fault.c 38.0 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
L
Linus Torvalds 已提交
2 3
/*
 *  Copyright (C) 1995  Linus Torvalds
I
Ingo Molnar 已提交
4
 *  Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
5
 *  Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
L
Linus Torvalds 已提交
6
 */
7
#include <linux/sched.h>		/* test_thread_flag(), ...	*/
8
#include <linux/sched/task_stack.h>	/* task_stack_*(), ...		*/
9
#include <linux/kdebug.h>		/* oops_begin/end, ...		*/
10
#include <linux/extable.h>		/* search_exception_tables	*/
11
#include <linux/bootmem.h>		/* max_low_pfn			*/
12
#include <linux/kprobes.h>		/* NOKPROBE_SYMBOL, ...		*/
13
#include <linux/mmiotrace.h>		/* kmmio_handler, ...		*/
14
#include <linux/perf_event.h>		/* perf_sw_event		*/
15
#include <linux/hugetlb.h>		/* hstate_index_to_shift	*/
16
#include <linux/prefetch.h>		/* prefetchw			*/
17
#include <linux/context_tracking.h>	/* exception_enter(), ...	*/
18
#include <linux/uaccess.h>		/* faulthandler_disabled()	*/
I
Ingo Molnar 已提交
19

20
#include <asm/cpufeature.h>		/* boot_cpu_has, ...		*/
21 22
#include <asm/traps.h>			/* dotraplinkage, ...		*/
#include <asm/pgalloc.h>		/* pgd_*(), ...			*/
23 24
#include <asm/fixmap.h>			/* VSYSCALL_ADDR		*/
#include <asm/vsyscall.h>		/* emulate_vsyscall		*/
B
Brian Gerst 已提交
25
#include <asm/vm86.h>			/* struct vm86			*/
26
#include <asm/mmu_context.h>		/* vma_pkey()			*/
L
Linus Torvalds 已提交
27

28 29 30
#define CREATE_TRACE_POINTS
#include <asm/trace/exceptions.h>

31
/*
32 33
 * Returns 0 if mmiotrace is disabled, or if the fault is not
 * handled by mmiotrace:
34
 */
35
static nokprobe_inline int
36
kmmio_fault(struct pt_regs *regs, unsigned long addr)
37
{
38 39 40 41
	if (unlikely(is_kmmio_active()))
		if (kmmio_handler(regs, addr) == 1)
			return -1;
	return 0;
42 43
}

44
static nokprobe_inline int kprobes_fault(struct pt_regs *regs)
45
{
46 47 48
	int ret = 0;

	/* kprobe_running() needs smp_processor_id() */
49
	if (kprobes_built_in() && !user_mode(regs)) {
50 51 52 53 54
		preempt_disable();
		if (kprobe_running() && kprobe_fault_handler(regs, 14))
			ret = 1;
		preempt_enable();
	}
55

56
	return ret;
57
}
58

59
/*
I
Ingo Molnar 已提交
60 61 62 63 64 65
 * Prefetch quirks:
 *
 * 32-bit mode:
 *
 *   Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
 *   Check that here and ignore it.
66
 *
I
Ingo Molnar 已提交
67
 * 64-bit mode:
68
 *
I
Ingo Molnar 已提交
69 70 71 72
 *   Sometimes the CPU reports invalid exceptions on prefetch.
 *   Check that here and ignore it.
 *
 * Opcode checker based on code by Richard Brunner.
73
 */
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
static inline int
check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
		      unsigned char opcode, int *prefetch)
{
	unsigned char instr_hi = opcode & 0xf0;
	unsigned char instr_lo = opcode & 0x0f;

	switch (instr_hi) {
	case 0x20:
	case 0x30:
		/*
		 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
		 * In X86_64 long mode, the CPU will signal invalid
		 * opcode if some of these prefixes are present so
		 * X86_64 will never get here anyway
		 */
		return ((instr_lo & 7) == 0x6);
#ifdef CONFIG_X86_64
	case 0x40:
		/*
		 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
		 * Need to figure out under what instruction mode the
		 * instruction was issued. Could check the LDT for lm,
		 * but for now it's good enough to assume that long
		 * mode only uses well known segments or kernel.
		 */
100
		return (!user_mode(regs) || user_64bit_mode(regs));
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
#endif
	case 0x60:
		/* 0x64 thru 0x67 are valid prefixes in all modes. */
		return (instr_lo & 0xC) == 0x4;
	case 0xF0:
		/* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
		return !instr_lo || (instr_lo>>1) == 1;
	case 0x00:
		/* Prefetch instruction is 0x0F0D or 0x0F18 */
		if (probe_kernel_address(instr, opcode))
			return 0;

		*prefetch = (instr_lo == 0xF) &&
			(opcode == 0x0D || opcode == 0x18);
		return 0;
	default:
		return 0;
	}
}

I
Ingo Molnar 已提交
121 122
static int
is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
123
{
I
Ingo Molnar 已提交
124
	unsigned char *max_instr;
125
	unsigned char *instr;
126
	int prefetch = 0;
L
Linus Torvalds 已提交
127

I
Ingo Molnar 已提交
128 129 130 131
	/*
	 * If it was a exec (instruction fetch) fault on NX page, then
	 * do not ignore the fault:
	 */
132
	if (error_code & X86_PF_INSTR)
L
Linus Torvalds 已提交
133
		return 0;
134

135
	instr = (void *)convert_ip_to_linear(current, regs);
136
	max_instr = instr + 15;
L
Linus Torvalds 已提交
137

138
	if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE_MAX)
L
Linus Torvalds 已提交
139 140
		return 0;

141
	while (instr < max_instr) {
I
Ingo Molnar 已提交
142
		unsigned char opcode;
L
Linus Torvalds 已提交
143

144
		if (probe_kernel_address(instr, opcode))
145
			break;
L
Linus Torvalds 已提交
146 147 148

		instr++;

149
		if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
L
Linus Torvalds 已提交
150 151 152 153 154
			break;
	}
	return prefetch;
}

155 156 157 158 159 160 161
/*
 * A protection key fault means that the PKRU value did not allow
 * access to some PTE.  Userspace can figure out what PKRU was
 * from the XSAVE state, and this function fills out a field in
 * siginfo so userspace can discover which protection key was set
 * on the PTE.
 *
162
 * If we get here, we know that the hardware signaled a X86_PF_PK
163 164 165 166 167 168 169 170 171 172 173 174
 * fault and that there was a VMA once we got in the fault
 * handler.  It does *not* guarantee that the VMA we find here
 * was the one that we faulted on.
 *
 * 1. T1   : mprotect_key(foo, PAGE_SIZE, pkey=4);
 * 2. T1   : set PKRU to deny access to pkey=4, touches page
 * 3. T1   : faults...
 * 4.    T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
 * 5. T1   : enters fault handler, takes mmap_sem, etc...
 * 6. T1   : reaches here, sees vma_pkey(vma)=5, when we really
 *	     faulted on a pte with its pkey=4.
 */
175 176
static void fill_sig_info_pkey(int si_signo, int si_code, siginfo_t *info,
		u32 *pkey)
177 178 179 180 181 182
{
	/* This is effectively an #ifdef */
	if (!boot_cpu_has(X86_FEATURE_OSPKE))
		return;

	/* Fault not from Protection Keys: nothing to do */
183
	if ((si_code != SEGV_PKUERR) || (si_signo != SIGSEGV))
184 185 186 187
		return;
	/*
	 * force_sig_info_fault() is called from a number of
	 * contexts, some of which have a VMA and some of which
188
	 * do not.  The X86_PF_PK handing happens after we have a
189 190 191
	 * valid VMA, so we should never reach this without a
	 * valid VMA.
	 */
192
	if (!pkey) {
193 194 195 196 197 198 199 200 201
		WARN_ONCE(1, "PKU fault with no VMA passed in");
		info->si_pkey = 0;
		return;
	}
	/*
	 * si_pkey should be thought of as a strong hint, but not
	 * absolutely guranteed to be 100% accurate because of
	 * the race explained above.
	 */
202
	info->si_pkey = *pkey;
203 204
}

I
Ingo Molnar 已提交
205 206
static void
force_sig_info_fault(int si_signo, int si_code, unsigned long address,
207
		     struct task_struct *tsk, u32 *pkey, int fault)
208
{
209
	unsigned lsb = 0;
210 211
	siginfo_t info;

I
Ingo Molnar 已提交
212 213 214 215
	info.si_signo	= si_signo;
	info.si_errno	= 0;
	info.si_code	= si_code;
	info.si_addr	= (void __user *)address;
216 217 218 219 220
	if (fault & VM_FAULT_HWPOISON_LARGE)
		lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault)); 
	if (fault & VM_FAULT_HWPOISON)
		lsb = PAGE_SHIFT;
	info.si_addr_lsb = lsb;
I
Ingo Molnar 已提交
221

222
	fill_sig_info_pkey(si_signo, si_code, &info, pkey);
223

224 225 226
	force_sig_info(si_signo, &info, tsk);
}

227 228 229 230 231
DEFINE_SPINLOCK(pgd_lock);
LIST_HEAD(pgd_list);

#ifdef CONFIG_X86_32
static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
232
{
233 234
	unsigned index = pgd_index(address);
	pgd_t *pgd_k;
235
	p4d_t *p4d, *p4d_k;
236 237
	pud_t *pud, *pud_k;
	pmd_t *pmd, *pmd_k;
I
Ingo Molnar 已提交
238

239 240 241 242 243 244 245 246 247
	pgd += index;
	pgd_k = init_mm.pgd + index;

	if (!pgd_present(*pgd_k))
		return NULL;

	/*
	 * set_pgd(pgd, *pgd_k); here would be useless on PAE
	 * and redundant with the set_pmd() on non-PAE. As would
248
	 * set_p4d/set_pud.
249
	 */
250 251 252 253 254 255 256
	p4d = p4d_offset(pgd, address);
	p4d_k = p4d_offset(pgd_k, address);
	if (!p4d_present(*p4d_k))
		return NULL;

	pud = pud_offset(p4d, address);
	pud_k = pud_offset(p4d_k, address);
257 258 259 260 261 262 263 264
	if (!pud_present(*pud_k))
		return NULL;

	pmd = pmd_offset(pud, address);
	pmd_k = pmd_offset(pud_k, address);
	if (!pmd_present(*pmd_k))
		return NULL;

265
	if (!pmd_present(*pmd))
266
		set_pmd(pmd, *pmd_k);
267
	else
268 269 270 271 272 273 274 275 276 277 278 279 280
		BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));

	return pmd_k;
}

void vmalloc_sync_all(void)
{
	unsigned long address;

	if (SHARED_KERNEL_PMD)
		return;

	for (address = VMALLOC_START & PMD_MASK;
281
	     address >= TASK_SIZE_MAX && address < FIXADDR_TOP;
282 283 284
	     address += PMD_SIZE) {
		struct page *page;

A
Andrea Arcangeli 已提交
285
		spin_lock(&pgd_lock);
286
		list_for_each_entry(page, &pgd_list, lru) {
287
			spinlock_t *pgt_lock;
288
			pmd_t *ret;
289

A
Andrea Arcangeli 已提交
290
			/* the pgt_lock only for Xen */
291 292 293 294 295 296 297
			pgt_lock = &pgd_page_get_mm(page)->page_table_lock;

			spin_lock(pgt_lock);
			ret = vmalloc_sync_one(page_address(page), address);
			spin_unlock(pgt_lock);

			if (!ret)
298 299
				break;
		}
A
Andrea Arcangeli 已提交
300
		spin_unlock(&pgd_lock);
301 302 303 304 305 306 307 308
	}
}

/*
 * 32-bit:
 *
 *   Handle a fault on the vmalloc or module mapping area
 */
309
static noinline int vmalloc_fault(unsigned long address)
310 311 312 313 314 315 316 317 318
{
	unsigned long pgd_paddr;
	pmd_t *pmd_k;
	pte_t *pte_k;

	/* Make sure we are in vmalloc area: */
	if (!(address >= VMALLOC_START && address < VMALLOC_END))
		return -1;

319 320
	WARN_ON_ONCE(in_nmi());

321 322 323 324 325 326 327
	/*
	 * Synchronize this task's top level page-table
	 * with the 'reference' page table.
	 *
	 * Do _not_ use "current" here. We might be inside
	 * an interrupt in the middle of a task switch..
	 */
328
	pgd_paddr = read_cr3_pa();
329 330 331 332
	pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
	if (!pmd_k)
		return -1;

333 334 335
	if (pmd_huge(*pmd_k))
		return 0;

336 337 338 339 340 341
	pte_k = pte_offset_kernel(pmd_k, address);
	if (!pte_present(*pte_k))
		return -1;

	return 0;
}
342
NOKPROBE_SYMBOL(vmalloc_fault);
343 344 345 346 347 348 349 350

/*
 * Did it hit the DOS screen memory VA from vm86 mode?
 */
static inline void
check_v8086_mode(struct pt_regs *regs, unsigned long address,
		 struct task_struct *tsk)
{
351
#ifdef CONFIG_VM86
352 353
	unsigned long bit;

354
	if (!v8086_mode(regs) || !tsk->thread.vm86)
355 356 357 358
		return;

	bit = (address - 0xA0000) >> PAGE_SHIFT;
	if (bit < 32)
359 360
		tsk->thread.vm86->screen_bitmap |= 1 << bit;
#endif
361
}
L
Linus Torvalds 已提交
362

A
Akinobu Mita 已提交
363
static bool low_pfn(unsigned long pfn)
L
Linus Torvalds 已提交
364
{
A
Akinobu Mita 已提交
365 366
	return pfn < max_low_pfn;
}
367

A
Akinobu Mita 已提交
368 369
static void dump_pagetable(unsigned long address)
{
370
	pgd_t *base = __va(read_cr3_pa());
A
Akinobu Mita 已提交
371
	pgd_t *pgd = &base[pgd_index(address)];
372 373
	p4d_t *p4d;
	pud_t *pud;
A
Akinobu Mita 已提交
374 375
	pmd_t *pmd;
	pte_t *pte;
I
Ingo Molnar 已提交
376

377
#ifdef CONFIG_X86_PAE
378
	pr_info("*pdpt = %016Lx ", pgd_val(*pgd));
A
Akinobu Mita 已提交
379 380
	if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
		goto out;
381 382 383
#define pr_pde pr_cont
#else
#define pr_pde pr_info
384
#endif
385 386 387
	p4d = p4d_offset(pgd, address);
	pud = pud_offset(p4d, address);
	pmd = pmd_offset(pud, address);
388 389
	pr_pde("*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
#undef pr_pde
390 391 392 393 394

	/*
	 * We must not directly access the pte in the highpte
	 * case if the page table is located in highmem.
	 * And let's rather not kmap-atomic the pte, just in case
I
Ingo Molnar 已提交
395
	 * it's allocated already:
396
	 */
A
Akinobu Mita 已提交
397 398
	if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
		goto out;
399

A
Akinobu Mita 已提交
400
	pte = pte_offset_kernel(pmd, address);
401
	pr_cont("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
A
Akinobu Mita 已提交
402
out:
403
	pr_cont("\n");
404 405 406 407 408 409
}

#else /* CONFIG_X86_64: */

void vmalloc_sync_all(void)
{
410
	sync_global_pgds(VMALLOC_START & PGDIR_MASK, VMALLOC_END);
411 412 413 414 415 416 417
}

/*
 * 64-bit:
 *
 *   Handle a fault on the vmalloc area
 */
418
static noinline int vmalloc_fault(unsigned long address)
419 420
{
	pgd_t *pgd, *pgd_ref;
421
	p4d_t *p4d, *p4d_ref;
422 423 424 425 426 427 428 429
	pud_t *pud, *pud_ref;
	pmd_t *pmd, *pmd_ref;
	pte_t *pte, *pte_ref;

	/* Make sure we are in vmalloc area: */
	if (!(address >= VMALLOC_START && address < VMALLOC_END))
		return -1;

430 431
	WARN_ON_ONCE(in_nmi());

432 433 434 435 436
	/*
	 * Copy kernel mappings over when needed. This can also
	 * happen within a race in page table update. In the later
	 * case just flush:
	 */
437
	pgd = (pgd_t *)__va(read_cr3_pa()) + pgd_index(address);
438 439 440 441
	pgd_ref = pgd_offset_k(address);
	if (pgd_none(*pgd_ref))
		return -1;

442
	if (pgd_none(*pgd)) {
443
		set_pgd(pgd, *pgd_ref);
444
		arch_flush_lazy_mmu_mode();
445 446 447 448 449 450 451 452
	} else if (CONFIG_PGTABLE_LEVELS > 4) {
		/*
		 * With folded p4d, pgd_none() is always false, so the pgd may
		 * point to an empty page table entry and pgd_page_vaddr()
		 * will return garbage.
		 *
		 * We will do the correct sanity check on the p4d level.
		 */
453
		BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
454
	}
455

456 457 458 459 460 461 462 463 464 465 466 467 468
	/* With 4-level paging, copying happens on the p4d level. */
	p4d = p4d_offset(pgd, address);
	p4d_ref = p4d_offset(pgd_ref, address);
	if (p4d_none(*p4d_ref))
		return -1;

	if (p4d_none(*p4d)) {
		set_p4d(p4d, *p4d_ref);
		arch_flush_lazy_mmu_mode();
	} else {
		BUG_ON(p4d_pfn(*p4d) != p4d_pfn(*p4d_ref));
	}

469 470 471 472 473
	/*
	 * Below here mismatches are bugs because these lower tables
	 * are shared:
	 */

474 475
	pud = pud_offset(p4d, address);
	pud_ref = pud_offset(p4d_ref, address);
476 477 478
	if (pud_none(*pud_ref))
		return -1;

479
	if (pud_none(*pud) || pud_pfn(*pud) != pud_pfn(*pud_ref))
480 481
		BUG();

482 483 484
	if (pud_huge(*pud))
		return 0;

485 486 487 488 489
	pmd = pmd_offset(pud, address);
	pmd_ref = pmd_offset(pud_ref, address);
	if (pmd_none(*pmd_ref))
		return -1;

490
	if (pmd_none(*pmd) || pmd_pfn(*pmd) != pmd_pfn(*pmd_ref))
491 492
		BUG();

493 494 495
	if (pmd_huge(*pmd))
		return 0;

496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
	pte_ref = pte_offset_kernel(pmd_ref, address);
	if (!pte_present(*pte_ref))
		return -1;

	pte = pte_offset_kernel(pmd, address);

	/*
	 * Don't use pte_page here, because the mappings can point
	 * outside mem_map, and the NUMA hash lookup cannot handle
	 * that:
	 */
	if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))
		BUG();

	return 0;
}
512
NOKPROBE_SYMBOL(vmalloc_fault);
513

514
#ifdef CONFIG_CPU_SUP_AMD
515
static const char errata93_warning[] =
516 517 518 519 520
KERN_ERR 
"******* Your BIOS seems to not contain a fix for K8 errata #93\n"
"******* Working around it, but it may cause SEGVs or burn power.\n"
"******* Please consider a BIOS update.\n"
"******* Disabling USB legacy in the BIOS may also help.\n";
521
#endif
522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540

/*
 * No vm86 mode in 64-bit mode:
 */
static inline void
check_v8086_mode(struct pt_regs *regs, unsigned long address,
		 struct task_struct *tsk)
{
}

static int bad_address(void *p)
{
	unsigned long dummy;

	return probe_kernel_address((unsigned long *)p, dummy);
}

static void dump_pagetable(unsigned long address)
{
541
	pgd_t *base = __va(read_cr3_pa());
A
Akinobu Mita 已提交
542
	pgd_t *pgd = base + pgd_index(address);
543
	p4d_t *p4d;
L
Linus Torvalds 已提交
544 545 546 547
	pud_t *pud;
	pmd_t *pmd;
	pte_t *pte;

I
Ingo Molnar 已提交
548 549 550
	if (bad_address(pgd))
		goto bad;

551
	pr_info("PGD %lx ", pgd_val(*pgd));
I
Ingo Molnar 已提交
552 553 554

	if (!pgd_present(*pgd))
		goto out;
L
Linus Torvalds 已提交
555

556 557 558 559
	p4d = p4d_offset(pgd, address);
	if (bad_address(p4d))
		goto bad;

560
	pr_cont("P4D %lx ", p4d_val(*p4d));
561 562 563 564
	if (!p4d_present(*p4d) || p4d_large(*p4d))
		goto out;

	pud = pud_offset(p4d, address);
I
Ingo Molnar 已提交
565 566 567
	if (bad_address(pud))
		goto bad;

568
	pr_cont("PUD %lx ", pud_val(*pud));
569
	if (!pud_present(*pud) || pud_large(*pud))
I
Ingo Molnar 已提交
570
		goto out;
L
Linus Torvalds 已提交
571 572

	pmd = pmd_offset(pud, address);
I
Ingo Molnar 已提交
573 574 575
	if (bad_address(pmd))
		goto bad;

576
	pr_cont("PMD %lx ", pmd_val(*pmd));
I
Ingo Molnar 已提交
577 578
	if (!pmd_present(*pmd) || pmd_large(*pmd))
		goto out;
L
Linus Torvalds 已提交
579 580

	pte = pte_offset_kernel(pmd, address);
I
Ingo Molnar 已提交
581 582 583
	if (bad_address(pte))
		goto bad;

584
	pr_cont("PTE %lx", pte_val(*pte));
I
Ingo Molnar 已提交
585
out:
586
	pr_cont("\n");
L
Linus Torvalds 已提交
587 588
	return;
bad:
589
	pr_info("BAD\n");
590 591
}

592
#endif /* CONFIG_X86_64 */
L
Linus Torvalds 已提交
593

I
Ingo Molnar 已提交
594 595 596 597 598 599 600 601 602 603 604 605 606
/*
 * Workaround for K8 erratum #93 & buggy BIOS.
 *
 * BIOS SMM functions are required to use a specific workaround
 * to avoid corruption of the 64bit RIP register on C stepping K8.
 *
 * A lot of BIOS that didn't get tested properly miss this.
 *
 * The OS sees this as a page fault with the upper 32bits of RIP cleared.
 * Try to work around it here.
 *
 * Note we only handle faults in kernel here.
 * Does nothing on 32-bit.
607
 */
608
static int is_errata93(struct pt_regs *regs, unsigned long address)
L
Linus Torvalds 已提交
609
{
610 611 612 613 614
#if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
	if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD
	    || boot_cpu_data.x86 != 0xf)
		return 0;

615
	if (address != regs->ip)
L
Linus Torvalds 已提交
616
		return 0;
I
Ingo Molnar 已提交
617

618
	if ((address >> 32) != 0)
L
Linus Torvalds 已提交
619
		return 0;
I
Ingo Molnar 已提交
620

L
Linus Torvalds 已提交
621
	address |= 0xffffffffUL << 32;
622 623
	if ((address >= (u64)_stext && address <= (u64)_etext) ||
	    (address >= MODULES_VADDR && address <= MODULES_END)) {
624
		printk_once(errata93_warning);
625
		regs->ip = address;
L
Linus Torvalds 已提交
626 627
		return 1;
	}
628
#endif
L
Linus Torvalds 已提交
629
	return 0;
630
}
L
Linus Torvalds 已提交
631

632
/*
I
Ingo Molnar 已提交
633 634 635 636 637
 * Work around K8 erratum #100 K8 in compat mode occasionally jumps
 * to illegal addresses >4GB.
 *
 * We catch this in the page fault handler because these addresses
 * are not reachable. Just detect this case and return.  Any code
638 639 640 641 642
 * segment in LDT is compatibility mode.
 */
static int is_errata100(struct pt_regs *regs, unsigned long address)
{
#ifdef CONFIG_X86_64
I
Ingo Molnar 已提交
643
	if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
644 645 646 647 648
		return 1;
#endif
	return 0;
}

649 650 651 652
static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
{
#ifdef CONFIG_X86_F00F_BUG
	unsigned long nr;
I
Ingo Molnar 已提交
653

654
	/*
I
Ingo Molnar 已提交
655
	 * Pentium F0 0F C7 C8 bug workaround:
656
	 */
657
	if (boot_cpu_has_bug(X86_BUG_F00F)) {
658 659 660 661 662 663 664 665 666 667 668
		nr = (address - idt_descr.address) >> 3;

		if (nr == 6) {
			do_invalid_op(regs, 0);
			return 1;
		}
	}
#endif
	return 0;
}

669 670
static const char nx_warning[] = KERN_CRIT
"kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n";
671 672
static const char smep_warning[] = KERN_CRIT
"unable to execute userspace code (SMEP?) (uid: %d)\n";
673

I
Ingo Molnar 已提交
674 675 676
static void
show_fault_oops(struct pt_regs *regs, unsigned long error_code,
		unsigned long address)
677
{
678 679 680
	if (!oops_may_print())
		return;

681
	if (error_code & X86_PF_INSTR) {
682
		unsigned int level;
683 684
		pgd_t *pgd;
		pte_t *pte;
I
Ingo Molnar 已提交
685

686
		pgd = __va(read_cr3_pa());
687 688 689
		pgd += pgd_index(address);

		pte = lookup_address_in_pgd(pgd, address, &level);
690

691
		if (pte && pte_present(*pte) && !pte_exec(*pte))
692
			printk(nx_warning, from_kuid(&init_user_ns, current_uid()));
693 694
		if (pte && pte_present(*pte) && pte_exec(*pte) &&
				(pgd_flags(*pgd) & _PAGE_USER) &&
695
				(__read_cr4() & X86_CR4_SMEP))
696
			printk(smep_warning, from_kuid(&init_user_ns, current_uid()));
697 698
	}

699
	printk(KERN_ALERT "BUG: unable to handle kernel ");
700
	if (address < PAGE_SIZE)
701
		printk(KERN_CONT "NULL pointer dereference");
702
	else
703
		printk(KERN_CONT "paging request");
I
Ingo Molnar 已提交
704

705
	printk(KERN_CONT " at %px\n", (void *) address);
706
	printk(KERN_ALERT "IP: %pS\n", (void *)regs->ip);
I
Ingo Molnar 已提交
707

708 709 710
	dump_pagetable(address);
}

I
Ingo Molnar 已提交
711 712 713
static noinline void
pgtable_bad(struct pt_regs *regs, unsigned long error_code,
	    unsigned long address)
L
Linus Torvalds 已提交
714
{
I
Ingo Molnar 已提交
715 716 717 718 719 720 721
	struct task_struct *tsk;
	unsigned long flags;
	int sig;

	flags = oops_begin();
	tsk = current;
	sig = SIGKILL;
722

L
Linus Torvalds 已提交
723
	printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
724
	       tsk->comm, address);
L
Linus Torvalds 已提交
725
	dump_pagetable(address);
I
Ingo Molnar 已提交
726 727

	tsk->thread.cr2		= address;
728
	tsk->thread.trap_nr	= X86_TRAP_PF;
I
Ingo Molnar 已提交
729 730
	tsk->thread.error_code	= error_code;

731
	if (__die("Bad pagetable", regs, error_code))
732
		sig = 0;
I
Ingo Molnar 已提交
733

734
	oops_end(flags, regs, sig);
L
Linus Torvalds 已提交
735 736
}

I
Ingo Molnar 已提交
737 738
static noinline void
no_context(struct pt_regs *regs, unsigned long error_code,
739
	   unsigned long address, int signal, int si_code)
740 741 742 743 744
{
	struct task_struct *tsk = current;
	unsigned long flags;
	int sig;

I
Ingo Molnar 已提交
745
	/* Are we prepared to handle this kernel fault? */
746
	if (fixup_exception(regs, X86_TRAP_PF)) {
747 748 749 750 751 752 753 754 755 756 757 758 759 760
		/*
		 * Any interrupt that takes a fault gets the fixup. This makes
		 * the below recursive fault logic only apply to a faults from
		 * task context.
		 */
		if (in_interrupt())
			return;

		/*
		 * Per the above we're !in_interrupt(), aka. task context.
		 *
		 * In this case we need to make sure we're not recursively
		 * faulting through the emulate_vsyscall() logic.
		 */
761
		if (current->thread.sig_on_uaccess_err && signal) {
762
			tsk->thread.trap_nr = X86_TRAP_PF;
763
			tsk->thread.error_code = error_code | X86_PF_USER;
764 765 766
			tsk->thread.cr2 = address;

			/* XXX: hwpoison faults will set the wrong code. */
767
			force_sig_info_fault(signal, si_code, address,
768
					     tsk, NULL, 0);
769
		}
770 771 772 773

		/*
		 * Barring that, we can do the fixup and be happy.
		 */
774
		return;
775
	}
776

777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799
#ifdef CONFIG_VMAP_STACK
	/*
	 * Stack overflow?  During boot, we can fault near the initial
	 * stack in the direct map, but that's not an overflow -- check
	 * that we're in vmalloc space to avoid this.
	 */
	if (is_vmalloc_addr((void *)address) &&
	    (((unsigned long)tsk->stack - 1 - address < PAGE_SIZE) ||
	     address - ((unsigned long)tsk->stack + THREAD_SIZE) < PAGE_SIZE)) {
		unsigned long stack = this_cpu_read(orig_ist.ist[DOUBLEFAULT_STACK]) - sizeof(void *);
		/*
		 * We're likely to be running with very little stack space
		 * left.  It's plausible that we'd hit this condition but
		 * double-fault even before we get this far, in which case
		 * we're fine: the double-fault handler will deal with it.
		 *
		 * We don't want to make it all the way into the oops code
		 * and then double-fault, though, because we're likely to
		 * break the console driver and lose most of the stack dump.
		 */
		asm volatile ("movq %[stack], %%rsp\n\t"
			      "call handle_stack_overflow\n\t"
			      "1: jmp 1b"
800
			      : ASM_CALL_CONSTRAINT
801 802 803 804 805 806 807
			      : "D" ("kernel stack overflow (page fault)"),
				"S" (regs), "d" (address),
				[stack] "rm" (stack));
		unreachable();
	}
#endif

808
	/*
I
Ingo Molnar 已提交
809 810 811 812 813 814 815
	 * 32-bit:
	 *
	 *   Valid to do another page fault here, because if this fault
	 *   had been triggered by is_prefetch fixup_exception would have
	 *   handled it.
	 *
	 * 64-bit:
816
	 *
I
Ingo Molnar 已提交
817
	 *   Hall of shame of CPU/BIOS bugs.
818 819 820 821 822 823 824 825 826
	 */
	if (is_prefetch(regs, error_code, address))
		return;

	if (is_errata93(regs, address))
		return;

	/*
	 * Oops. The kernel tried to access some bad page. We'll have to
I
Ingo Molnar 已提交
827
	 * terminate things with extreme prejudice:
828 829 830 831 832
	 */
	flags = oops_begin();

	show_fault_oops(regs, error_code, address);

833
	if (task_stack_end_corrupted(tsk))
834
		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
835

836
	tsk->thread.cr2		= address;
837
	tsk->thread.trap_nr	= X86_TRAP_PF;
838
	tsk->thread.error_code	= error_code;
839 840 841 842

	sig = SIGKILL;
	if (__die("Oops", regs, error_code))
		sig = 0;
I
Ingo Molnar 已提交
843

844
	/* Executive summary in case the body of the oops scrolled away */
845
	printk(KERN_DEFAULT "CR2: %016lx\n", address);
I
Ingo Molnar 已提交
846

847 848 849
	oops_end(flags, regs, sig);
}

I
Ingo Molnar 已提交
850 851 852 853 854 855 856 857 858 859 860 861 862 863
/*
 * Print out info about fatal segfaults, if the show_unhandled_signals
 * sysctl is set:
 */
static inline void
show_signal_msg(struct pt_regs *regs, unsigned long error_code,
		unsigned long address, struct task_struct *tsk)
{
	if (!unhandled_signal(tsk, SIGSEGV))
		return;

	if (!printk_ratelimit())
		return;

864
	printk("%s%s[%d]: segfault at %lx ip %px sp %px error %lx",
I
Ingo Molnar 已提交
865 866 867 868 869 870 871 872 873 874 875
		task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
		tsk->comm, task_pid_nr(tsk), address,
		(void *)regs->ip, (void *)regs->sp, error_code);

	print_vma_addr(KERN_CONT " in ", regs->ip);

	printk(KERN_CONT "\n");
}

static void
__bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
876
		       unsigned long address, u32 *pkey, int si_code)
877 878 879 880
{
	struct task_struct *tsk = current;

	/* User mode accesses just cause a SIGSEGV */
881
	if (error_code & X86_PF_USER) {
882
		/*
I
Ingo Molnar 已提交
883
		 * It's possible to have interrupts off here:
884 885 886 887 888
		 */
		local_irq_enable();

		/*
		 * Valid to do another page fault here because this one came
I
Ingo Molnar 已提交
889
		 * from user space:
890 891 892 893 894 895 896
		 */
		if (is_prefetch(regs, error_code, address))
			return;

		if (is_errata100(regs, address))
			return;

897 898 899 900 901
#ifdef CONFIG_X86_64
		/*
		 * Instruction fetch faults in the vsyscall page might need
		 * emulation.
		 */
902
		if (unlikely((error_code & X86_PF_INSTR) &&
903
			     ((address & ~0xfff) == VSYSCALL_ADDR))) {
904 905 906 907
			if (emulate_vsyscall(regs, address))
				return;
		}
#endif
908 909 910 911 912 913 914

		/*
		 * To avoid leaking information about the kernel page table
		 * layout, pretend that user-mode accesses to kernel addresses
		 * are always protection faults.
		 */
		if (address >= TASK_SIZE_MAX)
915
			error_code |= X86_PF_PROT;
916

917
		if (likely(show_unhandled_signals))
I
Ingo Molnar 已提交
918 919 920
			show_signal_msg(regs, error_code, address, tsk);

		tsk->thread.cr2		= address;
921
		tsk->thread.error_code	= error_code;
922
		tsk->thread.trap_nr	= X86_TRAP_PF;
923

924
		force_sig_info_fault(SIGSEGV, si_code, address, tsk, pkey, 0);
I
Ingo Molnar 已提交
925

926 927 928 929 930 931
		return;
	}

	if (is_f00f_bug(regs, address))
		return;

932
	no_context(regs, error_code, address, SIGSEGV, si_code);
933 934
}

I
Ingo Molnar 已提交
935 936
static noinline void
bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
937
		     unsigned long address, u32 *pkey)
938
{
939
	__bad_area_nosemaphore(regs, error_code, address, pkey, SEGV_MAPERR);
940 941
}

I
Ingo Molnar 已提交
942 943
static void
__bad_area(struct pt_regs *regs, unsigned long error_code,
944
	   unsigned long address,  struct vm_area_struct *vma, int si_code)
945 946
{
	struct mm_struct *mm = current->mm;
947 948 949 950
	u32 pkey;

	if (vma)
		pkey = vma_pkey(vma);
951 952 953 954 955 956 957

	/*
	 * Something tried to access memory that isn't in our memory map..
	 * Fix it, but check if it's kernel or user first..
	 */
	up_read(&mm->mmap_sem);

958 959
	__bad_area_nosemaphore(regs, error_code, address,
			       (vma) ? &pkey : NULL, si_code);
960 961
}

I
Ingo Molnar 已提交
962 963
static noinline void
bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
964
{
965
	__bad_area(regs, error_code, address, NULL, SEGV_MAPERR);
966 967
}

968 969 970
static inline bool bad_area_access_from_pkeys(unsigned long error_code,
		struct vm_area_struct *vma)
{
971 972 973
	/* This code is always called on the current mm */
	bool foreign = false;

974 975
	if (!boot_cpu_has(X86_FEATURE_OSPKE))
		return false;
976
	if (error_code & X86_PF_PK)
977
		return true;
978
	/* this checks permission keys on the VMA: */
979 980
	if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
				       (error_code & X86_PF_INSTR), foreign))
981
		return true;
982
	return false;
983 984
}

I
Ingo Molnar 已提交
985 986
static noinline void
bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
987
		      unsigned long address, struct vm_area_struct *vma)
988
{
989 990 991 992 993
	/*
	 * This OSPKE check is not strictly necessary at runtime.
	 * But, doing it this way allows compiler optimizations
	 * if pkeys are compiled out.
	 */
994
	if (bad_area_access_from_pkeys(error_code, vma))
995 996 997
		__bad_area(regs, error_code, address, vma, SEGV_PKUERR);
	else
		__bad_area(regs, error_code, address, vma, SEGV_ACCERR);
998 999
}

I
Ingo Molnar 已提交
1000
static void
1001
do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
1002
	  u32 *pkey, unsigned int fault)
1003 1004
{
	struct task_struct *tsk = current;
1005
	int code = BUS_ADRERR;
1006

I
Ingo Molnar 已提交
1007
	/* Kernel mode? Handle exceptions or die: */
1008
	if (!(error_code & X86_PF_USER)) {
1009
		no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
1010 1011
		return;
	}
I
Ingo Molnar 已提交
1012

1013
	/* User-space => ok to do another page fault: */
1014 1015
	if (is_prefetch(regs, error_code, address))
		return;
I
Ingo Molnar 已提交
1016 1017 1018

	tsk->thread.cr2		= address;
	tsk->thread.error_code	= error_code;
1019
	tsk->thread.trap_nr	= X86_TRAP_PF;
I
Ingo Molnar 已提交
1020

1021
#ifdef CONFIG_MEMORY_FAILURE
1022
	if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
1023 1024 1025 1026 1027 1028
		printk(KERN_ERR
	"MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
			tsk->comm, tsk->pid, address);
		code = BUS_MCEERR_AR;
	}
#endif
1029
	force_sig_info_fault(SIGBUS, code, address, tsk, pkey, fault);
1030 1031
}

1032
static noinline void
I
Ingo Molnar 已提交
1033
mm_fault_error(struct pt_regs *regs, unsigned long error_code,
1034
	       unsigned long address, u32 *pkey, unsigned int fault)
1035
{
1036
	if (fatal_signal_pending(current) && !(error_code & X86_PF_USER)) {
1037 1038
		no_context(regs, error_code, address, 0, 0);
		return;
1039 1040
	}

I
Ingo Molnar 已提交
1041
	if (fault & VM_FAULT_OOM) {
1042
		/* Kernel mode? Handle exceptions or die: */
1043
		if (!(error_code & X86_PF_USER)) {
1044 1045
			no_context(regs, error_code, address,
				   SIGSEGV, SEGV_MAPERR);
1046
			return;
1047 1048
		}

1049 1050 1051 1052 1053 1054
		/*
		 * We ran out of memory, call the OOM killer, and return the
		 * userspace (which will retry the fault, or kill us if we got
		 * oom-killed):
		 */
		pagefault_out_of_memory();
I
Ingo Molnar 已提交
1055
	} else {
1056 1057
		if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
			     VM_FAULT_HWPOISON_LARGE))
1058
			do_sigbus(regs, error_code, address, pkey, fault);
1059
		else if (fault & VM_FAULT_SIGSEGV)
1060
			bad_area_nosemaphore(regs, error_code, address, pkey);
I
Ingo Molnar 已提交
1061 1062 1063
		else
			BUG();
	}
1064 1065
}

1066 1067
static int spurious_fault_check(unsigned long error_code, pte_t *pte)
{
1068
	if ((error_code & X86_PF_WRITE) && !pte_write(*pte))
1069
		return 0;
I
Ingo Molnar 已提交
1070

1071
	if ((error_code & X86_PF_INSTR) && !pte_exec(*pte))
1072
		return 0;
1073 1074
	/*
	 * Note: We do not do lazy flushing on protection key
1075
	 * changes, so no spurious fault will ever set X86_PF_PK.
1076
	 */
1077
	if ((error_code & X86_PF_PK))
1078
		return 1;
1079 1080 1081 1082

	return 1;
}

1083
/*
I
Ingo Molnar 已提交
1084 1085 1086 1087 1088 1089 1090 1091
 * Handle a spurious fault caused by a stale TLB entry.
 *
 * This allows us to lazily refresh the TLB when increasing the
 * permissions of a kernel page (RO -> RW or NX -> X).  Doing it
 * eagerly is very expensive since that implies doing a full
 * cross-processor TLB flush, even if no stale TLB entries exist
 * on other processors.
 *
1092 1093 1094 1095
 * Spurious faults may only occur if the TLB contains an entry with
 * fewer permission than the page table entry.  Non-present (P = 0)
 * and reserved bit (R = 1) faults are never spurious.
 *
1096 1097
 * There are no security implications to leaving a stale TLB when
 * increasing the permissions on a page.
1098 1099 1100 1101 1102
 *
 * Returns non-zero if a spurious fault was handled, zero otherwise.
 *
 * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3
 * (Optional Invalidation).
1103
 */
1104
static noinline int
I
Ingo Molnar 已提交
1105
spurious_fault(unsigned long error_code, unsigned long address)
1106 1107
{
	pgd_t *pgd;
1108
	p4d_t *p4d;
1109 1110 1111
	pud_t *pud;
	pmd_t *pmd;
	pte_t *pte;
1112
	int ret;
1113

1114 1115 1116 1117 1118 1119 1120 1121 1122
	/*
	 * Only writes to RO or instruction fetches from NX may cause
	 * spurious faults.
	 *
	 * These could be from user or supervisor accesses but the TLB
	 * is only lazily flushed after a kernel mapping protection
	 * change, so user accesses are not expected to cause spurious
	 * faults.
	 */
1123 1124
	if (error_code != (X86_PF_WRITE | X86_PF_PROT) &&
	    error_code != (X86_PF_INSTR | X86_PF_PROT))
1125 1126 1127 1128 1129 1130
		return 0;

	pgd = init_mm.pgd + pgd_index(address);
	if (!pgd_present(*pgd))
		return 0;

1131 1132 1133 1134 1135 1136 1137 1138
	p4d = p4d_offset(pgd, address);
	if (!p4d_present(*p4d))
		return 0;

	if (p4d_large(*p4d))
		return spurious_fault_check(error_code, (pte_t *) p4d);

	pud = pud_offset(p4d, address);
1139 1140 1141
	if (!pud_present(*pud))
		return 0;

1142 1143 1144
	if (pud_large(*pud))
		return spurious_fault_check(error_code, (pte_t *) pud);

1145 1146 1147 1148
	pmd = pmd_offset(pud, address);
	if (!pmd_present(*pmd))
		return 0;

1149 1150 1151
	if (pmd_large(*pmd))
		return spurious_fault_check(error_code, (pte_t *) pmd);

1152
	pte = pte_offset_kernel(pmd, address);
1153
	if (!pte_present(*pte))
1154 1155
		return 0;

1156 1157 1158 1159 1160
	ret = spurious_fault_check(error_code, pte);
	if (!ret)
		return 0;

	/*
I
Ingo Molnar 已提交
1161 1162
	 * Make sure we have permissions in PMD.
	 * If not, then there's a bug in the page tables:
1163 1164 1165
	 */
	ret = spurious_fault_check(error_code, (pte_t *) pmd);
	WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
I
Ingo Molnar 已提交
1166

1167
	return ret;
1168
}
1169
NOKPROBE_SYMBOL(spurious_fault);
1170

1171
int show_unhandled_signals = 1;
L
Linus Torvalds 已提交
1172

I
Ingo Molnar 已提交
1173
static inline int
M
Michel Lespinasse 已提交
1174
access_error(unsigned long error_code, struct vm_area_struct *vma)
1175
{
1176 1177
	/* This is only called for the current mm, so: */
	bool foreign = false;
1178 1179 1180 1181 1182 1183

	/*
	 * Read or write was blocked by protection keys.  This is
	 * always an unconditional error and can never result in
	 * a follow-up action to resolve the fault, like a COW.
	 */
1184
	if (error_code & X86_PF_PK)
1185 1186
		return 1;

1187 1188
	/*
	 * Make sure to check the VMA so that we do not perform
1189
	 * faults just to hit a X86_PF_PK as soon as we fill in a
1190 1191
	 * page.
	 */
1192 1193
	if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
				       (error_code & X86_PF_INSTR), foreign))
1194
		return 1;
1195

1196
	if (error_code & X86_PF_WRITE) {
I
Ingo Molnar 已提交
1197
		/* write, present and write, not present: */
1198 1199
		if (unlikely(!(vma->vm_flags & VM_WRITE)))
			return 1;
I
Ingo Molnar 已提交
1200
		return 0;
1201 1202
	}

I
Ingo Molnar 已提交
1203
	/* read, present: */
1204
	if (unlikely(error_code & X86_PF_PROT))
I
Ingo Molnar 已提交
1205 1206 1207 1208 1209 1210
		return 1;

	/* read, not present: */
	if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
		return 1;

1211 1212 1213
	return 0;
}

1214 1215
static int fault_in_kernel_space(unsigned long address)
{
1216
	return address >= TASK_SIZE_MAX;
1217 1218
}

1219 1220
static inline bool smap_violation(int error_code, struct pt_regs *regs)
{
1221 1222 1223 1224 1225 1226
	if (!IS_ENABLED(CONFIG_X86_SMAP))
		return false;

	if (!static_cpu_has(X86_FEATURE_SMAP))
		return false;

1227
	if (error_code & X86_PF_USER)
1228 1229
		return false;

1230
	if (!user_mode(regs) && (regs->flags & X86_EFLAGS_AC))
1231 1232 1233 1234 1235
		return false;

	return true;
}

L
Linus Torvalds 已提交
1236 1237 1238 1239 1240
/*
 * This routine handles page faults.  It determines the address,
 * and the problem, and then passes it off to one of the appropriate
 * routines.
 */
1241
static noinline void
1242 1243
__do_page_fault(struct pt_regs *regs, unsigned long error_code,
		unsigned long address)
L
Linus Torvalds 已提交
1244
{
I
Ingo Molnar 已提交
1245
	struct vm_area_struct *vma;
L
Linus Torvalds 已提交
1246 1247
	struct task_struct *tsk;
	struct mm_struct *mm;
1248
	int fault, major = 0;
1249
	unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1250
	u32 pkey;
L
Linus Torvalds 已提交
1251

1252 1253
	tsk = current;
	mm = tsk->mm;
I
Ingo Molnar 已提交
1254

V
Vegard Nossum 已提交
1255 1256 1257 1258
	/*
	 * Detect and handle instructions that would cause a page fault for
	 * both a tracked kernel page and a userspace page.
	 */
1259
	prefetchw(&mm->mmap_sem);
V
Vegard Nossum 已提交
1260

1261
	if (unlikely(kmmio_fault(regs, address)))
1262
		return;
L
Linus Torvalds 已提交
1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274

	/*
	 * We fault-in kernel-space virtual memory on-demand. The
	 * 'reference' page table is init_mm.pgd.
	 *
	 * NOTE! We MUST NOT take any locks for this case. We may
	 * be in an interrupt or a critical region, and should
	 * only copy the information from the master page table,
	 * nothing more.
	 *
	 * This verifies that the fault happens in kernel space
	 * (error_code & 4) == 0, and that the fault was not a
1275
	 * protection error (error_code & 9) == 0.
L
Linus Torvalds 已提交
1276
	 */
1277
	if (unlikely(fault_in_kernel_space(address))) {
1278
		if (!(error_code & (X86_PF_RSVD | X86_PF_USER | X86_PF_PROT))) {
V
Vegard Nossum 已提交
1279 1280 1281
			if (vmalloc_fault(address) >= 0)
				return;
		}
1282

I
Ingo Molnar 已提交
1283
		/* Can handle a stale RO->RW TLB: */
1284
		if (spurious_fault(error_code, address))
1285 1286
			return;

I
Ingo Molnar 已提交
1287
		/* kprobes don't want to hook the spurious faults: */
1288
		if (kprobes_fault(regs))
1289
			return;
1290 1291
		/*
		 * Don't take the mm semaphore here. If we fixup a prefetch
I
Ingo Molnar 已提交
1292
		 * fault we could otherwise deadlock:
1293
		 */
1294
		bad_area_nosemaphore(regs, error_code, address, NULL);
I
Ingo Molnar 已提交
1295

1296
		return;
1297 1298
	}

I
Ingo Molnar 已提交
1299
	/* kprobes don't want to hook the spurious faults: */
1300
	if (unlikely(kprobes_fault(regs)))
1301
		return;
1302

1303
	if (unlikely(error_code & X86_PF_RSVD))
1304
		pgtable_bad(regs, error_code, address);
L
Linus Torvalds 已提交
1305

1306
	if (unlikely(smap_violation(error_code, regs))) {
1307
		bad_area_nosemaphore(regs, error_code, address, NULL);
1308
		return;
1309 1310
	}

L
Linus Torvalds 已提交
1311
	/*
I
Ingo Molnar 已提交
1312
	 * If we're in an interrupt, have no user context or are running
1313
	 * in a region with pagefaults disabled then we must not take the fault
L
Linus Torvalds 已提交
1314
	 */
1315
	if (unlikely(faulthandler_disabled() || !mm)) {
1316
		bad_area_nosemaphore(regs, error_code, address, NULL);
1317 1318
		return;
	}
L
Linus Torvalds 已提交
1319

1320 1321 1322 1323 1324 1325 1326
	/*
	 * It's safe to allow irq's after cr2 has been saved and the
	 * vmalloc fault has been handled.
	 *
	 * User-mode registers count as a user access even for any
	 * potential system fault or CPU buglet:
	 */
1327
	if (user_mode(regs)) {
1328
		local_irq_enable();
1329
		error_code |= X86_PF_USER;
1330 1331 1332 1333 1334 1335 1336 1337
		flags |= FAULT_FLAG_USER;
	} else {
		if (regs->flags & X86_EFLAGS_IF)
			local_irq_enable();
	}

	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);

1338
	if (error_code & X86_PF_WRITE)
1339
		flags |= FAULT_FLAG_WRITE;
1340
	if (error_code & X86_PF_INSTR)
1341
		flags |= FAULT_FLAG_INSTRUCTION;
1342

I
Ingo Molnar 已提交
1343 1344
	/*
	 * When running in the kernel we expect faults to occur only to
I
Ingo Molnar 已提交
1345 1346 1347 1348 1349 1350 1351
	 * addresses in user space.  All other faults represent errors in
	 * the kernel and should generate an OOPS.  Unfortunately, in the
	 * case of an erroneous fault occurring in a code path which already
	 * holds mmap_sem we will deadlock attempting to validate the fault
	 * against the address space.  Luckily the kernel only validly
	 * references user space from well defined areas of code, which are
	 * listed in the exceptions table.
L
Linus Torvalds 已提交
1352 1353
	 *
	 * As the vast majority of faults will be valid we will only perform
I
Ingo Molnar 已提交
1354 1355 1356 1357
	 * the source reference check when there is a possibility of a
	 * deadlock. Attempt to lock the address space, if we cannot we then
	 * validate the source. If this is invalid we can skip the address
	 * space check, thus avoiding the deadlock:
L
Linus Torvalds 已提交
1358
	 */
1359
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
1360
		if (!(error_code & X86_PF_USER) &&
1361
		    !search_exception_tables(regs->ip)) {
1362
			bad_area_nosemaphore(regs, error_code, address, NULL);
1363 1364
			return;
		}
1365
retry:
L
Linus Torvalds 已提交
1366
		down_read(&mm->mmap_sem);
1367 1368
	} else {
		/*
I
Ingo Molnar 已提交
1369 1370 1371
		 * The above down_read_trylock() might have succeeded in
		 * which case we'll have missed the might_sleep() from
		 * down_read():
1372 1373
		 */
		might_sleep();
L
Linus Torvalds 已提交
1374 1375 1376
	}

	vma = find_vma(mm, address);
1377 1378 1379 1380 1381
	if (unlikely(!vma)) {
		bad_area(regs, error_code, address);
		return;
	}
	if (likely(vma->vm_start <= address))
L
Linus Torvalds 已提交
1382
		goto good_area;
1383 1384 1385 1386
	if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
		bad_area(regs, error_code, address);
		return;
	}
1387
	if (error_code & X86_PF_USER) {
1388 1389 1390
		/*
		 * Accessing the stack below %sp is always a bug.
		 * The large cushion allows instructions like enter
I
Ingo Molnar 已提交
1391
		 * and pusha to work. ("enter $65535, $31" pushes
1392
		 * 32 pointers and then decrements %sp by 65535.)
1393
		 */
1394 1395 1396 1397
		if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) {
			bad_area(regs, error_code, address);
			return;
		}
L
Linus Torvalds 已提交
1398
	}
1399 1400 1401 1402 1403 1404 1405 1406 1407
	if (unlikely(expand_stack(vma, address))) {
		bad_area(regs, error_code, address);
		return;
	}

	/*
	 * Ok, we have a good vm_area for this memory access, so
	 * we can handle it..
	 */
L
Linus Torvalds 已提交
1408
good_area:
M
Michel Lespinasse 已提交
1409
	if (unlikely(access_error(error_code, vma))) {
1410
		bad_area_access_error(regs, error_code, address, vma);
1411
		return;
L
Linus Torvalds 已提交
1412 1413 1414 1415 1416
	}

	/*
	 * If for any reason at all we couldn't handle the fault,
	 * make sure we exit gracefully rather than endlessly redo
1417 1418
	 * the fault.  Since we never set FAULT_FLAG_RETRY_NOWAIT, if
	 * we get VM_FAULT_RETRY back, the mmap_sem has been unlocked.
1419 1420 1421 1422 1423 1424 1425 1426 1427
	 *
	 * Note that handle_userfault() may also release and reacquire mmap_sem
	 * (and not return with VM_FAULT_RETRY), when returning to userland to
	 * repeat the page fault later with a VM_FAULT_NOPAGE retval
	 * (potentially after handling any pending signal during the return to
	 * userland). The return to userland is identified whenever
	 * FAULT_FLAG_USER|FAULT_FLAG_KILLABLE are both set in flags.
	 * Thus we have to be careful about not touching vma after handling the
	 * fault, so we read the pkey beforehand.
L
Linus Torvalds 已提交
1428
	 */
1429
	pkey = vma_pkey(vma);
1430
	fault = handle_mm_fault(vma, address, flags);
1431
	major |= fault & VM_FAULT_MAJOR;
I
Ingo Molnar 已提交
1432

1433
	/*
1434 1435 1436
	 * If we need to retry the mmap_sem has already been released,
	 * and if there is a fatal signal pending there is no guarantee
	 * that we made any progress. Handle this case first.
1437
	 */
1438 1439 1440 1441 1442 1443 1444 1445 1446 1447
	if (unlikely(fault & VM_FAULT_RETRY)) {
		/* Retry at most once */
		if (flags & FAULT_FLAG_ALLOW_RETRY) {
			flags &= ~FAULT_FLAG_ALLOW_RETRY;
			flags |= FAULT_FLAG_TRIED;
			if (!fatal_signal_pending(tsk))
				goto retry;
		}

		/* User mode? Just return to handle the fatal exception */
1448
		if (flags & FAULT_FLAG_USER)
1449 1450 1451 1452
			return;

		/* Not returning to user mode? Handle exceptions or die: */
		no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
1453
		return;
1454
	}
1455

1456
	up_read(&mm->mmap_sem);
1457
	if (unlikely(fault & VM_FAULT_ERROR)) {
1458
		mm_fault_error(regs, error_code, address, &pkey, fault);
1459
		return;
1460 1461
	}

1462
	/*
1463 1464
	 * Major/minor page fault accounting. If any of the events
	 * returned VM_FAULT_MAJOR, we account it as a major fault.
1465
	 */
1466 1467 1468 1469 1470 1471
	if (major) {
		tsk->maj_flt++;
		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
	} else {
		tsk->min_flt++;
		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
1472
	}
1473

1474
	check_v8086_mode(regs, address, tsk);
L
Linus Torvalds 已提交
1475
}
1476
NOKPROBE_SYMBOL(__do_page_fault);
1477

1478 1479 1480
static nokprobe_inline void
trace_page_fault_entries(unsigned long address, struct pt_regs *regs,
			 unsigned long error_code)
1481 1482
{
	if (user_mode(regs))
1483
		trace_page_fault_user(address, regs, error_code);
1484
	else
1485
		trace_page_fault_kernel(address, regs, error_code);
1486 1487
}

1488 1489 1490 1491 1492 1493 1494
/*
 * We must have this function blacklisted from kprobes, tagged with notrace
 * and call read_cr2() before calling anything else. To avoid calling any
 * kind of tracing machinery before we've observed the CR2 value.
 *
 * exception_{enter,exit}() contains all sorts of tracepoints.
 */
1495
dotraplinkage void notrace
1496
do_page_fault(struct pt_regs *regs, unsigned long error_code)
1497
{
1498
	unsigned long address = read_cr2(); /* Get the faulting address */
1499
	enum ctx_state prev_state;
1500 1501

	prev_state = exception_enter();
1502
	if (trace_pagefault_enabled())
1503 1504
		trace_page_fault_entries(address, regs, error_code);

1505
	__do_page_fault(regs, error_code, address);
1506 1507
	exception_exit(prev_state);
}
1508
NOKPROBE_SYMBOL(do_page_fault);