ich8lan.c 95.3 KB
Newer Older
1 2 3
/*******************************************************************************

  Intel PRO/1000 Linux driver
B
Bruce Allan 已提交
4
  Copyright(c) 1999 - 2009 Intel Corporation.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

  This program is free software; you can redistribute it and/or modify it
  under the terms and conditions of the GNU General Public License,
  version 2, as published by the Free Software Foundation.

  This program is distributed in the hope it will be useful, but WITHOUT
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  more details.

  You should have received a copy of the GNU General Public License along with
  this program; if not, write to the Free Software Foundation, Inc.,
  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.

  The full GNU General Public License is included in this distribution in
  the file called "COPYING".

  Contact Information:
  Linux NICS <linux.nics@intel.com>
  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497

*******************************************************************************/

/*
30
 * 82562G 10/100 Network Connection
31 32 33 34 35 36 37 38 39 40 41
 * 82562G-2 10/100 Network Connection
 * 82562GT 10/100 Network Connection
 * 82562GT-2 10/100 Network Connection
 * 82562V 10/100 Network Connection
 * 82562V-2 10/100 Network Connection
 * 82566DC-2 Gigabit Network Connection
 * 82566DC Gigabit Network Connection
 * 82566DM-2 Gigabit Network Connection
 * 82566DM Gigabit Network Connection
 * 82566MC Gigabit Network Connection
 * 82566MM Gigabit Network Connection
42 43
 * 82567LM Gigabit Network Connection
 * 82567LF Gigabit Network Connection
44
 * 82567V Gigabit Network Connection
45 46 47
 * 82567LM-2 Gigabit Network Connection
 * 82567LF-2 Gigabit Network Connection
 * 82567V-2 Gigabit Network Connection
48 49
 * 82567LF-3 Gigabit Network Connection
 * 82567LM-3 Gigabit Network Connection
50
 * 82567LM-4 Gigabit Network Connection
51 52 53 54
 * 82577LM Gigabit Network Connection
 * 82577LC Gigabit Network Connection
 * 82578DM Gigabit Network Connection
 * 82578DC Gigabit Network Connection
55 56 57 58 59 60 61 62 63
 */

#include "e1000.h"

#define ICH_FLASH_GFPREG		0x0000
#define ICH_FLASH_HSFSTS		0x0004
#define ICH_FLASH_HSFCTL		0x0006
#define ICH_FLASH_FADDR			0x0008
#define ICH_FLASH_FDATA0		0x0010
64
#define ICH_FLASH_PR0			0x0074
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

#define ICH_FLASH_READ_COMMAND_TIMEOUT	500
#define ICH_FLASH_WRITE_COMMAND_TIMEOUT	500
#define ICH_FLASH_ERASE_COMMAND_TIMEOUT	3000000
#define ICH_FLASH_LINEAR_ADDR_MASK	0x00FFFFFF
#define ICH_FLASH_CYCLE_REPEAT_COUNT	10

#define ICH_CYCLE_READ			0
#define ICH_CYCLE_WRITE			2
#define ICH_CYCLE_ERASE			3

#define FLASH_GFPREG_BASE_MASK		0x1FFF
#define FLASH_SECTOR_ADDR_SHIFT		12

#define ICH_FLASH_SEG_SIZE_256		256
#define ICH_FLASH_SEG_SIZE_4K		4096
#define ICH_FLASH_SEG_SIZE_8K		8192
#define ICH_FLASH_SEG_SIZE_64K		65536


#define E1000_ICH_FWSM_RSPCIPHY	0x00000040 /* Reset PHY on PCI Reset */

#define E1000_ICH_MNG_IAMT_MODE		0x2

#define ID_LED_DEFAULT_ICH8LAN  ((ID_LED_DEF1_DEF2 << 12) | \
				 (ID_LED_DEF1_OFF2 <<  8) | \
				 (ID_LED_DEF1_ON2  <<  4) | \
				 (ID_LED_DEF1_DEF2))

#define E1000_ICH_NVM_SIG_WORD		0x13
#define E1000_ICH_NVM_SIG_MASK		0xC000
96 97
#define E1000_ICH_NVM_VALID_SIG_MASK    0xC0
#define E1000_ICH_NVM_SIG_VALUE         0x80
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117

#define E1000_ICH8_LAN_INIT_TIMEOUT	1500

#define E1000_FEXTNVM_SW_CONFIG		1
#define E1000_FEXTNVM_SW_CONFIG_ICH8M (1 << 27) /* Bit redefined for ICH8M :/ */

#define PCIE_ICH8_SNOOP_ALL		PCIE_NO_SNOOP_ALL

#define E1000_ICH_RAR_ENTRIES		7

#define PHY_PAGE_SHIFT 5
#define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \
			   ((reg) & MAX_PHY_REG_ADDRESS))
#define IGP3_KMRN_DIAG  PHY_REG(770, 19) /* KMRN Diagnostic */
#define IGP3_VR_CTRL    PHY_REG(776, 18) /* Voltage Regulator Control */

#define IGP3_KMRN_DIAG_PCS_LOCK_LOSS	0x0002
#define IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK 0x0300
#define IGP3_VR_CTRL_MODE_SHUTDOWN	0x0200

118 119
#define HV_LED_CONFIG		PHY_REG(768, 30) /* LED Configuration */

120 121
#define SW_FLAG_TIMEOUT    1000 /* SW Semaphore flag timeout in milliseconds */

122 123 124 125 126 127 128 129 130 131
/* SMBus Address Phy Register */
#define HV_SMB_ADDR            PHY_REG(768, 26)
#define HV_SMB_ADDR_PEC_EN     0x0200
#define HV_SMB_ADDR_VALID      0x0080

/* Strapping Option Register - RO */
#define E1000_STRAP                     0x0000C
#define E1000_STRAP_SMBUS_ADDRESS_MASK  0x00FE0000
#define E1000_STRAP_SMBUS_ADDRESS_SHIFT 17

132 133 134
/* OEM Bits Phy Register */
#define HV_OEM_BITS            PHY_REG(768, 25)
#define HV_OEM_BITS_LPLU       0x0004 /* Low Power Link Up */
135
#define HV_OEM_BITS_GBE_DIS    0x0040 /* Gigabit Disable */
136 137
#define HV_OEM_BITS_RESTART_AN 0x0400 /* Restart Auto-negotiation */

138 139 140
#define E1000_NVM_K1_CONFIG 0x1B /* NVM K1 Config Word */
#define E1000_NVM_K1_ENABLE 0x1  /* NVM Enable K1 bit */

141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
/* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
/* Offset 04h HSFSTS */
union ich8_hws_flash_status {
	struct ich8_hsfsts {
		u16 flcdone    :1; /* bit 0 Flash Cycle Done */
		u16 flcerr     :1; /* bit 1 Flash Cycle Error */
		u16 dael       :1; /* bit 2 Direct Access error Log */
		u16 berasesz   :2; /* bit 4:3 Sector Erase Size */
		u16 flcinprog  :1; /* bit 5 flash cycle in Progress */
		u16 reserved1  :2; /* bit 13:6 Reserved */
		u16 reserved2  :6; /* bit 13:6 Reserved */
		u16 fldesvalid :1; /* bit 14 Flash Descriptor Valid */
		u16 flockdn    :1; /* bit 15 Flash Config Lock-Down */
	} hsf_status;
	u16 regval;
};

/* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
/* Offset 06h FLCTL */
union ich8_hws_flash_ctrl {
	struct ich8_hsflctl {
		u16 flcgo      :1;   /* 0 Flash Cycle Go */
		u16 flcycle    :2;   /* 2:1 Flash Cycle */
		u16 reserved   :5;   /* 7:3 Reserved  */
		u16 fldbcount  :2;   /* 9:8 Flash Data Byte Count */
		u16 flockdn    :6;   /* 15:10 Reserved */
	} hsf_ctrl;
	u16 regval;
};

/* ICH Flash Region Access Permissions */
union ich8_hws_flash_regacc {
	struct ich8_flracc {
		u32 grra      :8; /* 0:7 GbE region Read Access */
		u32 grwa      :8; /* 8:15 GbE region Write Access */
		u32 gmrag     :8; /* 23:16 GbE Master Read Access Grant */
		u32 gmwag     :8; /* 31:24 GbE Master Write Access Grant */
	} hsf_flregacc;
	u16 regval;
};

182 183 184 185 186 187 188 189 190 191 192 193 194
/* ICH Flash Protected Region */
union ich8_flash_protected_range {
	struct ich8_pr {
		u32 base:13;     /* 0:12 Protected Range Base */
		u32 reserved1:2; /* 13:14 Reserved */
		u32 rpe:1;       /* 15 Read Protection Enable */
		u32 limit:13;    /* 16:28 Protected Range Limit */
		u32 reserved2:2; /* 29:30 Reserved */
		u32 wpe:1;       /* 31 Write Protection Enable */
	} range;
	u32 regval;
};

195 196 197 198 199 200 201
static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw);
static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
static s32 e1000_check_polarity_ife_ich8lan(struct e1000_hw *hw);
static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
						u32 offset, u8 byte);
202 203
static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
					 u8 *data);
204 205 206 207 208 209
static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
					 u16 *data);
static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
					 u8 size, u16 *data);
static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw);
static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
210
static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw);
211 212 213 214 215 216 217 218
static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
219
static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
220
static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
221
static s32  e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247

static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
{
	return readw(hw->flash_address + reg);
}

static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
{
	return readl(hw->flash_address + reg);
}

static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
{
	writew(val, hw->flash_address + reg);
}

static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
{
	writel(val, hw->flash_address + reg);
}

#define er16flash(reg)		__er16flash(hw, (reg))
#define er32flash(reg)		__er32flash(hw, (reg))
#define ew16flash(reg,val)	__ew16flash(hw, (reg), (val))
#define ew32flash(reg,val)	__ew32flash(hw, (reg), (val))

248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
/**
 *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
 *  @hw: pointer to the HW structure
 *
 *  Initialize family-specific PHY parameters and function pointers.
 **/
static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val = 0;

	phy->addr                     = 1;
	phy->reset_delay_us           = 100;

	phy->ops.check_polarity       = e1000_check_polarity_ife_ich8lan;
263 264
	phy->ops.read_reg             = e1000_read_phy_reg_hv;
	phy->ops.read_reg_locked      = e1000_read_phy_reg_hv_locked;
265 266
	phy->ops.set_d0_lplu_state    = e1000_set_lplu_state_pchlan;
	phy->ops.set_d3_lplu_state    = e1000_set_lplu_state_pchlan;
267 268
	phy->ops.write_reg            = e1000_write_phy_reg_hv;
	phy->ops.write_reg_locked     = e1000_write_phy_reg_hv_locked;
269 270 271 272 273 274 275 276 277 278 279
	phy->autoneg_mask             = AUTONEG_ADVERTISE_SPEED_DEFAULT;

	phy->id = e1000_phy_unknown;
	e1000e_get_phy_id(hw);
	phy->type = e1000e_get_phy_type_from_id(phy->id);

	if (phy->type == e1000_phy_82577) {
		phy->ops.check_polarity = e1000_check_polarity_82577;
		phy->ops.force_speed_duplex =
			e1000_phy_force_speed_duplex_82577;
		phy->ops.get_cable_length   = e1000_get_cable_length_82577;
280 281
		phy->ops.get_info = e1000_get_phy_info_82577;
		phy->ops.commit = e1000e_phy_sw_reset;
282 283 284 285 286
	}

	return ret_val;
}

287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
/**
 *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
 *  @hw: pointer to the HW structure
 *
 *  Initialize family-specific PHY parameters and function pointers.
 **/
static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 i = 0;

	phy->addr			= 1;
	phy->reset_delay_us		= 100;

302 303 304 305 306 307
	/*
	 * We may need to do this twice - once for IGP and if that fails,
	 * we'll set BM func pointers and try again
	 */
	ret_val = e1000e_determine_phy_address(hw);
	if (ret_val) {
308 309
		phy->ops.write_reg = e1000e_write_phy_reg_bm;
		phy->ops.read_reg  = e1000e_read_phy_reg_bm;
310 311 312 313 314
		ret_val = e1000e_determine_phy_address(hw);
		if (ret_val)
			return ret_val;
	}

315 316 317 318 319 320 321 322 323 324 325 326 327 328
	phy->id = 0;
	while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
	       (i++ < 100)) {
		msleep(1);
		ret_val = e1000e_get_phy_id(hw);
		if (ret_val)
			return ret_val;
	}

	/* Verify phy id */
	switch (phy->id) {
	case IGP03E1000_E_PHY_ID:
		phy->type = e1000_phy_igp_3;
		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
329 330
		phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
		phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
331 332 333 334 335 336 337
		break;
	case IFE_E_PHY_ID:
	case IFE_PLUS_E_PHY_ID:
	case IFE_C_E_PHY_ID:
		phy->type = e1000_phy_ife;
		phy->autoneg_mask = E1000_ALL_NOT_GIG;
		break;
338 339 340
	case BME1000_E_PHY_ID:
		phy->type = e1000_phy_bm;
		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
341 342 343
		phy->ops.read_reg = e1000e_read_phy_reg_bm;
		phy->ops.write_reg = e1000e_write_phy_reg_bm;
		phy->ops.commit = e1000e_phy_sw_reset;
344
		break;
345 346 347 348 349
	default:
		return -E1000_ERR_PHY;
		break;
	}

350 351
	phy->ops.check_polarity = e1000_check_polarity_ife_ich8lan;

352 353 354 355 356 357 358 359 360 361 362 363 364 365
	return 0;
}

/**
 *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
 *  @hw: pointer to the HW structure
 *
 *  Initialize family-specific NVM parameters and function
 *  pointers.
 **/
static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
{
	struct e1000_nvm_info *nvm = &hw->nvm;
	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
366
	u32 gfpreg, sector_base_addr, sector_end_addr;
367 368
	u16 i;

369
	/* Can't read flash registers if the register set isn't mapped. */
370
	if (!hw->flash_address) {
371
		e_dbg("ERROR: Flash registers not mapped\n");
372 373 374 375 376 377 378
		return -E1000_ERR_CONFIG;
	}

	nvm->type = e1000_nvm_flash_sw;

	gfpreg = er32flash(ICH_FLASH_GFPREG);

379 380
	/*
	 * sector_X_addr is a "sector"-aligned address (4096 bytes)
381
	 * Add 1 to sector_end_addr since this sector is included in
382 383
	 * the overall size.
	 */
384 385 386 387 388 389
	sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
	sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;

	/* flash_base_addr is byte-aligned */
	nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT;

390 391 392 393
	/*
	 * find total size of the NVM, then cut in half since the total
	 * size represents two separate NVM banks.
	 */
394 395 396 397 398 399 400 401 402 403
	nvm->flash_bank_size = (sector_end_addr - sector_base_addr)
				<< FLASH_SECTOR_ADDR_SHIFT;
	nvm->flash_bank_size /= 2;
	/* Adjust to word count */
	nvm->flash_bank_size /= sizeof(u16);

	nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;

	/* Clear shadow ram */
	for (i = 0; i < nvm->word_size; i++) {
404
		dev_spec->shadow_ram[i].modified = false;
405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
		dev_spec->shadow_ram[i].value    = 0xFFFF;
	}

	return 0;
}

/**
 *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
 *  @hw: pointer to the HW structure
 *
 *  Initialize family-specific MAC parameters and function
 *  pointers.
 **/
static s32 e1000_init_mac_params_ich8lan(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct e1000_mac_info *mac = &hw->mac;

	/* Set media type function pointer */
424
	hw->phy.media_type = e1000_media_type_copper;
425 426 427 428 429 430 431 432

	/* Set mta register count */
	mac->mta_reg_count = 32;
	/* Set rar entry count */
	mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
	if (mac->type == e1000_ich8lan)
		mac->rar_entry_count--;
	/* Set if manageability features are enabled. */
433
	mac->arc_subsystem_valid = true;
434

435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
	/* LED operations */
	switch (mac->type) {
	case e1000_ich8lan:
	case e1000_ich9lan:
	case e1000_ich10lan:
		/* ID LED init */
		mac->ops.id_led_init = e1000e_id_led_init;
		/* setup LED */
		mac->ops.setup_led = e1000e_setup_led_generic;
		/* cleanup LED */
		mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
		/* turn on/off LED */
		mac->ops.led_on = e1000_led_on_ich8lan;
		mac->ops.led_off = e1000_led_off_ich8lan;
		break;
	case e1000_pchlan:
		/* ID LED init */
		mac->ops.id_led_init = e1000_id_led_init_pchlan;
		/* setup LED */
		mac->ops.setup_led = e1000_setup_led_pchlan;
		/* cleanup LED */
		mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
		/* turn on/off LED */
		mac->ops.led_on = e1000_led_on_pchlan;
		mac->ops.led_off = e1000_led_off_pchlan;
		break;
	default:
		break;
	}

465 466
	/* Enable PCS Lock-loss workaround for ICH8 */
	if (mac->type == e1000_ich8lan)
467
		e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
468 469 470 471

	return 0;
}

472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
/**
 *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
 *  @hw: pointer to the HW structure
 *
 *  Checks to see of the link status of the hardware has changed.  If a
 *  change in link status has been detected, then we read the PHY registers
 *  to get the current speed/duplex if link exists.
 **/
static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
{
	struct e1000_mac_info *mac = &hw->mac;
	s32 ret_val;
	bool link;

	/*
	 * We only want to go out to the PHY registers to see if Auto-Neg
	 * has completed and/or if our link status has changed.  The
	 * get_link_status flag is set upon receiving a Link Status
	 * Change or Rx Sequence Error interrupt.
	 */
	if (!mac->get_link_status) {
		ret_val = 0;
		goto out;
	}

	/*
	 * First we want to see if the MII Status Register reports
	 * link.  If so, then we want to get the current speed/duplex
	 * of the PHY.
	 */
	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
	if (ret_val)
		goto out;

506 507 508 509 510 511
	if (hw->mac.type == e1000_pchlan) {
		ret_val = e1000_k1_gig_workaround_hv(hw, link);
		if (ret_val)
			goto out;
	}

512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
	if (!link)
		goto out; /* No link detected */

	mac->get_link_status = false;

	if (hw->phy.type == e1000_phy_82578) {
		ret_val = e1000_link_stall_workaround_hv(hw);
		if (ret_val)
			goto out;
	}

	/*
	 * Check if there was DownShift, must be checked
	 * immediately after link-up
	 */
	e1000e_check_downshift(hw);

	/*
	 * If we are forcing speed/duplex, then we simply return since
	 * we have already determined whether we have link or not.
	 */
	if (!mac->autoneg) {
		ret_val = -E1000_ERR_CONFIG;
		goto out;
	}

	/*
	 * Auto-Neg is enabled.  Auto Speed Detection takes care
	 * of MAC speed/duplex configuration.  So we only need to
	 * configure Collision Distance in the MAC.
	 */
	e1000e_config_collision_dist(hw);

	/*
	 * Configure Flow Control now that Auto-Neg has completed.
	 * First, we need to restore the desired flow control
	 * settings because we may have had to re-autoneg with a
	 * different link partner.
	 */
	ret_val = e1000e_config_fc_after_link_up(hw);
	if (ret_val)
553
		e_dbg("Error configuring flow control\n");
554 555 556 557 558

out:
	return ret_val;
}

J
Jeff Kirsher 已提交
559
static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
560 561 562 563 564 565 566 567 568 569 570 571
{
	struct e1000_hw *hw = &adapter->hw;
	s32 rc;

	rc = e1000_init_mac_params_ich8lan(adapter);
	if (rc)
		return rc;

	rc = e1000_init_nvm_params_ich8lan(hw);
	if (rc)
		return rc;

572 573 574 575
	if (hw->mac.type == e1000_pchlan)
		rc = e1000_init_phy_params_pchlan(hw);
	else
		rc = e1000_init_phy_params_ich8lan(hw);
576 577 578
	if (rc)
		return rc;

579 580 581 582 583
	if (adapter->hw.phy.type == e1000_phy_ife) {
		adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
		adapter->max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN;
	}

584 585 586 587 588 589 590
	if ((adapter->hw.mac.type == e1000_ich8lan) &&
	    (adapter->hw.phy.type == e1000_phy_igp_3))
		adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;

	return 0;
}

591 592
static DEFINE_MUTEX(nvm_mutex);

593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620
/**
 *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
 *  @hw: pointer to the HW structure
 *
 *  Acquires the mutex for performing NVM operations.
 **/
static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw *hw)
{
	mutex_lock(&nvm_mutex);

	return 0;
}

/**
 *  e1000_release_nvm_ich8lan - Release NVM mutex
 *  @hw: pointer to the HW structure
 *
 *  Releases the mutex used while performing NVM operations.
 **/
static void e1000_release_nvm_ich8lan(struct e1000_hw *hw)
{
	mutex_unlock(&nvm_mutex);

	return;
}

static DEFINE_MUTEX(swflag_mutex);

621 622 623 624
/**
 *  e1000_acquire_swflag_ich8lan - Acquire software control flag
 *  @hw: pointer to the HW structure
 *
625 626
 *  Acquires the software control flag for performing PHY and select
 *  MAC CSR accesses.
627 628 629
 **/
static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
{
630 631
	u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
	s32 ret_val = 0;
632

633
	mutex_lock(&swflag_mutex);
634

635 636
	while (timeout) {
		extcnf_ctrl = er32(EXTCNF_CTRL);
637 638
		if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
			break;
639

640 641 642 643 644
		mdelay(1);
		timeout--;
	}

	if (!timeout) {
645
		e_dbg("SW/FW/HW has locked the resource for too long.\n");
646 647 648 649
		ret_val = -E1000_ERR_CONFIG;
		goto out;
	}

650
	timeout = SW_FLAG_TIMEOUT;
651 652 653 654 655 656 657 658

	extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
	ew32(EXTCNF_CTRL, extcnf_ctrl);

	while (timeout) {
		extcnf_ctrl = er32(EXTCNF_CTRL);
		if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
			break;
659

660 661 662 663 664
		mdelay(1);
		timeout--;
	}

	if (!timeout) {
665
		e_dbg("Failed to acquire the semaphore.\n");
666 667
		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
		ew32(EXTCNF_CTRL, extcnf_ctrl);
668 669
		ret_val = -E1000_ERR_CONFIG;
		goto out;
670 671
	}

672 673
out:
	if (ret_val)
674
		mutex_unlock(&swflag_mutex);
675 676

	return ret_val;
677 678 679 680 681 682
}

/**
 *  e1000_release_swflag_ich8lan - Release software control flag
 *  @hw: pointer to the HW structure
 *
683 684
 *  Releases the software control flag for performing PHY and select
 *  MAC CSR accesses.
685 686 687 688 689 690 691 692
 **/
static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
{
	u32 extcnf_ctrl;

	extcnf_ctrl = er32(EXTCNF_CTRL);
	extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
	ew32(EXTCNF_CTRL, extcnf_ctrl);
693

694 695 696
	mutex_unlock(&swflag_mutex);

	return;
697 698
}

699 700 701 702 703 704 705 706 707 708
/**
 *  e1000_check_mng_mode_ich8lan - Checks management mode
 *  @hw: pointer to the HW structure
 *
 *  This checks if the adapter has manageability enabled.
 *  This is a function pointer entry point only called by read/write
 *  routines for the PHY and NVM parts.
 **/
static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
{
709 710 711
	u32 fwsm;

	fwsm = er32(FWSM);
712 713 714 715 716

	return (fwsm & E1000_FWSM_MODE_MASK) ==
		(E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT);
}

717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775
/**
 *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
 *  @hw: pointer to the HW structure
 *
 *  Checks if firmware is blocking the reset of the PHY.
 *  This is a function pointer entry point only called by
 *  reset routines.
 **/
static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
{
	u32 fwsm;

	fwsm = er32(FWSM);

	return (fwsm & E1000_ICH_FWSM_RSPCIPHY) ? 0 : E1000_BLK_PHY_RESET;
}

/**
 *  e1000_phy_force_speed_duplex_ich8lan - Force PHY speed & duplex
 *  @hw: pointer to the HW structure
 *
 *  Forces the speed and duplex settings of the PHY.
 *  This is a function pointer entry point only called by
 *  PHY setup routines.
 **/
static s32 e1000_phy_force_speed_duplex_ich8lan(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 data;
	bool link;

	if (phy->type != e1000_phy_ife) {
		ret_val = e1000e_phy_force_speed_duplex_igp(hw);
		return ret_val;
	}

	ret_val = e1e_rphy(hw, PHY_CONTROL, &data);
	if (ret_val)
		return ret_val;

	e1000e_phy_force_speed_duplex_setup(hw, &data);

	ret_val = e1e_wphy(hw, PHY_CONTROL, data);
	if (ret_val)
		return ret_val;

	/* Disable MDI-X support for 10/100 */
	ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
	if (ret_val)
		return ret_val;

	data &= ~IFE_PMC_AUTO_MDIX;
	data &= ~IFE_PMC_FORCE_MDIX;

	ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, data);
	if (ret_val)
		return ret_val;

776
	e_dbg("IFE PMC: %X\n", data);
777 778 779

	udelay(1);

780
	if (phy->autoneg_wait_to_complete) {
781
		e_dbg("Waiting for forced speed/duplex link on IFE phy.\n");
782 783 784 785 786 787 788 789 790

		ret_val = e1000e_phy_has_link_generic(hw,
						     PHY_FORCE_LIMIT,
						     100000,
						     &link);
		if (ret_val)
			return ret_val;

		if (!link)
791
			e_dbg("Link taking longer than expected.\n");
792 793 794 795 796 797 798 799 800 801 802 803 804

		/* Try once more */
		ret_val = e1000e_phy_has_link_generic(hw,
						     PHY_FORCE_LIMIT,
						     100000,
						     &link);
		if (ret_val)
			return ret_val;
	}

	return 0;
}

805 806 807 808 809 810 811 812 813 814 815 816 817 818
/**
 *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
 *  @hw:   pointer to the HW structure
 *
 *  SW should configure the LCD from the NVM extended configuration region
 *  as a workaround for certain parts.
 **/
static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
	s32 ret_val;
	u16 word_addr, reg_data, reg_addr, phy_page = 0;

819
	ret_val = hw->phy.ops.acquire(hw);
820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914
	if (ret_val)
		return ret_val;

	/*
	 * Initialize the PHY from the NVM on ICH platforms.  This
	 * is needed due to an issue where the NVM configuration is
	 * not properly autoloaded after power transitions.
	 * Therefore, after each PHY reset, we will load the
	 * configuration data out of the NVM manually.
	 */
	if ((hw->mac.type == e1000_ich8lan && phy->type == e1000_phy_igp_3) ||
		(hw->mac.type == e1000_pchlan)) {
		struct e1000_adapter *adapter = hw->adapter;

		/* Check if SW needs to configure the PHY */
		if ((adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_M_AMT) ||
		    (adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_M) ||
		    (hw->mac.type == e1000_pchlan))
			sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
		else
			sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;

		data = er32(FEXTNVM);
		if (!(data & sw_cfg_mask))
			goto out;

		/* Wait for basic configuration completes before proceeding */
		e1000_lan_init_done_ich8lan(hw);

		/*
		 * Make sure HW does not configure LCD from PHY
		 * extended configuration before SW configuration
		 */
		data = er32(EXTCNF_CTRL);
		if (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE)
			goto out;

		cnf_size = er32(EXTCNF_SIZE);
		cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
		cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
		if (!cnf_size)
			goto out;

		cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
		cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;

		if (!(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE) &&
		    (hw->mac.type == e1000_pchlan)) {
			/*
			 * HW configures the SMBus address and LEDs when the
			 * OEM and LCD Write Enable bits are set in the NVM.
			 * When both NVM bits are cleared, SW will configure
			 * them instead.
			 */
			data = er32(STRAP);
			data &= E1000_STRAP_SMBUS_ADDRESS_MASK;
			reg_data = data >> E1000_STRAP_SMBUS_ADDRESS_SHIFT;
			reg_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
			ret_val = e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR,
			                                        reg_data);
			if (ret_val)
				goto out;

			data = er32(LEDCTL);
			ret_val = e1000_write_phy_reg_hv_locked(hw,
			                                        HV_LED_CONFIG,
			                                        (u16)data);
			if (ret_val)
				goto out;
		}
		/* Configure LCD from extended configuration region. */

		/* cnf_base_addr is in DWORD */
		word_addr = (u16)(cnf_base_addr << 1);

		for (i = 0; i < cnf_size; i++) {
			ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1,
			                           &reg_data);
			if (ret_val)
				goto out;

			ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
			                           1, &reg_addr);
			if (ret_val)
				goto out;

			/* Save off the PHY page for future writes. */
			if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
				phy_page = reg_data;
				continue;
			}

			reg_addr &= PHY_REG_MASK;
			reg_addr |= phy_page;

915
			ret_val = phy->ops.write_reg_locked(hw,
916 917 918 919 920 921 922 923
			                                    (u32)reg_addr,
			                                    reg_data);
			if (ret_val)
				goto out;
		}
	}

out:
924
	hw->phy.ops.release(hw);
925 926 927
	return ret_val;
}

928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947
/**
 *  e1000_k1_gig_workaround_hv - K1 Si workaround
 *  @hw:   pointer to the HW structure
 *  @link: link up bool flag
 *
 *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
 *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
 *  If link is down, the function will restore the default K1 setting located
 *  in the NVM.
 **/
static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
{
	s32 ret_val = 0;
	u16 status_reg = 0;
	bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;

	if (hw->mac.type != e1000_pchlan)
		goto out;

	/* Wrap the whole flow with the sw flag */
948
	ret_val = hw->phy.ops.acquire(hw);
949 950 951 952 953 954
	if (ret_val)
		goto out;

	/* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
	if (link) {
		if (hw->phy.type == e1000_phy_82578) {
955
			ret_val = hw->phy.ops.read_reg_locked(hw, BM_CS_STATUS,
956 957 958 959 960 961 962 963 964 965 966 967 968 969 970
			                                          &status_reg);
			if (ret_val)
				goto release;

			status_reg &= BM_CS_STATUS_LINK_UP |
			              BM_CS_STATUS_RESOLVED |
			              BM_CS_STATUS_SPEED_MASK;

			if (status_reg == (BM_CS_STATUS_LINK_UP |
			                   BM_CS_STATUS_RESOLVED |
			                   BM_CS_STATUS_SPEED_1000))
				k1_enable = false;
		}

		if (hw->phy.type == e1000_phy_82577) {
971
			ret_val = hw->phy.ops.read_reg_locked(hw, HV_M_STATUS,
972 973 974 975 976 977 978 979 980 981 982 983 984 985 986
			                                          &status_reg);
			if (ret_val)
				goto release;

			status_reg &= HV_M_STATUS_LINK_UP |
			              HV_M_STATUS_AUTONEG_COMPLETE |
			              HV_M_STATUS_SPEED_MASK;

			if (status_reg == (HV_M_STATUS_LINK_UP |
			                   HV_M_STATUS_AUTONEG_COMPLETE |
			                   HV_M_STATUS_SPEED_1000))
				k1_enable = false;
		}

		/* Link stall fix for link up */
987
		ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
988 989 990 991 992 993
		                                           0x0100);
		if (ret_val)
			goto release;

	} else {
		/* Link stall fix for link down */
994
		ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
995 996 997 998 999 1000 1001 1002
		                                           0x4100);
		if (ret_val)
			goto release;
	}

	ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);

release:
1003
	hw->phy.ops.release(hw);
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
out:
	return ret_val;
}

/**
 *  e1000_configure_k1_ich8lan - Configure K1 power state
 *  @hw: pointer to the HW structure
 *  @enable: K1 state to configure
 *
 *  Configure the K1 power state based on the provided parameter.
 *  Assumes semaphore already acquired.
 *
 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
 **/
1018
s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
{
	s32 ret_val = 0;
	u32 ctrl_reg = 0;
	u32 ctrl_ext = 0;
	u32 reg = 0;
	u16 kmrn_reg = 0;

	ret_val = e1000e_read_kmrn_reg_locked(hw,
	                                     E1000_KMRNCTRLSTA_K1_CONFIG,
	                                     &kmrn_reg);
	if (ret_val)
		goto out;

	if (k1_enable)
		kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
	else
		kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;

	ret_val = e1000e_write_kmrn_reg_locked(hw,
	                                      E1000_KMRNCTRLSTA_K1_CONFIG,
	                                      kmrn_reg);
	if (ret_val)
		goto out;

	udelay(20);
	ctrl_ext = er32(CTRL_EXT);
	ctrl_reg = er32(CTRL);

	reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
	reg |= E1000_CTRL_FRCSPD;
	ew32(CTRL, reg);

	ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
	udelay(20);
	ew32(CTRL, ctrl_reg);
	ew32(CTRL_EXT, ctrl_ext);
	udelay(20);

out:
	return ret_val;
}

1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
/**
 *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
 *  @hw:       pointer to the HW structure
 *  @d0_state: boolean if entering d0 or d3 device state
 *
 *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
 *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
 *  in NVM determines whether HW should configure LPLU and Gbe Disable.
 **/
static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
{
	s32 ret_val = 0;
	u32 mac_reg;
	u16 oem_reg;

	if (hw->mac.type != e1000_pchlan)
		return ret_val;

1079
	ret_val = hw->phy.ops.acquire(hw);
1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
	if (ret_val)
		return ret_val;

	mac_reg = er32(EXTCNF_CTRL);
	if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
		goto out;

	mac_reg = er32(FEXTNVM);
	if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
		goto out;

	mac_reg = er32(PHY_CTRL);

1093
	ret_val = hw->phy.ops.read_reg_locked(hw, HV_OEM_BITS, &oem_reg);
1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
	if (ret_val)
		goto out;

	oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);

	if (d0_state) {
		if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
			oem_reg |= HV_OEM_BITS_GBE_DIS;

		if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
			oem_reg |= HV_OEM_BITS_LPLU;
	} else {
		if (mac_reg & E1000_PHY_CTRL_NOND0A_GBE_DISABLE)
			oem_reg |= HV_OEM_BITS_GBE_DIS;

		if (mac_reg & E1000_PHY_CTRL_NOND0A_LPLU)
			oem_reg |= HV_OEM_BITS_LPLU;
	}
	/* Restart auto-neg to activate the bits */
1113 1114
	if (!e1000_check_reset_block(hw))
		oem_reg |= HV_OEM_BITS_RESTART_AN;
1115
	ret_val = hw->phy.ops.write_reg_locked(hw, HV_OEM_BITS, oem_reg);
1116 1117

out:
1118
	hw->phy.ops.release(hw);
1119 1120 1121 1122 1123

	return ret_val;
}


1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
/**
 *  e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
 *  done after every PHY reset.
 **/
static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
{
	s32 ret_val = 0;

	if (hw->mac.type != e1000_pchlan)
		return ret_val;

	if (((hw->phy.type == e1000_phy_82577) &&
	     ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
	    ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
		/* Disable generation of early preamble */
		ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
		if (ret_val)
			return ret_val;

		/* Preamble tuning for SSC */
		ret_val = e1e_wphy(hw, PHY_REG(770, 16), 0xA204);
		if (ret_val)
			return ret_val;
	}

	if (hw->phy.type == e1000_phy_82578) {
		/*
		 * Return registers to default by doing a soft reset then
		 * writing 0x3140 to the control register.
		 */
		if (hw->phy.revision < 2) {
			e1000e_phy_sw_reset(hw);
			ret_val = e1e_wphy(hw, PHY_CONTROL, 0x3140);
		}
	}

	/* Select page 0 */
1161
	ret_val = hw->phy.ops.acquire(hw);
1162 1163
	if (ret_val)
		return ret_val;
1164

1165
	hw->phy.addr = 1;
1166 1167 1168
	ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
	if (ret_val)
		goto out;
1169
	hw->phy.ops.release(hw);
1170

1171 1172 1173 1174 1175 1176 1177
	/*
	 * Configure the K1 Si workaround during phy reset assuming there is
	 * link so that it disables K1 if link is in 1Gbps.
	 */
	ret_val = e1000_k1_gig_workaround_hv(hw, true);

out:
1178 1179 1180
	return ret_val;
}

1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
/**
 *  e1000_lan_init_done_ich8lan - Check for PHY config completion
 *  @hw: pointer to the HW structure
 *
 *  Check the appropriate indication the MAC has finished configuring the
 *  PHY after a software reset.
 **/
static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
{
	u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;

	/* Wait for basic configuration completes before proceeding */
	do {
		data = er32(STATUS);
		data &= E1000_STATUS_LAN_INIT_DONE;
		udelay(100);
	} while ((!data) && --loop);

	/*
	 * If basic configuration is incomplete before the above loop
	 * count reaches 0, loading the configuration from NVM will
	 * leave the PHY in a bad state possibly resulting in no link.
	 */
	if (loop == 0)
1205
		e_dbg("LAN_INIT_DONE not set, increase timeout\n");
1206 1207 1208 1209 1210 1211 1212

	/* Clear the Init Done bit for the next init event */
	data = er32(STATUS);
	data &= ~E1000_STATUS_LAN_INIT_DONE;
	ew32(STATUS, data);
}

1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
/**
 *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
 *  @hw: pointer to the HW structure
 *
 *  Resets the PHY
 *  This is a function pointer entry point called by drivers
 *  or other shared routines.
 **/
static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
{
1223 1224
	s32 ret_val = 0;
	u16 reg;
1225 1226 1227 1228 1229

	ret_val = e1000e_phy_hw_reset_generic(hw);
	if (ret_val)
		return ret_val;

1230 1231 1232
	/* Allow time for h/w to get to a quiescent state after reset */
	mdelay(10);

1233 1234 1235 1236 1237 1238
	if (hw->mac.type == e1000_pchlan) {
		ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
		if (ret_val)
			return ret_val;
	}

1239 1240 1241 1242
	/* Dummy read to clear the phy wakeup bit after lcd reset */
	if (hw->mac.type == e1000_pchlan)
		e1e_rphy(hw, BM_WUC, &reg);

1243 1244 1245 1246
	/* Configure the LCD with the extended configuration region in NVM */
	ret_val = e1000_sw_lcd_config_ich8lan(hw);
	if (ret_val)
		goto out;
1247

1248 1249 1250
	/* Configure the LCD with the OEM bits in NVM */
	if (hw->mac.type == e1000_pchlan)
		ret_val = e1000_oem_bits_config_ich8lan(hw, true);
1251

1252
out:
1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
	return 0;
}

/**
 *  e1000_get_phy_info_ife_ich8lan - Retrieves various IFE PHY states
 *  @hw: pointer to the HW structure
 *
 *  Populates "phy" structure with various feature states.
 *  This function is only called by other family-specific
 *  routines.
 **/
static s32 e1000_get_phy_info_ife_ich8lan(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 data;
	bool link;

	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
	if (ret_val)
		return ret_val;

	if (!link) {
1276
		e_dbg("Phy info is only valid if link is up\n");
1277 1278 1279 1280 1281 1282 1283 1284 1285
		return -E1000_ERR_CONFIG;
	}

	ret_val = e1e_rphy(hw, IFE_PHY_SPECIAL_CONTROL, &data);
	if (ret_val)
		return ret_val;
	phy->polarity_correction = (!(data & IFE_PSC_AUTO_POLARITY_DISABLE));

	if (phy->polarity_correction) {
1286
		ret_val = phy->ops.check_polarity(hw);
1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
		if (ret_val)
			return ret_val;
	} else {
		/* Polarity is forced */
		phy->cable_polarity = (data & IFE_PSC_FORCE_POLARITY)
				      ? e1000_rev_polarity_reversed
				      : e1000_rev_polarity_normal;
	}

	ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
	if (ret_val)
		return ret_val;

	phy->is_mdix = (data & IFE_PMC_MDIX_STATUS);

	/* The following parameters are undefined for 10/100 operation. */
	phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
	phy->local_rx = e1000_1000t_rx_status_undefined;
	phy->remote_rx = e1000_1000t_rx_status_undefined;

	return 0;
}

/**
 *  e1000_get_phy_info_ich8lan - Calls appropriate PHY type get_phy_info
 *  @hw: pointer to the HW structure
 *
 *  Wrapper for calling the get_phy_info routines for the appropriate phy type.
 *  This is a function pointer entry point called by drivers
 *  or other shared routines.
 **/
static s32 e1000_get_phy_info_ich8lan(struct e1000_hw *hw)
{
	switch (hw->phy.type) {
	case e1000_phy_ife:
		return e1000_get_phy_info_ife_ich8lan(hw);
		break;
	case e1000_phy_igp_3:
1325
	case e1000_phy_bm:
1326 1327
	case e1000_phy_82578:
	case e1000_phy_82577:
1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340
		return e1000e_get_phy_info_igp(hw);
		break;
	default:
		break;
	}

	return -E1000_ERR_PHY_TYPE;
}

/**
 *  e1000_check_polarity_ife_ich8lan - Check cable polarity for IFE PHY
 *  @hw: pointer to the HW structure
 *
1341
 *  Polarity is determined on the polarity reversal feature being enabled.
1342 1343 1344 1345 1346 1347 1348 1349 1350
 *  This function is only called by other family-specific
 *  routines.
 **/
static s32 e1000_check_polarity_ife_ich8lan(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 phy_data, offset, mask;

1351 1352
	/*
	 * Polarity is determined based on the reversal feature being enabled.
1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371
	 */
	if (phy->polarity_correction) {
		offset	= IFE_PHY_EXTENDED_STATUS_CONTROL;
		mask	= IFE_PESC_POLARITY_REVERSED;
	} else {
		offset	= IFE_PHY_SPECIAL_CONTROL;
		mask	= IFE_PSC_FORCE_POLARITY;
	}

	ret_val = e1e_rphy(hw, offset, &phy_data);

	if (!ret_val)
		phy->cable_polarity = (phy_data & mask)
				      ? e1000_rev_polarity_reversed
				      : e1000_rev_polarity_normal;

	return ret_val;
}

1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403
/**
 *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
 *  @hw: pointer to the HW structure
 *  @active: true to enable LPLU, false to disable
 *
 *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
 *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
 *  the phy speed. This function will manually set the LPLU bit and restart
 *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
 *  since it configures the same bit.
 **/
static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
{
	s32 ret_val = 0;
	u16 oem_reg;

	ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
	if (ret_val)
		goto out;

	if (active)
		oem_reg |= HV_OEM_BITS_LPLU;
	else
		oem_reg &= ~HV_OEM_BITS_LPLU;

	oem_reg |= HV_OEM_BITS_RESTART_AN;
	ret_val = e1e_wphy(hw, HV_OEM_BITS, oem_reg);

out:
	return ret_val;
}

1404 1405 1406
/**
 *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
 *  @hw: pointer to the HW structure
1407
 *  @active: true to enable LPLU, false to disable
1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
 *
 *  Sets the LPLU D0 state according to the active flag.  When
 *  activating LPLU this function also disables smart speed
 *  and vice versa.  LPLU will not be activated unless the
 *  device autonegotiation advertisement meets standards of
 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
 *  This is a function pointer entry point only called by
 *  PHY setup routines.
 **/
static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
{
	struct e1000_phy_info *phy = &hw->phy;
	u32 phy_ctrl;
	s32 ret_val = 0;
	u16 data;

1424
	if (phy->type == e1000_phy_ife)
1425 1426 1427 1428 1429 1430 1431 1432
		return ret_val;

	phy_ctrl = er32(PHY_CTRL);

	if (active) {
		phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
		ew32(PHY_CTRL, phy_ctrl);

1433 1434 1435
		if (phy->type != e1000_phy_igp_3)
			return 0;

1436 1437 1438 1439
		/*
		 * Call gig speed drop workaround on LPLU before accessing
		 * any PHY registers
		 */
1440
		if (hw->mac.type == e1000_ich8lan)
1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452
			e1000e_gig_downshift_workaround_ich8lan(hw);

		/* When LPLU is enabled, we should disable SmartSpeed */
		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
		if (ret_val)
			return ret_val;
	} else {
		phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
		ew32(PHY_CTRL, phy_ctrl);

1453 1454 1455
		if (phy->type != e1000_phy_igp_3)
			return 0;

1456 1457
		/*
		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1458 1459
		 * during Dx states where the power conservation is most
		 * important.  During driver activity we should enable
1460 1461
		 * SmartSpeed, so performance is maintained.
		 */
1462 1463
		if (phy->smart_speed == e1000_smart_speed_on) {
			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1464
					   &data);
1465 1466 1467 1468 1469
			if (ret_val)
				return ret_val;

			data |= IGP01E1000_PSCFR_SMART_SPEED;
			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1470
					   data);
1471 1472 1473 1474
			if (ret_val)
				return ret_val;
		} else if (phy->smart_speed == e1000_smart_speed_off) {
			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1475
					   &data);
1476 1477 1478 1479 1480
			if (ret_val)
				return ret_val;

			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1481
					   data);
1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492
			if (ret_val)
				return ret_val;
		}
	}

	return 0;
}

/**
 *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
 *  @hw: pointer to the HW structure
1493
 *  @active: true to enable LPLU, false to disable
1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514
 *
 *  Sets the LPLU D3 state according to the active flag.  When
 *  activating LPLU this function also disables smart speed
 *  and vice versa.  LPLU will not be activated unless the
 *  device autonegotiation advertisement meets standards of
 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
 *  This is a function pointer entry point only called by
 *  PHY setup routines.
 **/
static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
{
	struct e1000_phy_info *phy = &hw->phy;
	u32 phy_ctrl;
	s32 ret_val;
	u16 data;

	phy_ctrl = er32(PHY_CTRL);

	if (!active) {
		phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
		ew32(PHY_CTRL, phy_ctrl);
1515 1516 1517 1518

		if (phy->type != e1000_phy_igp_3)
			return 0;

1519 1520
		/*
		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1521 1522
		 * during Dx states where the power conservation is most
		 * important.  During driver activity we should enable
1523 1524
		 * SmartSpeed, so performance is maintained.
		 */
1525
		if (phy->smart_speed == e1000_smart_speed_on) {
1526 1527
			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
					   &data);
1528 1529 1530 1531
			if (ret_val)
				return ret_val;

			data |= IGP01E1000_PSCFR_SMART_SPEED;
1532 1533
			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
					   data);
1534 1535 1536
			if (ret_val)
				return ret_val;
		} else if (phy->smart_speed == e1000_smart_speed_off) {
1537 1538
			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
					   &data);
1539 1540 1541 1542
			if (ret_val)
				return ret_val;

			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1543 1544
			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
					   data);
1545 1546 1547 1548 1549 1550 1551 1552 1553
			if (ret_val)
				return ret_val;
		}
	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
		phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
		ew32(PHY_CTRL, phy_ctrl);

1554 1555 1556
		if (phy->type != e1000_phy_igp_3)
			return 0;

1557 1558 1559 1560
		/*
		 * Call gig speed drop workaround on LPLU before accessing
		 * any PHY registers
		 */
1561
		if (hw->mac.type == e1000_ich8lan)
1562 1563 1564
			e1000e_gig_downshift_workaround_ich8lan(hw);

		/* When LPLU is enabled, we should disable SmartSpeed */
1565
		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
1566 1567 1568 1569
		if (ret_val)
			return ret_val;

		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1570
		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
1571 1572 1573 1574 1575
	}

	return 0;
}

1576 1577 1578 1579 1580 1581
/**
 *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
 *  @hw: pointer to the HW structure
 *  @bank:  pointer to the variable that returns the active bank
 *
 *  Reads signature byte from the NVM using the flash access registers.
1582
 *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
1583 1584 1585
 **/
static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
{
1586
	u32 eecd;
1587 1588 1589
	struct e1000_nvm_info *nvm = &hw->nvm;
	u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
	u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
1590 1591
	u8 sig_byte = 0;
	s32 ret_val = 0;
1592

1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605
	switch (hw->mac.type) {
	case e1000_ich8lan:
	case e1000_ich9lan:
		eecd = er32(EECD);
		if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
		    E1000_EECD_SEC1VAL_VALID_MASK) {
			if (eecd & E1000_EECD_SEC1VAL)
				*bank = 1;
			else
				*bank = 0;

			return 0;
		}
1606
		e_dbg("Unable to determine valid NVM bank via EEC - "
1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619
		       "reading flash signature\n");
		/* fall-thru */
	default:
		/* set bank to 0 in case flash read fails */
		*bank = 0;

		/* Check bank 0 */
		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
		                                        &sig_byte);
		if (ret_val)
			return ret_val;
		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
		    E1000_ICH_NVM_SIG_VALUE) {
1620
			*bank = 0;
1621 1622
			return 0;
		}
1623

1624 1625 1626 1627 1628 1629 1630 1631 1632 1633
		/* Check bank 1 */
		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
		                                        bank1_offset,
		                                        &sig_byte);
		if (ret_val)
			return ret_val;
		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
		    E1000_ICH_NVM_SIG_VALUE) {
			*bank = 1;
			return 0;
1634
		}
1635

1636
		e_dbg("ERROR: No valid NVM bank present\n");
1637
		return -E1000_ERR_NVM;
1638 1639 1640 1641 1642
	}

	return 0;
}

1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657
/**
 *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
 *  @hw: pointer to the HW structure
 *  @offset: The offset (in bytes) of the word(s) to read.
 *  @words: Size of data to read in words
 *  @data: Pointer to the word(s) to read at offset.
 *
 *  Reads a word(s) from the NVM using the flash access registers.
 **/
static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
				  u16 *data)
{
	struct e1000_nvm_info *nvm = &hw->nvm;
	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
	u32 act_offset;
1658
	s32 ret_val = 0;
1659
	u32 bank = 0;
1660 1661 1662 1663
	u16 i, word;

	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
	    (words == 0)) {
1664
		e_dbg("nvm parameter(s) out of bounds\n");
1665 1666
		ret_val = -E1000_ERR_NVM;
		goto out;
1667 1668
	}

1669
	nvm->ops.acquire(hw);
1670

1671
	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
1672
	if (ret_val) {
1673
		e_dbg("Could not detect valid bank, assuming bank 0\n");
1674 1675
		bank = 0;
	}
1676 1677

	act_offset = (bank) ? nvm->flash_bank_size : 0;
1678 1679
	act_offset += offset;

1680
	ret_val = 0;
1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694
	for (i = 0; i < words; i++) {
		if ((dev_spec->shadow_ram) &&
		    (dev_spec->shadow_ram[offset+i].modified)) {
			data[i] = dev_spec->shadow_ram[offset+i].value;
		} else {
			ret_val = e1000_read_flash_word_ich8lan(hw,
								act_offset + i,
								&word);
			if (ret_val)
				break;
			data[i] = word;
		}
	}

1695
	nvm->ops.release(hw);
1696

1697 1698
out:
	if (ret_val)
1699
		e_dbg("NVM read error: %d\n", ret_val);
1700

1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720
	return ret_val;
}

/**
 *  e1000_flash_cycle_init_ich8lan - Initialize flash
 *  @hw: pointer to the HW structure
 *
 *  This function does initial flash setup so that a new read/write/erase cycle
 *  can be started.
 **/
static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
{
	union ich8_hws_flash_status hsfsts;
	s32 ret_val = -E1000_ERR_NVM;
	s32 i = 0;

	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);

	/* Check if the flash descriptor is valid */
	if (hsfsts.hsf_status.fldesvalid == 0) {
1721
		e_dbg("Flash descriptor invalid.  "
1722 1723 1724 1725 1726 1727 1728 1729 1730 1731
			 "SW Sequencing must be used.");
		return -E1000_ERR_NVM;
	}

	/* Clear FCERR and DAEL in hw status by writing 1 */
	hsfsts.hsf_status.flcerr = 1;
	hsfsts.hsf_status.dael = 1;

	ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);

1732 1733
	/*
	 * Either we should have a hardware SPI cycle in progress
1734 1735
	 * bit to check against, in order to start a new cycle or
	 * FDONE bit should be changed in the hardware so that it
1736
	 * is 1 after hardware reset, which can then be used as an
1737 1738 1739 1740 1741
	 * indication whether a cycle is in progress or has been
	 * completed.
	 */

	if (hsfsts.hsf_status.flcinprog == 0) {
1742 1743 1744 1745 1746
		/*
		 * There is no cycle running at present,
		 * so we can start a cycle
		 * Begin by setting Flash Cycle Done.
		 */
1747 1748 1749 1750
		hsfsts.hsf_status.flcdone = 1;
		ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
		ret_val = 0;
	} else {
1751 1752 1753 1754
		/*
		 * otherwise poll for sometime so the current
		 * cycle has a chance to end before giving up.
		 */
1755 1756 1757 1758 1759 1760 1761 1762 1763
		for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
			hsfsts.regval = __er16flash(hw, ICH_FLASH_HSFSTS);
			if (hsfsts.hsf_status.flcinprog == 0) {
				ret_val = 0;
				break;
			}
			udelay(1);
		}
		if (ret_val == 0) {
1764 1765 1766 1767
			/*
			 * Successful in waiting for previous cycle to timeout,
			 * now set the Flash Cycle Done.
			 */
1768 1769 1770
			hsfsts.hsf_status.flcdone = 1;
			ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
		} else {
1771
			e_dbg("Flash controller busy, cannot get access");
1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828
		}
	}

	return ret_val;
}

/**
 *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
 *  @hw: pointer to the HW structure
 *  @timeout: maximum time to wait for completion
 *
 *  This function starts a flash cycle and waits for its completion.
 **/
static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
{
	union ich8_hws_flash_ctrl hsflctl;
	union ich8_hws_flash_status hsfsts;
	s32 ret_val = -E1000_ERR_NVM;
	u32 i = 0;

	/* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
	hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
	hsflctl.hsf_ctrl.flcgo = 1;
	ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);

	/* wait till FDONE bit is set to 1 */
	do {
		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
		if (hsfsts.hsf_status.flcdone == 1)
			break;
		udelay(1);
	} while (i++ < timeout);

	if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0)
		return 0;

	return ret_val;
}

/**
 *  e1000_read_flash_word_ich8lan - Read word from flash
 *  @hw: pointer to the HW structure
 *  @offset: offset to data location
 *  @data: pointer to the location for storing the data
 *
 *  Reads the flash word at offset into data.  Offset is converted
 *  to bytes before read.
 **/
static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
					 u16 *data)
{
	/* Must convert offset into bytes. */
	offset <<= 1;

	return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
}

1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851
/**
 *  e1000_read_flash_byte_ich8lan - Read byte from flash
 *  @hw: pointer to the HW structure
 *  @offset: The offset of the byte to read.
 *  @data: Pointer to a byte to store the value read.
 *
 *  Reads a single byte from the NVM using the flash access registers.
 **/
static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
					 u8 *data)
{
	s32 ret_val;
	u16 word = 0;

	ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
	if (ret_val)
		return ret_val;

	*data = (u8)word;

	return 0;
}

1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894
/**
 *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
 *  @hw: pointer to the HW structure
 *  @offset: The offset (in bytes) of the byte or word to read.
 *  @size: Size of data to read, 1=byte 2=word
 *  @data: Pointer to the word to store the value read.
 *
 *  Reads a byte or word from the NVM using the flash access registers.
 **/
static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
					 u8 size, u16 *data)
{
	union ich8_hws_flash_status hsfsts;
	union ich8_hws_flash_ctrl hsflctl;
	u32 flash_linear_addr;
	u32 flash_data = 0;
	s32 ret_val = -E1000_ERR_NVM;
	u8 count = 0;

	if (size < 1  || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
		return -E1000_ERR_NVM;

	flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
			    hw->nvm.flash_base_addr;

	do {
		udelay(1);
		/* Steps */
		ret_val = e1000_flash_cycle_init_ich8lan(hw);
		if (ret_val != 0)
			break;

		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
		hsflctl.hsf_ctrl.fldbcount = size - 1;
		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);

		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);

		ret_val = e1000_flash_cycle_ich8lan(hw,
						ICH_FLASH_READ_COMMAND_TIMEOUT);

1895 1896
		/*
		 * Check if FCERR is set to 1, if set to 1, clear it
1897 1898
		 * and try the whole sequence a few more times, else
		 * read in (shift in) the Flash Data0, the order is
1899 1900
		 * least significant byte first msb to lsb
		 */
1901 1902 1903 1904 1905 1906 1907 1908 1909
		if (ret_val == 0) {
			flash_data = er32flash(ICH_FLASH_FDATA0);
			if (size == 1) {
				*data = (u8)(flash_data & 0x000000FF);
			} else if (size == 2) {
				*data = (u16)(flash_data & 0x0000FFFF);
			}
			break;
		} else {
1910 1911
			/*
			 * If we've gotten here, then things are probably
1912 1913 1914 1915 1916 1917 1918 1919 1920
			 * completely hosed, but if the error condition is
			 * detected, it won't hurt to give it another try...
			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
			 */
			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
			if (hsfsts.hsf_status.flcerr == 1) {
				/* Repeat for some time before giving up. */
				continue;
			} else if (hsfsts.hsf_status.flcdone == 0) {
1921
				e_dbg("Timeout error - flash cycle "
1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948
					 "did not complete.");
				break;
			}
		}
	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);

	return ret_val;
}

/**
 *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
 *  @hw: pointer to the HW structure
 *  @offset: The offset (in bytes) of the word(s) to write.
 *  @words: Size of data to write in words
 *  @data: Pointer to the word(s) to write at offset.
 *
 *  Writes a byte or word to the NVM using the flash access registers.
 **/
static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
				   u16 *data)
{
	struct e1000_nvm_info *nvm = &hw->nvm;
	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
	u16 i;

	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
	    (words == 0)) {
1949
		e_dbg("nvm parameter(s) out of bounds\n");
1950 1951 1952
		return -E1000_ERR_NVM;
	}

1953
	nvm->ops.acquire(hw);
1954

1955
	for (i = 0; i < words; i++) {
1956
		dev_spec->shadow_ram[offset+i].modified = true;
1957 1958 1959
		dev_spec->shadow_ram[offset+i].value = data[i];
	}

1960
	nvm->ops.release(hw);
1961

1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972
	return 0;
}

/**
 *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
 *  @hw: pointer to the HW structure
 *
 *  The NVM checksum is updated by calling the generic update_nvm_checksum,
 *  which writes the checksum to the shadow ram.  The changes in the shadow
 *  ram are then committed to the EEPROM by processing each bank at a time
 *  checking for the modified bit and writing only the pending changes.
1973
 *  After a successful commit, the shadow ram is cleared and is ready for
1974 1975 1976 1977 1978 1979
 *  future writes.
 **/
static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
{
	struct e1000_nvm_info *nvm = &hw->nvm;
	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
1980
	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
1981 1982 1983 1984 1985
	s32 ret_val;
	u16 data;

	ret_val = e1000e_update_nvm_checksum_generic(hw);
	if (ret_val)
1986
		goto out;
1987 1988

	if (nvm->type != e1000_nvm_flash_sw)
1989
		goto out;
1990

1991
	nvm->ops.acquire(hw);
1992

1993 1994
	/*
	 * We're writing to the opposite bank so if we're on bank 1,
1995
	 * write to bank 0 etc.  We also need to erase the segment that
1996 1997
	 * is going to be written
	 */
1998
	ret_val =  e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
1999
	if (ret_val) {
2000
		e_dbg("Could not detect valid bank, assuming bank 0\n");
2001
		bank = 0;
2002
	}
2003 2004

	if (bank == 0) {
2005 2006
		new_bank_offset = nvm->flash_bank_size;
		old_bank_offset = 0;
2007 2008
		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
		if (ret_val) {
2009
			nvm->ops.release(hw);
2010 2011
			goto out;
		}
2012 2013 2014
	} else {
		old_bank_offset = nvm->flash_bank_size;
		new_bank_offset = 0;
2015 2016
		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
		if (ret_val) {
2017
			nvm->ops.release(hw);
2018 2019
			goto out;
		}
2020 2021 2022
	}

	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
2023 2024
		/*
		 * Determine whether to write the value stored
2025
		 * in the other NVM bank or a modified value stored
2026 2027
		 * in the shadow RAM
		 */
2028 2029 2030
		if (dev_spec->shadow_ram[i].modified) {
			data = dev_spec->shadow_ram[i].value;
		} else {
2031 2032 2033 2034 2035
			ret_val = e1000_read_flash_word_ich8lan(hw, i +
			                                        old_bank_offset,
			                                        &data);
			if (ret_val)
				break;
2036 2037
		}

2038 2039
		/*
		 * If the word is 0x13, then make sure the signature bits
2040 2041 2042 2043
		 * (15:14) are 11b until the commit has completed.
		 * This will allow us to write 10b which indicates the
		 * signature is valid.  We want to do this after the write
		 * has completed so that we don't mark the segment valid
2044 2045
		 * while the write is still in progress
		 */
2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067
		if (i == E1000_ICH_NVM_SIG_WORD)
			data |= E1000_ICH_NVM_SIG_MASK;

		/* Convert offset to bytes. */
		act_offset = (i + new_bank_offset) << 1;

		udelay(100);
		/* Write the bytes to the new bank. */
		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
							       act_offset,
							       (u8)data);
		if (ret_val)
			break;

		udelay(100);
		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
							  act_offset + 1,
							  (u8)(data >> 8));
		if (ret_val)
			break;
	}

2068 2069 2070 2071
	/*
	 * Don't bother writing the segment valid bits if sector
	 * programming failed.
	 */
2072
	if (ret_val) {
2073
		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
2074
		e_dbg("Flash commit failed.\n");
2075
		nvm->ops.release(hw);
2076
		goto out;
2077 2078
	}

2079 2080
	/*
	 * Finally validate the new segment by setting bit 15:14
2081 2082
	 * to 10b in word 0x13 , this can be done without an
	 * erase as well since these bits are 11 to start with
2083 2084
	 * and we need to change bit 14 to 0b
	 */
2085
	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
2086 2087
	ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
	if (ret_val) {
2088
		nvm->ops.release(hw);
2089 2090
		goto out;
	}
2091 2092 2093 2094 2095
	data &= 0xBFFF;
	ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
						       act_offset * 2 + 1,
						       (u8)(data >> 8));
	if (ret_val) {
2096
		nvm->ops.release(hw);
2097
		goto out;
2098 2099
	}

2100 2101
	/*
	 * And invalidate the previously valid segment by setting
2102 2103
	 * its signature word (0x13) high_byte to 0b. This can be
	 * done without an erase because flash erase sets all bits
2104 2105
	 * to 1's. We can write 1's to 0's without an erase
	 */
2106 2107 2108
	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
	ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
	if (ret_val) {
2109
		nvm->ops.release(hw);
2110
		goto out;
2111 2112 2113 2114
	}

	/* Great!  Everything worked, we can now clear the cached entries. */
	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
2115
		dev_spec->shadow_ram[i].modified = false;
2116 2117 2118
		dev_spec->shadow_ram[i].value = 0xFFFF;
	}

2119
	nvm->ops.release(hw);
2120

2121 2122
	/*
	 * Reload the EEPROM, or else modifications will not appear
2123 2124 2125 2126 2127
	 * until after the next adapter reset.
	 */
	e1000e_reload_nvm(hw);
	msleep(10);

2128 2129
out:
	if (ret_val)
2130
		e_dbg("NVM update error: %d\n", ret_val);
2131

2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147
	return ret_val;
}

/**
 *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
 *  @hw: pointer to the HW structure
 *
 *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
 *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
 *  calculated, in which case we need to calculate the checksum and set bit 6.
 **/
static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
{
	s32 ret_val;
	u16 data;

2148 2149
	/*
	 * Read 0x19 and check bit 6.  If this bit is 0, the checksum
2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170
	 * needs to be fixed.  This bit is an indication that the NVM
	 * was prepared by OEM software and did not calculate the
	 * checksum...a likely scenario.
	 */
	ret_val = e1000_read_nvm(hw, 0x19, 1, &data);
	if (ret_val)
		return ret_val;

	if ((data & 0x40) == 0) {
		data |= 0x40;
		ret_val = e1000_write_nvm(hw, 0x19, 1, &data);
		if (ret_val)
			return ret_val;
		ret_val = e1000e_update_nvm_checksum(hw);
		if (ret_val)
			return ret_val;
	}

	return e1000e_validate_nvm_checksum_generic(hw);
}

2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182
/**
 *  e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
 *  @hw: pointer to the HW structure
 *
 *  To prevent malicious write/erase of the NVM, set it to be read-only
 *  so that the hardware ignores all write/erase cycles of the NVM via
 *  the flash control registers.  The shadow-ram copy of the NVM will
 *  still be updated, however any updates to this copy will not stick
 *  across driver reloads.
 **/
void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
{
2183
	struct e1000_nvm_info *nvm = &hw->nvm;
2184 2185 2186 2187
	union ich8_flash_protected_range pr0;
	union ich8_hws_flash_status hsfsts;
	u32 gfpreg;

2188
	nvm->ops.acquire(hw);
2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208

	gfpreg = er32flash(ICH_FLASH_GFPREG);

	/* Write-protect GbE Sector of NVM */
	pr0.regval = er32flash(ICH_FLASH_PR0);
	pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
	pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
	pr0.range.wpe = true;
	ew32flash(ICH_FLASH_PR0, pr0.regval);

	/*
	 * Lock down a subset of GbE Flash Control Registers, e.g.
	 * PR0 to prevent the write-protection from being lifted.
	 * Once FLOCKDN is set, the registers protected by it cannot
	 * be written until FLOCKDN is cleared by a hardware reset.
	 */
	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
	hsfsts.hsf_status.flockdn = true;
	ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);

2209
	nvm->ops.release(hw);
2210 2211
}

2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259
/**
 *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
 *  @hw: pointer to the HW structure
 *  @offset: The offset (in bytes) of the byte/word to read.
 *  @size: Size of data to read, 1=byte 2=word
 *  @data: The byte(s) to write to the NVM.
 *
 *  Writes one/two bytes to the NVM using the flash access registers.
 **/
static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
					  u8 size, u16 data)
{
	union ich8_hws_flash_status hsfsts;
	union ich8_hws_flash_ctrl hsflctl;
	u32 flash_linear_addr;
	u32 flash_data = 0;
	s32 ret_val;
	u8 count = 0;

	if (size < 1 || size > 2 || data > size * 0xff ||
	    offset > ICH_FLASH_LINEAR_ADDR_MASK)
		return -E1000_ERR_NVM;

	flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
			    hw->nvm.flash_base_addr;

	do {
		udelay(1);
		/* Steps */
		ret_val = e1000_flash_cycle_init_ich8lan(hw);
		if (ret_val)
			break;

		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
		hsflctl.hsf_ctrl.fldbcount = size -1;
		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);

		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);

		if (size == 1)
			flash_data = (u32)data & 0x00FF;
		else
			flash_data = (u32)data;

		ew32flash(ICH_FLASH_FDATA0, flash_data);

2260 2261 2262 2263
		/*
		 * check if FCERR is set to 1 , if set to 1, clear it
		 * and try the whole sequence a few more times else done
		 */
2264 2265 2266 2267 2268
		ret_val = e1000_flash_cycle_ich8lan(hw,
					       ICH_FLASH_WRITE_COMMAND_TIMEOUT);
		if (!ret_val)
			break;

2269 2270
		/*
		 * If we're here, then things are most likely
2271 2272 2273 2274 2275 2276 2277 2278 2279
		 * completely hosed, but if the error condition
		 * is detected, it won't hurt to give it another
		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
		 */
		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
		if (hsfsts.hsf_status.flcerr == 1)
			/* Repeat for some time before giving up. */
			continue;
		if (hsfsts.hsf_status.flcdone == 0) {
2280
			e_dbg("Timeout error - flash cycle "
2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324
				 "did not complete.");
			break;
		}
	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);

	return ret_val;
}

/**
 *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
 *  @hw: pointer to the HW structure
 *  @offset: The index of the byte to read.
 *  @data: The byte to write to the NVM.
 *
 *  Writes a single byte to the NVM using the flash access registers.
 **/
static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
					  u8 data)
{
	u16 word = (u16)data;

	return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
}

/**
 *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
 *  @hw: pointer to the HW structure
 *  @offset: The offset of the byte to write.
 *  @byte: The byte to write to the NVM.
 *
 *  Writes a single byte to the NVM using the flash access registers.
 *  Goes through a retry algorithm before giving up.
 **/
static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
						u32 offset, u8 byte)
{
	s32 ret_val;
	u16 program_retries;

	ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
	if (!ret_val)
		return ret_val;

	for (program_retries = 0; program_retries < 100; program_retries++) {
2325
		e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354
		udelay(100);
		ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
		if (!ret_val)
			break;
	}
	if (program_retries == 100)
		return -E1000_ERR_NVM;

	return 0;
}

/**
 *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
 *  @hw: pointer to the HW structure
 *  @bank: 0 for first bank, 1 for second bank, etc.
 *
 *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
 *  bank N is 4096 * N + flash_reg_addr.
 **/
static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
{
	struct e1000_nvm_info *nvm = &hw->nvm;
	union ich8_hws_flash_status hsfsts;
	union ich8_hws_flash_ctrl hsflctl;
	u32 flash_linear_addr;
	/* bank size is in 16bit words - adjust to bytes */
	u32 flash_bank_size = nvm->flash_bank_size * 2;
	s32 ret_val;
	s32 count = 0;
2355
	s32 j, iteration, sector_size;
2356 2357 2358

	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);

2359 2360 2361 2362
	/*
	 * Determine HW Sector size: Read BERASE bits of hw flash status
	 * register
	 * 00: The Hw sector is 256 bytes, hence we need to erase 16
2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379
	 *     consecutive sectors.  The start index for the nth Hw sector
	 *     can be calculated as = bank * 4096 + n * 256
	 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
	 *     The start index for the nth Hw sector can be calculated
	 *     as = bank * 4096
	 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
	 *     (ich9 only, otherwise error condition)
	 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
	 */
	switch (hsfsts.hsf_status.berasesz) {
	case 0:
		/* Hw sector size 256 */
		sector_size = ICH_FLASH_SEG_SIZE_256;
		iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
		break;
	case 1:
		sector_size = ICH_FLASH_SEG_SIZE_4K;
2380
		iteration = 1;
2381 2382
		break;
	case 2:
2383 2384
		sector_size = ICH_FLASH_SEG_SIZE_8K;
		iteration = 1;
2385 2386 2387
		break;
	case 3:
		sector_size = ICH_FLASH_SEG_SIZE_64K;
2388
		iteration = 1;
2389 2390 2391 2392 2393 2394 2395
		break;
	default:
		return -E1000_ERR_NVM;
	}

	/* Start with the base address, then add the sector offset. */
	flash_linear_addr = hw->nvm.flash_base_addr;
2396
	flash_linear_addr += (bank) ? flash_bank_size : 0;
2397 2398 2399 2400 2401 2402 2403 2404

	for (j = 0; j < iteration ; j++) {
		do {
			/* Steps */
			ret_val = e1000_flash_cycle_init_ich8lan(hw);
			if (ret_val)
				return ret_val;

2405 2406 2407 2408
			/*
			 * Write a value 11 (block Erase) in Flash
			 * Cycle field in hw flash control
			 */
2409 2410 2411 2412
			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
			hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);

2413 2414
			/*
			 * Write the last 24 bits of an index within the
2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425
			 * block into Flash Linear address field in Flash
			 * Address.
			 */
			flash_linear_addr += (j * sector_size);
			ew32flash(ICH_FLASH_FADDR, flash_linear_addr);

			ret_val = e1000_flash_cycle_ich8lan(hw,
					       ICH_FLASH_ERASE_COMMAND_TIMEOUT);
			if (ret_val == 0)
				break;

2426 2427
			/*
			 * Check if FCERR is set to 1.  If 1,
2428
			 * clear it and try the whole sequence
2429 2430
			 * a few more times else Done
			 */
2431 2432
			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
			if (hsfsts.hsf_status.flcerr == 1)
2433
				/* repeat for some time before giving up */
2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457
				continue;
			else if (hsfsts.hsf_status.flcdone == 0)
				return ret_val;
		} while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
	}

	return 0;
}

/**
 *  e1000_valid_led_default_ich8lan - Set the default LED settings
 *  @hw: pointer to the HW structure
 *  @data: Pointer to the LED settings
 *
 *  Reads the LED default settings from the NVM to data.  If the NVM LED
 *  settings is all 0's or F's, set the LED default to a valid LED default
 *  setting.
 **/
static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
{
	s32 ret_val;

	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
	if (ret_val) {
2458
		e_dbg("NVM Read Error\n");
2459 2460 2461 2462 2463 2464 2465 2466 2467 2468
		return ret_val;
	}

	if (*data == ID_LED_RESERVED_0000 ||
	    *data == ID_LED_RESERVED_FFFF)
		*data = ID_LED_DEFAULT_ICH8LAN;

	return 0;
}

2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541
/**
 *  e1000_id_led_init_pchlan - store LED configurations
 *  @hw: pointer to the HW structure
 *
 *  PCH does not control LEDs via the LEDCTL register, rather it uses
 *  the PHY LED configuration register.
 *
 *  PCH also does not have an "always on" or "always off" mode which
 *  complicates the ID feature.  Instead of using the "on" mode to indicate
 *  in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init()),
 *  use "link_up" mode.  The LEDs will still ID on request if there is no
 *  link based on logic in e1000_led_[on|off]_pchlan().
 **/
static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
{
	struct e1000_mac_info *mac = &hw->mac;
	s32 ret_val;
	const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
	const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
	u16 data, i, temp, shift;

	/* Get default ID LED modes */
	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
	if (ret_val)
		goto out;

	mac->ledctl_default = er32(LEDCTL);
	mac->ledctl_mode1 = mac->ledctl_default;
	mac->ledctl_mode2 = mac->ledctl_default;

	for (i = 0; i < 4; i++) {
		temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
		shift = (i * 5);
		switch (temp) {
		case ID_LED_ON1_DEF2:
		case ID_LED_ON1_ON2:
		case ID_LED_ON1_OFF2:
			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
			mac->ledctl_mode1 |= (ledctl_on << shift);
			break;
		case ID_LED_OFF1_DEF2:
		case ID_LED_OFF1_ON2:
		case ID_LED_OFF1_OFF2:
			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
			mac->ledctl_mode1 |= (ledctl_off << shift);
			break;
		default:
			/* Do nothing */
			break;
		}
		switch (temp) {
		case ID_LED_DEF1_ON2:
		case ID_LED_ON1_ON2:
		case ID_LED_OFF1_ON2:
			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
			mac->ledctl_mode2 |= (ledctl_on << shift);
			break;
		case ID_LED_DEF1_OFF2:
		case ID_LED_ON1_OFF2:
		case ID_LED_OFF1_OFF2:
			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
			mac->ledctl_mode2 |= (ledctl_off << shift);
			break;
		default:
			/* Do nothing */
			break;
		}
	}

out:
	return ret_val;
}

2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555
/**
 *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
 *  @hw: pointer to the HW structure
 *
 *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
 *  register, so the the bus width is hard coded.
 **/
static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
{
	struct e1000_bus_info *bus = &hw->bus;
	s32 ret_val;

	ret_val = e1000e_get_bus_info_pcie(hw);

2556 2557
	/*
	 * ICH devices are "PCI Express"-ish.  They have
2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576
	 * a configuration space, but do not contain
	 * PCI Express Capability registers, so bus width
	 * must be hardcoded.
	 */
	if (bus->width == e1000_bus_width_unknown)
		bus->width = e1000_bus_width_pcie_x1;

	return ret_val;
}

/**
 *  e1000_reset_hw_ich8lan - Reset the hardware
 *  @hw: pointer to the HW structure
 *
 *  Does a full reset of the hardware which includes a reset of the PHY and
 *  MAC.
 **/
static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
{
2577
	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2578
	u16 reg;
2579 2580 2581
	u32 ctrl, icr, kab;
	s32 ret_val;

2582 2583
	/*
	 * Prevent the PCI-E bus from sticking if there is no TLP connection
2584 2585 2586 2587
	 * on the last TLP read/write transaction when MAC is reset.
	 */
	ret_val = e1000e_disable_pcie_master(hw);
	if (ret_val) {
2588
		e_dbg("PCI-E Master disable polling has failed.\n");
2589 2590
	}

2591
	e_dbg("Masking off all interrupts\n");
2592 2593
	ew32(IMC, 0xffffffff);

2594 2595
	/*
	 * Disable the Transmit and Receive units.  Then delay to allow
2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612
	 * any pending transactions to complete before we hit the MAC
	 * with the global reset.
	 */
	ew32(RCTL, 0);
	ew32(TCTL, E1000_TCTL_PSP);
	e1e_flush();

	msleep(10);

	/* Workaround for ICH8 bit corruption issue in FIFO memory */
	if (hw->mac.type == e1000_ich8lan) {
		/* Set Tx and Rx buffer allocation to 8k apiece. */
		ew32(PBA, E1000_PBA_8K);
		/* Set Packet Buffer Size to 16k. */
		ew32(PBS, E1000_PBS_16K);
	}

2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624
	if (hw->mac.type == e1000_pchlan) {
		/* Save the NVM K1 bit setting*/
		ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &reg);
		if (ret_val)
			return ret_val;

		if (reg & E1000_NVM_K1_ENABLE)
			dev_spec->nvm_k1_enabled = true;
		else
			dev_spec->nvm_k1_enabled = false;
	}

2625 2626 2627
	ctrl = er32(CTRL);

	if (!e1000_check_reset_block(hw)) {
2628 2629 2630 2631 2632 2633
		/* Clear PHY Reset Asserted bit */
		if (hw->mac.type >= e1000_pchlan) {
			u32 status = er32(STATUS);
			ew32(STATUS, status & ~E1000_STATUS_PHYRA);
		}

2634 2635
		/*
		 * PHY HW reset requires MAC CORE reset at the same
2636 2637 2638 2639 2640 2641
		 * time to make sure the interface between MAC and the
		 * external PHY is reset.
		 */
		ctrl |= E1000_CTRL_PHY_RST;
	}
	ret_val = e1000_acquire_swflag_ich8lan(hw);
J
Jeff Kirsher 已提交
2642
	/* Whether or not the swflag was acquired, we need to reset the part */
2643
	e_dbg("Issuing a global reset to ich8lan\n");
2644 2645 2646
	ew32(CTRL, (ctrl | E1000_CTRL_RST));
	msleep(20);

2647
	if (!ret_val)
J
Jeff Kirsher 已提交
2648
		e1000_release_swflag_ich8lan(hw);
2649

2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662
	if (ctrl & E1000_CTRL_PHY_RST)
		ret_val = hw->phy.ops.get_cfg_done(hw);

	if (hw->mac.type >= e1000_ich10lan) {
		e1000_lan_init_done_ich8lan(hw);
	} else {
		ret_val = e1000e_get_auto_rd_done(hw);
		if (ret_val) {
			/*
			 * When auto config read does not complete, do not
			 * return with an error. This can happen in situations
			 * where there is no eeprom and prevents getting link.
			 */
2663
			e_dbg("Auto Read Done did not complete\n");
2664
		}
2665
	}
2666 2667 2668
	/* Dummy read to clear the phy wakeup bit after lcd reset */
	if (hw->mac.type == e1000_pchlan)
		e1e_rphy(hw, BM_WUC, &reg);
2669

2670 2671 2672 2673 2674 2675 2676 2677 2678
	ret_val = e1000_sw_lcd_config_ich8lan(hw);
	if (ret_val)
		goto out;

	if (hw->mac.type == e1000_pchlan) {
		ret_val = e1000_oem_bits_config_ich8lan(hw, true);
		if (ret_val)
			goto out;
	}
2679 2680 2681 2682 2683 2684 2685 2686
	/*
	 * For PCH, this write will make sure that any noise
	 * will be detected as a CRC error and be dropped rather than show up
	 * as a bad packet to the DMA engine.
	 */
	if (hw->mac.type == e1000_pchlan)
		ew32(CRC_OFFSET, 0x65656565);

2687 2688 2689 2690 2691 2692 2693
	ew32(IMC, 0xffffffff);
	icr = er32(ICR);

	kab = er32(KABGTXD);
	kab |= E1000_KABGTXD_BGSQLBIAS;
	ew32(KABGTXD, kab);

2694 2695 2696
	if (hw->mac.type == e1000_pchlan)
		ret_val = e1000_hv_phy_workarounds_ich8lan(hw);

2697
out:
2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709
	return ret_val;
}

/**
 *  e1000_init_hw_ich8lan - Initialize the hardware
 *  @hw: pointer to the HW structure
 *
 *  Prepares the hardware for transmit and receive by doing the following:
 *   - initialize hardware bits
 *   - initialize LED identification
 *   - setup receive address registers
 *   - setup flow control
2710
 *   - setup transmit descriptors
2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722
 *   - clear statistics
 **/
static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
{
	struct e1000_mac_info *mac = &hw->mac;
	u32 ctrl_ext, txdctl, snoop;
	s32 ret_val;
	u16 i;

	e1000_initialize_hw_bits_ich8lan(hw);

	/* Initialize identification LED */
2723
	ret_val = mac->ops.id_led_init(hw);
2724
	if (ret_val)
2725
		e_dbg("Error initializing identification LED\n");
2726
		/* This is not fatal and we should not stop init due to this */
2727 2728 2729 2730 2731

	/* Setup the receive address. */
	e1000e_init_rx_addrs(hw, mac->rar_entry_count);

	/* Zero out the Multicast HASH table */
2732
	e_dbg("Zeroing the MTA\n");
2733 2734 2735
	for (i = 0; i < mac->mta_reg_count; i++)
		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);

2736 2737 2738 2739 2740 2741
	/*
	 * The 82578 Rx buffer will stall if wakeup is enabled in host and
	 * the ME.  Reading the BM_WUC register will clear the host wakeup bit.
	 * Reset the phy after disabling host wakeup to reset the Rx buffer.
	 */
	if (hw->phy.type == e1000_phy_82578) {
2742
		hw->phy.ops.read_reg(hw, BM_WUC, &i);
2743 2744 2745 2746 2747
		ret_val = e1000_phy_hw_reset_ich8lan(hw);
		if (ret_val)
			return ret_val;
	}

2748 2749 2750 2751
	/* Setup link and flow control */
	ret_val = e1000_setup_link_ich8lan(hw);

	/* Set the transmit descriptor write-back policy for both queues */
2752
	txdctl = er32(TXDCTL(0));
2753 2754 2755 2756
	txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
		 E1000_TXDCTL_FULL_TX_DESC_WB;
	txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
		 E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
2757 2758
	ew32(TXDCTL(0), txdctl);
	txdctl = er32(TXDCTL(1));
2759 2760 2761 2762
	txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
		 E1000_TXDCTL_FULL_TX_DESC_WB;
	txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
		 E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
2763
	ew32(TXDCTL(1), txdctl);
2764

2765 2766 2767 2768
	/*
	 * ICH8 has opposite polarity of no_snoop bits.
	 * By default, we should use snoop behavior.
	 */
2769 2770 2771 2772 2773 2774 2775 2776 2777 2778
	if (mac->type == e1000_ich8lan)
		snoop = PCIE_ICH8_SNOOP_ALL;
	else
		snoop = (u32) ~(PCIE_NO_SNOOP_ALL);
	e1000e_set_pcie_no_snoop(hw, snoop);

	ctrl_ext = er32(CTRL_EXT);
	ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
	ew32(CTRL_EXT, ctrl_ext);

2779 2780
	/*
	 * Clear all of the statistics registers (clear on read).  It is
2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802
	 * important that we do this after we have tried to establish link
	 * because the symbol error count will increment wildly if there
	 * is no link.
	 */
	e1000_clear_hw_cntrs_ich8lan(hw);

	return 0;
}
/**
 *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
 *  @hw: pointer to the HW structure
 *
 *  Sets/Clears required hardware bits necessary for correctly setting up the
 *  hardware for transmit and receive.
 **/
static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
{
	u32 reg;

	/* Extended Device Control */
	reg = er32(CTRL_EXT);
	reg |= (1 << 22);
2803 2804 2805
	/* Enable PHY low-power state when MAC is at D3 w/o WoL */
	if (hw->mac.type >= e1000_pchlan)
		reg |= E1000_CTRL_EXT_PHYPDEN;
2806 2807 2808
	ew32(CTRL_EXT, reg);

	/* Transmit Descriptor Control 0 */
2809
	reg = er32(TXDCTL(0));
2810
	reg |= (1 << 22);
2811
	ew32(TXDCTL(0), reg);
2812 2813

	/* Transmit Descriptor Control 1 */
2814
	reg = er32(TXDCTL(1));
2815
	reg |= (1 << 22);
2816
	ew32(TXDCTL(1), reg);
2817 2818

	/* Transmit Arbitration Control 0 */
2819
	reg = er32(TARC(0));
2820 2821 2822
	if (hw->mac.type == e1000_ich8lan)
		reg |= (1 << 28) | (1 << 29);
	reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
2823
	ew32(TARC(0), reg);
2824 2825

	/* Transmit Arbitration Control 1 */
2826
	reg = er32(TARC(1));
2827 2828 2829 2830 2831
	if (er32(TCTL) & E1000_TCTL_MULR)
		reg &= ~(1 << 28);
	else
		reg |= (1 << 28);
	reg |= (1 << 24) | (1 << 26) | (1 << 30);
2832
	ew32(TARC(1), reg);
2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858

	/* Device Status */
	if (hw->mac.type == e1000_ich8lan) {
		reg = er32(STATUS);
		reg &= ~(1 << 31);
		ew32(STATUS, reg);
	}
}

/**
 *  e1000_setup_link_ich8lan - Setup flow control and link settings
 *  @hw: pointer to the HW structure
 *
 *  Determines which flow control settings to use, then configures flow
 *  control.  Calls the appropriate media-specific link configuration
 *  function.  Assuming the adapter has a valid link partner, a valid link
 *  should be established.  Assumes the hardware has previously been reset
 *  and the transmitter and receiver are not enabled.
 **/
static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
{
	s32 ret_val;

	if (e1000_check_reset_block(hw))
		return 0;

2859 2860
	/*
	 * ICH parts do not have a word in the NVM to determine
2861 2862 2863
	 * the default flow control setting, so we explicitly
	 * set it to full.
	 */
2864 2865 2866 2867 2868 2869 2870
	if (hw->fc.requested_mode == e1000_fc_default) {
		/* Workaround h/w hang when Tx flow control enabled */
		if (hw->mac.type == e1000_pchlan)
			hw->fc.requested_mode = e1000_fc_rx_pause;
		else
			hw->fc.requested_mode = e1000_fc_full;
	}
2871

2872 2873 2874 2875 2876
	/*
	 * Save off the requested flow control mode for use later.  Depending
	 * on the link partner's capabilities, we may or may not use this mode.
	 */
	hw->fc.current_mode = hw->fc.requested_mode;
2877

2878
	e_dbg("After fix-ups FlowControl is now = %x\n",
2879
		hw->fc.current_mode);
2880 2881 2882 2883 2884 2885

	/* Continue to configure the copper link. */
	ret_val = e1000_setup_copper_link_ich8lan(hw);
	if (ret_val)
		return ret_val;

2886
	ew32(FCTTV, hw->fc.pause_time);
2887 2888
	if ((hw->phy.type == e1000_phy_82578) ||
	    (hw->phy.type == e1000_phy_82577)) {
2889
		ret_val = hw->phy.ops.write_reg(hw,
2890 2891 2892 2893 2894
		                             PHY_REG(BM_PORT_CTRL_PAGE, 27),
		                             hw->fc.pause_time);
		if (ret_val)
			return ret_val;
	}
2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917

	return e1000e_set_fc_watermarks(hw);
}

/**
 *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
 *  @hw: pointer to the HW structure
 *
 *  Configures the kumeran interface to the PHY to wait the appropriate time
 *  when polling the PHY, then call the generic setup_copper_link to finish
 *  configuring the copper link.
 **/
static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
{
	u32 ctrl;
	s32 ret_val;
	u16 reg_data;

	ctrl = er32(CTRL);
	ctrl |= E1000_CTRL_SLU;
	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
	ew32(CTRL, ctrl);

2918 2919
	/*
	 * Set the mac to wait the maximum time between each iteration
2920
	 * and increase the max iterations when polling the phy;
2921 2922
	 * this fixes erroneous timeouts at 10Mbps.
	 */
2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933
	ret_val = e1000e_write_kmrn_reg(hw, GG82563_REG(0x34, 4), 0xFFFF);
	if (ret_val)
		return ret_val;
	ret_val = e1000e_read_kmrn_reg(hw, GG82563_REG(0x34, 9), &reg_data);
	if (ret_val)
		return ret_val;
	reg_data |= 0x3F;
	ret_val = e1000e_write_kmrn_reg(hw, GG82563_REG(0x34, 9), reg_data);
	if (ret_val)
		return ret_val;

2934 2935
	switch (hw->phy.type) {
	case e1000_phy_igp_3:
2936 2937 2938
		ret_val = e1000e_copper_link_setup_igp(hw);
		if (ret_val)
			return ret_val;
2939 2940 2941
		break;
	case e1000_phy_bm:
	case e1000_phy_82578:
2942 2943 2944
		ret_val = e1000e_copper_link_setup_m88(hw);
		if (ret_val)
			return ret_val;
2945 2946 2947 2948 2949 2950 2951
		break;
	case e1000_phy_82577:
		ret_val = e1000_copper_link_setup_82577(hw);
		if (ret_val)
			return ret_val;
		break;
	case e1000_phy_ife:
2952
		ret_val = hw->phy.ops.read_reg(hw, IFE_PHY_MDIX_CONTROL,
2953
		                               &reg_data);
2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970
		if (ret_val)
			return ret_val;

		reg_data &= ~IFE_PMC_AUTO_MDIX;

		switch (hw->phy.mdix) {
		case 1:
			reg_data &= ~IFE_PMC_FORCE_MDIX;
			break;
		case 2:
			reg_data |= IFE_PMC_FORCE_MDIX;
			break;
		case 0:
		default:
			reg_data |= IFE_PMC_AUTO_MDIX;
			break;
		}
2971
		ret_val = hw->phy.ops.write_reg(hw, IFE_PHY_MDIX_CONTROL,
2972
		                                reg_data);
2973 2974
		if (ret_val)
			return ret_val;
2975 2976 2977
		break;
	default:
		break;
2978
	}
2979 2980 2981 2982 2983 2984 2985 2986 2987
	return e1000e_setup_copper_link(hw);
}

/**
 *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
 *  @hw: pointer to the HW structure
 *  @speed: pointer to store current link speed
 *  @duplex: pointer to store the current link duplex
 *
2988
 *  Calls the generic get_speed_and_duplex to retrieve the current link
2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035
 *  information and then calls the Kumeran lock loss workaround for links at
 *  gigabit speeds.
 **/
static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
					  u16 *duplex)
{
	s32 ret_val;

	ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
	if (ret_val)
		return ret_val;

	if ((hw->mac.type == e1000_ich8lan) &&
	    (hw->phy.type == e1000_phy_igp_3) &&
	    (*speed == SPEED_1000)) {
		ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
	}

	return ret_val;
}

/**
 *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
 *  @hw: pointer to the HW structure
 *
 *  Work-around for 82566 Kumeran PCS lock loss:
 *  On link status change (i.e. PCI reset, speed change) and link is up and
 *  speed is gigabit-
 *    0) if workaround is optionally disabled do nothing
 *    1) wait 1ms for Kumeran link to come up
 *    2) check Kumeran Diagnostic register PCS lock loss bit
 *    3) if not set the link is locked (all is good), otherwise...
 *    4) reset the PHY
 *    5) repeat up to 10 times
 *  Note: this is only called for IGP3 copper when speed is 1gb.
 **/
static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
{
	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
	u32 phy_ctrl;
	s32 ret_val;
	u16 i, data;
	bool link;

	if (!dev_spec->kmrn_lock_loss_workaround_enabled)
		return 0;

3036 3037
	/*
	 * Make sure link is up before proceeding.  If not just return.
3038
	 * Attempting this while link is negotiating fouled up link
3039 3040
	 * stability
	 */
3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068
	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
	if (!link)
		return 0;

	for (i = 0; i < 10; i++) {
		/* read once to clear */
		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
		if (ret_val)
			return ret_val;
		/* and again to get new status */
		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
		if (ret_val)
			return ret_val;

		/* check for PCS lock */
		if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
			return 0;

		/* Issue PHY reset */
		e1000_phy_hw_reset(hw);
		mdelay(5);
	}
	/* Disable GigE link negotiation */
	phy_ctrl = er32(PHY_CTRL);
	phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
		     E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
	ew32(PHY_CTRL, phy_ctrl);

3069 3070 3071 3072
	/*
	 * Call gig speed drop workaround on Gig disable before accessing
	 * any PHY registers
	 */
3073 3074 3075 3076 3077 3078 3079
	e1000e_gig_downshift_workaround_ich8lan(hw);

	/* unable to acquire PCS lock */
	return -E1000_ERR_PHY;
}

/**
3080
 *  e1000_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
3081
 *  @hw: pointer to the HW structure
3082
 *  @state: boolean value used to set the current Kumeran workaround state
3083
 *
3084 3085
 *  If ICH8, set the current Kumeran workaround state (enabled - true
 *  /disabled - false).
3086 3087 3088 3089 3090 3091 3092
 **/
void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
						 bool state)
{
	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;

	if (hw->mac.type != e1000_ich8lan) {
3093
		e_dbg("Workaround applies to ICH8 only.\n");
3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126
		return;
	}

	dev_spec->kmrn_lock_loss_workaround_enabled = state;
}

/**
 *  e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
 *  @hw: pointer to the HW structure
 *
 *  Workaround for 82566 power-down on D3 entry:
 *    1) disable gigabit link
 *    2) write VR power-down enable
 *    3) read it back
 *  Continue if successful, else issue LCD reset and repeat
 **/
void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
{
	u32 reg;
	u16 data;
	u8  retry = 0;

	if (hw->phy.type != e1000_phy_igp_3)
		return;

	/* Try the workaround twice (if needed) */
	do {
		/* Disable link */
		reg = er32(PHY_CTRL);
		reg |= (E1000_PHY_CTRL_GBE_DISABLE |
			E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
		ew32(PHY_CTRL, reg);

3127 3128 3129 3130
		/*
		 * Call gig speed drop workaround on Gig disable before
		 * accessing any PHY registers
		 */
3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156
		if (hw->mac.type == e1000_ich8lan)
			e1000e_gig_downshift_workaround_ich8lan(hw);

		/* Write VR power-down enable */
		e1e_rphy(hw, IGP3_VR_CTRL, &data);
		data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
		e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);

		/* Read it back and test */
		e1e_rphy(hw, IGP3_VR_CTRL, &data);
		data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
		if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
			break;

		/* Issue PHY reset and repeat at most one more time */
		reg = er32(CTRL);
		ew32(CTRL, reg | E1000_CTRL_PHY_RST);
		retry++;
	} while (retry);
}

/**
 *  e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
 *  @hw: pointer to the HW structure
 *
 *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
3157
 *  LPLU, Gig disable, MDIC PHY reset):
3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184
 *    1) Set Kumeran Near-end loopback
 *    2) Clear Kumeran Near-end loopback
 *  Should only be called for ICH8[m] devices with IGP_3 Phy.
 **/
void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
{
	s32 ret_val;
	u16 reg_data;

	if ((hw->mac.type != e1000_ich8lan) ||
	    (hw->phy.type != e1000_phy_igp_3))
		return;

	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
				      &reg_data);
	if (ret_val)
		return;
	reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
				       reg_data);
	if (ret_val)
		return;
	reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
				       reg_data);
}

3185 3186 3187 3188 3189 3190 3191 3192 3193
/**
 *  e1000e_disable_gig_wol_ich8lan - disable gig during WoL
 *  @hw: pointer to the HW structure
 *
 *  During S0 to Sx transition, it is possible the link remains at gig
 *  instead of negotiating to a lower speed.  Before going to Sx, set
 *  'LPLU Enabled' and 'Gig Disable' to force link speed negotiation
 *  to a lower speed.
 *
3194
 *  Should only be called for applicable parts.
3195 3196 3197 3198 3199
 **/
void e1000e_disable_gig_wol_ich8lan(struct e1000_hw *hw)
{
	u32 phy_ctrl;

3200 3201 3202 3203
	switch (hw->mac.type) {
	case e1000_ich9lan:
	case e1000_ich10lan:
	case e1000_pchlan:
3204 3205 3206 3207
		phy_ctrl = er32(PHY_CTRL);
		phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU |
		            E1000_PHY_CTRL_GBE_DISABLE;
		ew32(PHY_CTRL, phy_ctrl);
3208 3209

		if (hw->mac.type == e1000_pchlan)
3210
			e1000_phy_hw_reset_ich8lan(hw);
3211 3212
	default:
		break;
3213 3214 3215 3216 3217
	}

	return;
}

3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233
/**
 *  e1000_cleanup_led_ich8lan - Restore the default LED operation
 *  @hw: pointer to the HW structure
 *
 *  Return the LED back to the default configuration.
 **/
static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
{
	if (hw->phy.type == e1000_phy_ife)
		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);

	ew32(LEDCTL, hw->mac.ledctl_default);
	return 0;
}

/**
3234
 *  e1000_led_on_ich8lan - Turn LEDs on
3235 3236
 *  @hw: pointer to the HW structure
 *
3237
 *  Turn on the LEDs.
3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249
 **/
static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
{
	if (hw->phy.type == e1000_phy_ife)
		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
				(IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));

	ew32(LEDCTL, hw->mac.ledctl_mode2);
	return 0;
}

/**
3250
 *  e1000_led_off_ich8lan - Turn LEDs off
3251 3252
 *  @hw: pointer to the HW structure
 *
3253
 *  Turn off the LEDs.
3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264
 **/
static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
{
	if (hw->phy.type == e1000_phy_ife)
		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
			       (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF));

	ew32(LEDCTL, hw->mac.ledctl_mode1);
	return 0;
}

3265 3266 3267 3268 3269 3270 3271 3272
/**
 *  e1000_setup_led_pchlan - Configures SW controllable LED
 *  @hw: pointer to the HW structure
 *
 *  This prepares the SW controllable LED for use.
 **/
static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
{
3273
	return hw->phy.ops.write_reg(hw, HV_LED_CONFIG,
3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284
					(u16)hw->mac.ledctl_mode1);
}

/**
 *  e1000_cleanup_led_pchlan - Restore the default LED operation
 *  @hw: pointer to the HW structure
 *
 *  Return the LED back to the default configuration.
 **/
static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
{
3285
	return hw->phy.ops.write_reg(hw, HV_LED_CONFIG,
3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316
					(u16)hw->mac.ledctl_default);
}

/**
 *  e1000_led_on_pchlan - Turn LEDs on
 *  @hw: pointer to the HW structure
 *
 *  Turn on the LEDs.
 **/
static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
{
	u16 data = (u16)hw->mac.ledctl_mode2;
	u32 i, led;

	/*
	 * If no link, then turn LED on by setting the invert bit
	 * for each LED that's mode is "link_up" in ledctl_mode2.
	 */
	if (!(er32(STATUS) & E1000_STATUS_LU)) {
		for (i = 0; i < 3; i++) {
			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
			if ((led & E1000_PHY_LED0_MODE_MASK) !=
			    E1000_LEDCTL_MODE_LINK_UP)
				continue;
			if (led & E1000_PHY_LED0_IVRT)
				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
			else
				data |= (E1000_PHY_LED0_IVRT << (i * 5));
		}
	}

3317
	return hw->phy.ops.write_reg(hw, HV_LED_CONFIG, data);
3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347
}

/**
 *  e1000_led_off_pchlan - Turn LEDs off
 *  @hw: pointer to the HW structure
 *
 *  Turn off the LEDs.
 **/
static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
{
	u16 data = (u16)hw->mac.ledctl_mode1;
	u32 i, led;

	/*
	 * If no link, then turn LED off by clearing the invert bit
	 * for each LED that's mode is "link_up" in ledctl_mode1.
	 */
	if (!(er32(STATUS) & E1000_STATUS_LU)) {
		for (i = 0; i < 3; i++) {
			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
			if ((led & E1000_PHY_LED0_MODE_MASK) !=
			    E1000_LEDCTL_MODE_LINK_UP)
				continue;
			if (led & E1000_PHY_LED0_IVRT)
				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
			else
				data |= (E1000_PHY_LED0_IVRT << (i * 5));
		}
	}

3348
	return hw->phy.ops.write_reg(hw, HV_LED_CONFIG, data);
3349 3350
}

3351 3352 3353 3354 3355 3356 3357
/**
 *  e1000_get_cfg_done_ich8lan - Read config done bit
 *  @hw: pointer to the HW structure
 *
 *  Read the management control register for the config done bit for
 *  completion status.  NOTE: silicon which is EEPROM-less will fail trying
 *  to read the config done bit, so an error is *ONLY* logged and returns
3358
 *  0.  If we were to return with error, EEPROM-less silicon
3359 3360 3361 3362 3363 3364
 *  would not be able to be reset or change link.
 **/
static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
{
	u32 bank = 0;

3365 3366 3367 3368 3369 3370
	if (hw->mac.type >= e1000_pchlan) {
		u32 status = er32(STATUS);

		if (status & E1000_STATUS_PHYRA)
			ew32(STATUS, status & ~E1000_STATUS_PHYRA);
		else
3371
			e_dbg("PHY Reset Asserted not set - needs delay\n");
3372 3373
	}

3374 3375 3376
	e1000e_get_cfg_done(hw);

	/* If EEPROM is not marked present, init the IGP 3 PHY manually */
3377 3378
	if ((hw->mac.type != e1000_ich10lan) &&
	    (hw->mac.type != e1000_pchlan)) {
3379 3380 3381 3382 3383 3384 3385
		if (((er32(EECD) & E1000_EECD_PRES) == 0) &&
		    (hw->phy.type == e1000_phy_igp_3)) {
			e1000e_phy_init_script_igp3(hw);
		}
	} else {
		if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
			/* Maybe we should do a basic PHY config */
3386
			e_dbg("EEPROM not present\n");
3387 3388 3389 3390 3391 3392 3393
			return -E1000_ERR_CONFIG;
		}
	}

	return 0;
}

3394 3395 3396 3397 3398 3399 3400 3401 3402
/**
 *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
 *  @hw: pointer to the HW structure
 *
 *  Clears hardware counters specific to the silicon family and calls
 *  clear_hw_cntrs_generic to clear all general purpose counters.
 **/
static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
{
3403
	u16 phy_data;
3404 3405 3406

	e1000e_clear_hw_cntrs_base(hw);

3407 3408 3409 3410 3411 3412
	er32(ALGNERRC);
	er32(RXERRC);
	er32(TNCRS);
	er32(CEXTERR);
	er32(TSCTC);
	er32(TSCTFC);
3413

3414 3415 3416
	er32(MGTPRC);
	er32(MGTPDC);
	er32(MGTPTC);
3417

3418 3419
	er32(IAC);
	er32(ICRXOC);
3420

3421 3422 3423
	/* Clear PHY statistics registers */
	if ((hw->phy.type == e1000_phy_82578) ||
	    (hw->phy.type == e1000_phy_82577)) {
3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437
		hw->phy.ops.read_reg(hw, HV_SCC_UPPER, &phy_data);
		hw->phy.ops.read_reg(hw, HV_SCC_LOWER, &phy_data);
		hw->phy.ops.read_reg(hw, HV_ECOL_UPPER, &phy_data);
		hw->phy.ops.read_reg(hw, HV_ECOL_LOWER, &phy_data);
		hw->phy.ops.read_reg(hw, HV_MCC_UPPER, &phy_data);
		hw->phy.ops.read_reg(hw, HV_MCC_LOWER, &phy_data);
		hw->phy.ops.read_reg(hw, HV_LATECOL_UPPER, &phy_data);
		hw->phy.ops.read_reg(hw, HV_LATECOL_LOWER, &phy_data);
		hw->phy.ops.read_reg(hw, HV_COLC_UPPER, &phy_data);
		hw->phy.ops.read_reg(hw, HV_COLC_LOWER, &phy_data);
		hw->phy.ops.read_reg(hw, HV_DC_UPPER, &phy_data);
		hw->phy.ops.read_reg(hw, HV_DC_LOWER, &phy_data);
		hw->phy.ops.read_reg(hw, HV_TNCRS_UPPER, &phy_data);
		hw->phy.ops.read_reg(hw, HV_TNCRS_LOWER, &phy_data);
3438
	}
3439 3440 3441
}

static struct e1000_mac_operations ich8_mac_ops = {
3442
	.id_led_init		= e1000e_id_led_init,
3443
	.check_mng_mode		= e1000_check_mng_mode_ich8lan,
3444
	.check_for_link		= e1000_check_for_copper_link_ich8lan,
3445
	/* cleanup_led dependent on mac type */
3446 3447 3448
	.clear_hw_cntrs		= e1000_clear_hw_cntrs_ich8lan,
	.get_bus_info		= e1000_get_bus_info_ich8lan,
	.get_link_up_info	= e1000_get_link_up_info_ich8lan,
3449 3450
	/* led_on dependent on mac type */
	/* led_off dependent on mac type */
3451
	.update_mc_addr_list	= e1000e_update_mc_addr_list_generic,
3452 3453 3454 3455
	.reset_hw		= e1000_reset_hw_ich8lan,
	.init_hw		= e1000_init_hw_ich8lan,
	.setup_link		= e1000_setup_link_ich8lan,
	.setup_physical_interface= e1000_setup_copper_link_ich8lan,
3456
	/* id_led_init dependent on mac type */
3457 3458 3459
};

static struct e1000_phy_operations ich8_phy_ops = {
3460
	.acquire		= e1000_acquire_swflag_ich8lan,
3461
	.check_reset_block	= e1000_check_reset_block_ich8lan,
3462
	.commit			= NULL,
3463
	.force_speed_duplex	= e1000_phy_force_speed_duplex_ich8lan,
3464
	.get_cfg_done		= e1000_get_cfg_done_ich8lan,
3465
	.get_cable_length	= e1000e_get_cable_length_igp_2,
3466 3467 3468 3469
	.get_info		= e1000_get_phy_info_ich8lan,
	.read_reg		= e1000e_read_phy_reg_igp,
	.release		= e1000_release_swflag_ich8lan,
	.reset			= e1000_phy_hw_reset_ich8lan,
3470 3471
	.set_d0_lplu_state	= e1000_set_d0_lplu_state_ich8lan,
	.set_d3_lplu_state	= e1000_set_d3_lplu_state_ich8lan,
3472
	.write_reg		= e1000e_write_phy_reg_igp,
3473 3474 3475
};

static struct e1000_nvm_operations ich8_nvm_ops = {
3476 3477 3478 3479
	.acquire		= e1000_acquire_nvm_ich8lan,
	.read		 	= e1000_read_nvm_ich8lan,
	.release		= e1000_release_nvm_ich8lan,
	.update			= e1000_update_nvm_checksum_ich8lan,
3480
	.valid_led_default	= e1000_valid_led_default_ich8lan,
3481 3482
	.validate		= e1000_validate_nvm_checksum_ich8lan,
	.write			= e1000_write_nvm_ich8lan,
3483 3484 3485 3486 3487
};

struct e1000_info e1000_ich8_info = {
	.mac			= e1000_ich8lan,
	.flags			= FLAG_HAS_WOL
3488
				  | FLAG_IS_ICH
3489 3490 3491 3492 3493 3494
				  | FLAG_RX_CSUM_ENABLED
				  | FLAG_HAS_CTRLEXT_ON_LOAD
				  | FLAG_HAS_AMT
				  | FLAG_HAS_FLASH
				  | FLAG_APME_IN_WUC,
	.pba			= 8,
3495
	.max_hw_frame_size	= ETH_FRAME_LEN + ETH_FCS_LEN,
J
Jeff Kirsher 已提交
3496
	.get_variants		= e1000_get_variants_ich8lan,
3497 3498 3499 3500 3501 3502 3503 3504
	.mac_ops		= &ich8_mac_ops,
	.phy_ops		= &ich8_phy_ops,
	.nvm_ops		= &ich8_nvm_ops,
};

struct e1000_info e1000_ich9_info = {
	.mac			= e1000_ich9lan,
	.flags			= FLAG_HAS_JUMBO_FRAMES
3505
				  | FLAG_IS_ICH
3506 3507 3508 3509 3510 3511 3512 3513
				  | FLAG_HAS_WOL
				  | FLAG_RX_CSUM_ENABLED
				  | FLAG_HAS_CTRLEXT_ON_LOAD
				  | FLAG_HAS_AMT
				  | FLAG_HAS_ERT
				  | FLAG_HAS_FLASH
				  | FLAG_APME_IN_WUC,
	.pba			= 10,
3514
	.max_hw_frame_size	= DEFAULT_JUMBO,
J
Jeff Kirsher 已提交
3515
	.get_variants		= e1000_get_variants_ich8lan,
3516 3517 3518 3519 3520
	.mac_ops		= &ich8_mac_ops,
	.phy_ops		= &ich8_phy_ops,
	.nvm_ops		= &ich8_nvm_ops,
};

3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532
struct e1000_info e1000_ich10_info = {
	.mac			= e1000_ich10lan,
	.flags			= FLAG_HAS_JUMBO_FRAMES
				  | FLAG_IS_ICH
				  | FLAG_HAS_WOL
				  | FLAG_RX_CSUM_ENABLED
				  | FLAG_HAS_CTRLEXT_ON_LOAD
				  | FLAG_HAS_AMT
				  | FLAG_HAS_ERT
				  | FLAG_HAS_FLASH
				  | FLAG_APME_IN_WUC,
	.pba			= 10,
3533
	.max_hw_frame_size	= DEFAULT_JUMBO,
3534 3535 3536 3537 3538
	.get_variants		= e1000_get_variants_ich8lan,
	.mac_ops		= &ich8_mac_ops,
	.phy_ops		= &ich8_phy_ops,
	.nvm_ops		= &ich8_nvm_ops,
};
3539 3540 3541 3542 3543 3544 3545 3546 3547 3548

struct e1000_info e1000_pch_info = {
	.mac			= e1000_pchlan,
	.flags			= FLAG_IS_ICH
				  | FLAG_HAS_WOL
				  | FLAG_RX_CSUM_ENABLED
				  | FLAG_HAS_CTRLEXT_ON_LOAD
				  | FLAG_HAS_AMT
				  | FLAG_HAS_FLASH
				  | FLAG_HAS_JUMBO_FRAMES
3549
				  | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
3550 3551 3552 3553 3554 3555 3556 3557
				  | FLAG_APME_IN_WUC,
	.pba			= 26,
	.max_hw_frame_size	= 4096,
	.get_variants		= e1000_get_variants_ich8lan,
	.mac_ops		= &ich8_mac_ops,
	.phy_ops		= &ich8_phy_ops,
	.nvm_ops		= &ich8_nvm_ops,
};