fault.c 37.9 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
L
Linus Torvalds 已提交
2 3
/*
 *  Copyright (C) 1995  Linus Torvalds
I
Ingo Molnar 已提交
4
 *  Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
5
 *  Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
L
Linus Torvalds 已提交
6
 */
7
#include <linux/sched.h>		/* test_thread_flag(), ...	*/
8
#include <linux/sched/task_stack.h>	/* task_stack_*(), ...		*/
9
#include <linux/kdebug.h>		/* oops_begin/end, ...		*/
10
#include <linux/extable.h>		/* search_exception_tables	*/
M
Mike Rapoport 已提交
11
#include <linux/memblock.h>		/* max_low_pfn			*/
12
#include <linux/kprobes.h>		/* NOKPROBE_SYMBOL, ...		*/
13
#include <linux/mmiotrace.h>		/* kmmio_handler, ...		*/
14
#include <linux/perf_event.h>		/* perf_sw_event		*/
15
#include <linux/hugetlb.h>		/* hstate_index_to_shift	*/
16
#include <linux/prefetch.h>		/* prefetchw			*/
17
#include <linux/context_tracking.h>	/* exception_enter(), ...	*/
18
#include <linux/uaccess.h>		/* faulthandler_disabled()	*/
19
#include <linux/efi.h>			/* efi_recover_from_page_fault()*/
20
#include <linux/mm_types.h>
I
Ingo Molnar 已提交
21

22
#include <asm/cpufeature.h>		/* boot_cpu_has, ...		*/
23 24
#include <asm/traps.h>			/* dotraplinkage, ...		*/
#include <asm/pgalloc.h>		/* pgd_*(), ...			*/
25 26
#include <asm/fixmap.h>			/* VSYSCALL_ADDR		*/
#include <asm/vsyscall.h>		/* emulate_vsyscall		*/
B
Brian Gerst 已提交
27
#include <asm/vm86.h>			/* struct vm86			*/
28
#include <asm/mmu_context.h>		/* vma_pkey()			*/
29
#include <asm/efi.h>			/* efi_recover_from_page_fault()*/
L
Linus Torvalds 已提交
30

31 32 33
#define CREATE_TRACE_POINTS
#include <asm/trace/exceptions.h>

34
/*
35 36
 * Returns 0 if mmiotrace is disabled, or if the fault is not
 * handled by mmiotrace:
37
 */
38
static nokprobe_inline int
39
kmmio_fault(struct pt_regs *regs, unsigned long addr)
40
{
41 42 43 44
	if (unlikely(is_kmmio_active()))
		if (kmmio_handler(regs, addr) == 1)
			return -1;
	return 0;
45 46
}

47
static nokprobe_inline int kprobes_fault(struct pt_regs *regs)
48
{
49 50 51 52 53 54 55 56 57 58 59 60 61
	if (!kprobes_built_in())
		return 0;
	if (user_mode(regs))
		return 0;
	/*
	 * To be potentially processing a kprobe fault and to be allowed to call
	 * kprobe_running(), we have to be non-preemptible.
	 */
	if (preemptible())
		return 0;
	if (!kprobe_running())
		return 0;
	return kprobe_fault_handler(regs, X86_TRAP_PF);
62
}
63

64
/*
I
Ingo Molnar 已提交
65 66 67 68 69 70
 * Prefetch quirks:
 *
 * 32-bit mode:
 *
 *   Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
 *   Check that here and ignore it.
71
 *
I
Ingo Molnar 已提交
72
 * 64-bit mode:
73
 *
I
Ingo Molnar 已提交
74 75 76 77
 *   Sometimes the CPU reports invalid exceptions on prefetch.
 *   Check that here and ignore it.
 *
 * Opcode checker based on code by Richard Brunner.
78
 */
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
static inline int
check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
		      unsigned char opcode, int *prefetch)
{
	unsigned char instr_hi = opcode & 0xf0;
	unsigned char instr_lo = opcode & 0x0f;

	switch (instr_hi) {
	case 0x20:
	case 0x30:
		/*
		 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
		 * In X86_64 long mode, the CPU will signal invalid
		 * opcode if some of these prefixes are present so
		 * X86_64 will never get here anyway
		 */
		return ((instr_lo & 7) == 0x6);
#ifdef CONFIG_X86_64
	case 0x40:
		/*
		 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
		 * Need to figure out under what instruction mode the
		 * instruction was issued. Could check the LDT for lm,
		 * but for now it's good enough to assume that long
		 * mode only uses well known segments or kernel.
		 */
105
		return (!user_mode(regs) || user_64bit_mode(regs));
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
#endif
	case 0x60:
		/* 0x64 thru 0x67 are valid prefixes in all modes. */
		return (instr_lo & 0xC) == 0x4;
	case 0xF0:
		/* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
		return !instr_lo || (instr_lo>>1) == 1;
	case 0x00:
		/* Prefetch instruction is 0x0F0D or 0x0F18 */
		if (probe_kernel_address(instr, opcode))
			return 0;

		*prefetch = (instr_lo == 0xF) &&
			(opcode == 0x0D || opcode == 0x18);
		return 0;
	default:
		return 0;
	}
}

I
Ingo Molnar 已提交
126 127
static int
is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
128
{
I
Ingo Molnar 已提交
129
	unsigned char *max_instr;
130
	unsigned char *instr;
131
	int prefetch = 0;
L
Linus Torvalds 已提交
132

I
Ingo Molnar 已提交
133 134 135 136
	/*
	 * If it was a exec (instruction fetch) fault on NX page, then
	 * do not ignore the fault:
	 */
137
	if (error_code & X86_PF_INSTR)
L
Linus Torvalds 已提交
138
		return 0;
139

140
	instr = (void *)convert_ip_to_linear(current, regs);
141
	max_instr = instr + 15;
L
Linus Torvalds 已提交
142

143
	if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE_MAX)
L
Linus Torvalds 已提交
144 145
		return 0;

146
	while (instr < max_instr) {
I
Ingo Molnar 已提交
147
		unsigned char opcode;
L
Linus Torvalds 已提交
148

149
		if (probe_kernel_address(instr, opcode))
150
			break;
L
Linus Torvalds 已提交
151 152 153

		instr++;

154
		if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
L
Linus Torvalds 已提交
155 156 157 158 159
			break;
	}
	return prefetch;
}

160 161 162 163 164
DEFINE_SPINLOCK(pgd_lock);
LIST_HEAD(pgd_list);

#ifdef CONFIG_X86_32
static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
165
{
166 167
	unsigned index = pgd_index(address);
	pgd_t *pgd_k;
168
	p4d_t *p4d, *p4d_k;
169 170
	pud_t *pud, *pud_k;
	pmd_t *pmd, *pmd_k;
I
Ingo Molnar 已提交
171

172 173 174 175 176 177 178 179 180
	pgd += index;
	pgd_k = init_mm.pgd + index;

	if (!pgd_present(*pgd_k))
		return NULL;

	/*
	 * set_pgd(pgd, *pgd_k); here would be useless on PAE
	 * and redundant with the set_pmd() on non-PAE. As would
181
	 * set_p4d/set_pud.
182
	 */
183 184 185 186 187 188 189
	p4d = p4d_offset(pgd, address);
	p4d_k = p4d_offset(pgd_k, address);
	if (!p4d_present(*p4d_k))
		return NULL;

	pud = pud_offset(p4d, address);
	pud_k = pud_offset(p4d_k, address);
190 191 192 193 194 195 196 197
	if (!pud_present(*pud_k))
		return NULL;

	pmd = pmd_offset(pud, address);
	pmd_k = pmd_offset(pud_k, address);
	if (!pmd_present(*pmd_k))
		return NULL;

198
	if (!pmd_present(*pmd))
199
		set_pmd(pmd, *pmd_k);
200
	else
201 202 203 204 205 206 207 208 209 210 211 212 213
		BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));

	return pmd_k;
}

void vmalloc_sync_all(void)
{
	unsigned long address;

	if (SHARED_KERNEL_PMD)
		return;

	for (address = VMALLOC_START & PMD_MASK;
214
	     address >= TASK_SIZE_MAX && address < FIXADDR_TOP;
215 216 217
	     address += PMD_SIZE) {
		struct page *page;

A
Andrea Arcangeli 已提交
218
		spin_lock(&pgd_lock);
219
		list_for_each_entry(page, &pgd_list, lru) {
220
			spinlock_t *pgt_lock;
221
			pmd_t *ret;
222

A
Andrea Arcangeli 已提交
223
			/* the pgt_lock only for Xen */
224 225 226 227 228 229 230
			pgt_lock = &pgd_page_get_mm(page)->page_table_lock;

			spin_lock(pgt_lock);
			ret = vmalloc_sync_one(page_address(page), address);
			spin_unlock(pgt_lock);

			if (!ret)
231 232
				break;
		}
A
Andrea Arcangeli 已提交
233
		spin_unlock(&pgd_lock);
234 235 236 237 238 239 240 241
	}
}

/*
 * 32-bit:
 *
 *   Handle a fault on the vmalloc or module mapping area
 */
242
static noinline int vmalloc_fault(unsigned long address)
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
{
	unsigned long pgd_paddr;
	pmd_t *pmd_k;
	pte_t *pte_k;

	/* Make sure we are in vmalloc area: */
	if (!(address >= VMALLOC_START && address < VMALLOC_END))
		return -1;

	/*
	 * Synchronize this task's top level page-table
	 * with the 'reference' page table.
	 *
	 * Do _not_ use "current" here. We might be inside
	 * an interrupt in the middle of a task switch..
	 */
259
	pgd_paddr = read_cr3_pa();
260 261 262 263
	pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
	if (!pmd_k)
		return -1;

264
	if (pmd_large(*pmd_k))
265 266
		return 0;

267 268 269 270 271 272
	pte_k = pte_offset_kernel(pmd_k, address);
	if (!pte_present(*pte_k))
		return -1;

	return 0;
}
273
NOKPROBE_SYMBOL(vmalloc_fault);
274 275 276 277 278 279 280 281

/*
 * Did it hit the DOS screen memory VA from vm86 mode?
 */
static inline void
check_v8086_mode(struct pt_regs *regs, unsigned long address,
		 struct task_struct *tsk)
{
282
#ifdef CONFIG_VM86
283 284
	unsigned long bit;

285
	if (!v8086_mode(regs) || !tsk->thread.vm86)
286 287 288 289
		return;

	bit = (address - 0xA0000) >> PAGE_SHIFT;
	if (bit < 32)
290 291
		tsk->thread.vm86->screen_bitmap |= 1 << bit;
#endif
292
}
L
Linus Torvalds 已提交
293

A
Akinobu Mita 已提交
294
static bool low_pfn(unsigned long pfn)
L
Linus Torvalds 已提交
295
{
A
Akinobu Mita 已提交
296 297
	return pfn < max_low_pfn;
}
298

A
Akinobu Mita 已提交
299 300
static void dump_pagetable(unsigned long address)
{
301
	pgd_t *base = __va(read_cr3_pa());
A
Akinobu Mita 已提交
302
	pgd_t *pgd = &base[pgd_index(address)];
303 304
	p4d_t *p4d;
	pud_t *pud;
A
Akinobu Mita 已提交
305 306
	pmd_t *pmd;
	pte_t *pte;
I
Ingo Molnar 已提交
307

308
#ifdef CONFIG_X86_PAE
309
	pr_info("*pdpt = %016Lx ", pgd_val(*pgd));
A
Akinobu Mita 已提交
310 311
	if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
		goto out;
312 313 314
#define pr_pde pr_cont
#else
#define pr_pde pr_info
315
#endif
316 317 318
	p4d = p4d_offset(pgd, address);
	pud = pud_offset(p4d, address);
	pmd = pmd_offset(pud, address);
319 320
	pr_pde("*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
#undef pr_pde
321 322 323 324 325

	/*
	 * We must not directly access the pte in the highpte
	 * case if the page table is located in highmem.
	 * And let's rather not kmap-atomic the pte, just in case
I
Ingo Molnar 已提交
326
	 * it's allocated already:
327
	 */
A
Akinobu Mita 已提交
328 329
	if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
		goto out;
330

A
Akinobu Mita 已提交
331
	pte = pte_offset_kernel(pmd, address);
332
	pr_cont("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
A
Akinobu Mita 已提交
333
out:
334
	pr_cont("\n");
335 336 337 338 339 340
}

#else /* CONFIG_X86_64: */

void vmalloc_sync_all(void)
{
341
	sync_global_pgds(VMALLOC_START & PGDIR_MASK, VMALLOC_END);
342 343 344 345 346 347 348
}

/*
 * 64-bit:
 *
 *   Handle a fault on the vmalloc area
 */
349
static noinline int vmalloc_fault(unsigned long address)
350
{
351 352 353 354 355
	pgd_t *pgd, *pgd_k;
	p4d_t *p4d, *p4d_k;
	pud_t *pud;
	pmd_t *pmd;
	pte_t *pte;
356 357 358 359 360

	/* Make sure we are in vmalloc area: */
	if (!(address >= VMALLOC_START && address < VMALLOC_END))
		return -1;

361 362
	WARN_ON_ONCE(in_nmi());

363 364 365 366 367
	/*
	 * Copy kernel mappings over when needed. This can also
	 * happen within a race in page table update. In the later
	 * case just flush:
	 */
368
	pgd = (pgd_t *)__va(read_cr3_pa()) + pgd_index(address);
369 370
	pgd_k = pgd_offset_k(address);
	if (pgd_none(*pgd_k))
371 372
		return -1;

373
	if (pgtable_l5_enabled()) {
374
		if (pgd_none(*pgd)) {
375
			set_pgd(pgd, *pgd_k);
376 377
			arch_flush_lazy_mmu_mode();
		} else {
378
			BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_k));
379
		}
380
	}
381

382 383
	/* With 4-level paging, copying happens on the p4d level. */
	p4d = p4d_offset(pgd, address);
384 385
	p4d_k = p4d_offset(pgd_k, address);
	if (p4d_none(*p4d_k))
386 387
		return -1;

388
	if (p4d_none(*p4d) && !pgtable_l5_enabled()) {
389
		set_p4d(p4d, *p4d_k);
390 391
		arch_flush_lazy_mmu_mode();
	} else {
392
		BUG_ON(p4d_pfn(*p4d) != p4d_pfn(*p4d_k));
393 394
	}

395
	BUILD_BUG_ON(CONFIG_PGTABLE_LEVELS < 4);
396

397
	pud = pud_offset(p4d, address);
398
	if (pud_none(*pud))
399 400
		return -1;

401
	if (pud_large(*pud))
402 403
		return 0;

404
	pmd = pmd_offset(pud, address);
405
	if (pmd_none(*pmd))
406 407
		return -1;

408
	if (pmd_large(*pmd))
409 410
		return 0;

411
	pte = pte_offset_kernel(pmd, address);
412 413
	if (!pte_present(*pte))
		return -1;
414 415 416

	return 0;
}
417
NOKPROBE_SYMBOL(vmalloc_fault);
418

419
#ifdef CONFIG_CPU_SUP_AMD
420
static const char errata93_warning[] =
421 422 423 424 425
KERN_ERR 
"******* Your BIOS seems to not contain a fix for K8 errata #93\n"
"******* Working around it, but it may cause SEGVs or burn power.\n"
"******* Please consider a BIOS update.\n"
"******* Disabling USB legacy in the BIOS may also help.\n";
426
#endif
427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445

/*
 * No vm86 mode in 64-bit mode:
 */
static inline void
check_v8086_mode(struct pt_regs *regs, unsigned long address,
		 struct task_struct *tsk)
{
}

static int bad_address(void *p)
{
	unsigned long dummy;

	return probe_kernel_address((unsigned long *)p, dummy);
}

static void dump_pagetable(unsigned long address)
{
446
	pgd_t *base = __va(read_cr3_pa());
A
Akinobu Mita 已提交
447
	pgd_t *pgd = base + pgd_index(address);
448
	p4d_t *p4d;
L
Linus Torvalds 已提交
449 450 451 452
	pud_t *pud;
	pmd_t *pmd;
	pte_t *pte;

I
Ingo Molnar 已提交
453 454 455
	if (bad_address(pgd))
		goto bad;

456
	pr_info("PGD %lx ", pgd_val(*pgd));
I
Ingo Molnar 已提交
457 458 459

	if (!pgd_present(*pgd))
		goto out;
L
Linus Torvalds 已提交
460

461 462 463 464
	p4d = p4d_offset(pgd, address);
	if (bad_address(p4d))
		goto bad;

465
	pr_cont("P4D %lx ", p4d_val(*p4d));
466 467 468 469
	if (!p4d_present(*p4d) || p4d_large(*p4d))
		goto out;

	pud = pud_offset(p4d, address);
I
Ingo Molnar 已提交
470 471 472
	if (bad_address(pud))
		goto bad;

473
	pr_cont("PUD %lx ", pud_val(*pud));
474
	if (!pud_present(*pud) || pud_large(*pud))
I
Ingo Molnar 已提交
475
		goto out;
L
Linus Torvalds 已提交
476 477

	pmd = pmd_offset(pud, address);
I
Ingo Molnar 已提交
478 479 480
	if (bad_address(pmd))
		goto bad;

481
	pr_cont("PMD %lx ", pmd_val(*pmd));
I
Ingo Molnar 已提交
482 483
	if (!pmd_present(*pmd) || pmd_large(*pmd))
		goto out;
L
Linus Torvalds 已提交
484 485

	pte = pte_offset_kernel(pmd, address);
I
Ingo Molnar 已提交
486 487 488
	if (bad_address(pte))
		goto bad;

489
	pr_cont("PTE %lx", pte_val(*pte));
I
Ingo Molnar 已提交
490
out:
491
	pr_cont("\n");
L
Linus Torvalds 已提交
492 493
	return;
bad:
494
	pr_info("BAD\n");
495 496
}

497
#endif /* CONFIG_X86_64 */
L
Linus Torvalds 已提交
498

I
Ingo Molnar 已提交
499 500 501 502 503 504 505 506 507 508 509 510 511
/*
 * Workaround for K8 erratum #93 & buggy BIOS.
 *
 * BIOS SMM functions are required to use a specific workaround
 * to avoid corruption of the 64bit RIP register on C stepping K8.
 *
 * A lot of BIOS that didn't get tested properly miss this.
 *
 * The OS sees this as a page fault with the upper 32bits of RIP cleared.
 * Try to work around it here.
 *
 * Note we only handle faults in kernel here.
 * Does nothing on 32-bit.
512
 */
513
static int is_errata93(struct pt_regs *regs, unsigned long address)
L
Linus Torvalds 已提交
514
{
515 516 517 518 519
#if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
	if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD
	    || boot_cpu_data.x86 != 0xf)
		return 0;

520
	if (address != regs->ip)
L
Linus Torvalds 已提交
521
		return 0;
I
Ingo Molnar 已提交
522

523
	if ((address >> 32) != 0)
L
Linus Torvalds 已提交
524
		return 0;
I
Ingo Molnar 已提交
525

L
Linus Torvalds 已提交
526
	address |= 0xffffffffUL << 32;
527 528
	if ((address >= (u64)_stext && address <= (u64)_etext) ||
	    (address >= MODULES_VADDR && address <= MODULES_END)) {
529
		printk_once(errata93_warning);
530
		regs->ip = address;
L
Linus Torvalds 已提交
531 532
		return 1;
	}
533
#endif
L
Linus Torvalds 已提交
534
	return 0;
535
}
L
Linus Torvalds 已提交
536

537
/*
I
Ingo Molnar 已提交
538 539 540 541 542
 * Work around K8 erratum #100 K8 in compat mode occasionally jumps
 * to illegal addresses >4GB.
 *
 * We catch this in the page fault handler because these addresses
 * are not reachable. Just detect this case and return.  Any code
543 544 545 546 547
 * segment in LDT is compatibility mode.
 */
static int is_errata100(struct pt_regs *regs, unsigned long address)
{
#ifdef CONFIG_X86_64
I
Ingo Molnar 已提交
548
	if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
549 550 551 552 553
		return 1;
#endif
	return 0;
}

554 555 556 557
static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
{
#ifdef CONFIG_X86_F00F_BUG
	unsigned long nr;
I
Ingo Molnar 已提交
558

559
	/*
I
Ingo Molnar 已提交
560
	 * Pentium F0 0F C7 C8 bug workaround:
561
	 */
562
	if (boot_cpu_has_bug(X86_BUG_F00F)) {
563 564 565 566 567 568 569 570 571 572 573
		nr = (address - idt_descr.address) >> 3;

		if (nr == 6) {
			do_invalid_op(regs, 0);
			return 1;
		}
	}
#endif
	return 0;
}

I
Ingo Molnar 已提交
574 575 576
static void
show_fault_oops(struct pt_regs *regs, unsigned long error_code,
		unsigned long address)
577
{
578 579 580
	if (!oops_may_print())
		return;

581
	if (error_code & X86_PF_INSTR) {
582
		unsigned int level;
583 584
		pgd_t *pgd;
		pte_t *pte;
I
Ingo Molnar 已提交
585

586
		pgd = __va(read_cr3_pa());
587 588 589
		pgd += pgd_index(address);

		pte = lookup_address_in_pgd(pgd, address, &level);
590

591
		if (pte && pte_present(*pte) && !pte_exec(*pte))
592 593
			pr_crit("kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n",
				from_kuid(&init_user_ns, current_uid()));
594 595
		if (pte && pte_present(*pte) && pte_exec(*pte) &&
				(pgd_flags(*pgd) & _PAGE_USER) &&
596
				(__read_cr4() & X86_CR4_SMEP))
597 598
			pr_crit("unable to execute userspace code (SMEP?) (uid: %d)\n",
				from_kuid(&init_user_ns, current_uid()));
599 600
	}

601 602 603
	pr_alert("BUG: unable to handle kernel %s at %px\n",
		 address < PAGE_SIZE ? "NULL pointer dereference" : "paging request",
		 (void *)address);
I
Ingo Molnar 已提交
604

605 606 607
	dump_pagetable(address);
}

I
Ingo Molnar 已提交
608 609 610
static noinline void
pgtable_bad(struct pt_regs *regs, unsigned long error_code,
	    unsigned long address)
L
Linus Torvalds 已提交
611
{
I
Ingo Molnar 已提交
612 613 614 615 616 617 618
	struct task_struct *tsk;
	unsigned long flags;
	int sig;

	flags = oops_begin();
	tsk = current;
	sig = SIGKILL;
619

L
Linus Torvalds 已提交
620
	printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
621
	       tsk->comm, address);
L
Linus Torvalds 已提交
622
	dump_pagetable(address);
I
Ingo Molnar 已提交
623

624
	if (__die("Bad pagetable", regs, error_code))
625
		sig = 0;
I
Ingo Molnar 已提交
626

627
	oops_end(flags, regs, sig);
L
Linus Torvalds 已提交
628 629
}

630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647
static void set_signal_archinfo(unsigned long address,
				unsigned long error_code)
{
	struct task_struct *tsk = current;

	/*
	 * To avoid leaking information about the kernel page
	 * table layout, pretend that user-mode accesses to
	 * kernel addresses are always protection faults.
	 */
	if (address >= TASK_SIZE_MAX)
		error_code |= X86_PF_PROT;

	tsk->thread.trap_nr = X86_TRAP_PF;
	tsk->thread.error_code = error_code | X86_PF_USER;
	tsk->thread.cr2 = address;
}

I
Ingo Molnar 已提交
648 649
static noinline void
no_context(struct pt_regs *regs, unsigned long error_code,
650
	   unsigned long address, int signal, int si_code)
651 652 653 654 655
{
	struct task_struct *tsk = current;
	unsigned long flags;
	int sig;

656 657 658 659 660 661 662 663 664
	if (user_mode(regs)) {
		/*
		 * This is an implicit supervisor-mode access from user
		 * mode.  Bypass all the kernel-mode recovery code and just
		 * OOPS.
		 */
		goto oops;
	}

I
Ingo Molnar 已提交
665
	/* Are we prepared to handle this kernel fault? */
666
	if (fixup_exception(regs, X86_TRAP_PF, error_code, address)) {
667 668 669 670 671 672 673 674 675 676 677 678 679 680
		/*
		 * Any interrupt that takes a fault gets the fixup. This makes
		 * the below recursive fault logic only apply to a faults from
		 * task context.
		 */
		if (in_interrupt())
			return;

		/*
		 * Per the above we're !in_interrupt(), aka. task context.
		 *
		 * In this case we need to make sure we're not recursively
		 * faulting through the emulate_vsyscall() logic.
		 */
681
		if (current->thread.sig_on_uaccess_err && signal) {
682
			set_signal_archinfo(address, error_code);
683 684

			/* XXX: hwpoison faults will set the wrong code. */
685 686
			force_sig_fault(signal, si_code, (void __user *)address,
					tsk);
687
		}
688 689 690 691

		/*
		 * Barring that, we can do the fixup and be happy.
		 */
692
		return;
693
	}
694

695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717
#ifdef CONFIG_VMAP_STACK
	/*
	 * Stack overflow?  During boot, we can fault near the initial
	 * stack in the direct map, but that's not an overflow -- check
	 * that we're in vmalloc space to avoid this.
	 */
	if (is_vmalloc_addr((void *)address) &&
	    (((unsigned long)tsk->stack - 1 - address < PAGE_SIZE) ||
	     address - ((unsigned long)tsk->stack + THREAD_SIZE) < PAGE_SIZE)) {
		unsigned long stack = this_cpu_read(orig_ist.ist[DOUBLEFAULT_STACK]) - sizeof(void *);
		/*
		 * We're likely to be running with very little stack space
		 * left.  It's plausible that we'd hit this condition but
		 * double-fault even before we get this far, in which case
		 * we're fine: the double-fault handler will deal with it.
		 *
		 * We don't want to make it all the way into the oops code
		 * and then double-fault, though, because we're likely to
		 * break the console driver and lose most of the stack dump.
		 */
		asm volatile ("movq %[stack], %%rsp\n\t"
			      "call handle_stack_overflow\n\t"
			      "1: jmp 1b"
718
			      : ASM_CALL_CONSTRAINT
719 720 721 722 723 724 725
			      : "D" ("kernel stack overflow (page fault)"),
				"S" (regs), "d" (address),
				[stack] "rm" (stack));
		unreachable();
	}
#endif

726
	/*
I
Ingo Molnar 已提交
727 728 729 730 731 732 733
	 * 32-bit:
	 *
	 *   Valid to do another page fault here, because if this fault
	 *   had been triggered by is_prefetch fixup_exception would have
	 *   handled it.
	 *
	 * 64-bit:
734
	 *
I
Ingo Molnar 已提交
735
	 *   Hall of shame of CPU/BIOS bugs.
736 737 738 739 740 741 742
	 */
	if (is_prefetch(regs, error_code, address))
		return;

	if (is_errata93(regs, address))
		return;

743 744 745 746 747 748 749
	/*
	 * Buggy firmware could access regions which might page fault, try to
	 * recover from such faults.
	 */
	if (IS_ENABLED(CONFIG_EFI))
		efi_recover_from_page_fault(address);

750
oops:
751 752
	/*
	 * Oops. The kernel tried to access some bad page. We'll have to
I
Ingo Molnar 已提交
753
	 * terminate things with extreme prejudice:
754 755 756 757 758
	 */
	flags = oops_begin();

	show_fault_oops(regs, error_code, address);

759
	if (task_stack_end_corrupted(tsk))
760
		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
761

762 763 764
	sig = SIGKILL;
	if (__die("Oops", regs, error_code))
		sig = 0;
I
Ingo Molnar 已提交
765

766
	/* Executive summary in case the body of the oops scrolled away */
767
	printk(KERN_DEFAULT "CR2: %016lx\n", address);
I
Ingo Molnar 已提交
768

769 770 771
	oops_end(flags, regs, sig);
}

I
Ingo Molnar 已提交
772 773 774 775 776 777 778 779
/*
 * Print out info about fatal segfaults, if the show_unhandled_signals
 * sysctl is set:
 */
static inline void
show_signal_msg(struct pt_regs *regs, unsigned long error_code,
		unsigned long address, struct task_struct *tsk)
{
780 781
	const char *loglvl = task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG;

I
Ingo Molnar 已提交
782 783 784 785 786 787
	if (!unhandled_signal(tsk, SIGSEGV))
		return;

	if (!printk_ratelimit())
		return;

788
	printk("%s%s[%d]: segfault at %lx ip %px sp %px error %lx",
789
		loglvl, tsk->comm, task_pid_nr(tsk), address,
I
Ingo Molnar 已提交
790 791 792 793 794
		(void *)regs->ip, (void *)regs->sp, error_code);

	print_vma_addr(KERN_CONT " in ", regs->ip);

	printk(KERN_CONT "\n");
795

796
	show_opcodes(regs, loglvl);
I
Ingo Molnar 已提交
797 798
}

D
Dave Hansen 已提交
799 800 801 802 803 804
/*
 * The (legacy) vsyscall page is the long page in the kernel portion
 * of the address space that has user-accessible permissions.
 */
static bool is_vsyscall_vaddr(unsigned long vaddr)
{
805
	return unlikely((vaddr & PAGE_MASK) == VSYSCALL_ADDR);
D
Dave Hansen 已提交
806 807
}

I
Ingo Molnar 已提交
808 809
static void
__bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
810
		       unsigned long address, u32 pkey, int si_code)
811 812 813 814
{
	struct task_struct *tsk = current;

	/* User mode accesses just cause a SIGSEGV */
815
	if (user_mode(regs) && (error_code & X86_PF_USER)) {
816
		/*
I
Ingo Molnar 已提交
817
		 * It's possible to have interrupts off here:
818 819 820 821 822
		 */
		local_irq_enable();

		/*
		 * Valid to do another page fault here because this one came
I
Ingo Molnar 已提交
823
		 * from user space:
824 825 826 827 828 829 830
		 */
		if (is_prefetch(regs, error_code, address))
			return;

		if (is_errata100(regs, address))
			return;

831 832 833 834 835 836
		/*
		 * To avoid leaking information about the kernel page table
		 * layout, pretend that user-mode accesses to kernel addresses
		 * are always protection faults.
		 */
		if (address >= TASK_SIZE_MAX)
837
			error_code |= X86_PF_PROT;
838

839
		if (likely(show_unhandled_signals))
I
Ingo Molnar 已提交
840 841
			show_signal_msg(regs, error_code, address, tsk);

842
		set_signal_archinfo(address, error_code);
843

844
		if (si_code == SEGV_PKUERR)
845
			force_sig_pkuerr((void __user *)address, pkey);
846

847
		force_sig_fault(SIGSEGV, si_code, (void __user *)address, tsk);
I
Ingo Molnar 已提交
848

849 850 851 852 853 854
		return;
	}

	if (is_f00f_bug(regs, address))
		return;

855
	no_context(regs, error_code, address, SIGSEGV, si_code);
856 857
}

I
Ingo Molnar 已提交
858 859
static noinline void
bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
860
		     unsigned long address)
861
{
862
	__bad_area_nosemaphore(regs, error_code, address, 0, SEGV_MAPERR);
863 864
}

I
Ingo Molnar 已提交
865 866
static void
__bad_area(struct pt_regs *regs, unsigned long error_code,
867
	   unsigned long address, u32 pkey, int si_code)
868 869 870 871 872 873 874 875
{
	struct mm_struct *mm = current->mm;
	/*
	 * Something tried to access memory that isn't in our memory map..
	 * Fix it, but check if it's kernel or user first..
	 */
	up_read(&mm->mmap_sem);

876
	__bad_area_nosemaphore(regs, error_code, address, pkey, si_code);
877 878
}

I
Ingo Molnar 已提交
879 880
static noinline void
bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
881
{
882
	__bad_area(regs, error_code, address, 0, SEGV_MAPERR);
883 884
}

885 886 887
static inline bool bad_area_access_from_pkeys(unsigned long error_code,
		struct vm_area_struct *vma)
{
888 889 890
	/* This code is always called on the current mm */
	bool foreign = false;

891 892
	if (!boot_cpu_has(X86_FEATURE_OSPKE))
		return false;
893
	if (error_code & X86_PF_PK)
894
		return true;
895
	/* this checks permission keys on the VMA: */
896 897
	if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
				       (error_code & X86_PF_INSTR), foreign))
898
		return true;
899
	return false;
900 901
}

I
Ingo Molnar 已提交
902 903
static noinline void
bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
904
		      unsigned long address, struct vm_area_struct *vma)
905
{
906 907 908 909 910
	/*
	 * This OSPKE check is not strictly necessary at runtime.
	 * But, doing it this way allows compiler optimizations
	 * if pkeys are compiled out.
	 */
911
	if (bad_area_access_from_pkeys(error_code, vma)) {
912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931
		/*
		 * A protection key fault means that the PKRU value did not allow
		 * access to some PTE.  Userspace can figure out what PKRU was
		 * from the XSAVE state.  This function captures the pkey from
		 * the vma and passes it to userspace so userspace can discover
		 * which protection key was set on the PTE.
		 *
		 * If we get here, we know that the hardware signaled a X86_PF_PK
		 * fault and that there was a VMA once we got in the fault
		 * handler.  It does *not* guarantee that the VMA we find here
		 * was the one that we faulted on.
		 *
		 * 1. T1   : mprotect_key(foo, PAGE_SIZE, pkey=4);
		 * 2. T1   : set PKRU to deny access to pkey=4, touches page
		 * 3. T1   : faults...
		 * 4.    T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
		 * 5. T1   : enters fault handler, takes mmap_sem, etc...
		 * 6. T1   : reaches here, sees vma_pkey(vma)=5, when we really
		 *	     faulted on a pte with its pkey=4.
		 */
932
		u32 pkey = vma_pkey(vma);
933

934
		__bad_area(regs, error_code, address, pkey, SEGV_PKUERR);
935
	} else {
936
		__bad_area(regs, error_code, address, 0, SEGV_ACCERR);
937
	}
938 939
}

I
Ingo Molnar 已提交
940
static void
941
do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
942
	  unsigned int fault)
943 944 945
{
	struct task_struct *tsk = current;

I
Ingo Molnar 已提交
946
	/* Kernel mode? Handle exceptions or die: */
947
	if (!(error_code & X86_PF_USER)) {
948
		no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
949 950
		return;
	}
I
Ingo Molnar 已提交
951

952
	/* User-space => ok to do another page fault: */
953 954
	if (is_prefetch(regs, error_code, address))
		return;
I
Ingo Molnar 已提交
955

956
	set_signal_archinfo(address, error_code);
I
Ingo Molnar 已提交
957

958
#ifdef CONFIG_MEMORY_FAILURE
959
	if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
960 961 962
		unsigned lsb = 0;

		pr_err(
963 964
	"MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
			tsk->comm, tsk->pid, address);
965 966 967 968 969 970
		if (fault & VM_FAULT_HWPOISON_LARGE)
			lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
		if (fault & VM_FAULT_HWPOISON)
			lsb = PAGE_SHIFT;
		force_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb, tsk);
		return;
971 972
	}
#endif
973
	force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address, tsk);
974 975
}

976
static noinline void
I
Ingo Molnar 已提交
977
mm_fault_error(struct pt_regs *regs, unsigned long error_code,
978
	       unsigned long address, vm_fault_t fault)
979
{
980
	if (fatal_signal_pending(current) && !(error_code & X86_PF_USER)) {
981 982
		no_context(regs, error_code, address, 0, 0);
		return;
983 984
	}

I
Ingo Molnar 已提交
985
	if (fault & VM_FAULT_OOM) {
986
		/* Kernel mode? Handle exceptions or die: */
987
		if (!(error_code & X86_PF_USER)) {
988 989
			no_context(regs, error_code, address,
				   SIGSEGV, SEGV_MAPERR);
990
			return;
991 992
		}

993 994 995 996 997 998
		/*
		 * We ran out of memory, call the OOM killer, and return the
		 * userspace (which will retry the fault, or kill us if we got
		 * oom-killed):
		 */
		pagefault_out_of_memory();
I
Ingo Molnar 已提交
999
	} else {
1000 1001
		if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
			     VM_FAULT_HWPOISON_LARGE))
1002
			do_sigbus(regs, error_code, address, fault);
1003
		else if (fault & VM_FAULT_SIGSEGV)
1004
			bad_area_nosemaphore(regs, error_code, address);
I
Ingo Molnar 已提交
1005 1006 1007
		else
			BUG();
	}
1008 1009
}

1010
static int spurious_kernel_fault_check(unsigned long error_code, pte_t *pte)
1011
{
1012
	if ((error_code & X86_PF_WRITE) && !pte_write(*pte))
1013
		return 0;
I
Ingo Molnar 已提交
1014

1015
	if ((error_code & X86_PF_INSTR) && !pte_exec(*pte))
1016 1017 1018 1019 1020
		return 0;

	return 1;
}

1021
/*
I
Ingo Molnar 已提交
1022 1023 1024 1025 1026 1027 1028 1029
 * Handle a spurious fault caused by a stale TLB entry.
 *
 * This allows us to lazily refresh the TLB when increasing the
 * permissions of a kernel page (RO -> RW or NX -> X).  Doing it
 * eagerly is very expensive since that implies doing a full
 * cross-processor TLB flush, even if no stale TLB entries exist
 * on other processors.
 *
1030 1031 1032 1033
 * Spurious faults may only occur if the TLB contains an entry with
 * fewer permission than the page table entry.  Non-present (P = 0)
 * and reserved bit (R = 1) faults are never spurious.
 *
1034 1035
 * There are no security implications to leaving a stale TLB when
 * increasing the permissions on a page.
1036 1037 1038 1039 1040
 *
 * Returns non-zero if a spurious fault was handled, zero otherwise.
 *
 * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3
 * (Optional Invalidation).
1041
 */
1042
static noinline int
1043
spurious_kernel_fault(unsigned long error_code, unsigned long address)
1044 1045
{
	pgd_t *pgd;
1046
	p4d_t *p4d;
1047 1048 1049
	pud_t *pud;
	pmd_t *pmd;
	pte_t *pte;
1050
	int ret;
1051

1052 1053 1054 1055 1056 1057 1058 1059 1060
	/*
	 * Only writes to RO or instruction fetches from NX may cause
	 * spurious faults.
	 *
	 * These could be from user or supervisor accesses but the TLB
	 * is only lazily flushed after a kernel mapping protection
	 * change, so user accesses are not expected to cause spurious
	 * faults.
	 */
1061 1062
	if (error_code != (X86_PF_WRITE | X86_PF_PROT) &&
	    error_code != (X86_PF_INSTR | X86_PF_PROT))
1063 1064 1065 1066 1067 1068
		return 0;

	pgd = init_mm.pgd + pgd_index(address);
	if (!pgd_present(*pgd))
		return 0;

1069 1070 1071 1072 1073
	p4d = p4d_offset(pgd, address);
	if (!p4d_present(*p4d))
		return 0;

	if (p4d_large(*p4d))
1074
		return spurious_kernel_fault_check(error_code, (pte_t *) p4d);
1075 1076

	pud = pud_offset(p4d, address);
1077 1078 1079
	if (!pud_present(*pud))
		return 0;

1080
	if (pud_large(*pud))
1081
		return spurious_kernel_fault_check(error_code, (pte_t *) pud);
1082

1083 1084 1085 1086
	pmd = pmd_offset(pud, address);
	if (!pmd_present(*pmd))
		return 0;

1087
	if (pmd_large(*pmd))
1088
		return spurious_kernel_fault_check(error_code, (pte_t *) pmd);
1089

1090
	pte = pte_offset_kernel(pmd, address);
1091
	if (!pte_present(*pte))
1092 1093
		return 0;

1094
	ret = spurious_kernel_fault_check(error_code, pte);
1095 1096 1097 1098
	if (!ret)
		return 0;

	/*
I
Ingo Molnar 已提交
1099 1100
	 * Make sure we have permissions in PMD.
	 * If not, then there's a bug in the page tables:
1101
	 */
1102
	ret = spurious_kernel_fault_check(error_code, (pte_t *) pmd);
1103
	WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
I
Ingo Molnar 已提交
1104

1105
	return ret;
1106
}
1107
NOKPROBE_SYMBOL(spurious_kernel_fault);
1108

1109
int show_unhandled_signals = 1;
L
Linus Torvalds 已提交
1110

I
Ingo Molnar 已提交
1111
static inline int
M
Michel Lespinasse 已提交
1112
access_error(unsigned long error_code, struct vm_area_struct *vma)
1113
{
1114 1115
	/* This is only called for the current mm, so: */
	bool foreign = false;
1116 1117 1118 1119 1120 1121

	/*
	 * Read or write was blocked by protection keys.  This is
	 * always an unconditional error and can never result in
	 * a follow-up action to resolve the fault, like a COW.
	 */
1122
	if (error_code & X86_PF_PK)
1123 1124
		return 1;

1125 1126
	/*
	 * Make sure to check the VMA so that we do not perform
1127
	 * faults just to hit a X86_PF_PK as soon as we fill in a
1128 1129
	 * page.
	 */
1130 1131
	if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
				       (error_code & X86_PF_INSTR), foreign))
1132
		return 1;
1133

1134
	if (error_code & X86_PF_WRITE) {
I
Ingo Molnar 已提交
1135
		/* write, present and write, not present: */
1136 1137
		if (unlikely(!(vma->vm_flags & VM_WRITE)))
			return 1;
I
Ingo Molnar 已提交
1138
		return 0;
1139 1140
	}

I
Ingo Molnar 已提交
1141
	/* read, present: */
1142
	if (unlikely(error_code & X86_PF_PROT))
I
Ingo Molnar 已提交
1143 1144 1145 1146 1147 1148
		return 1;

	/* read, not present: */
	if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
		return 1;

1149 1150 1151
	return 0;
}

1152 1153
static int fault_in_kernel_space(unsigned long address)
{
1154 1155 1156 1157 1158 1159 1160 1161
	/*
	 * On 64-bit systems, the vsyscall page is at an address above
	 * TASK_SIZE_MAX, but is not considered part of the kernel
	 * address space.
	 */
	if (IS_ENABLED(CONFIG_X86_64) && is_vsyscall_vaddr(address))
		return false;

1162
	return address >= TASK_SIZE_MAX;
1163 1164
}

L
Linus Torvalds 已提交
1165
/*
1166 1167 1168
 * Called for all faults where 'address' is part of the kernel address
 * space.  Might get called for faults that originate from *code* that
 * ran in userspace or the kernel.
L
Linus Torvalds 已提交
1169
 */
1170 1171 1172
static void
do_kern_addr_fault(struct pt_regs *regs, unsigned long hw_error_code,
		   unsigned long address)
L
Linus Torvalds 已提交
1173
{
1174 1175 1176 1177 1178 1179
	/*
	 * Protection keys exceptions only happen on user pages.  We
	 * have no user pages in the kernel portion of the address
	 * space, so do not expect them here.
	 */
	WARN_ON_ONCE(hw_error_code & X86_PF_PK);
L
Linus Torvalds 已提交
1180 1181

	/*
1182
	 * We can fault-in kernel-space virtual memory on-demand. The
L
Linus Torvalds 已提交
1183 1184 1185 1186 1187 1188 1189
	 * 'reference' page table is init_mm.pgd.
	 *
	 * NOTE! We MUST NOT take any locks for this case. We may
	 * be in an interrupt or a critical region, and should
	 * only copy the information from the master page table,
	 * nothing more.
	 *
1190 1191 1192 1193 1194 1195 1196 1197
	 * Before doing this on-demand faulting, ensure that the
	 * fault is not any of the following:
	 * 1. A fault on a PTE with a reserved bit set.
	 * 2. A fault caused by a user-mode access.  (Do not demand-
	 *    fault kernel memory due to user-mode accesses).
	 * 3. A fault caused by a page-level protection violation.
	 *    (A demand fault would be on a non-present page which
	 *     would have X86_PF_PROT==0).
L
Linus Torvalds 已提交
1198
	 */
1199 1200
	if (!(hw_error_code & (X86_PF_RSVD | X86_PF_USER | X86_PF_PROT))) {
		if (vmalloc_fault(address) >= 0)
1201
			return;
1202
	}
1203

1204 1205 1206
	/* Was the fault spurious, caused by lazy TLB invalidation? */
	if (spurious_kernel_fault(hw_error_code, address))
		return;
I
Ingo Molnar 已提交
1207

1208 1209
	/* kprobes don't want to hook the spurious faults: */
	if (kprobes_fault(regs))
1210
		return;
1211 1212 1213 1214 1215 1216 1217 1218 1219

	/*
	 * Note, despite being a "bad area", there are quite a few
	 * acceptable reasons to get here, such as erratum fixups
	 * and handling kernel code that can fault, like get_user().
	 *
	 * Don't take the mm semaphore here. If we fixup a prefetch
	 * fault we could otherwise deadlock:
	 */
1220
	bad_area_nosemaphore(regs, hw_error_code, address);
1221 1222 1223
}
NOKPROBE_SYMBOL(do_kern_addr_fault);

1224 1225 1226 1227 1228
/* Handle faults in the user portion of the address space */
static inline
void do_user_addr_fault(struct pt_regs *regs,
			unsigned long hw_error_code,
			unsigned long address)
L
Linus Torvalds 已提交
1229
{
I
Ingo Molnar 已提交
1230
	struct vm_area_struct *vma;
L
Linus Torvalds 已提交
1231 1232
	struct task_struct *tsk;
	struct mm_struct *mm;
1233
	vm_fault_t fault, major = 0;
1234
	unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
L
Linus Torvalds 已提交
1235

1236 1237
	tsk = current;
	mm = tsk->mm;
1238

I
Ingo Molnar 已提交
1239
	/* kprobes don't want to hook the spurious faults: */
1240
	if (unlikely(kprobes_fault(regs)))
1241
		return;
1242

1243 1244 1245 1246
	/*
	 * Reserved bits are never expected to be set on
	 * entries in the user portion of the page tables.
	 */
1247 1248
	if (unlikely(hw_error_code & X86_PF_RSVD))
		pgtable_bad(regs, hw_error_code, address);
L
Linus Torvalds 已提交
1249

1250
	/*
1251 1252 1253 1254 1255
	 * If SMAP is on, check for invalid kernel (supervisor) access to user
	 * pages in the user address space.  The odd case here is WRUSS,
	 * which, according to the preliminary documentation, does not respect
	 * SMAP and will have the USER bit set so, in all cases, SMAP
	 * enforcement appears to be consistent with the USER bit.
1256
	 */
1257 1258
	if (unlikely(cpu_feature_enabled(X86_FEATURE_SMAP) &&
		     !(hw_error_code & X86_PF_USER) &&
1259
		     !(regs->flags & X86_EFLAGS_AC)))
1260
	{
1261
		bad_area_nosemaphore(regs, hw_error_code, address);
1262
		return;
1263 1264
	}

L
Linus Torvalds 已提交
1265
	/*
I
Ingo Molnar 已提交
1266
	 * If we're in an interrupt, have no user context or are running
1267
	 * in a region with pagefaults disabled then we must not take the fault
L
Linus Torvalds 已提交
1268
	 */
1269
	if (unlikely(faulthandler_disabled() || !mm)) {
1270
		bad_area_nosemaphore(regs, hw_error_code, address);
1271 1272
		return;
	}
L
Linus Torvalds 已提交
1273

1274 1275 1276 1277 1278 1279 1280
	/*
	 * It's safe to allow irq's after cr2 has been saved and the
	 * vmalloc fault has been handled.
	 *
	 * User-mode registers count as a user access even for any
	 * potential system fault or CPU buglet:
	 */
1281
	if (user_mode(regs)) {
1282 1283 1284 1285 1286 1287 1288 1289 1290
		local_irq_enable();
		flags |= FAULT_FLAG_USER;
	} else {
		if (regs->flags & X86_EFLAGS_IF)
			local_irq_enable();
	}

	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);

A
Andy Lutomirski 已提交
1291
	if (hw_error_code & X86_PF_WRITE)
1292
		flags |= FAULT_FLAG_WRITE;
A
Andy Lutomirski 已提交
1293
	if (hw_error_code & X86_PF_INSTR)
1294
		flags |= FAULT_FLAG_INSTRUCTION;
1295

1296
#ifdef CONFIG_X86_64
I
Ingo Molnar 已提交
1297
	/*
1298 1299 1300 1301
	 * Instruction fetch faults in the vsyscall page might need
	 * emulation.  The vsyscall page is at a high address
	 * (>PAGE_OFFSET), but is considered to be part of the user
	 * address space.
L
Linus Torvalds 已提交
1302
	 *
1303 1304 1305
	 * The vsyscall page does not have a "real" VMA, so do this
	 * emulation before we go searching for VMAs.
	 */
A
Andy Lutomirski 已提交
1306
	if ((hw_error_code & X86_PF_INSTR) && is_vsyscall_vaddr(address)) {
1307 1308 1309 1310 1311
		if (emulate_vsyscall(regs, address))
			return;
	}
#endif

I
Ingo Molnar 已提交
1312
	/*
D
Dave Hansen 已提交
1313 1314 1315 1316 1317
	 * Kernel-mode access to the user address space should only occur
	 * on well-defined single instructions listed in the exception
	 * tables.  But, an erroneous kernel fault occurring outside one of
	 * those areas which also holds mmap_sem might deadlock attempting
	 * to validate the fault against the address space.
L
Linus Torvalds 已提交
1318
	 *
D
Dave Hansen 已提交
1319 1320 1321
	 * Only do the expensive exception table search when we might be at
	 * risk of a deadlock.  This happens if we
	 * 1. Failed to acquire mmap_sem, and
1322
	 * 2. The access did not originate in userspace.
L
Linus Torvalds 已提交
1323
	 */
1324
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
1325
		if (!user_mode(regs) && !search_exception_tables(regs->ip)) {
D
Dave Hansen 已提交
1326 1327 1328 1329
			/*
			 * Fault from code in kernel from
			 * which we do not expect faults.
			 */
A
Andy Lutomirski 已提交
1330
			bad_area_nosemaphore(regs, hw_error_code, address);
1331 1332
			return;
		}
1333
retry:
L
Linus Torvalds 已提交
1334
		down_read(&mm->mmap_sem);
1335 1336
	} else {
		/*
I
Ingo Molnar 已提交
1337 1338 1339
		 * The above down_read_trylock() might have succeeded in
		 * which case we'll have missed the might_sleep() from
		 * down_read():
1340 1341
		 */
		might_sleep();
L
Linus Torvalds 已提交
1342 1343 1344
	}

	vma = find_vma(mm, address);
1345
	if (unlikely(!vma)) {
A
Andy Lutomirski 已提交
1346
		bad_area(regs, hw_error_code, address);
1347 1348 1349
		return;
	}
	if (likely(vma->vm_start <= address))
L
Linus Torvalds 已提交
1350
		goto good_area;
1351
	if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
A
Andy Lutomirski 已提交
1352
		bad_area(regs, hw_error_code, address);
1353 1354 1355
		return;
	}
	if (unlikely(expand_stack(vma, address))) {
A
Andy Lutomirski 已提交
1356
		bad_area(regs, hw_error_code, address);
1357 1358 1359 1360 1361 1362 1363
		return;
	}

	/*
	 * Ok, we have a good vm_area for this memory access, so
	 * we can handle it..
	 */
L
Linus Torvalds 已提交
1364
good_area:
A
Andy Lutomirski 已提交
1365 1366
	if (unlikely(access_error(hw_error_code, vma))) {
		bad_area_access_error(regs, hw_error_code, address, vma);
1367
		return;
L
Linus Torvalds 已提交
1368 1369 1370 1371 1372
	}

	/*
	 * If for any reason at all we couldn't handle the fault,
	 * make sure we exit gracefully rather than endlessly redo
1373 1374
	 * the fault.  Since we never set FAULT_FLAG_RETRY_NOWAIT, if
	 * we get VM_FAULT_RETRY back, the mmap_sem has been unlocked.
1375 1376 1377 1378 1379 1380 1381
	 *
	 * Note that handle_userfault() may also release and reacquire mmap_sem
	 * (and not return with VM_FAULT_RETRY), when returning to userland to
	 * repeat the page fault later with a VM_FAULT_NOPAGE retval
	 * (potentially after handling any pending signal during the return to
	 * userland). The return to userland is identified whenever
	 * FAULT_FLAG_USER|FAULT_FLAG_KILLABLE are both set in flags.
L
Linus Torvalds 已提交
1382
	 */
1383
	fault = handle_mm_fault(vma, address, flags);
1384
	major |= fault & VM_FAULT_MAJOR;
I
Ingo Molnar 已提交
1385

1386
	/*
1387 1388 1389
	 * If we need to retry the mmap_sem has already been released,
	 * and if there is a fatal signal pending there is no guarantee
	 * that we made any progress. Handle this case first.
1390
	 */
1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
	if (unlikely(fault & VM_FAULT_RETRY)) {
		/* Retry at most once */
		if (flags & FAULT_FLAG_ALLOW_RETRY) {
			flags &= ~FAULT_FLAG_ALLOW_RETRY;
			flags |= FAULT_FLAG_TRIED;
			if (!fatal_signal_pending(tsk))
				goto retry;
		}

		/* User mode? Just return to handle the fatal exception */
1401
		if (flags & FAULT_FLAG_USER)
1402 1403 1404
			return;

		/* Not returning to user mode? Handle exceptions or die: */
A
Andy Lutomirski 已提交
1405
		no_context(regs, hw_error_code, address, SIGBUS, BUS_ADRERR);
1406
		return;
1407
	}
1408

1409
	up_read(&mm->mmap_sem);
1410
	if (unlikely(fault & VM_FAULT_ERROR)) {
A
Andy Lutomirski 已提交
1411
		mm_fault_error(regs, hw_error_code, address, fault);
1412
		return;
1413 1414
	}

1415
	/*
1416 1417
	 * Major/minor page fault accounting. If any of the events
	 * returned VM_FAULT_MAJOR, we account it as a major fault.
1418
	 */
1419 1420 1421 1422 1423 1424
	if (major) {
		tsk->maj_flt++;
		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
	} else {
		tsk->min_flt++;
		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
1425
	}
1426

1427
	check_v8086_mode(regs, address, tsk);
L
Linus Torvalds 已提交
1428
}
1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450
NOKPROBE_SYMBOL(do_user_addr_fault);

/*
 * This routine handles page faults.  It determines the address,
 * and the problem, and then passes it off to one of the appropriate
 * routines.
 */
static noinline void
__do_page_fault(struct pt_regs *regs, unsigned long hw_error_code,
		unsigned long address)
{
	prefetchw(&current->mm->mmap_sem);

	if (unlikely(kmmio_fault(regs, address)))
		return;

	/* Was the fault on kernel-controlled part of the address space? */
	if (unlikely(fault_in_kernel_space(address)))
		do_kern_addr_fault(regs, hw_error_code, address);
	else
		do_user_addr_fault(regs, hw_error_code, address);
}
1451
NOKPROBE_SYMBOL(__do_page_fault);
1452

1453 1454 1455
static nokprobe_inline void
trace_page_fault_entries(unsigned long address, struct pt_regs *regs,
			 unsigned long error_code)
1456 1457
{
	if (user_mode(regs))
1458
		trace_page_fault_user(address, regs, error_code);
1459
	else
1460
		trace_page_fault_kernel(address, regs, error_code);
1461 1462
}

1463 1464 1465 1466 1467 1468 1469
/*
 * We must have this function blacklisted from kprobes, tagged with notrace
 * and call read_cr2() before calling anything else. To avoid calling any
 * kind of tracing machinery before we've observed the CR2 value.
 *
 * exception_{enter,exit}() contains all sorts of tracepoints.
 */
1470
dotraplinkage void notrace
1471
do_page_fault(struct pt_regs *regs, unsigned long error_code)
1472
{
1473
	unsigned long address = read_cr2(); /* Get the faulting address */
1474
	enum ctx_state prev_state;
1475 1476

	prev_state = exception_enter();
1477
	if (trace_pagefault_enabled())
1478 1479
		trace_page_fault_entries(address, regs, error_code);

1480
	__do_page_fault(regs, error_code, address);
1481 1482
	exception_exit(prev_state);
}
1483
NOKPROBE_SYMBOL(do_page_fault);