ich8lan.c 86.6 KB
Newer Older
1 2 3
/*******************************************************************************

  Intel PRO/1000 Linux driver
4
  Copyright(c) 1999 - 2008 Intel Corporation.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

  This program is free software; you can redistribute it and/or modify it
  under the terms and conditions of the GNU General Public License,
  version 2, as published by the Free Software Foundation.

  This program is distributed in the hope it will be useful, but WITHOUT
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  more details.

  You should have received a copy of the GNU General Public License along with
  this program; if not, write to the Free Software Foundation, Inc.,
  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.

  The full GNU General Public License is included in this distribution in
  the file called "COPYING".

  Contact Information:
  Linux NICS <linux.nics@intel.com>
  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497

*******************************************************************************/

/*
30
 * 82562G 10/100 Network Connection
31 32 33 34 35 36 37 38 39 40 41
 * 82562G-2 10/100 Network Connection
 * 82562GT 10/100 Network Connection
 * 82562GT-2 10/100 Network Connection
 * 82562V 10/100 Network Connection
 * 82562V-2 10/100 Network Connection
 * 82566DC-2 Gigabit Network Connection
 * 82566DC Gigabit Network Connection
 * 82566DM-2 Gigabit Network Connection
 * 82566DM Gigabit Network Connection
 * 82566MC Gigabit Network Connection
 * 82566MM Gigabit Network Connection
42 43
 * 82567LM Gigabit Network Connection
 * 82567LF Gigabit Network Connection
44
 * 82567V Gigabit Network Connection
45 46 47
 * 82567LM-2 Gigabit Network Connection
 * 82567LF-2 Gigabit Network Connection
 * 82567V-2 Gigabit Network Connection
48 49
 * 82567LF-3 Gigabit Network Connection
 * 82567LM-3 Gigabit Network Connection
50
 * 82567LM-4 Gigabit Network Connection
51 52 53 54
 * 82577LM Gigabit Network Connection
 * 82577LC Gigabit Network Connection
 * 82578DM Gigabit Network Connection
 * 82578DC Gigabit Network Connection
55 56 57 58 59 60 61 62 63 64 65 66 67 68
 */

#include <linux/netdevice.h>
#include <linux/ethtool.h>
#include <linux/delay.h>
#include <linux/pci.h>

#include "e1000.h"

#define ICH_FLASH_GFPREG		0x0000
#define ICH_FLASH_HSFSTS		0x0004
#define ICH_FLASH_HSFCTL		0x0006
#define ICH_FLASH_FADDR			0x0008
#define ICH_FLASH_FDATA0		0x0010
69
#define ICH_FLASH_PR0			0x0074
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100

#define ICH_FLASH_READ_COMMAND_TIMEOUT	500
#define ICH_FLASH_WRITE_COMMAND_TIMEOUT	500
#define ICH_FLASH_ERASE_COMMAND_TIMEOUT	3000000
#define ICH_FLASH_LINEAR_ADDR_MASK	0x00FFFFFF
#define ICH_FLASH_CYCLE_REPEAT_COUNT	10

#define ICH_CYCLE_READ			0
#define ICH_CYCLE_WRITE			2
#define ICH_CYCLE_ERASE			3

#define FLASH_GFPREG_BASE_MASK		0x1FFF
#define FLASH_SECTOR_ADDR_SHIFT		12

#define ICH_FLASH_SEG_SIZE_256		256
#define ICH_FLASH_SEG_SIZE_4K		4096
#define ICH_FLASH_SEG_SIZE_8K		8192
#define ICH_FLASH_SEG_SIZE_64K		65536


#define E1000_ICH_FWSM_RSPCIPHY	0x00000040 /* Reset PHY on PCI Reset */

#define E1000_ICH_MNG_IAMT_MODE		0x2

#define ID_LED_DEFAULT_ICH8LAN  ((ID_LED_DEF1_DEF2 << 12) | \
				 (ID_LED_DEF1_OFF2 <<  8) | \
				 (ID_LED_DEF1_ON2  <<  4) | \
				 (ID_LED_DEF1_DEF2))

#define E1000_ICH_NVM_SIG_WORD		0x13
#define E1000_ICH_NVM_SIG_MASK		0xC000
101 102
#define E1000_ICH_NVM_VALID_SIG_MASK    0xC0
#define E1000_ICH_NVM_SIG_VALUE         0x80
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122

#define E1000_ICH8_LAN_INIT_TIMEOUT	1500

#define E1000_FEXTNVM_SW_CONFIG		1
#define E1000_FEXTNVM_SW_CONFIG_ICH8M (1 << 27) /* Bit redefined for ICH8M :/ */

#define PCIE_ICH8_SNOOP_ALL		PCIE_NO_SNOOP_ALL

#define E1000_ICH_RAR_ENTRIES		7

#define PHY_PAGE_SHIFT 5
#define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \
			   ((reg) & MAX_PHY_REG_ADDRESS))
#define IGP3_KMRN_DIAG  PHY_REG(770, 19) /* KMRN Diagnostic */
#define IGP3_VR_CTRL    PHY_REG(776, 18) /* Voltage Regulator Control */

#define IGP3_KMRN_DIAG_PCS_LOCK_LOSS	0x0002
#define IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK 0x0300
#define IGP3_VR_CTRL_MODE_SHUTDOWN	0x0200

123 124
#define HV_LED_CONFIG		PHY_REG(768, 30) /* LED Configuration */

125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
/* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
/* Offset 04h HSFSTS */
union ich8_hws_flash_status {
	struct ich8_hsfsts {
		u16 flcdone    :1; /* bit 0 Flash Cycle Done */
		u16 flcerr     :1; /* bit 1 Flash Cycle Error */
		u16 dael       :1; /* bit 2 Direct Access error Log */
		u16 berasesz   :2; /* bit 4:3 Sector Erase Size */
		u16 flcinprog  :1; /* bit 5 flash cycle in Progress */
		u16 reserved1  :2; /* bit 13:6 Reserved */
		u16 reserved2  :6; /* bit 13:6 Reserved */
		u16 fldesvalid :1; /* bit 14 Flash Descriptor Valid */
		u16 flockdn    :1; /* bit 15 Flash Config Lock-Down */
	} hsf_status;
	u16 regval;
};

/* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
/* Offset 06h FLCTL */
union ich8_hws_flash_ctrl {
	struct ich8_hsflctl {
		u16 flcgo      :1;   /* 0 Flash Cycle Go */
		u16 flcycle    :2;   /* 2:1 Flash Cycle */
		u16 reserved   :5;   /* 7:3 Reserved  */
		u16 fldbcount  :2;   /* 9:8 Flash Data Byte Count */
		u16 flockdn    :6;   /* 15:10 Reserved */
	} hsf_ctrl;
	u16 regval;
};

/* ICH Flash Region Access Permissions */
union ich8_hws_flash_regacc {
	struct ich8_flracc {
		u32 grra      :8; /* 0:7 GbE region Read Access */
		u32 grwa      :8; /* 8:15 GbE region Write Access */
		u32 gmrag     :8; /* 23:16 GbE Master Read Access Grant */
		u32 gmwag     :8; /* 31:24 GbE Master Write Access Grant */
	} hsf_flregacc;
	u16 regval;
};

166 167 168 169 170 171 172 173 174 175 176 177 178
/* ICH Flash Protected Region */
union ich8_flash_protected_range {
	struct ich8_pr {
		u32 base:13;     /* 0:12 Protected Range Base */
		u32 reserved1:2; /* 13:14 Reserved */
		u32 rpe:1;       /* 15 Read Protection Enable */
		u32 limit:13;    /* 16:28 Protected Range Limit */
		u32 reserved2:2; /* 29:30 Reserved */
		u32 wpe:1;       /* 31 Write Protection Enable */
	} range;
	u32 regval;
};

179 180 181 182 183 184 185
static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw);
static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
static s32 e1000_check_polarity_ife_ich8lan(struct e1000_hw *hw);
static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
						u32 offset, u8 byte);
186 187
static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
					 u8 *data);
188 189 190 191 192 193
static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
					 u16 *data);
static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
					 u8 size, u16 *data);
static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw);
static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
194
static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw);
195 196 197 198 199 200 201 202
static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228

static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
{
	return readw(hw->flash_address + reg);
}

static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
{
	return readl(hw->flash_address + reg);
}

static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
{
	writew(val, hw->flash_address + reg);
}

static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
{
	writel(val, hw->flash_address + reg);
}

#define er16flash(reg)		__er16flash(hw, (reg))
#define er32flash(reg)		__er32flash(hw, (reg))
#define ew16flash(reg,val)	__ew16flash(hw, (reg), (val))
#define ew32flash(reg,val)	__ew32flash(hw, (reg), (val))

229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
/**
 *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
 *  @hw: pointer to the HW structure
 *
 *  Initialize family-specific PHY parameters and function pointers.
 **/
static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val = 0;

	phy->addr                     = 1;
	phy->reset_delay_us           = 100;

	phy->ops.check_polarity       = e1000_check_polarity_ife_ich8lan;
	phy->ops.read_phy_reg         = e1000_read_phy_reg_hv;
	phy->ops.write_phy_reg        = e1000_write_phy_reg_hv;
	phy->autoneg_mask             = AUTONEG_ADVERTISE_SPEED_DEFAULT;

	phy->id = e1000_phy_unknown;
	e1000e_get_phy_id(hw);
	phy->type = e1000e_get_phy_type_from_id(phy->id);

	if (phy->type == e1000_phy_82577) {
		phy->ops.check_polarity = e1000_check_polarity_82577;
		phy->ops.force_speed_duplex =
			e1000_phy_force_speed_duplex_82577;
		phy->ops.get_cable_length   = e1000_get_cable_length_82577;
		phy->ops.get_phy_info = e1000_get_phy_info_82577;
		phy->ops.commit_phy = e1000e_phy_sw_reset;
	}

	return ret_val;
}

264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
/**
 *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
 *  @hw: pointer to the HW structure
 *
 *  Initialize family-specific PHY parameters and function pointers.
 **/
static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 i = 0;

	phy->addr			= 1;
	phy->reset_delay_us		= 100;

279 280 281 282 283 284 285 286 287 288 289 290 291
	/*
	 * We may need to do this twice - once for IGP and if that fails,
	 * we'll set BM func pointers and try again
	 */
	ret_val = e1000e_determine_phy_address(hw);
	if (ret_val) {
		hw->phy.ops.write_phy_reg = e1000e_write_phy_reg_bm;
		hw->phy.ops.read_phy_reg  = e1000e_read_phy_reg_bm;
		ret_val = e1000e_determine_phy_address(hw);
		if (ret_val)
			return ret_val;
	}

292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
	phy->id = 0;
	while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
	       (i++ < 100)) {
		msleep(1);
		ret_val = e1000e_get_phy_id(hw);
		if (ret_val)
			return ret_val;
	}

	/* Verify phy id */
	switch (phy->id) {
	case IGP03E1000_E_PHY_ID:
		phy->type = e1000_phy_igp_3;
		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
		break;
	case IFE_E_PHY_ID:
	case IFE_PLUS_E_PHY_ID:
	case IFE_C_E_PHY_ID:
		phy->type = e1000_phy_ife;
		phy->autoneg_mask = E1000_ALL_NOT_GIG;
		break;
313 314 315 316 317 318 319
	case BME1000_E_PHY_ID:
		phy->type = e1000_phy_bm;
		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
		hw->phy.ops.read_phy_reg = e1000e_read_phy_reg_bm;
		hw->phy.ops.write_phy_reg = e1000e_write_phy_reg_bm;
		hw->phy.ops.commit_phy = e1000e_phy_sw_reset;
		break;
320 321 322 323 324
	default:
		return -E1000_ERR_PHY;
		break;
	}

325 326
	phy->ops.check_polarity = e1000_check_polarity_ife_ich8lan;

327 328 329 330 331 332 333 334 335 336 337 338 339 340
	return 0;
}

/**
 *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
 *  @hw: pointer to the HW structure
 *
 *  Initialize family-specific NVM parameters and function
 *  pointers.
 **/
static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
{
	struct e1000_nvm_info *nvm = &hw->nvm;
	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
341
	union ich8_hws_flash_status hsfsts;
342 343 344 345 346
	u32 gfpreg;
	u32 sector_base_addr;
	u32 sector_end_addr;
	u16 i;

347
	/* Can't read flash registers if the register set isn't mapped. */
348 349 350 351 352 353 354 355 356
	if (!hw->flash_address) {
		hw_dbg(hw, "ERROR: Flash registers not mapped\n");
		return -E1000_ERR_CONFIG;
	}

	nvm->type = e1000_nvm_flash_sw;

	gfpreg = er32flash(ICH_FLASH_GFPREG);

357 358
	/*
	 * sector_X_addr is a "sector"-aligned address (4096 bytes)
359
	 * Add 1 to sector_end_addr since this sector is included in
360 361
	 * the overall size.
	 */
362 363 364 365 366 367
	sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
	sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;

	/* flash_base_addr is byte-aligned */
	nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT;

368 369 370 371
	/*
	 * find total size of the NVM, then cut in half since the total
	 * size represents two separate NVM banks.
	 */
372 373 374 375 376 377
	nvm->flash_bank_size = (sector_end_addr - sector_base_addr)
				<< FLASH_SECTOR_ADDR_SHIFT;
	nvm->flash_bank_size /= 2;
	/* Adjust to word count */
	nvm->flash_bank_size /= sizeof(u16);

378 379 380 381 382 383 384 385 386 387 388 389 390 391
	/*
	 * Make sure the flash bank size does not overwrite the 4k
	 * sector ranges. We may have 64k allotted to us but we only care
	 * about the first 2 4k sectors. Therefore, if we have anything less
	 * than 64k set in the HSFSTS register, we will reduce the bank size
	 * down to 4k and let the rest remain unused. If berasesz == 3, then
	 * we are working in 64k mode. Otherwise we are not.
	 */
	if (nvm->flash_bank_size > E1000_ICH8_SHADOW_RAM_WORDS) {
		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
		if (hsfsts.hsf_status.berasesz != 3)
			nvm->flash_bank_size = E1000_ICH8_SHADOW_RAM_WORDS;
	}

392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
	nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;

	/* Clear shadow ram */
	for (i = 0; i < nvm->word_size; i++) {
		dev_spec->shadow_ram[i].modified = 0;
		dev_spec->shadow_ram[i].value    = 0xFFFF;
	}

	return 0;
}

/**
 *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
 *  @hw: pointer to the HW structure
 *
 *  Initialize family-specific MAC parameters and function
 *  pointers.
 **/
static s32 e1000_init_mac_params_ich8lan(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct e1000_mac_info *mac = &hw->mac;

	/* Set media type function pointer */
416
	hw->phy.media_type = e1000_media_type_copper;
417 418 419 420 421 422 423 424 425 426

	/* Set mta register count */
	mac->mta_reg_count = 32;
	/* Set rar entry count */
	mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
	if (mac->type == e1000_ich8lan)
		mac->rar_entry_count--;
	/* Set if manageability features are enabled. */
	mac->arc_subsystem_valid = 1;

427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
	/* LED operations */
	switch (mac->type) {
	case e1000_ich8lan:
	case e1000_ich9lan:
	case e1000_ich10lan:
		/* ID LED init */
		mac->ops.id_led_init = e1000e_id_led_init;
		/* setup LED */
		mac->ops.setup_led = e1000e_setup_led_generic;
		/* cleanup LED */
		mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
		/* turn on/off LED */
		mac->ops.led_on = e1000_led_on_ich8lan;
		mac->ops.led_off = e1000_led_off_ich8lan;
		break;
	case e1000_pchlan:
		/* ID LED init */
		mac->ops.id_led_init = e1000_id_led_init_pchlan;
		/* setup LED */
		mac->ops.setup_led = e1000_setup_led_pchlan;
		/* cleanup LED */
		mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
		/* turn on/off LED */
		mac->ops.led_on = e1000_led_on_pchlan;
		mac->ops.led_off = e1000_led_off_pchlan;
		break;
	default:
		break;
	}

457 458 459 460 461 462 463
	/* Enable PCS Lock-loss workaround for ICH8 */
	if (mac->type == e1000_ich8lan)
		e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, 1);

	return 0;
}

464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
/**
 *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
 *  @hw: pointer to the HW structure
 *
 *  Checks to see of the link status of the hardware has changed.  If a
 *  change in link status has been detected, then we read the PHY registers
 *  to get the current speed/duplex if link exists.
 **/
static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
{
	struct e1000_mac_info *mac = &hw->mac;
	s32 ret_val;
	bool link;

	/*
	 * We only want to go out to the PHY registers to see if Auto-Neg
	 * has completed and/or if our link status has changed.  The
	 * get_link_status flag is set upon receiving a Link Status
	 * Change or Rx Sequence Error interrupt.
	 */
	if (!mac->get_link_status) {
		ret_val = 0;
		goto out;
	}

	if (hw->mac.type == e1000_pchlan) {
		ret_val = e1000e_write_kmrn_reg(hw,
		                                   E1000_KMRNCTRLSTA_K1_CONFIG,
		                                   E1000_KMRNCTRLSTA_K1_ENABLE);
		if (ret_val)
			goto out;
	}

	/*
	 * First we want to see if the MII Status Register reports
	 * link.  If so, then we want to get the current speed/duplex
	 * of the PHY.
	 */
	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
	if (ret_val)
		goto out;

	if (!link)
		goto out; /* No link detected */

	mac->get_link_status = false;

	if (hw->phy.type == e1000_phy_82578) {
		ret_val = e1000_link_stall_workaround_hv(hw);
		if (ret_val)
			goto out;
	}

	/*
	 * Check if there was DownShift, must be checked
	 * immediately after link-up
	 */
	e1000e_check_downshift(hw);

	/*
	 * If we are forcing speed/duplex, then we simply return since
	 * we have already determined whether we have link or not.
	 */
	if (!mac->autoneg) {
		ret_val = -E1000_ERR_CONFIG;
		goto out;
	}

	/*
	 * Auto-Neg is enabled.  Auto Speed Detection takes care
	 * of MAC speed/duplex configuration.  So we only need to
	 * configure Collision Distance in the MAC.
	 */
	e1000e_config_collision_dist(hw);

	/*
	 * Configure Flow Control now that Auto-Neg has completed.
	 * First, we need to restore the desired flow control
	 * settings because we may have had to re-autoneg with a
	 * different link partner.
	 */
	ret_val = e1000e_config_fc_after_link_up(hw);
	if (ret_val)
		hw_dbg(hw, "Error configuring flow control\n");

out:
	return ret_val;
}

J
Jeff Kirsher 已提交
553
static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
554 555 556 557 558 559 560 561 562 563 564 565
{
	struct e1000_hw *hw = &adapter->hw;
	s32 rc;

	rc = e1000_init_mac_params_ich8lan(adapter);
	if (rc)
		return rc;

	rc = e1000_init_nvm_params_ich8lan(hw);
	if (rc)
		return rc;

566 567 568 569
	if (hw->mac.type == e1000_pchlan)
		rc = e1000_init_phy_params_pchlan(hw);
	else
		rc = e1000_init_phy_params_ich8lan(hw);
570 571 572
	if (rc)
		return rc;

573 574 575 576 577
	if (adapter->hw.phy.type == e1000_phy_ife) {
		adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
		adapter->max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN;
	}

578 579 580 581 582 583 584
	if ((adapter->hw.mac.type == e1000_ich8lan) &&
	    (adapter->hw.phy.type == e1000_phy_igp_3))
		adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;

	return 0;
}

585 586
static DEFINE_MUTEX(nvm_mutex);

587 588 589 590 591 592 593 594 595 596 597 598 599
/**
 *  e1000_acquire_swflag_ich8lan - Acquire software control flag
 *  @hw: pointer to the HW structure
 *
 *  Acquires the software control flag for performing NVM and PHY
 *  operations.  This is a function pointer entry point only called by
 *  read/write routines for the PHY and NVM parts.
 **/
static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
{
	u32 extcnf_ctrl;
	u32 timeout = PHY_CFG_TIMEOUT;

600
	might_sleep();
601

602
	mutex_lock(&nvm_mutex);
603

604 605 606
	while (timeout) {
		extcnf_ctrl = er32(EXTCNF_CTRL);

607 608 609 610 611 612 613 614
		if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)) {
			extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
			ew32(EXTCNF_CTRL, extcnf_ctrl);

			extcnf_ctrl = er32(EXTCNF_CTRL);
			if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
				break;
		}
615 616 617 618 619 620
		mdelay(1);
		timeout--;
	}

	if (!timeout) {
		hw_dbg(hw, "FW or HW has locked the resource for too long.\n");
621 622
		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
		ew32(EXTCNF_CTRL, extcnf_ctrl);
623
		mutex_unlock(&nvm_mutex);
624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644
		return -E1000_ERR_CONFIG;
	}

	return 0;
}

/**
 *  e1000_release_swflag_ich8lan - Release software control flag
 *  @hw: pointer to the HW structure
 *
 *  Releases the software control flag for performing NVM and PHY operations.
 *  This is a function pointer entry point only called by read/write
 *  routines for the PHY and NVM parts.
 **/
static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
{
	u32 extcnf_ctrl;

	extcnf_ctrl = er32(EXTCNF_CTRL);
	extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
	ew32(EXTCNF_CTRL, extcnf_ctrl);
645 646

	mutex_unlock(&nvm_mutex);
647 648
}

649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664
/**
 *  e1000_check_mng_mode_ich8lan - Checks management mode
 *  @hw: pointer to the HW structure
 *
 *  This checks if the adapter has manageability enabled.
 *  This is a function pointer entry point only called by read/write
 *  routines for the PHY and NVM parts.
 **/
static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
{
	u32 fwsm = er32(FWSM);

	return (fwsm & E1000_FWSM_MODE_MASK) ==
		(E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT);
}

665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
/**
 *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
 *  @hw: pointer to the HW structure
 *
 *  Checks if firmware is blocking the reset of the PHY.
 *  This is a function pointer entry point only called by
 *  reset routines.
 **/
static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
{
	u32 fwsm;

	fwsm = er32(FWSM);

	return (fwsm & E1000_ICH_FWSM_RSPCIPHY) ? 0 : E1000_BLK_PHY_RESET;
}

/**
 *  e1000_phy_force_speed_duplex_ich8lan - Force PHY speed & duplex
 *  @hw: pointer to the HW structure
 *
 *  Forces the speed and duplex settings of the PHY.
 *  This is a function pointer entry point only called by
 *  PHY setup routines.
 **/
static s32 e1000_phy_force_speed_duplex_ich8lan(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 data;
	bool link;

	if (phy->type != e1000_phy_ife) {
		ret_val = e1000e_phy_force_speed_duplex_igp(hw);
		return ret_val;
	}

	ret_val = e1e_rphy(hw, PHY_CONTROL, &data);
	if (ret_val)
		return ret_val;

	e1000e_phy_force_speed_duplex_setup(hw, &data);

	ret_val = e1e_wphy(hw, PHY_CONTROL, data);
	if (ret_val)
		return ret_val;

	/* Disable MDI-X support for 10/100 */
	ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
	if (ret_val)
		return ret_val;

	data &= ~IFE_PMC_AUTO_MDIX;
	data &= ~IFE_PMC_FORCE_MDIX;

	ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, data);
	if (ret_val)
		return ret_val;

	hw_dbg(hw, "IFE PMC: %X\n", data);

	udelay(1);

728
	if (phy->autoneg_wait_to_complete) {
729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752
		hw_dbg(hw, "Waiting for forced speed/duplex link on IFE phy.\n");

		ret_val = e1000e_phy_has_link_generic(hw,
						     PHY_FORCE_LIMIT,
						     100000,
						     &link);
		if (ret_val)
			return ret_val;

		if (!link)
			hw_dbg(hw, "Link taking longer than expected.\n");

		/* Try once more */
		ret_val = e1000e_phy_has_link_generic(hw,
						     PHY_FORCE_LIMIT,
						     100000,
						     &link);
		if (ret_val)
			return ret_val;
	}

	return 0;
}

753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799
/**
 *  e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
 *  done after every PHY reset.
 **/
static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
{
	s32 ret_val = 0;

	if (hw->mac.type != e1000_pchlan)
		return ret_val;

	if (((hw->phy.type == e1000_phy_82577) &&
	     ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
	    ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
		/* Disable generation of early preamble */
		ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
		if (ret_val)
			return ret_val;

		/* Preamble tuning for SSC */
		ret_val = e1e_wphy(hw, PHY_REG(770, 16), 0xA204);
		if (ret_val)
			return ret_val;
	}

	if (hw->phy.type == e1000_phy_82578) {
		/*
		 * Return registers to default by doing a soft reset then
		 * writing 0x3140 to the control register.
		 */
		if (hw->phy.revision < 2) {
			e1000e_phy_sw_reset(hw);
			ret_val = e1e_wphy(hw, PHY_CONTROL, 0x3140);
		}
	}

	/* Select page 0 */
	ret_val = hw->phy.ops.acquire_phy(hw);
	if (ret_val)
		return ret_val;
	hw->phy.addr = 1;
	e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
	hw->phy.ops.release_phy(hw);

	return ret_val;
}

800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831
/**
 *  e1000_lan_init_done_ich8lan - Check for PHY config completion
 *  @hw: pointer to the HW structure
 *
 *  Check the appropriate indication the MAC has finished configuring the
 *  PHY after a software reset.
 **/
static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
{
	u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;

	/* Wait for basic configuration completes before proceeding */
	do {
		data = er32(STATUS);
		data &= E1000_STATUS_LAN_INIT_DONE;
		udelay(100);
	} while ((!data) && --loop);

	/*
	 * If basic configuration is incomplete before the above loop
	 * count reaches 0, loading the configuration from NVM will
	 * leave the PHY in a bad state possibly resulting in no link.
	 */
	if (loop == 0)
		hw_dbg(hw, "LAN_INIT_DONE not set, increase timeout\n");

	/* Clear the Init Done bit for the next init event */
	data = er32(STATUS);
	data &= ~E1000_STATUS_LAN_INIT_DONE;
	ew32(STATUS, data);
}

832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851
/**
 *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
 *  @hw: pointer to the HW structure
 *
 *  Resets the PHY
 *  This is a function pointer entry point called by drivers
 *  or other shared routines.
 **/
static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	u32 i;
	u32 data, cnf_size, cnf_base_addr, sw_cfg_mask;
	s32 ret_val;
	u16 word_addr, reg_data, reg_addr, phy_page = 0;

	ret_val = e1000e_phy_hw_reset_generic(hw);
	if (ret_val)
		return ret_val;

852 853 854
	/* Allow time for h/w to get to a quiescent state after reset */
	mdelay(10);

855 856 857 858 859 860
	if (hw->mac.type == e1000_pchlan) {
		ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
		if (ret_val)
			return ret_val;
	}

861 862
	/*
	 * Initialize the PHY from the NVM on ICH platforms.  This
863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881
	 * is needed due to an issue where the NVM configuration is
	 * not properly autoloaded after power transitions.
	 * Therefore, after each PHY reset, we will load the
	 * configuration data out of the NVM manually.
	 */
	if (hw->mac.type == e1000_ich8lan && phy->type == e1000_phy_igp_3) {
		struct e1000_adapter *adapter = hw->adapter;

		/* Check if SW needs configure the PHY */
		if ((adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_M_AMT) ||
		    (adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_M))
			sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
		else
			sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;

		data = er32(FEXTNVM);
		if (!(data & sw_cfg_mask))
			return 0;

882 883
		/* Wait for basic configuration completes before proceeding */
		e1000_lan_init_done_ich8lan(hw);
884

885 886 887 888
		/*
		 * Make sure HW does not configure LCD from PHY
		 * extended configuration before SW configuration
		 */
889 890 891 892 893 894 895 896 897 898 899 900 901
		data = er32(EXTCNF_CTRL);
		if (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE)
			return 0;

		cnf_size = er32(EXTCNF_SIZE);
		cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
		cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
		if (!cnf_size)
			return 0;

		cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
		cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;

902
		/* Configure LCD from extended configuration region. */
903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968

		/* cnf_base_addr is in DWORD */
		word_addr = (u16)(cnf_base_addr << 1);

		for (i = 0; i < cnf_size; i++) {
			ret_val = e1000_read_nvm(hw,
						(word_addr + i * 2),
						1,
						&reg_data);
			if (ret_val)
				return ret_val;

			ret_val = e1000_read_nvm(hw,
						(word_addr + i * 2 + 1),
						1,
						&reg_addr);
			if (ret_val)
				return ret_val;

			/* Save off the PHY page for future writes. */
			if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
				phy_page = reg_data;
				continue;
			}

			reg_addr |= phy_page;

			ret_val = e1e_wphy(hw, (u32)reg_addr, reg_data);
			if (ret_val)
				return ret_val;
		}
	}

	return 0;
}

/**
 *  e1000_get_phy_info_ife_ich8lan - Retrieves various IFE PHY states
 *  @hw: pointer to the HW structure
 *
 *  Populates "phy" structure with various feature states.
 *  This function is only called by other family-specific
 *  routines.
 **/
static s32 e1000_get_phy_info_ife_ich8lan(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 data;
	bool link;

	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
	if (ret_val)
		return ret_val;

	if (!link) {
		hw_dbg(hw, "Phy info is only valid if link is up\n");
		return -E1000_ERR_CONFIG;
	}

	ret_val = e1e_rphy(hw, IFE_PHY_SPECIAL_CONTROL, &data);
	if (ret_val)
		return ret_val;
	phy->polarity_correction = (!(data & IFE_PSC_AUTO_POLARITY_DISABLE));

	if (phy->polarity_correction) {
969
		ret_val = phy->ops.check_polarity(hw);
970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007
		if (ret_val)
			return ret_val;
	} else {
		/* Polarity is forced */
		phy->cable_polarity = (data & IFE_PSC_FORCE_POLARITY)
				      ? e1000_rev_polarity_reversed
				      : e1000_rev_polarity_normal;
	}

	ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
	if (ret_val)
		return ret_val;

	phy->is_mdix = (data & IFE_PMC_MDIX_STATUS);

	/* The following parameters are undefined for 10/100 operation. */
	phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
	phy->local_rx = e1000_1000t_rx_status_undefined;
	phy->remote_rx = e1000_1000t_rx_status_undefined;

	return 0;
}

/**
 *  e1000_get_phy_info_ich8lan - Calls appropriate PHY type get_phy_info
 *  @hw: pointer to the HW structure
 *
 *  Wrapper for calling the get_phy_info routines for the appropriate phy type.
 *  This is a function pointer entry point called by drivers
 *  or other shared routines.
 **/
static s32 e1000_get_phy_info_ich8lan(struct e1000_hw *hw)
{
	switch (hw->phy.type) {
	case e1000_phy_ife:
		return e1000_get_phy_info_ife_ich8lan(hw);
		break;
	case e1000_phy_igp_3:
1008
	case e1000_phy_bm:
1009 1010
	case e1000_phy_82578:
	case e1000_phy_82577:
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
		return e1000e_get_phy_info_igp(hw);
		break;
	default:
		break;
	}

	return -E1000_ERR_PHY_TYPE;
}

/**
 *  e1000_check_polarity_ife_ich8lan - Check cable polarity for IFE PHY
 *  @hw: pointer to the HW structure
 *
1024
 *  Polarity is determined on the polarity reversal feature being enabled.
1025 1026 1027 1028 1029 1030 1031 1032 1033
 *  This function is only called by other family-specific
 *  routines.
 **/
static s32 e1000_check_polarity_ife_ich8lan(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 phy_data, offset, mask;

1034 1035
	/*
	 * Polarity is determined based on the reversal feature being enabled.
1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
	 */
	if (phy->polarity_correction) {
		offset	= IFE_PHY_EXTENDED_STATUS_CONTROL;
		mask	= IFE_PESC_POLARITY_REVERSED;
	} else {
		offset	= IFE_PHY_SPECIAL_CONTROL;
		mask	= IFE_PSC_FORCE_POLARITY;
	}

	ret_val = e1e_rphy(hw, offset, &phy_data);

	if (!ret_val)
		phy->cable_polarity = (phy_data & mask)
				      ? e1000_rev_polarity_reversed
				      : e1000_rev_polarity_normal;

	return ret_val;
}

/**
 *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
 *  @hw: pointer to the HW structure
 *  @active: TRUE to enable LPLU, FALSE to disable
 *
 *  Sets the LPLU D0 state according to the active flag.  When
 *  activating LPLU this function also disables smart speed
 *  and vice versa.  LPLU will not be activated unless the
 *  device autonegotiation advertisement meets standards of
 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
 *  This is a function pointer entry point only called by
 *  PHY setup routines.
 **/
static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
{
	struct e1000_phy_info *phy = &hw->phy;
	u32 phy_ctrl;
	s32 ret_val = 0;
	u16 data;

1075
	if (phy->type == e1000_phy_ife)
1076 1077 1078 1079 1080 1081 1082 1083
		return ret_val;

	phy_ctrl = er32(PHY_CTRL);

	if (active) {
		phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
		ew32(PHY_CTRL, phy_ctrl);

1084 1085 1086
		if (phy->type != e1000_phy_igp_3)
			return 0;

1087 1088 1089 1090
		/*
		 * Call gig speed drop workaround on LPLU before accessing
		 * any PHY registers
		 */
1091
		if (hw->mac.type == e1000_ich8lan)
1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
			e1000e_gig_downshift_workaround_ich8lan(hw);

		/* When LPLU is enabled, we should disable SmartSpeed */
		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
		if (ret_val)
			return ret_val;
	} else {
		phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
		ew32(PHY_CTRL, phy_ctrl);

1104 1105 1106
		if (phy->type != e1000_phy_igp_3)
			return 0;

1107 1108
		/*
		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1109 1110
		 * during Dx states where the power conservation is most
		 * important.  During driver activity we should enable
1111 1112
		 * SmartSpeed, so performance is maintained.
		 */
1113 1114
		if (phy->smart_speed == e1000_smart_speed_on) {
			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1115
					   &data);
1116 1117 1118 1119 1120
			if (ret_val)
				return ret_val;

			data |= IGP01E1000_PSCFR_SMART_SPEED;
			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1121
					   data);
1122 1123 1124 1125
			if (ret_val)
				return ret_val;
		} else if (phy->smart_speed == e1000_smart_speed_off) {
			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1126
					   &data);
1127 1128 1129 1130 1131
			if (ret_val)
				return ret_val;

			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1132
					   data);
1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
			if (ret_val)
				return ret_val;
		}
	}

	return 0;
}

/**
 *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
 *  @hw: pointer to the HW structure
 *  @active: TRUE to enable LPLU, FALSE to disable
 *
 *  Sets the LPLU D3 state according to the active flag.  When
 *  activating LPLU this function also disables smart speed
 *  and vice versa.  LPLU will not be activated unless the
 *  device autonegotiation advertisement meets standards of
 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
 *  This is a function pointer entry point only called by
 *  PHY setup routines.
 **/
static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
{
	struct e1000_phy_info *phy = &hw->phy;
	u32 phy_ctrl;
	s32 ret_val;
	u16 data;

	phy_ctrl = er32(PHY_CTRL);

	if (!active) {
		phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
		ew32(PHY_CTRL, phy_ctrl);
1166 1167 1168 1169

		if (phy->type != e1000_phy_igp_3)
			return 0;

1170 1171
		/*
		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1172 1173
		 * during Dx states where the power conservation is most
		 * important.  During driver activity we should enable
1174 1175
		 * SmartSpeed, so performance is maintained.
		 */
1176
		if (phy->smart_speed == e1000_smart_speed_on) {
1177 1178
			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
					   &data);
1179 1180 1181 1182
			if (ret_val)
				return ret_val;

			data |= IGP01E1000_PSCFR_SMART_SPEED;
1183 1184
			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
					   data);
1185 1186 1187
			if (ret_val)
				return ret_val;
		} else if (phy->smart_speed == e1000_smart_speed_off) {
1188 1189
			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
					   &data);
1190 1191 1192 1193
			if (ret_val)
				return ret_val;

			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1194 1195
			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
					   data);
1196 1197 1198 1199 1200 1201 1202 1203 1204
			if (ret_val)
				return ret_val;
		}
	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
		phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
		ew32(PHY_CTRL, phy_ctrl);

1205 1206 1207
		if (phy->type != e1000_phy_igp_3)
			return 0;

1208 1209 1210 1211
		/*
		 * Call gig speed drop workaround on LPLU before accessing
		 * any PHY registers
		 */
1212
		if (hw->mac.type == e1000_ich8lan)
1213 1214 1215
			e1000e_gig_downshift_workaround_ich8lan(hw);

		/* When LPLU is enabled, we should disable SmartSpeed */
1216
		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
1217 1218 1219 1220
		if (ret_val)
			return ret_val;

		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1221
		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
1222 1223 1224 1225 1226
	}

	return 0;
}

1227 1228 1229 1230 1231 1232
/**
 *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
 *  @hw: pointer to the HW structure
 *  @bank:  pointer to the variable that returns the active bank
 *
 *  Reads signature byte from the NVM using the flash access registers.
1233
 *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
1234 1235 1236
 **/
static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
{
1237
	u32 eecd;
1238 1239 1240
	struct e1000_nvm_info *nvm = &hw->nvm;
	u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
	u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
1241 1242
	u8 sig_byte = 0;
	s32 ret_val = 0;
1243

1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270
	switch (hw->mac.type) {
	case e1000_ich8lan:
	case e1000_ich9lan:
		eecd = er32(EECD);
		if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
		    E1000_EECD_SEC1VAL_VALID_MASK) {
			if (eecd & E1000_EECD_SEC1VAL)
				*bank = 1;
			else
				*bank = 0;

			return 0;
		}
		hw_dbg(hw, "Unable to determine valid NVM bank via EEC - "
		       "reading flash signature\n");
		/* fall-thru */
	default:
		/* set bank to 0 in case flash read fails */
		*bank = 0;

		/* Check bank 0 */
		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
		                                        &sig_byte);
		if (ret_val)
			return ret_val;
		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
		    E1000_ICH_NVM_SIG_VALUE) {
1271
			*bank = 0;
1272 1273
			return 0;
		}
1274

1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
		/* Check bank 1 */
		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
		                                        bank1_offset,
		                                        &sig_byte);
		if (ret_val)
			return ret_val;
		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
		    E1000_ICH_NVM_SIG_VALUE) {
			*bank = 1;
			return 0;
1285
		}
1286 1287 1288

		hw_dbg(hw, "ERROR: No valid NVM bank present\n");
		return -E1000_ERR_NVM;
1289 1290 1291 1292 1293
	}

	return 0;
}

1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309
/**
 *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
 *  @hw: pointer to the HW structure
 *  @offset: The offset (in bytes) of the word(s) to read.
 *  @words: Size of data to read in words
 *  @data: Pointer to the word(s) to read at offset.
 *
 *  Reads a word(s) from the NVM using the flash access registers.
 **/
static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
				  u16 *data)
{
	struct e1000_nvm_info *nvm = &hw->nvm;
	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
	u32 act_offset;
	s32 ret_val;
1310
	u32 bank = 0;
1311 1312 1313 1314 1315 1316 1317 1318 1319 1320
	u16 i, word;

	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
	    (words == 0)) {
		hw_dbg(hw, "nvm parameter(s) out of bounds\n");
		return -E1000_ERR_NVM;
	}

	ret_val = e1000_acquire_swflag_ich8lan(hw);
	if (ret_val)
1321
		goto out;
1322

1323 1324
	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
	if (ret_val)
1325
		goto release;
1326 1327

	act_offset = (bank) ? nvm->flash_bank_size : 0;
1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
	act_offset += offset;

	for (i = 0; i < words; i++) {
		if ((dev_spec->shadow_ram) &&
		    (dev_spec->shadow_ram[offset+i].modified)) {
			data[i] = dev_spec->shadow_ram[offset+i].value;
		} else {
			ret_val = e1000_read_flash_word_ich8lan(hw,
								act_offset + i,
								&word);
			if (ret_val)
				break;
			data[i] = word;
		}
	}

1344
release:
1345 1346
	e1000_release_swflag_ich8lan(hw);

1347 1348 1349 1350
out:
	if (ret_val)
		hw_dbg(hw, "NVM read error: %d\n", ret_val);

1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381
	return ret_val;
}

/**
 *  e1000_flash_cycle_init_ich8lan - Initialize flash
 *  @hw: pointer to the HW structure
 *
 *  This function does initial flash setup so that a new read/write/erase cycle
 *  can be started.
 **/
static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
{
	union ich8_hws_flash_status hsfsts;
	s32 ret_val = -E1000_ERR_NVM;
	s32 i = 0;

	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);

	/* Check if the flash descriptor is valid */
	if (hsfsts.hsf_status.fldesvalid == 0) {
		hw_dbg(hw, "Flash descriptor invalid.  "
			 "SW Sequencing must be used.");
		return -E1000_ERR_NVM;
	}

	/* Clear FCERR and DAEL in hw status by writing 1 */
	hsfsts.hsf_status.flcerr = 1;
	hsfsts.hsf_status.dael = 1;

	ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);

1382 1383
	/*
	 * Either we should have a hardware SPI cycle in progress
1384 1385
	 * bit to check against, in order to start a new cycle or
	 * FDONE bit should be changed in the hardware so that it
1386
	 * is 1 after hardware reset, which can then be used as an
1387 1388 1389 1390 1391
	 * indication whether a cycle is in progress or has been
	 * completed.
	 */

	if (hsfsts.hsf_status.flcinprog == 0) {
1392 1393 1394 1395 1396
		/*
		 * There is no cycle running at present,
		 * so we can start a cycle
		 * Begin by setting Flash Cycle Done.
		 */
1397 1398 1399 1400
		hsfsts.hsf_status.flcdone = 1;
		ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
		ret_val = 0;
	} else {
1401 1402 1403 1404
		/*
		 * otherwise poll for sometime so the current
		 * cycle has a chance to end before giving up.
		 */
1405 1406 1407 1408 1409 1410 1411 1412 1413
		for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
			hsfsts.regval = __er16flash(hw, ICH_FLASH_HSFSTS);
			if (hsfsts.hsf_status.flcinprog == 0) {
				ret_val = 0;
				break;
			}
			udelay(1);
		}
		if (ret_val == 0) {
1414 1415 1416 1417
			/*
			 * Successful in waiting for previous cycle to timeout,
			 * now set the Flash Cycle Done.
			 */
1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478
			hsfsts.hsf_status.flcdone = 1;
			ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
		} else {
			hw_dbg(hw, "Flash controller busy, cannot get access");
		}
	}

	return ret_val;
}

/**
 *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
 *  @hw: pointer to the HW structure
 *  @timeout: maximum time to wait for completion
 *
 *  This function starts a flash cycle and waits for its completion.
 **/
static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
{
	union ich8_hws_flash_ctrl hsflctl;
	union ich8_hws_flash_status hsfsts;
	s32 ret_val = -E1000_ERR_NVM;
	u32 i = 0;

	/* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
	hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
	hsflctl.hsf_ctrl.flcgo = 1;
	ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);

	/* wait till FDONE bit is set to 1 */
	do {
		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
		if (hsfsts.hsf_status.flcdone == 1)
			break;
		udelay(1);
	} while (i++ < timeout);

	if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0)
		return 0;

	return ret_val;
}

/**
 *  e1000_read_flash_word_ich8lan - Read word from flash
 *  @hw: pointer to the HW structure
 *  @offset: offset to data location
 *  @data: pointer to the location for storing the data
 *
 *  Reads the flash word at offset into data.  Offset is converted
 *  to bytes before read.
 **/
static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
					 u16 *data)
{
	/* Must convert offset into bytes. */
	offset <<= 1;

	return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
}

1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501
/**
 *  e1000_read_flash_byte_ich8lan - Read byte from flash
 *  @hw: pointer to the HW structure
 *  @offset: The offset of the byte to read.
 *  @data: Pointer to a byte to store the value read.
 *
 *  Reads a single byte from the NVM using the flash access registers.
 **/
static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
					 u8 *data)
{
	s32 ret_val;
	u16 word = 0;

	ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
	if (ret_val)
		return ret_val;

	*data = (u8)word;

	return 0;
}

1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544
/**
 *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
 *  @hw: pointer to the HW structure
 *  @offset: The offset (in bytes) of the byte or word to read.
 *  @size: Size of data to read, 1=byte 2=word
 *  @data: Pointer to the word to store the value read.
 *
 *  Reads a byte or word from the NVM using the flash access registers.
 **/
static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
					 u8 size, u16 *data)
{
	union ich8_hws_flash_status hsfsts;
	union ich8_hws_flash_ctrl hsflctl;
	u32 flash_linear_addr;
	u32 flash_data = 0;
	s32 ret_val = -E1000_ERR_NVM;
	u8 count = 0;

	if (size < 1  || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
		return -E1000_ERR_NVM;

	flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
			    hw->nvm.flash_base_addr;

	do {
		udelay(1);
		/* Steps */
		ret_val = e1000_flash_cycle_init_ich8lan(hw);
		if (ret_val != 0)
			break;

		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
		hsflctl.hsf_ctrl.fldbcount = size - 1;
		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);

		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);

		ret_val = e1000_flash_cycle_ich8lan(hw,
						ICH_FLASH_READ_COMMAND_TIMEOUT);

1545 1546
		/*
		 * Check if FCERR is set to 1, if set to 1, clear it
1547 1548
		 * and try the whole sequence a few more times, else
		 * read in (shift in) the Flash Data0, the order is
1549 1550
		 * least significant byte first msb to lsb
		 */
1551 1552 1553 1554 1555 1556 1557 1558 1559
		if (ret_val == 0) {
			flash_data = er32flash(ICH_FLASH_FDATA0);
			if (size == 1) {
				*data = (u8)(flash_data & 0x000000FF);
			} else if (size == 2) {
				*data = (u16)(flash_data & 0x0000FFFF);
			}
			break;
		} else {
1560 1561
			/*
			 * If we've gotten here, then things are probably
1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625
			 * completely hosed, but if the error condition is
			 * detected, it won't hurt to give it another try...
			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
			 */
			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
			if (hsfsts.hsf_status.flcerr == 1) {
				/* Repeat for some time before giving up. */
				continue;
			} else if (hsfsts.hsf_status.flcdone == 0) {
				hw_dbg(hw, "Timeout error - flash cycle "
					 "did not complete.");
				break;
			}
		}
	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);

	return ret_val;
}

/**
 *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
 *  @hw: pointer to the HW structure
 *  @offset: The offset (in bytes) of the word(s) to write.
 *  @words: Size of data to write in words
 *  @data: Pointer to the word(s) to write at offset.
 *
 *  Writes a byte or word to the NVM using the flash access registers.
 **/
static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
				   u16 *data)
{
	struct e1000_nvm_info *nvm = &hw->nvm;
	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
	s32 ret_val;
	u16 i;

	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
	    (words == 0)) {
		hw_dbg(hw, "nvm parameter(s) out of bounds\n");
		return -E1000_ERR_NVM;
	}

	ret_val = e1000_acquire_swflag_ich8lan(hw);
	if (ret_val)
		return ret_val;

	for (i = 0; i < words; i++) {
		dev_spec->shadow_ram[offset+i].modified = 1;
		dev_spec->shadow_ram[offset+i].value = data[i];
	}

	e1000_release_swflag_ich8lan(hw);

	return 0;
}

/**
 *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
 *  @hw: pointer to the HW structure
 *
 *  The NVM checksum is updated by calling the generic update_nvm_checksum,
 *  which writes the checksum to the shadow ram.  The changes in the shadow
 *  ram are then committed to the EEPROM by processing each bank at a time
 *  checking for the modified bit and writing only the pending changes.
1626
 *  After a successful commit, the shadow ram is cleared and is ready for
1627 1628 1629 1630 1631 1632
 *  future writes.
 **/
static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
{
	struct e1000_nvm_info *nvm = &hw->nvm;
	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
1633
	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
1634 1635 1636 1637 1638
	s32 ret_val;
	u16 data;

	ret_val = e1000e_update_nvm_checksum_generic(hw);
	if (ret_val)
1639
		goto out;
1640 1641

	if (nvm->type != e1000_nvm_flash_sw)
1642
		goto out;
1643 1644 1645

	ret_val = e1000_acquire_swflag_ich8lan(hw);
	if (ret_val)
1646
		goto out;
1647

1648 1649
	/*
	 * We're writing to the opposite bank so if we're on bank 1,
1650
	 * write to bank 0 etc.  We also need to erase the segment that
1651 1652
	 * is going to be written
	 */
1653
	ret_val =  e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
1654 1655 1656 1657
	if (ret_val) {
		e1000_release_swflag_ich8lan(hw);
		goto out;
	}
1658 1659

	if (bank == 0) {
1660 1661
		new_bank_offset = nvm->flash_bank_size;
		old_bank_offset = 0;
1662 1663 1664 1665 1666
		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
		if (ret_val) {
			e1000_release_swflag_ich8lan(hw);
			goto out;
		}
1667 1668 1669
	} else {
		old_bank_offset = nvm->flash_bank_size;
		new_bank_offset = 0;
1670 1671 1672 1673 1674
		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
		if (ret_val) {
			e1000_release_swflag_ich8lan(hw);
			goto out;
		}
1675 1676 1677
	}

	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
1678 1679
		/*
		 * Determine whether to write the value stored
1680
		 * in the other NVM bank or a modified value stored
1681 1682
		 * in the shadow RAM
		 */
1683 1684 1685
		if (dev_spec->shadow_ram[i].modified) {
			data = dev_spec->shadow_ram[i].value;
		} else {
1686 1687 1688 1689 1690
			ret_val = e1000_read_flash_word_ich8lan(hw, i +
			                                        old_bank_offset,
			                                        &data);
			if (ret_val)
				break;
1691 1692
		}

1693 1694
		/*
		 * If the word is 0x13, then make sure the signature bits
1695 1696 1697 1698
		 * (15:14) are 11b until the commit has completed.
		 * This will allow us to write 10b which indicates the
		 * signature is valid.  We want to do this after the write
		 * has completed so that we don't mark the segment valid
1699 1700
		 * while the write is still in progress
		 */
1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722
		if (i == E1000_ICH_NVM_SIG_WORD)
			data |= E1000_ICH_NVM_SIG_MASK;

		/* Convert offset to bytes. */
		act_offset = (i + new_bank_offset) << 1;

		udelay(100);
		/* Write the bytes to the new bank. */
		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
							       act_offset,
							       (u8)data);
		if (ret_val)
			break;

		udelay(100);
		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
							  act_offset + 1,
							  (u8)(data >> 8));
		if (ret_val)
			break;
	}

1723 1724 1725 1726
	/*
	 * Don't bother writing the segment valid bits if sector
	 * programming failed.
	 */
1727
	if (ret_val) {
1728
		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
1729 1730
		hw_dbg(hw, "Flash commit failed.\n");
		e1000_release_swflag_ich8lan(hw);
1731
		goto out;
1732 1733
	}

1734 1735
	/*
	 * Finally validate the new segment by setting bit 15:14
1736 1737
	 * to 10b in word 0x13 , this can be done without an
	 * erase as well since these bits are 11 to start with
1738 1739
	 * and we need to change bit 14 to 0b
	 */
1740
	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
1741 1742 1743 1744 1745
	ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
	if (ret_val) {
		e1000_release_swflag_ich8lan(hw);
		goto out;
	}
1746 1747 1748 1749 1750 1751
	data &= 0xBFFF;
	ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
						       act_offset * 2 + 1,
						       (u8)(data >> 8));
	if (ret_val) {
		e1000_release_swflag_ich8lan(hw);
1752
		goto out;
1753 1754
	}

1755 1756
	/*
	 * And invalidate the previously valid segment by setting
1757 1758
	 * its signature word (0x13) high_byte to 0b. This can be
	 * done without an erase because flash erase sets all bits
1759 1760
	 * to 1's. We can write 1's to 0's without an erase
	 */
1761 1762 1763 1764
	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
	ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
	if (ret_val) {
		e1000_release_swflag_ich8lan(hw);
1765
		goto out;
1766 1767 1768 1769 1770 1771 1772 1773 1774 1775
	}

	/* Great!  Everything worked, we can now clear the cached entries. */
	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
		dev_spec->shadow_ram[i].modified = 0;
		dev_spec->shadow_ram[i].value = 0xFFFF;
	}

	e1000_release_swflag_ich8lan(hw);

1776 1777
	/*
	 * Reload the EEPROM, or else modifications will not appear
1778 1779 1780 1781 1782
	 * until after the next adapter reset.
	 */
	e1000e_reload_nvm(hw);
	msleep(10);

1783 1784 1785 1786
out:
	if (ret_val)
		hw_dbg(hw, "NVM update error: %d\n", ret_val);

1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802
	return ret_val;
}

/**
 *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
 *  @hw: pointer to the HW structure
 *
 *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
 *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
 *  calculated, in which case we need to calculate the checksum and set bit 6.
 **/
static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
{
	s32 ret_val;
	u16 data;

1803 1804
	/*
	 * Read 0x19 and check bit 6.  If this bit is 0, the checksum
1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825
	 * needs to be fixed.  This bit is an indication that the NVM
	 * was prepared by OEM software and did not calculate the
	 * checksum...a likely scenario.
	 */
	ret_val = e1000_read_nvm(hw, 0x19, 1, &data);
	if (ret_val)
		return ret_val;

	if ((data & 0x40) == 0) {
		data |= 0x40;
		ret_val = e1000_write_nvm(hw, 0x19, 1, &data);
		if (ret_val)
			return ret_val;
		ret_val = e1000e_update_nvm_checksum(hw);
		if (ret_val)
			return ret_val;
	}

	return e1000e_validate_nvm_checksum_generic(hw);
}

1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868
/**
 *  e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
 *  @hw: pointer to the HW structure
 *
 *  To prevent malicious write/erase of the NVM, set it to be read-only
 *  so that the hardware ignores all write/erase cycles of the NVM via
 *  the flash control registers.  The shadow-ram copy of the NVM will
 *  still be updated, however any updates to this copy will not stick
 *  across driver reloads.
 **/
void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
{
	union ich8_flash_protected_range pr0;
	union ich8_hws_flash_status hsfsts;
	u32 gfpreg;
	s32 ret_val;

	ret_val = e1000_acquire_swflag_ich8lan(hw);
	if (ret_val)
		return;

	gfpreg = er32flash(ICH_FLASH_GFPREG);

	/* Write-protect GbE Sector of NVM */
	pr0.regval = er32flash(ICH_FLASH_PR0);
	pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
	pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
	pr0.range.wpe = true;
	ew32flash(ICH_FLASH_PR0, pr0.regval);

	/*
	 * Lock down a subset of GbE Flash Control Registers, e.g.
	 * PR0 to prevent the write-protection from being lifted.
	 * Once FLOCKDN is set, the registers protected by it cannot
	 * be written until FLOCKDN is cleared by a hardware reset.
	 */
	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
	hsfsts.hsf_status.flockdn = true;
	ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);

	e1000_release_swflag_ich8lan(hw);
}

1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916
/**
 *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
 *  @hw: pointer to the HW structure
 *  @offset: The offset (in bytes) of the byte/word to read.
 *  @size: Size of data to read, 1=byte 2=word
 *  @data: The byte(s) to write to the NVM.
 *
 *  Writes one/two bytes to the NVM using the flash access registers.
 **/
static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
					  u8 size, u16 data)
{
	union ich8_hws_flash_status hsfsts;
	union ich8_hws_flash_ctrl hsflctl;
	u32 flash_linear_addr;
	u32 flash_data = 0;
	s32 ret_val;
	u8 count = 0;

	if (size < 1 || size > 2 || data > size * 0xff ||
	    offset > ICH_FLASH_LINEAR_ADDR_MASK)
		return -E1000_ERR_NVM;

	flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
			    hw->nvm.flash_base_addr;

	do {
		udelay(1);
		/* Steps */
		ret_val = e1000_flash_cycle_init_ich8lan(hw);
		if (ret_val)
			break;

		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
		hsflctl.hsf_ctrl.fldbcount = size -1;
		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);

		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);

		if (size == 1)
			flash_data = (u32)data & 0x00FF;
		else
			flash_data = (u32)data;

		ew32flash(ICH_FLASH_FDATA0, flash_data);

1917 1918 1919 1920
		/*
		 * check if FCERR is set to 1 , if set to 1, clear it
		 * and try the whole sequence a few more times else done
		 */
1921 1922 1923 1924 1925
		ret_val = e1000_flash_cycle_ich8lan(hw,
					       ICH_FLASH_WRITE_COMMAND_TIMEOUT);
		if (!ret_val)
			break;

1926 1927
		/*
		 * If we're here, then things are most likely
1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
		 * completely hosed, but if the error condition
		 * is detected, it won't hurt to give it another
		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
		 */
		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
		if (hsfsts.hsf_status.flcerr == 1)
			/* Repeat for some time before giving up. */
			continue;
		if (hsfsts.hsf_status.flcdone == 0) {
			hw_dbg(hw, "Timeout error - flash cycle "
				 "did not complete.");
			break;
		}
	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);

	return ret_val;
}

/**
 *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
 *  @hw: pointer to the HW structure
 *  @offset: The index of the byte to read.
 *  @data: The byte to write to the NVM.
 *
 *  Writes a single byte to the NVM using the flash access registers.
 **/
static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
					  u8 data)
{
	u16 word = (u16)data;

	return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
}

/**
 *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
 *  @hw: pointer to the HW structure
 *  @offset: The offset of the byte to write.
 *  @byte: The byte to write to the NVM.
 *
 *  Writes a single byte to the NVM using the flash access registers.
 *  Goes through a retry algorithm before giving up.
 **/
static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
						u32 offset, u8 byte)
{
	s32 ret_val;
	u16 program_retries;

	ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
	if (!ret_val)
		return ret_val;

	for (program_retries = 0; program_retries < 100; program_retries++) {
		hw_dbg(hw, "Retrying Byte %2.2X at offset %u\n", byte, offset);
		udelay(100);
		ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
		if (!ret_val)
			break;
	}
	if (program_retries == 100)
		return -E1000_ERR_NVM;

	return 0;
}

/**
 *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
 *  @hw: pointer to the HW structure
 *  @bank: 0 for first bank, 1 for second bank, etc.
 *
 *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
 *  bank N is 4096 * N + flash_reg_addr.
 **/
static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
{
	struct e1000_nvm_info *nvm = &hw->nvm;
	union ich8_hws_flash_status hsfsts;
	union ich8_hws_flash_ctrl hsflctl;
	u32 flash_linear_addr;
	/* bank size is in 16bit words - adjust to bytes */
	u32 flash_bank_size = nvm->flash_bank_size * 2;
	s32 ret_val;
	s32 count = 0;
	s32 iteration;
	s32 sector_size;
	s32 j;

	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);

2018 2019 2020 2021
	/*
	 * Determine HW Sector size: Read BERASE bits of hw flash status
	 * register
	 * 00: The Hw sector is 256 bytes, hence we need to erase 16
2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038
	 *     consecutive sectors.  The start index for the nth Hw sector
	 *     can be calculated as = bank * 4096 + n * 256
	 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
	 *     The start index for the nth Hw sector can be calculated
	 *     as = bank * 4096
	 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
	 *     (ich9 only, otherwise error condition)
	 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
	 */
	switch (hsfsts.hsf_status.berasesz) {
	case 0:
		/* Hw sector size 256 */
		sector_size = ICH_FLASH_SEG_SIZE_256;
		iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
		break;
	case 1:
		sector_size = ICH_FLASH_SEG_SIZE_4K;
2039
		iteration = 1;
2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050
		break;
	case 2:
		if (hw->mac.type == e1000_ich9lan) {
			sector_size = ICH_FLASH_SEG_SIZE_8K;
			iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_8K;
		} else {
			return -E1000_ERR_NVM;
		}
		break;
	case 3:
		sector_size = ICH_FLASH_SEG_SIZE_64K;
2051
		iteration = 1;
2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067
		break;
	default:
		return -E1000_ERR_NVM;
	}

	/* Start with the base address, then add the sector offset. */
	flash_linear_addr = hw->nvm.flash_base_addr;
	flash_linear_addr += (bank) ? (sector_size * iteration) : 0;

	for (j = 0; j < iteration ; j++) {
		do {
			/* Steps */
			ret_val = e1000_flash_cycle_init_ich8lan(hw);
			if (ret_val)
				return ret_val;

2068 2069 2070 2071
			/*
			 * Write a value 11 (block Erase) in Flash
			 * Cycle field in hw flash control
			 */
2072 2073 2074 2075
			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
			hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);

2076 2077
			/*
			 * Write the last 24 bits of an index within the
2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088
			 * block into Flash Linear address field in Flash
			 * Address.
			 */
			flash_linear_addr += (j * sector_size);
			ew32flash(ICH_FLASH_FADDR, flash_linear_addr);

			ret_val = e1000_flash_cycle_ich8lan(hw,
					       ICH_FLASH_ERASE_COMMAND_TIMEOUT);
			if (ret_val == 0)
				break;

2089 2090
			/*
			 * Check if FCERR is set to 1.  If 1,
2091
			 * clear it and try the whole sequence
2092 2093
			 * a few more times else Done
			 */
2094 2095
			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
			if (hsfsts.hsf_status.flcerr == 1)
2096
				/* repeat for some time before giving up */
2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131
				continue;
			else if (hsfsts.hsf_status.flcdone == 0)
				return ret_val;
		} while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
	}

	return 0;
}

/**
 *  e1000_valid_led_default_ich8lan - Set the default LED settings
 *  @hw: pointer to the HW structure
 *  @data: Pointer to the LED settings
 *
 *  Reads the LED default settings from the NVM to data.  If the NVM LED
 *  settings is all 0's or F's, set the LED default to a valid LED default
 *  setting.
 **/
static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
{
	s32 ret_val;

	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
	if (ret_val) {
		hw_dbg(hw, "NVM Read Error\n");
		return ret_val;
	}

	if (*data == ID_LED_RESERVED_0000 ||
	    *data == ID_LED_RESERVED_FFFF)
		*data = ID_LED_DEFAULT_ICH8LAN;

	return 0;
}

2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204
/**
 *  e1000_id_led_init_pchlan - store LED configurations
 *  @hw: pointer to the HW structure
 *
 *  PCH does not control LEDs via the LEDCTL register, rather it uses
 *  the PHY LED configuration register.
 *
 *  PCH also does not have an "always on" or "always off" mode which
 *  complicates the ID feature.  Instead of using the "on" mode to indicate
 *  in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init()),
 *  use "link_up" mode.  The LEDs will still ID on request if there is no
 *  link based on logic in e1000_led_[on|off]_pchlan().
 **/
static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
{
	struct e1000_mac_info *mac = &hw->mac;
	s32 ret_val;
	const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
	const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
	u16 data, i, temp, shift;

	/* Get default ID LED modes */
	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
	if (ret_val)
		goto out;

	mac->ledctl_default = er32(LEDCTL);
	mac->ledctl_mode1 = mac->ledctl_default;
	mac->ledctl_mode2 = mac->ledctl_default;

	for (i = 0; i < 4; i++) {
		temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
		shift = (i * 5);
		switch (temp) {
		case ID_LED_ON1_DEF2:
		case ID_LED_ON1_ON2:
		case ID_LED_ON1_OFF2:
			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
			mac->ledctl_mode1 |= (ledctl_on << shift);
			break;
		case ID_LED_OFF1_DEF2:
		case ID_LED_OFF1_ON2:
		case ID_LED_OFF1_OFF2:
			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
			mac->ledctl_mode1 |= (ledctl_off << shift);
			break;
		default:
			/* Do nothing */
			break;
		}
		switch (temp) {
		case ID_LED_DEF1_ON2:
		case ID_LED_ON1_ON2:
		case ID_LED_OFF1_ON2:
			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
			mac->ledctl_mode2 |= (ledctl_on << shift);
			break;
		case ID_LED_DEF1_OFF2:
		case ID_LED_ON1_OFF2:
		case ID_LED_OFF1_OFF2:
			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
			mac->ledctl_mode2 |= (ledctl_off << shift);
			break;
		default:
			/* Do nothing */
			break;
		}
	}

out:
	return ret_val;
}

2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218
/**
 *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
 *  @hw: pointer to the HW structure
 *
 *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
 *  register, so the the bus width is hard coded.
 **/
static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
{
	struct e1000_bus_info *bus = &hw->bus;
	s32 ret_val;

	ret_val = e1000e_get_bus_info_pcie(hw);

2219 2220
	/*
	 * ICH devices are "PCI Express"-ish.  They have
2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242
	 * a configuration space, but do not contain
	 * PCI Express Capability registers, so bus width
	 * must be hardcoded.
	 */
	if (bus->width == e1000_bus_width_unknown)
		bus->width = e1000_bus_width_pcie_x1;

	return ret_val;
}

/**
 *  e1000_reset_hw_ich8lan - Reset the hardware
 *  @hw: pointer to the HW structure
 *
 *  Does a full reset of the hardware which includes a reset of the PHY and
 *  MAC.
 **/
static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
{
	u32 ctrl, icr, kab;
	s32 ret_val;

2243 2244
	/*
	 * Prevent the PCI-E bus from sticking if there is no TLP connection
2245 2246 2247 2248 2249 2250 2251 2252 2253 2254
	 * on the last TLP read/write transaction when MAC is reset.
	 */
	ret_val = e1000e_disable_pcie_master(hw);
	if (ret_val) {
		hw_dbg(hw, "PCI-E Master disable polling has failed.\n");
	}

	hw_dbg(hw, "Masking off all interrupts\n");
	ew32(IMC, 0xffffffff);

2255 2256
	/*
	 * Disable the Transmit and Receive units.  Then delay to allow
2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276
	 * any pending transactions to complete before we hit the MAC
	 * with the global reset.
	 */
	ew32(RCTL, 0);
	ew32(TCTL, E1000_TCTL_PSP);
	e1e_flush();

	msleep(10);

	/* Workaround for ICH8 bit corruption issue in FIFO memory */
	if (hw->mac.type == e1000_ich8lan) {
		/* Set Tx and Rx buffer allocation to 8k apiece. */
		ew32(PBA, E1000_PBA_8K);
		/* Set Packet Buffer Size to 16k. */
		ew32(PBS, E1000_PBS_16K);
	}

	ctrl = er32(CTRL);

	if (!e1000_check_reset_block(hw)) {
2277 2278 2279 2280 2281 2282
		/* Clear PHY Reset Asserted bit */
		if (hw->mac.type >= e1000_pchlan) {
			u32 status = er32(STATUS);
			ew32(STATUS, status & ~E1000_STATUS_PHYRA);
		}

2283 2284
		/*
		 * PHY HW reset requires MAC CORE reset at the same
2285 2286 2287 2288 2289 2290
		 * time to make sure the interface between MAC and the
		 * external PHY is reset.
		 */
		ctrl |= E1000_CTRL_PHY_RST;
	}
	ret_val = e1000_acquire_swflag_ich8lan(hw);
J
Jeff Kirsher 已提交
2291
	/* Whether or not the swflag was acquired, we need to reset the part */
2292
	hw_dbg(hw, "Issuing a global reset to ich8lan\n");
2293 2294 2295
	ew32(CTRL, (ctrl | E1000_CTRL_RST));
	msleep(20);

2296
	if (!ret_val)
J
Jeff Kirsher 已提交
2297
		e1000_release_swflag_ich8lan(hw);
2298

2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313
	if (ctrl & E1000_CTRL_PHY_RST)
		ret_val = hw->phy.ops.get_cfg_done(hw);

	if (hw->mac.type >= e1000_ich10lan) {
		e1000_lan_init_done_ich8lan(hw);
	} else {
		ret_val = e1000e_get_auto_rd_done(hw);
		if (ret_val) {
			/*
			 * When auto config read does not complete, do not
			 * return with an error. This can happen in situations
			 * where there is no eeprom and prevents getting link.
			 */
			hw_dbg(hw, "Auto Read Done did not complete\n");
		}
2314 2315
	}

2316 2317 2318 2319 2320 2321 2322 2323
	/*
	 * For PCH, this write will make sure that any noise
	 * will be detected as a CRC error and be dropped rather than show up
	 * as a bad packet to the DMA engine.
	 */
	if (hw->mac.type == e1000_pchlan)
		ew32(CRC_OFFSET, 0x65656565);

2324 2325 2326 2327 2328 2329 2330
	ew32(IMC, 0xffffffff);
	icr = er32(ICR);

	kab = er32(KABGTXD);
	kab |= E1000_KABGTXD_BGSQLBIAS;
	ew32(KABGTXD, kab);

2331 2332 2333
	if (hw->mac.type == e1000_pchlan)
		ret_val = e1000_hv_phy_workarounds_ich8lan(hw);

2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345
	return ret_val;
}

/**
 *  e1000_init_hw_ich8lan - Initialize the hardware
 *  @hw: pointer to the HW structure
 *
 *  Prepares the hardware for transmit and receive by doing the following:
 *   - initialize hardware bits
 *   - initialize LED identification
 *   - setup receive address registers
 *   - setup flow control
2346
 *   - setup transmit descriptors
2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358
 *   - clear statistics
 **/
static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
{
	struct e1000_mac_info *mac = &hw->mac;
	u32 ctrl_ext, txdctl, snoop;
	s32 ret_val;
	u16 i;

	e1000_initialize_hw_bits_ich8lan(hw);

	/* Initialize identification LED */
2359
	ret_val = mac->ops.id_led_init(hw);
2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372
	if (ret_val) {
		hw_dbg(hw, "Error initializing identification LED\n");
		return ret_val;
	}

	/* Setup the receive address. */
	e1000e_init_rx_addrs(hw, mac->rar_entry_count);

	/* Zero out the Multicast HASH table */
	hw_dbg(hw, "Zeroing the MTA\n");
	for (i = 0; i < mac->mta_reg_count; i++)
		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);

2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384
	/*
	 * The 82578 Rx buffer will stall if wakeup is enabled in host and
	 * the ME.  Reading the BM_WUC register will clear the host wakeup bit.
	 * Reset the phy after disabling host wakeup to reset the Rx buffer.
	 */
	if (hw->phy.type == e1000_phy_82578) {
		hw->phy.ops.read_phy_reg(hw, BM_WUC, &i);
		ret_val = e1000_phy_hw_reset_ich8lan(hw);
		if (ret_val)
			return ret_val;
	}

2385 2386 2387 2388
	/* Setup link and flow control */
	ret_val = e1000_setup_link_ich8lan(hw);

	/* Set the transmit descriptor write-back policy for both queues */
2389
	txdctl = er32(TXDCTL(0));
2390 2391 2392 2393
	txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
		 E1000_TXDCTL_FULL_TX_DESC_WB;
	txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
		 E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
2394 2395
	ew32(TXDCTL(0), txdctl);
	txdctl = er32(TXDCTL(1));
2396 2397 2398 2399
	txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
		 E1000_TXDCTL_FULL_TX_DESC_WB;
	txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
		 E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
2400
	ew32(TXDCTL(1), txdctl);
2401

2402 2403 2404 2405
	/*
	 * ICH8 has opposite polarity of no_snoop bits.
	 * By default, we should use snoop behavior.
	 */
2406 2407 2408 2409 2410 2411 2412 2413 2414 2415
	if (mac->type == e1000_ich8lan)
		snoop = PCIE_ICH8_SNOOP_ALL;
	else
		snoop = (u32) ~(PCIE_NO_SNOOP_ALL);
	e1000e_set_pcie_no_snoop(hw, snoop);

	ctrl_ext = er32(CTRL_EXT);
	ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
	ew32(CTRL_EXT, ctrl_ext);

2416 2417
	/*
	 * Clear all of the statistics registers (clear on read).  It is
2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439
	 * important that we do this after we have tried to establish link
	 * because the symbol error count will increment wildly if there
	 * is no link.
	 */
	e1000_clear_hw_cntrs_ich8lan(hw);

	return 0;
}
/**
 *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
 *  @hw: pointer to the HW structure
 *
 *  Sets/Clears required hardware bits necessary for correctly setting up the
 *  hardware for transmit and receive.
 **/
static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
{
	u32 reg;

	/* Extended Device Control */
	reg = er32(CTRL_EXT);
	reg |= (1 << 22);
2440 2441 2442
	/* Enable PHY low-power state when MAC is at D3 w/o WoL */
	if (hw->mac.type >= e1000_pchlan)
		reg |= E1000_CTRL_EXT_PHYPDEN;
2443 2444 2445
	ew32(CTRL_EXT, reg);

	/* Transmit Descriptor Control 0 */
2446
	reg = er32(TXDCTL(0));
2447
	reg |= (1 << 22);
2448
	ew32(TXDCTL(0), reg);
2449 2450

	/* Transmit Descriptor Control 1 */
2451
	reg = er32(TXDCTL(1));
2452
	reg |= (1 << 22);
2453
	ew32(TXDCTL(1), reg);
2454 2455

	/* Transmit Arbitration Control 0 */
2456
	reg = er32(TARC(0));
2457 2458 2459
	if (hw->mac.type == e1000_ich8lan)
		reg |= (1 << 28) | (1 << 29);
	reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
2460
	ew32(TARC(0), reg);
2461 2462

	/* Transmit Arbitration Control 1 */
2463
	reg = er32(TARC(1));
2464 2465 2466 2467 2468
	if (er32(TCTL) & E1000_TCTL_MULR)
		reg &= ~(1 << 28);
	else
		reg |= (1 << 28);
	reg |= (1 << 24) | (1 << 26) | (1 << 30);
2469
	ew32(TARC(1), reg);
2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495

	/* Device Status */
	if (hw->mac.type == e1000_ich8lan) {
		reg = er32(STATUS);
		reg &= ~(1 << 31);
		ew32(STATUS, reg);
	}
}

/**
 *  e1000_setup_link_ich8lan - Setup flow control and link settings
 *  @hw: pointer to the HW structure
 *
 *  Determines which flow control settings to use, then configures flow
 *  control.  Calls the appropriate media-specific link configuration
 *  function.  Assuming the adapter has a valid link partner, a valid link
 *  should be established.  Assumes the hardware has previously been reset
 *  and the transmitter and receiver are not enabled.
 **/
static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
{
	s32 ret_val;

	if (e1000_check_reset_block(hw))
		return 0;

2496 2497
	/*
	 * ICH parts do not have a word in the NVM to determine
2498 2499 2500
	 * the default flow control setting, so we explicitly
	 * set it to full.
	 */
2501 2502 2503 2504 2505 2506 2507
	if (hw->fc.requested_mode == e1000_fc_default) {
		/* Workaround h/w hang when Tx flow control enabled */
		if (hw->mac.type == e1000_pchlan)
			hw->fc.requested_mode = e1000_fc_rx_pause;
		else
			hw->fc.requested_mode = e1000_fc_full;
	}
2508

2509 2510 2511 2512 2513
	/*
	 * Save off the requested flow control mode for use later.  Depending
	 * on the link partner's capabilities, we may or may not use this mode.
	 */
	hw->fc.current_mode = hw->fc.requested_mode;
2514

2515 2516
	hw_dbg(hw, "After fix-ups FlowControl is now = %x\n",
		hw->fc.current_mode);
2517 2518 2519 2520 2521 2522

	/* Continue to configure the copper link. */
	ret_val = e1000_setup_copper_link_ich8lan(hw);
	if (ret_val)
		return ret_val;

2523
	ew32(FCTTV, hw->fc.pause_time);
2524 2525 2526 2527 2528 2529 2530 2531
	if ((hw->phy.type == e1000_phy_82578) ||
	    (hw->phy.type == e1000_phy_82577)) {
		ret_val = hw->phy.ops.write_phy_reg(hw,
		                             PHY_REG(BM_PORT_CTRL_PAGE, 27),
		                             hw->fc.pause_time);
		if (ret_val)
			return ret_val;
	}
2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554

	return e1000e_set_fc_watermarks(hw);
}

/**
 *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
 *  @hw: pointer to the HW structure
 *
 *  Configures the kumeran interface to the PHY to wait the appropriate time
 *  when polling the PHY, then call the generic setup_copper_link to finish
 *  configuring the copper link.
 **/
static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
{
	u32 ctrl;
	s32 ret_val;
	u16 reg_data;

	ctrl = er32(CTRL);
	ctrl |= E1000_CTRL_SLU;
	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
	ew32(CTRL, ctrl);

2555 2556
	/*
	 * Set the mac to wait the maximum time between each iteration
2557
	 * and increase the max iterations when polling the phy;
2558 2559
	 * this fixes erroneous timeouts at 10Mbps.
	 */
2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570
	ret_val = e1000e_write_kmrn_reg(hw, GG82563_REG(0x34, 4), 0xFFFF);
	if (ret_val)
		return ret_val;
	ret_val = e1000e_read_kmrn_reg(hw, GG82563_REG(0x34, 9), &reg_data);
	if (ret_val)
		return ret_val;
	reg_data |= 0x3F;
	ret_val = e1000e_write_kmrn_reg(hw, GG82563_REG(0x34, 9), reg_data);
	if (ret_val)
		return ret_val;

2571 2572
	switch (hw->phy.type) {
	case e1000_phy_igp_3:
2573 2574 2575
		ret_val = e1000e_copper_link_setup_igp(hw);
		if (ret_val)
			return ret_val;
2576 2577 2578
		break;
	case e1000_phy_bm:
	case e1000_phy_82578:
2579 2580 2581
		ret_val = e1000e_copper_link_setup_m88(hw);
		if (ret_val)
			return ret_val;
2582 2583 2584 2585 2586 2587 2588 2589 2590
		break;
	case e1000_phy_82577:
		ret_val = e1000_copper_link_setup_82577(hw);
		if (ret_val)
			return ret_val;
		break;
	case e1000_phy_ife:
		ret_val = hw->phy.ops.read_phy_reg(hw, IFE_PHY_MDIX_CONTROL,
		                               &reg_data);
2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607
		if (ret_val)
			return ret_val;

		reg_data &= ~IFE_PMC_AUTO_MDIX;

		switch (hw->phy.mdix) {
		case 1:
			reg_data &= ~IFE_PMC_FORCE_MDIX;
			break;
		case 2:
			reg_data |= IFE_PMC_FORCE_MDIX;
			break;
		case 0:
		default:
			reg_data |= IFE_PMC_AUTO_MDIX;
			break;
		}
2608 2609
		ret_val = hw->phy.ops.write_phy_reg(hw, IFE_PHY_MDIX_CONTROL,
		                                reg_data);
2610 2611
		if (ret_val)
			return ret_val;
2612 2613 2614
		break;
	default:
		break;
2615
	}
2616 2617 2618 2619 2620 2621 2622 2623 2624
	return e1000e_setup_copper_link(hw);
}

/**
 *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
 *  @hw: pointer to the HW structure
 *  @speed: pointer to store current link speed
 *  @duplex: pointer to store the current link duplex
 *
2625
 *  Calls the generic get_speed_and_duplex to retrieve the current link
2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637
 *  information and then calls the Kumeran lock loss workaround for links at
 *  gigabit speeds.
 **/
static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
					  u16 *duplex)
{
	s32 ret_val;

	ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
	if (ret_val)
		return ret_val;

2638 2639 2640 2641 2642 2643 2644 2645
	if ((hw->mac.type == e1000_pchlan) && (*speed == SPEED_1000)) {
		ret_val = e1000e_write_kmrn_reg(hw,
		                                  E1000_KMRNCTRLSTA_K1_CONFIG,
		                                  E1000_KMRNCTRLSTA_K1_DISABLE);
		if (ret_val)
			return ret_val;
	}

2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680
	if ((hw->mac.type == e1000_ich8lan) &&
	    (hw->phy.type == e1000_phy_igp_3) &&
	    (*speed == SPEED_1000)) {
		ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
	}

	return ret_val;
}

/**
 *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
 *  @hw: pointer to the HW structure
 *
 *  Work-around for 82566 Kumeran PCS lock loss:
 *  On link status change (i.e. PCI reset, speed change) and link is up and
 *  speed is gigabit-
 *    0) if workaround is optionally disabled do nothing
 *    1) wait 1ms for Kumeran link to come up
 *    2) check Kumeran Diagnostic register PCS lock loss bit
 *    3) if not set the link is locked (all is good), otherwise...
 *    4) reset the PHY
 *    5) repeat up to 10 times
 *  Note: this is only called for IGP3 copper when speed is 1gb.
 **/
static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
{
	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
	u32 phy_ctrl;
	s32 ret_val;
	u16 i, data;
	bool link;

	if (!dev_spec->kmrn_lock_loss_workaround_enabled)
		return 0;

2681 2682
	/*
	 * Make sure link is up before proceeding.  If not just return.
2683
	 * Attempting this while link is negotiating fouled up link
2684 2685
	 * stability
	 */
2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713
	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
	if (!link)
		return 0;

	for (i = 0; i < 10; i++) {
		/* read once to clear */
		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
		if (ret_val)
			return ret_val;
		/* and again to get new status */
		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
		if (ret_val)
			return ret_val;

		/* check for PCS lock */
		if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
			return 0;

		/* Issue PHY reset */
		e1000_phy_hw_reset(hw);
		mdelay(5);
	}
	/* Disable GigE link negotiation */
	phy_ctrl = er32(PHY_CTRL);
	phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
		     E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
	ew32(PHY_CTRL, phy_ctrl);

2714 2715 2716 2717
	/*
	 * Call gig speed drop workaround on Gig disable before accessing
	 * any PHY registers
	 */
2718 2719 2720 2721 2722 2723 2724
	e1000e_gig_downshift_workaround_ich8lan(hw);

	/* unable to acquire PCS lock */
	return -E1000_ERR_PHY;
}

/**
2725
 *  e1000_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
2726
 *  @hw: pointer to the HW structure
2727
 *  @state: boolean value used to set the current Kumeran workaround state
2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771
 *
 *  If ICH8, set the current Kumeran workaround state (enabled - TRUE
 *  /disabled - FALSE).
 **/
void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
						 bool state)
{
	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;

	if (hw->mac.type != e1000_ich8lan) {
		hw_dbg(hw, "Workaround applies to ICH8 only.\n");
		return;
	}

	dev_spec->kmrn_lock_loss_workaround_enabled = state;
}

/**
 *  e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
 *  @hw: pointer to the HW structure
 *
 *  Workaround for 82566 power-down on D3 entry:
 *    1) disable gigabit link
 *    2) write VR power-down enable
 *    3) read it back
 *  Continue if successful, else issue LCD reset and repeat
 **/
void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
{
	u32 reg;
	u16 data;
	u8  retry = 0;

	if (hw->phy.type != e1000_phy_igp_3)
		return;

	/* Try the workaround twice (if needed) */
	do {
		/* Disable link */
		reg = er32(PHY_CTRL);
		reg |= (E1000_PHY_CTRL_GBE_DISABLE |
			E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
		ew32(PHY_CTRL, reg);

2772 2773 2774 2775
		/*
		 * Call gig speed drop workaround on Gig disable before
		 * accessing any PHY registers
		 */
2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801
		if (hw->mac.type == e1000_ich8lan)
			e1000e_gig_downshift_workaround_ich8lan(hw);

		/* Write VR power-down enable */
		e1e_rphy(hw, IGP3_VR_CTRL, &data);
		data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
		e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);

		/* Read it back and test */
		e1e_rphy(hw, IGP3_VR_CTRL, &data);
		data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
		if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
			break;

		/* Issue PHY reset and repeat at most one more time */
		reg = er32(CTRL);
		ew32(CTRL, reg | E1000_CTRL_PHY_RST);
		retry++;
	} while (retry);
}

/**
 *  e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
 *  @hw: pointer to the HW structure
 *
 *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
2802
 *  LPLU, Gig disable, MDIC PHY reset):
2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829
 *    1) Set Kumeran Near-end loopback
 *    2) Clear Kumeran Near-end loopback
 *  Should only be called for ICH8[m] devices with IGP_3 Phy.
 **/
void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
{
	s32 ret_val;
	u16 reg_data;

	if ((hw->mac.type != e1000_ich8lan) ||
	    (hw->phy.type != e1000_phy_igp_3))
		return;

	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
				      &reg_data);
	if (ret_val)
		return;
	reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
				       reg_data);
	if (ret_val)
		return;
	reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
				       reg_data);
}

2830 2831 2832 2833 2834 2835 2836 2837 2838
/**
 *  e1000e_disable_gig_wol_ich8lan - disable gig during WoL
 *  @hw: pointer to the HW structure
 *
 *  During S0 to Sx transition, it is possible the link remains at gig
 *  instead of negotiating to a lower speed.  Before going to Sx, set
 *  'LPLU Enabled' and 'Gig Disable' to force link speed negotiation
 *  to a lower speed.
 *
2839
 *  Should only be called for applicable parts.
2840 2841 2842 2843 2844
 **/
void e1000e_disable_gig_wol_ich8lan(struct e1000_hw *hw)
{
	u32 phy_ctrl;

2845 2846 2847 2848
	switch (hw->mac.type) {
	case e1000_ich9lan:
	case e1000_ich10lan:
	case e1000_pchlan:
2849 2850 2851 2852
		phy_ctrl = er32(PHY_CTRL);
		phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU |
		            E1000_PHY_CTRL_GBE_DISABLE;
		ew32(PHY_CTRL, phy_ctrl);
2853 2854 2855 2856 2857 2858

		/* Workaround SWFLAG unexpectedly set during S0->Sx */
		if (hw->mac.type == e1000_pchlan)
			udelay(500);
	default:
		break;
2859 2860 2861 2862 2863
	}

	return;
}

2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879
/**
 *  e1000_cleanup_led_ich8lan - Restore the default LED operation
 *  @hw: pointer to the HW structure
 *
 *  Return the LED back to the default configuration.
 **/
static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
{
	if (hw->phy.type == e1000_phy_ife)
		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);

	ew32(LEDCTL, hw->mac.ledctl_default);
	return 0;
}

/**
2880
 *  e1000_led_on_ich8lan - Turn LEDs on
2881 2882
 *  @hw: pointer to the HW structure
 *
2883
 *  Turn on the LEDs.
2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895
 **/
static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
{
	if (hw->phy.type == e1000_phy_ife)
		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
				(IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));

	ew32(LEDCTL, hw->mac.ledctl_mode2);
	return 0;
}

/**
2896
 *  e1000_led_off_ich8lan - Turn LEDs off
2897 2898
 *  @hw: pointer to the HW structure
 *
2899
 *  Turn off the LEDs.
2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910
 **/
static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
{
	if (hw->phy.type == e1000_phy_ife)
		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
			       (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF));

	ew32(LEDCTL, hw->mac.ledctl_mode1);
	return 0;
}

2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996
/**
 *  e1000_setup_led_pchlan - Configures SW controllable LED
 *  @hw: pointer to the HW structure
 *
 *  This prepares the SW controllable LED for use.
 **/
static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
{
	return hw->phy.ops.write_phy_reg(hw, HV_LED_CONFIG,
					(u16)hw->mac.ledctl_mode1);
}

/**
 *  e1000_cleanup_led_pchlan - Restore the default LED operation
 *  @hw: pointer to the HW structure
 *
 *  Return the LED back to the default configuration.
 **/
static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
{
	return hw->phy.ops.write_phy_reg(hw, HV_LED_CONFIG,
					(u16)hw->mac.ledctl_default);
}

/**
 *  e1000_led_on_pchlan - Turn LEDs on
 *  @hw: pointer to the HW structure
 *
 *  Turn on the LEDs.
 **/
static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
{
	u16 data = (u16)hw->mac.ledctl_mode2;
	u32 i, led;

	/*
	 * If no link, then turn LED on by setting the invert bit
	 * for each LED that's mode is "link_up" in ledctl_mode2.
	 */
	if (!(er32(STATUS) & E1000_STATUS_LU)) {
		for (i = 0; i < 3; i++) {
			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
			if ((led & E1000_PHY_LED0_MODE_MASK) !=
			    E1000_LEDCTL_MODE_LINK_UP)
				continue;
			if (led & E1000_PHY_LED0_IVRT)
				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
			else
				data |= (E1000_PHY_LED0_IVRT << (i * 5));
		}
	}

	return hw->phy.ops.write_phy_reg(hw, HV_LED_CONFIG, data);
}

/**
 *  e1000_led_off_pchlan - Turn LEDs off
 *  @hw: pointer to the HW structure
 *
 *  Turn off the LEDs.
 **/
static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
{
	u16 data = (u16)hw->mac.ledctl_mode1;
	u32 i, led;

	/*
	 * If no link, then turn LED off by clearing the invert bit
	 * for each LED that's mode is "link_up" in ledctl_mode1.
	 */
	if (!(er32(STATUS) & E1000_STATUS_LU)) {
		for (i = 0; i < 3; i++) {
			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
			if ((led & E1000_PHY_LED0_MODE_MASK) !=
			    E1000_LEDCTL_MODE_LINK_UP)
				continue;
			if (led & E1000_PHY_LED0_IVRT)
				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
			else
				data |= (E1000_PHY_LED0_IVRT << (i * 5));
		}
	}

	return hw->phy.ops.write_phy_reg(hw, HV_LED_CONFIG, data);
}

2997 2998 2999 3000 3001 3002 3003
/**
 *  e1000_get_cfg_done_ich8lan - Read config done bit
 *  @hw: pointer to the HW structure
 *
 *  Read the management control register for the config done bit for
 *  completion status.  NOTE: silicon which is EEPROM-less will fail trying
 *  to read the config done bit, so an error is *ONLY* logged and returns
3004
 *  0.  If we were to return with error, EEPROM-less silicon
3005 3006 3007 3008 3009 3010
 *  would not be able to be reset or change link.
 **/
static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
{
	u32 bank = 0;

3011 3012 3013 3014 3015 3016 3017 3018 3019 3020
	if (hw->mac.type >= e1000_pchlan) {
		u32 status = er32(STATUS);

		if (status & E1000_STATUS_PHYRA)
			ew32(STATUS, status & ~E1000_STATUS_PHYRA);
		else
			hw_dbg(hw,
			       "PHY Reset Asserted not set - needs delay\n");
	}

3021 3022 3023
	e1000e_get_cfg_done(hw);

	/* If EEPROM is not marked present, init the IGP 3 PHY manually */
3024 3025
	if ((hw->mac.type != e1000_ich10lan) &&
	    (hw->mac.type != e1000_pchlan)) {
3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040
		if (((er32(EECD) & E1000_EECD_PRES) == 0) &&
		    (hw->phy.type == e1000_phy_igp_3)) {
			e1000e_phy_init_script_igp3(hw);
		}
	} else {
		if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
			/* Maybe we should do a basic PHY config */
			hw_dbg(hw, "EEPROM not present\n");
			return -E1000_ERR_CONFIG;
		}
	}

	return 0;
}

3041 3042 3043 3044 3045 3046 3047 3048 3049 3050
/**
 *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
 *  @hw: pointer to the HW structure
 *
 *  Clears hardware counters specific to the silicon family and calls
 *  clear_hw_cntrs_generic to clear all general purpose counters.
 **/
static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
{
	u32 temp;
3051
	u16 phy_data;
3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068

	e1000e_clear_hw_cntrs_base(hw);

	temp = er32(ALGNERRC);
	temp = er32(RXERRC);
	temp = er32(TNCRS);
	temp = er32(CEXTERR);
	temp = er32(TSCTC);
	temp = er32(TSCTFC);

	temp = er32(MGTPRC);
	temp = er32(MGTPDC);
	temp = er32(MGTPTC);

	temp = er32(IAC);
	temp = er32(ICRXOC);

3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086
	/* Clear PHY statistics registers */
	if ((hw->phy.type == e1000_phy_82578) ||
	    (hw->phy.type == e1000_phy_82577)) {
		hw->phy.ops.read_phy_reg(hw, HV_SCC_UPPER, &phy_data);
		hw->phy.ops.read_phy_reg(hw, HV_SCC_LOWER, &phy_data);
		hw->phy.ops.read_phy_reg(hw, HV_ECOL_UPPER, &phy_data);
		hw->phy.ops.read_phy_reg(hw, HV_ECOL_LOWER, &phy_data);
		hw->phy.ops.read_phy_reg(hw, HV_MCC_UPPER, &phy_data);
		hw->phy.ops.read_phy_reg(hw, HV_MCC_LOWER, &phy_data);
		hw->phy.ops.read_phy_reg(hw, HV_LATECOL_UPPER, &phy_data);
		hw->phy.ops.read_phy_reg(hw, HV_LATECOL_LOWER, &phy_data);
		hw->phy.ops.read_phy_reg(hw, HV_COLC_UPPER, &phy_data);
		hw->phy.ops.read_phy_reg(hw, HV_COLC_LOWER, &phy_data);
		hw->phy.ops.read_phy_reg(hw, HV_DC_UPPER, &phy_data);
		hw->phy.ops.read_phy_reg(hw, HV_DC_LOWER, &phy_data);
		hw->phy.ops.read_phy_reg(hw, HV_TNCRS_UPPER, &phy_data);
		hw->phy.ops.read_phy_reg(hw, HV_TNCRS_LOWER, &phy_data);
	}
3087 3088 3089
}

static struct e1000_mac_operations ich8_mac_ops = {
3090
	.id_led_init		= e1000e_id_led_init,
3091
	.check_mng_mode		= e1000_check_mng_mode_ich8lan,
3092
	.check_for_link		= e1000_check_for_copper_link_ich8lan,
3093
	/* cleanup_led dependent on mac type */
3094 3095 3096
	.clear_hw_cntrs		= e1000_clear_hw_cntrs_ich8lan,
	.get_bus_info		= e1000_get_bus_info_ich8lan,
	.get_link_up_info	= e1000_get_link_up_info_ich8lan,
3097 3098
	/* led_on dependent on mac type */
	/* led_off dependent on mac type */
3099
	.update_mc_addr_list	= e1000e_update_mc_addr_list_generic,
3100 3101 3102 3103
	.reset_hw		= e1000_reset_hw_ich8lan,
	.init_hw		= e1000_init_hw_ich8lan,
	.setup_link		= e1000_setup_link_ich8lan,
	.setup_physical_interface= e1000_setup_copper_link_ich8lan,
3104
	/* id_led_init dependent on mac type */
3105 3106 3107 3108 3109 3110 3111
};

static struct e1000_phy_operations ich8_phy_ops = {
	.acquire_phy		= e1000_acquire_swflag_ich8lan,
	.check_reset_block	= e1000_check_reset_block_ich8lan,
	.commit_phy		= NULL,
	.force_speed_duplex	= e1000_phy_force_speed_duplex_ich8lan,
3112
	.get_cfg_done		= e1000_get_cfg_done_ich8lan,
3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135
	.get_cable_length	= e1000e_get_cable_length_igp_2,
	.get_phy_info		= e1000_get_phy_info_ich8lan,
	.read_phy_reg		= e1000e_read_phy_reg_igp,
	.release_phy		= e1000_release_swflag_ich8lan,
	.reset_phy		= e1000_phy_hw_reset_ich8lan,
	.set_d0_lplu_state	= e1000_set_d0_lplu_state_ich8lan,
	.set_d3_lplu_state	= e1000_set_d3_lplu_state_ich8lan,
	.write_phy_reg		= e1000e_write_phy_reg_igp,
};

static struct e1000_nvm_operations ich8_nvm_ops = {
	.acquire_nvm		= e1000_acquire_swflag_ich8lan,
	.read_nvm	 	= e1000_read_nvm_ich8lan,
	.release_nvm		= e1000_release_swflag_ich8lan,
	.update_nvm		= e1000_update_nvm_checksum_ich8lan,
	.valid_led_default	= e1000_valid_led_default_ich8lan,
	.validate_nvm		= e1000_validate_nvm_checksum_ich8lan,
	.write_nvm		= e1000_write_nvm_ich8lan,
};

struct e1000_info e1000_ich8_info = {
	.mac			= e1000_ich8lan,
	.flags			= FLAG_HAS_WOL
3136
				  | FLAG_IS_ICH
3137 3138 3139 3140 3141 3142
				  | FLAG_RX_CSUM_ENABLED
				  | FLAG_HAS_CTRLEXT_ON_LOAD
				  | FLAG_HAS_AMT
				  | FLAG_HAS_FLASH
				  | FLAG_APME_IN_WUC,
	.pba			= 8,
3143
	.max_hw_frame_size	= ETH_FRAME_LEN + ETH_FCS_LEN,
J
Jeff Kirsher 已提交
3144
	.get_variants		= e1000_get_variants_ich8lan,
3145 3146 3147 3148 3149 3150 3151 3152
	.mac_ops		= &ich8_mac_ops,
	.phy_ops		= &ich8_phy_ops,
	.nvm_ops		= &ich8_nvm_ops,
};

struct e1000_info e1000_ich9_info = {
	.mac			= e1000_ich9lan,
	.flags			= FLAG_HAS_JUMBO_FRAMES
3153
				  | FLAG_IS_ICH
3154 3155 3156 3157 3158 3159 3160 3161
				  | FLAG_HAS_WOL
				  | FLAG_RX_CSUM_ENABLED
				  | FLAG_HAS_CTRLEXT_ON_LOAD
				  | FLAG_HAS_AMT
				  | FLAG_HAS_ERT
				  | FLAG_HAS_FLASH
				  | FLAG_APME_IN_WUC,
	.pba			= 10,
3162
	.max_hw_frame_size	= DEFAULT_JUMBO,
J
Jeff Kirsher 已提交
3163
	.get_variants		= e1000_get_variants_ich8lan,
3164 3165 3166 3167 3168
	.mac_ops		= &ich8_mac_ops,
	.phy_ops		= &ich8_phy_ops,
	.nvm_ops		= &ich8_nvm_ops,
};

3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180
struct e1000_info e1000_ich10_info = {
	.mac			= e1000_ich10lan,
	.flags			= FLAG_HAS_JUMBO_FRAMES
				  | FLAG_IS_ICH
				  | FLAG_HAS_WOL
				  | FLAG_RX_CSUM_ENABLED
				  | FLAG_HAS_CTRLEXT_ON_LOAD
				  | FLAG_HAS_AMT
				  | FLAG_HAS_ERT
				  | FLAG_HAS_FLASH
				  | FLAG_APME_IN_WUC,
	.pba			= 10,
3181
	.max_hw_frame_size	= DEFAULT_JUMBO,
3182 3183 3184 3185 3186
	.get_variants		= e1000_get_variants_ich8lan,
	.mac_ops		= &ich8_mac_ops,
	.phy_ops		= &ich8_phy_ops,
	.nvm_ops		= &ich8_nvm_ops,
};
3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204

struct e1000_info e1000_pch_info = {
	.mac			= e1000_pchlan,
	.flags			= FLAG_IS_ICH
				  | FLAG_HAS_WOL
				  | FLAG_RX_CSUM_ENABLED
				  | FLAG_HAS_CTRLEXT_ON_LOAD
				  | FLAG_HAS_AMT
				  | FLAG_HAS_FLASH
				  | FLAG_HAS_JUMBO_FRAMES
				  | FLAG_APME_IN_WUC,
	.pba			= 26,
	.max_hw_frame_size	= 4096,
	.get_variants		= e1000_get_variants_ich8lan,
	.mac_ops		= &ich8_mac_ops,
	.phy_ops		= &ich8_phy_ops,
	.nvm_ops		= &ich8_nvm_ops,
};