO). Signed-off-by: NSean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Eugene Korenevsky 提交于
There is an imperfection in get_vmx_mem_address(): access length is ignored when checking the limit. To fix this, pass access length as a function argument. The access length is usually obvious since it is used by callers after get_vmx_mem_address() call, but for vmread/vmwrite it depends on the state of 64-bit mode. Signed-off-by: NEugene Korenevsky <ekorenevsky@gmail.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Eugene Korenevsky 提交于
Intel SDM vol. 3, 5.3: The processor causes a general-protection exception (or, if the segment is SS, a stack-fault exception) any time an attempt is made to access the following addresses in a segment: - A byte at an offset greater than the effective limit - A word at an offset greater than the (effective-limit – 1) - A doubleword at an offset greater than the (effective-limit – 3) - A quadword at an offset greater than the (effective-limit – 7) Therefore, the generic limit checking error condition must be exn = (off > limit + 1 - access_len) = (off + access_len - 1 > limit) but not exn = (off + access_len > limit) as for now. Also avoid integer overflow of `off` at 32-bit KVM by casting it to u64. Note: access length is currently sizeof(u64) which is incorrect. This will be fixed in the subsequent patch. Signed-off-by: NEugene Korenevsky <ekorenevsky@gmail.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-