i915_gem.c 106.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
/*
 * Copyright © 2008 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

#include "drmP.h"
#include "drm.h"
#include "i915_drm.h"
#include "i915_drv.h"
C
Chris Wilson 已提交
32
#include "i915_trace.h"
33
#include "intel_drv.h"
34
#include <linux/shmem_fs.h>
35
#include <linux/slab.h>
36
#include <linux/swap.h>
J
Jesse Barnes 已提交
37
#include <linux/pci.h>
38

39
static __must_check int i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj);
40 41
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
42 43 44 45 46
static __must_check int i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj,
							  bool write);
static __must_check int i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
								  uint64_t offset,
								  uint64_t size);
47
static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj);
48 49 50
static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
						    unsigned alignment,
						    bool map_and_fenceable);
51 52
static void i915_gem_clear_fence_reg(struct drm_device *dev,
				     struct drm_i915_fence_reg *reg);
53 54
static int i915_gem_phys_pwrite(struct drm_device *dev,
				struct drm_i915_gem_object *obj,
55
				struct drm_i915_gem_pwrite *args,
56 57
				struct drm_file *file);
static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj);
58

59
static int i915_gem_inactive_shrink(struct shrinker *shrinker,
60
				    struct shrink_control *sc);
61

62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
				  size_t size)
{
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
				     size_t size)
{
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
}

77 78
static int
i915_gem_wait_for_error(struct drm_device *dev)
79 80 81 82 83 84 85 86 87 88 89 90 91
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct completion *x = &dev_priv->error_completion;
	unsigned long flags;
	int ret;

	if (!atomic_read(&dev_priv->mm.wedged))
		return 0;

	ret = wait_for_completion_interruptible(x);
	if (ret)
		return ret;

92 93 94 95 96 97 98 99 100 101 102
	if (atomic_read(&dev_priv->mm.wedged)) {
		/* GPU is hung, bump the completion count to account for
		 * the token we just consumed so that we never hit zero and
		 * end up waiting upon a subsequent completion event that
		 * will never happen.
		 */
		spin_lock_irqsave(&x->wait.lock, flags);
		x->done++;
		spin_unlock_irqrestore(&x->wait.lock, flags);
	}
	return 0;
103 104
}

105
int i915_mutex_lock_interruptible(struct drm_device *dev)
106 107 108
{
	int ret;

109
	ret = i915_gem_wait_for_error(dev);
110 111 112 113 114 115 116
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

117
	WARN_ON(i915_verify_lists(dev));
118 119
	return 0;
}
120

121
static inline bool
122
i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
123
{
124
	return obj->gtt_space && !obj->active && obj->pin_count == 0;
125 126
}

127 128 129 130
void i915_gem_do_init(struct drm_device *dev,
		      unsigned long start,
		      unsigned long mappable_end,
		      unsigned long end)
131 132 133
{
	drm_i915_private_t *dev_priv = dev->dev_private;

134
	drm_mm_init(&dev_priv->mm.gtt_space, start, end - start);
135

136 137 138
	dev_priv->mm.gtt_start = start;
	dev_priv->mm.gtt_mappable_end = mappable_end;
	dev_priv->mm.gtt_end = end;
139
	dev_priv->mm.gtt_total = end - start;
140
	dev_priv->mm.mappable_gtt_total = min(end, mappable_end) - start;
141 142 143

	/* Take over this portion of the GTT */
	intel_gtt_clear_range(start / PAGE_SIZE, (end-start) / PAGE_SIZE);
J
Jesse Barnes 已提交
144
}
145

J
Jesse Barnes 已提交
146 147
int
i915_gem_init_ioctl(struct drm_device *dev, void *data,
148
		    struct drm_file *file)
J
Jesse Barnes 已提交
149 150
{
	struct drm_i915_gem_init *args = data;
151 152 153 154

	if (args->gtt_start >= args->gtt_end ||
	    (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
		return -EINVAL;
J
Jesse Barnes 已提交
155 156

	mutex_lock(&dev->struct_mutex);
157
	i915_gem_do_init(dev, args->gtt_start, args->gtt_end, args->gtt_end);
158 159
	mutex_unlock(&dev->struct_mutex);

160
	return 0;
161 162
}

163 164
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
165
			    struct drm_file *file)
166
{
167
	struct drm_i915_private *dev_priv = dev->dev_private;
168
	struct drm_i915_gem_get_aperture *args = data;
169 170
	struct drm_i915_gem_object *obj;
	size_t pinned;
171 172 173 174

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

175
	pinned = 0;
176
	mutex_lock(&dev->struct_mutex);
177 178
	list_for_each_entry(obj, &dev_priv->mm.pinned_list, mm_list)
		pinned += obj->gtt_space->size;
179
	mutex_unlock(&dev->struct_mutex);
180

181
	args->aper_size = dev_priv->mm.gtt_total;
182
	args->aper_available_size = args->aper_size - pinned;
183

184 185 186
	return 0;
}

187 188 189 190 191
static int
i915_gem_create(struct drm_file *file,
		struct drm_device *dev,
		uint64_t size,
		uint32_t *handle_p)
192
{
193
	struct drm_i915_gem_object *obj;
194 195
	int ret;
	u32 handle;
196

197
	size = roundup(size, PAGE_SIZE);
198 199
	if (size == 0)
		return -EINVAL;
200 201

	/* Allocate the new object */
202
	obj = i915_gem_alloc_object(dev, size);
203 204 205
	if (obj == NULL)
		return -ENOMEM;

206
	ret = drm_gem_handle_create(file, &obj->base, &handle);
207
	if (ret) {
208 209
		drm_gem_object_release(&obj->base);
		i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
210
		kfree(obj);
211
		return ret;
212
	}
213

214
	/* drop reference from allocate - handle holds it now */
215
	drm_gem_object_unreference(&obj->base);
216 217
	trace_i915_gem_object_create(obj);

218
	*handle_p = handle;
219 220 221
	return 0;
}

222 223 224 225 226 227
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
228
	args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
	args->size = args->pitch * args->height;
	return i915_gem_create(file, dev,
			       args->size, &args->handle);
}

int i915_gem_dumb_destroy(struct drm_file *file,
			  struct drm_device *dev,
			  uint32_t handle)
{
	return drm_gem_handle_delete(file, handle);
}

/**
 * Creates a new mm object and returns a handle to it.
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
	struct drm_i915_gem_create *args = data;
	return i915_gem_create(file, dev,
			       args->size, &args->handle);
}

253
static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
254
{
255
	drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
256 257

	return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
258
		obj->tiling_mode != I915_TILING_NONE;
259 260
}

261
static inline void
262 263 264 265 266 267 268 269
slow_shmem_copy(struct page *dst_page,
		int dst_offset,
		struct page *src_page,
		int src_offset,
		int length)
{
	char *dst_vaddr, *src_vaddr;

270 271
	dst_vaddr = kmap(dst_page);
	src_vaddr = kmap(src_page);
272 273 274

	memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);

275 276
	kunmap(src_page);
	kunmap(dst_page);
277 278
}

279
static inline void
280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
slow_shmem_bit17_copy(struct page *gpu_page,
		      int gpu_offset,
		      struct page *cpu_page,
		      int cpu_offset,
		      int length,
		      int is_read)
{
	char *gpu_vaddr, *cpu_vaddr;

	/* Use the unswizzled path if this page isn't affected. */
	if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
		if (is_read)
			return slow_shmem_copy(cpu_page, cpu_offset,
					       gpu_page, gpu_offset, length);
		else
			return slow_shmem_copy(gpu_page, gpu_offset,
					       cpu_page, cpu_offset, length);
	}

299 300
	gpu_vaddr = kmap(gpu_page);
	cpu_vaddr = kmap(cpu_page);
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323

	/* Copy the data, XORing A6 with A17 (1). The user already knows he's
	 * XORing with the other bits (A9 for Y, A9 and A10 for X)
	 */
	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		if (is_read) {
			memcpy(cpu_vaddr + cpu_offset,
			       gpu_vaddr + swizzled_gpu_offset,
			       this_length);
		} else {
			memcpy(gpu_vaddr + swizzled_gpu_offset,
			       cpu_vaddr + cpu_offset,
			       this_length);
		}
		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

324 325
	kunmap(cpu_page);
	kunmap(gpu_page);
326 327
}

328 329 330 331 332 333
/**
 * This is the fast shmem pread path, which attempts to copy_from_user directly
 * from the backing pages of the object to the user's address space.  On a
 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
 */
static int
334 335
i915_gem_shmem_pread_fast(struct drm_device *dev,
			  struct drm_i915_gem_object *obj,
336
			  struct drm_i915_gem_pread *args,
337
			  struct drm_file *file)
338
{
339
	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
340
	ssize_t remain;
341
	loff_t offset;
342 343 344 345 346 347 348 349 350
	char __user *user_data;
	int page_offset, page_length;

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;

	offset = args->offset;

	while (remain > 0) {
351 352 353 354
		struct page *page;
		char *vaddr;
		int ret;

355 356 357 358 359
		/* Operation in this page
		 *
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
360
		page_offset = offset_in_page(offset);
361 362 363 364
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

365
		page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
366 367 368 369 370 371 372 373 374 375 376 377
		if (IS_ERR(page))
			return PTR_ERR(page);

		vaddr = kmap_atomic(page);
		ret = __copy_to_user_inatomic(user_data,
					      vaddr + page_offset,
					      page_length);
		kunmap_atomic(vaddr);

		mark_page_accessed(page);
		page_cache_release(page);
		if (ret)
378
			return -EFAULT;
379 380 381 382 383 384

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

385
	return 0;
386 387 388 389 390 391 392 393 394
}

/**
 * This is the fallback shmem pread path, which allocates temporary storage
 * in kernel space to copy_to_user into outside of the struct_mutex, so we
 * can copy out of the object's backing pages while holding the struct mutex
 * and not take page faults.
 */
static int
395 396
i915_gem_shmem_pread_slow(struct drm_device *dev,
			  struct drm_i915_gem_object *obj,
397
			  struct drm_i915_gem_pread *args,
398
			  struct drm_file *file)
399
{
400
	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
401 402 403 404 405
	struct mm_struct *mm = current->mm;
	struct page **user_pages;
	ssize_t remain;
	loff_t offset, pinned_pages, i;
	loff_t first_data_page, last_data_page, num_pages;
406 407
	int shmem_page_offset;
	int data_page_index, data_page_offset;
408 409 410
	int page_length;
	int ret;
	uint64_t data_ptr = args->data_ptr;
411
	int do_bit17_swizzling;
412 413 414 415 416 417 418 419 420 421 422

	remain = args->size;

	/* Pin the user pages containing the data.  We can't fault while
	 * holding the struct mutex, yet we want to hold it while
	 * dereferencing the user data.
	 */
	first_data_page = data_ptr / PAGE_SIZE;
	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
	num_pages = last_data_page - first_data_page + 1;

423
	user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
424 425 426
	if (user_pages == NULL)
		return -ENOMEM;

427
	mutex_unlock(&dev->struct_mutex);
428 429
	down_read(&mm->mmap_sem);
	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
430
				      num_pages, 1, 0, user_pages, NULL);
431
	up_read(&mm->mmap_sem);
432
	mutex_lock(&dev->struct_mutex);
433 434
	if (pinned_pages < num_pages) {
		ret = -EFAULT;
435
		goto out;
436 437
	}

438 439 440
	ret = i915_gem_object_set_cpu_read_domain_range(obj,
							args->offset,
							args->size);
441
	if (ret)
442
		goto out;
443

444
	do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
445 446 447 448

	offset = args->offset;

	while (remain > 0) {
449 450
		struct page *page;

451 452 453 454 455 456 457
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * data_page_index = page number in get_user_pages return
		 * data_page_offset = offset with data_page_index page.
		 * page_length = bytes to copy for this page
		 */
458
		shmem_page_offset = offset_in_page(offset);
459
		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
460
		data_page_offset = offset_in_page(data_ptr);
461 462 463 464 465 466 467

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;
		if ((data_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - data_page_offset;

468
		page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
469 470 471 472
		if (IS_ERR(page)) {
			ret = PTR_ERR(page);
			goto out;
		}
473

474
		if (do_bit17_swizzling) {
475
			slow_shmem_bit17_copy(page,
476
					      shmem_page_offset,
477 478 479 480 481 482 483
					      user_pages[data_page_index],
					      data_page_offset,
					      page_length,
					      1);
		} else {
			slow_shmem_copy(user_pages[data_page_index],
					data_page_offset,
484
					page,
485 486
					shmem_page_offset,
					page_length);
487
		}
488

489 490 491
		mark_page_accessed(page);
		page_cache_release(page);

492 493 494 495 496
		remain -= page_length;
		data_ptr += page_length;
		offset += page_length;
	}

497
out:
498 499
	for (i = 0; i < pinned_pages; i++) {
		SetPageDirty(user_pages[i]);
500
		mark_page_accessed(user_pages[i]);
501 502
		page_cache_release(user_pages[i]);
	}
503
	drm_free_large(user_pages);
504 505 506 507

	return ret;
}

508 509 510 511 512 513 514
/**
 * Reads data from the object referenced by handle.
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
515
		     struct drm_file *file)
516 517
{
	struct drm_i915_gem_pread *args = data;
518
	struct drm_i915_gem_object *obj;
519
	int ret = 0;
520

521 522 523 524 525 526 527 528 529 530 531 532 533
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
		       (char __user *)(uintptr_t)args->data_ptr,
		       args->size))
		return -EFAULT;

	ret = fault_in_pages_writeable((char __user *)(uintptr_t)args->data_ptr,
				       args->size);
	if (ret)
		return -EFAULT;

534
	ret = i915_mutex_lock_interruptible(dev);
535
	if (ret)
536
		return ret;
537

538
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
539
	if (&obj->base == NULL) {
540 541
		ret = -ENOENT;
		goto unlock;
542
	}
543

544
	/* Bounds check source.  */
545 546
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
547
		ret = -EINVAL;
548
		goto out;
C
Chris Wilson 已提交
549 550
	}

C
Chris Wilson 已提交
551 552
	trace_i915_gem_object_pread(obj, args->offset, args->size);

553 554 555 556
	ret = i915_gem_object_set_cpu_read_domain_range(obj,
							args->offset,
							args->size);
	if (ret)
557
		goto out;
558 559 560

	ret = -EFAULT;
	if (!i915_gem_object_needs_bit17_swizzle(obj))
561
		ret = i915_gem_shmem_pread_fast(dev, obj, args, file);
562
	if (ret == -EFAULT)
563
		ret = i915_gem_shmem_pread_slow(dev, obj, args, file);
564

565
out:
566
	drm_gem_object_unreference(&obj->base);
567
unlock:
568
	mutex_unlock(&dev->struct_mutex);
569
	return ret;
570 571
}

572 573
/* This is the fast write path which cannot handle
 * page faults in the source data
574
 */
575 576 577 578 579 580

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
581 582
{
	char *vaddr_atomic;
583
	unsigned long unwritten;
584

P
Peter Zijlstra 已提交
585
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
586 587
	unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
						      user_data, length);
P
Peter Zijlstra 已提交
588
	io_mapping_unmap_atomic(vaddr_atomic);
589
	return unwritten;
590 591 592 593 594 595
}

/* Here's the write path which can sleep for
 * page faults
 */

596
static inline void
597 598 599 600
slow_kernel_write(struct io_mapping *mapping,
		  loff_t gtt_base, int gtt_offset,
		  struct page *user_page, int user_offset,
		  int length)
601
{
602 603
	char __iomem *dst_vaddr;
	char *src_vaddr;
604

605 606 607 608 609 610 611 612 613
	dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
	src_vaddr = kmap(user_page);

	memcpy_toio(dst_vaddr + gtt_offset,
		    src_vaddr + user_offset,
		    length);

	kunmap(user_page);
	io_mapping_unmap(dst_vaddr);
614 615
}

616 617 618 619
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
 */
620
static int
621 622
i915_gem_gtt_pwrite_fast(struct drm_device *dev,
			 struct drm_i915_gem_object *obj,
623
			 struct drm_i915_gem_pwrite *args,
624
			 struct drm_file *file)
625
{
626
	drm_i915_private_t *dev_priv = dev->dev_private;
627
	ssize_t remain;
628
	loff_t offset, page_base;
629
	char __user *user_data;
630
	int page_offset, page_length;
631 632 633 634

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;

635
	offset = obj->gtt_offset + args->offset;
636 637 638 639

	while (remain > 0) {
		/* Operation in this page
		 *
640 641 642
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
643
		 */
644 645
		page_base = offset & PAGE_MASK;
		page_offset = offset_in_page(offset);
646 647 648 649 650
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		/* If we get a fault while copying data, then (presumably) our
651 652
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
653
		 */
654 655 656
		if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
				    page_offset, user_data, page_length))
			return -EFAULT;
657

658 659 660
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
661 662
	}

663
	return 0;
664 665
}

666 667 668 669 670 671 672
/**
 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
 * the memory and maps it using kmap_atomic for copying.
 *
 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
 */
673
static int
674 675
i915_gem_gtt_pwrite_slow(struct drm_device *dev,
			 struct drm_i915_gem_object *obj,
676
			 struct drm_i915_gem_pwrite *args,
677
			 struct drm_file *file)
678
{
679 680 681 682 683 684 685 686
	drm_i915_private_t *dev_priv = dev->dev_private;
	ssize_t remain;
	loff_t gtt_page_base, offset;
	loff_t first_data_page, last_data_page, num_pages;
	loff_t pinned_pages, i;
	struct page **user_pages;
	struct mm_struct *mm = current->mm;
	int gtt_page_offset, data_page_offset, data_page_index, page_length;
687
	int ret;
688 689 690 691 692 693 694 695 696 697 698 699
	uint64_t data_ptr = args->data_ptr;

	remain = args->size;

	/* Pin the user pages containing the data.  We can't fault while
	 * holding the struct mutex, and all of the pwrite implementations
	 * want to hold it while dereferencing the user data.
	 */
	first_data_page = data_ptr / PAGE_SIZE;
	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
	num_pages = last_data_page - first_data_page + 1;

700
	user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
701 702 703
	if (user_pages == NULL)
		return -ENOMEM;

704
	mutex_unlock(&dev->struct_mutex);
705 706 707 708
	down_read(&mm->mmap_sem);
	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
				      num_pages, 0, 0, user_pages, NULL);
	up_read(&mm->mmap_sem);
709
	mutex_lock(&dev->struct_mutex);
710 711 712 713
	if (pinned_pages < num_pages) {
		ret = -EFAULT;
		goto out_unpin_pages;
	}
714

715 716 717 718 719
	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin_pages;

	ret = i915_gem_object_put_fence(obj);
720
	if (ret)
721
		goto out_unpin_pages;
722

723
	offset = obj->gtt_offset + args->offset;
724 725 726 727 728 729 730 731 732 733 734

	while (remain > 0) {
		/* Operation in this page
		 *
		 * gtt_page_base = page offset within aperture
		 * gtt_page_offset = offset within page in aperture
		 * data_page_index = page number in get_user_pages return
		 * data_page_offset = offset with data_page_index page.
		 * page_length = bytes to copy for this page
		 */
		gtt_page_base = offset & PAGE_MASK;
735
		gtt_page_offset = offset_in_page(offset);
736
		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
737
		data_page_offset = offset_in_page(data_ptr);
738 739 740 741 742 743 744

		page_length = remain;
		if ((gtt_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - gtt_page_offset;
		if ((data_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - data_page_offset;

745 746 747 748 749
		slow_kernel_write(dev_priv->mm.gtt_mapping,
				  gtt_page_base, gtt_page_offset,
				  user_pages[data_page_index],
				  data_page_offset,
				  page_length);
750 751 752 753 754 755 756 757 758

		remain -= page_length;
		offset += page_length;
		data_ptr += page_length;
	}

out_unpin_pages:
	for (i = 0; i < pinned_pages; i++)
		page_cache_release(user_pages[i]);
759
	drm_free_large(user_pages);
760 761 762 763

	return ret;
}

764 765 766 767
/**
 * This is the fast shmem pwrite path, which attempts to directly
 * copy_from_user into the kmapped pages backing the object.
 */
768
static int
769 770
i915_gem_shmem_pwrite_fast(struct drm_device *dev,
			   struct drm_i915_gem_object *obj,
771
			   struct drm_i915_gem_pwrite *args,
772
			   struct drm_file *file)
773
{
774
	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
775
	ssize_t remain;
776
	loff_t offset;
777 778 779 780 781
	char __user *user_data;
	int page_offset, page_length;

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;
782

783
	offset = args->offset;
784
	obj->dirty = 1;
785 786

	while (remain > 0) {
787 788 789 790
		struct page *page;
		char *vaddr;
		int ret;

791 792 793 794 795
		/* Operation in this page
		 *
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
796
		page_offset = offset_in_page(offset);
797 798 799 800
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

801
		page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
802 803 804
		if (IS_ERR(page))
			return PTR_ERR(page);

805
		vaddr = kmap_atomic(page);
806 807 808
		ret = __copy_from_user_inatomic(vaddr + page_offset,
						user_data,
						page_length);
809
		kunmap_atomic(vaddr);
810 811 812 813 814 815 816 817 818 819

		set_page_dirty(page);
		mark_page_accessed(page);
		page_cache_release(page);

		/* If we get a fault while copying data, then (presumably) our
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
		 */
		if (ret)
820
			return -EFAULT;
821 822 823 824 825 826

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

827
	return 0;
828 829 830 831 832 833 834 835 836 837
}

/**
 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
 * the memory and maps it using kmap_atomic for copying.
 *
 * This avoids taking mmap_sem for faulting on the user's address while the
 * struct_mutex is held.
 */
static int
838 839
i915_gem_shmem_pwrite_slow(struct drm_device *dev,
			   struct drm_i915_gem_object *obj,
840
			   struct drm_i915_gem_pwrite *args,
841
			   struct drm_file *file)
842
{
843
	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
844 845 846 847 848
	struct mm_struct *mm = current->mm;
	struct page **user_pages;
	ssize_t remain;
	loff_t offset, pinned_pages, i;
	loff_t first_data_page, last_data_page, num_pages;
849
	int shmem_page_offset;
850 851 852 853
	int data_page_index,  data_page_offset;
	int page_length;
	int ret;
	uint64_t data_ptr = args->data_ptr;
854
	int do_bit17_swizzling;
855 856 857 858 859 860 861 862 863 864 865

	remain = args->size;

	/* Pin the user pages containing the data.  We can't fault while
	 * holding the struct mutex, and all of the pwrite implementations
	 * want to hold it while dereferencing the user data.
	 */
	first_data_page = data_ptr / PAGE_SIZE;
	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
	num_pages = last_data_page - first_data_page + 1;

866
	user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
867 868 869
	if (user_pages == NULL)
		return -ENOMEM;

870
	mutex_unlock(&dev->struct_mutex);
871 872 873 874
	down_read(&mm->mmap_sem);
	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
				      num_pages, 0, 0, user_pages, NULL);
	up_read(&mm->mmap_sem);
875
	mutex_lock(&dev->struct_mutex);
876 877
	if (pinned_pages < num_pages) {
		ret = -EFAULT;
878
		goto out;
879 880
	}

881
	ret = i915_gem_object_set_to_cpu_domain(obj, 1);
882
	if (ret)
883
		goto out;
884

885
	do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
886

887
	offset = args->offset;
888
	obj->dirty = 1;
889

890
	while (remain > 0) {
891 892
		struct page *page;

893 894 895 896 897 898 899
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * data_page_index = page number in get_user_pages return
		 * data_page_offset = offset with data_page_index page.
		 * page_length = bytes to copy for this page
		 */
900
		shmem_page_offset = offset_in_page(offset);
901
		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
902
		data_page_offset = offset_in_page(data_ptr);
903 904 905 906 907 908 909

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;
		if ((data_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - data_page_offset;

910
		page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
911 912 913 914 915
		if (IS_ERR(page)) {
			ret = PTR_ERR(page);
			goto out;
		}

916
		if (do_bit17_swizzling) {
917
			slow_shmem_bit17_copy(page,
918 919 920
					      shmem_page_offset,
					      user_pages[data_page_index],
					      data_page_offset,
921 922 923
					      page_length,
					      0);
		} else {
924
			slow_shmem_copy(page,
925 926 927 928
					shmem_page_offset,
					user_pages[data_page_index],
					data_page_offset,
					page_length);
929
		}
930

931 932 933 934
		set_page_dirty(page);
		mark_page_accessed(page);
		page_cache_release(page);

935 936 937
		remain -= page_length;
		data_ptr += page_length;
		offset += page_length;
938 939
	}

940
out:
941 942
	for (i = 0; i < pinned_pages; i++)
		page_cache_release(user_pages[i]);
943
	drm_free_large(user_pages);
944

945
	return ret;
946 947 948 949 950 951 952 953 954
}

/**
 * Writes data to the object referenced by handle.
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
955
		      struct drm_file *file)
956 957
{
	struct drm_i915_gem_pwrite *args = data;
958
	struct drm_i915_gem_object *obj;
959 960 961 962 963 964 965 966 967 968 969 970 971 972
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
		       (char __user *)(uintptr_t)args->data_ptr,
		       args->size))
		return -EFAULT;

	ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr,
				      args->size);
	if (ret)
		return -EFAULT;
973

974
	ret = i915_mutex_lock_interruptible(dev);
975
	if (ret)
976
		return ret;
977

978
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
979
	if (&obj->base == NULL) {
980 981
		ret = -ENOENT;
		goto unlock;
982
	}
983

984
	/* Bounds check destination. */
985 986
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
987
		ret = -EINVAL;
988
		goto out;
C
Chris Wilson 已提交
989 990
	}

C
Chris Wilson 已提交
991 992
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

993 994 995 996 997 998
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
999
	if (obj->phys_obj)
1000
		ret = i915_gem_phys_pwrite(dev, obj, args, file);
1001
	else if (obj->gtt_space &&
1002
		 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1003
		ret = i915_gem_object_pin(obj, 0, true);
1004 1005 1006
		if (ret)
			goto out;

1007 1008 1009 1010 1011
		ret = i915_gem_object_set_to_gtt_domain(obj, true);
		if (ret)
			goto out_unpin;

		ret = i915_gem_object_put_fence(obj);
1012 1013 1014 1015 1016 1017 1018 1019 1020
		if (ret)
			goto out_unpin;

		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
		if (ret == -EFAULT)
			ret = i915_gem_gtt_pwrite_slow(dev, obj, args, file);

out_unpin:
		i915_gem_object_unpin(obj);
1021
	} else {
1022 1023
		ret = i915_gem_object_set_to_cpu_domain(obj, 1);
		if (ret)
1024
			goto out;
1025

1026 1027 1028 1029 1030 1031
		ret = -EFAULT;
		if (!i915_gem_object_needs_bit17_swizzle(obj))
			ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file);
		if (ret == -EFAULT)
			ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file);
	}
1032

1033
out:
1034
	drm_gem_object_unreference(&obj->base);
1035
unlock:
1036
	mutex_unlock(&dev->struct_mutex);
1037 1038 1039 1040
	return ret;
}

/**
1041 1042
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1043 1044 1045
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1046
			  struct drm_file *file)
1047 1048
{
	struct drm_i915_gem_set_domain *args = data;
1049
	struct drm_i915_gem_object *obj;
1050 1051
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1052 1053 1054 1055 1056
	int ret;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

1057
	/* Only handle setting domains to types used by the CPU. */
1058
	if (write_domain & I915_GEM_GPU_DOMAINS)
1059 1060
		return -EINVAL;

1061
	if (read_domains & I915_GEM_GPU_DOMAINS)
1062 1063 1064 1065 1066 1067 1068 1069
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1070
	ret = i915_mutex_lock_interruptible(dev);
1071
	if (ret)
1072
		return ret;
1073

1074
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1075
	if (&obj->base == NULL) {
1076 1077
		ret = -ENOENT;
		goto unlock;
1078
	}
1079

1080 1081
	if (read_domains & I915_GEM_DOMAIN_GTT) {
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1082 1083 1084 1085 1086 1087 1088

		/* Silently promote "you're not bound, there was nothing to do"
		 * to success, since the client was just asking us to
		 * make sure everything was done.
		 */
		if (ret == -EINVAL)
			ret = 0;
1089
	} else {
1090
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1091 1092
	}

1093
	drm_gem_object_unreference(&obj->base);
1094
unlock:
1095 1096 1097 1098 1099 1100 1101 1102 1103
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Called when user space has done writes to this buffer
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1104
			 struct drm_file *file)
1105 1106
{
	struct drm_i915_gem_sw_finish *args = data;
1107
	struct drm_i915_gem_object *obj;
1108 1109 1110 1111 1112
	int ret = 0;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

1113
	ret = i915_mutex_lock_interruptible(dev);
1114
	if (ret)
1115
		return ret;
1116

1117
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1118
	if (&obj->base == NULL) {
1119 1120
		ret = -ENOENT;
		goto unlock;
1121 1122 1123
	}

	/* Pinned buffers may be scanout, so flush the cache */
1124
	if (obj->pin_count)
1125 1126
		i915_gem_object_flush_cpu_write_domain(obj);

1127
	drm_gem_object_unreference(&obj->base);
1128
unlock:
1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Maps the contents of an object, returning the address it is mapped
 * into.
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1142
		    struct drm_file *file)
1143
{
1144
	struct drm_i915_private *dev_priv = dev->dev_private;
1145 1146 1147 1148 1149 1150 1151
	struct drm_i915_gem_mmap *args = data;
	struct drm_gem_object *obj;
	unsigned long addr;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

1152
	obj = drm_gem_object_lookup(dev, file, args->handle);
1153
	if (obj == NULL)
1154
		return -ENOENT;
1155

1156 1157 1158 1159 1160
	if (obj->size > dev_priv->mm.gtt_mappable_end) {
		drm_gem_object_unreference_unlocked(obj);
		return -E2BIG;
	}

1161 1162 1163 1164 1165
	down_write(&current->mm->mmap_sem);
	addr = do_mmap(obj->filp, 0, args->size,
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
	up_write(&current->mm->mmap_sem);
1166
	drm_gem_object_unreference_unlocked(obj);
1167 1168 1169 1170 1171 1172 1173 1174
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
/**
 * i915_gem_fault - fault a page into the GTT
 * vma: VMA in question
 * vmf: fault info
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
1193 1194
	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
	struct drm_device *dev = obj->base.dev;
1195
	drm_i915_private_t *dev_priv = dev->dev_private;
1196 1197 1198
	pgoff_t page_offset;
	unsigned long pfn;
	int ret = 0;
1199
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1200 1201 1202 1203 1204

	/* We don't use vmf->pgoff since that has the fake offset */
	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
		PAGE_SHIFT;

1205 1206 1207
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
1208

C
Chris Wilson 已提交
1209 1210
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1211
	/* Now bind it into the GTT if needed */
1212 1213 1214 1215
	if (!obj->map_and_fenceable) {
		ret = i915_gem_object_unbind(obj);
		if (ret)
			goto unlock;
1216
	}
1217
	if (!obj->gtt_space) {
1218
		ret = i915_gem_object_bind_to_gtt(obj, 0, true);
1219 1220
		if (ret)
			goto unlock;
1221

1222 1223 1224 1225
		ret = i915_gem_object_set_to_gtt_domain(obj, write);
		if (ret)
			goto unlock;
	}
1226

1227 1228 1229
	if (obj->tiling_mode == I915_TILING_NONE)
		ret = i915_gem_object_put_fence(obj);
	else
1230
		ret = i915_gem_object_get_fence(obj, NULL);
1231 1232
	if (ret)
		goto unlock;
1233

1234 1235
	if (i915_gem_object_is_inactive(obj))
		list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1236

1237 1238
	obj->fault_mappable = true;

1239
	pfn = ((dev->agp->base + obj->gtt_offset) >> PAGE_SHIFT) +
1240 1241 1242 1243
		page_offset;

	/* Finally, remap it using the new GTT offset */
	ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1244
unlock:
1245
	mutex_unlock(&dev->struct_mutex);
1246
out:
1247
	switch (ret) {
1248
	case -EIO:
1249
	case -EAGAIN:
1250 1251 1252 1253 1254 1255 1256
		/* Give the error handler a chance to run and move the
		 * objects off the GPU active list. Next time we service the
		 * fault, we should be able to transition the page into the
		 * GTT without touching the GPU (and so avoid further
		 * EIO/EGAIN). If the GPU is wedged, then there is no issue
		 * with coherency, just lost writes.
		 */
1257
		set_need_resched();
1258 1259
	case 0:
	case -ERESTARTSYS:
1260
	case -EINTR:
1261
		return VM_FAULT_NOPAGE;
1262 1263 1264
	case -ENOMEM:
		return VM_FAULT_OOM;
	default:
1265
		return VM_FAULT_SIGBUS;
1266 1267 1268
	}
}

1269 1270 1271 1272
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1273
 * Preserve the reservation of the mmapping with the DRM core code, but
1274 1275 1276 1277 1278 1279 1280 1281 1282
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1283
void
1284
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1285
{
1286 1287
	if (!obj->fault_mappable)
		return;
1288

1289 1290 1291 1292
	if (obj->base.dev->dev_mapping)
		unmap_mapping_range(obj->base.dev->dev_mapping,
				    (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
				    obj->base.size, 1);
1293

1294
	obj->fault_mappable = false;
1295 1296
}

1297
static uint32_t
1298
i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1299
{
1300
	uint32_t gtt_size;
1301 1302

	if (INTEL_INFO(dev)->gen >= 4 ||
1303 1304
	    tiling_mode == I915_TILING_NONE)
		return size;
1305 1306 1307

	/* Previous chips need a power-of-two fence region when tiling */
	if (INTEL_INFO(dev)->gen == 3)
1308
		gtt_size = 1024*1024;
1309
	else
1310
		gtt_size = 512*1024;
1311

1312 1313
	while (gtt_size < size)
		gtt_size <<= 1;
1314

1315
	return gtt_size;
1316 1317
}

1318 1319 1320 1321 1322
/**
 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
 * @obj: object to check
 *
 * Return the required GTT alignment for an object, taking into account
1323
 * potential fence register mapping.
1324 1325
 */
static uint32_t
1326 1327 1328
i915_gem_get_gtt_alignment(struct drm_device *dev,
			   uint32_t size,
			   int tiling_mode)
1329 1330 1331 1332 1333
{
	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
1334
	if (INTEL_INFO(dev)->gen >= 4 ||
1335
	    tiling_mode == I915_TILING_NONE)
1336 1337
		return 4096;

1338 1339 1340 1341
	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
1342
	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1343 1344
}

1345 1346 1347
/**
 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
 *					 unfenced object
1348 1349 1350
 * @dev: the device
 * @size: size of the object
 * @tiling_mode: tiling mode of the object
1351 1352 1353 1354
 *
 * Return the required GTT alignment for an object, only taking into account
 * unfenced tiled surface requirements.
 */
1355
uint32_t
1356 1357 1358
i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
				    uint32_t size,
				    int tiling_mode)
1359 1360 1361 1362 1363
{
	/*
	 * Minimum alignment is 4k (GTT page size) for sane hw.
	 */
	if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
1364
	    tiling_mode == I915_TILING_NONE)
1365 1366
		return 4096;

1367 1368 1369
	/* Previous hardware however needs to be aligned to a power-of-two
	 * tile height. The simplest method for determining this is to reuse
	 * the power-of-tile object size.
1370
	 */
1371
	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1372 1373
}

1374
int
1375 1376 1377 1378
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
		  uint32_t handle,
		  uint64_t *offset)
1379
{
1380
	struct drm_i915_private *dev_priv = dev->dev_private;
1381
	struct drm_i915_gem_object *obj;
1382 1383 1384 1385 1386
	int ret;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

1387
	ret = i915_mutex_lock_interruptible(dev);
1388
	if (ret)
1389
		return ret;
1390

1391
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1392
	if (&obj->base == NULL) {
1393 1394 1395
		ret = -ENOENT;
		goto unlock;
	}
1396

1397
	if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
1398
		ret = -E2BIG;
1399
		goto out;
1400 1401
	}

1402
	if (obj->madv != I915_MADV_WILLNEED) {
1403
		DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1404 1405
		ret = -EINVAL;
		goto out;
1406 1407
	}

1408
	if (!obj->base.map_list.map) {
1409
		ret = drm_gem_create_mmap_offset(&obj->base);
1410 1411
		if (ret)
			goto out;
1412 1413
	}

1414
	*offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
1415

1416
out:
1417
	drm_gem_object_unreference(&obj->base);
1418
unlock:
1419
	mutex_unlock(&dev->struct_mutex);
1420
	return ret;
1421 1422
}

1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
}


1451
static int
1452
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
1453 1454 1455 1456 1457 1458 1459 1460 1461 1462
			      gfp_t gfpmask)
{
	int page_count, i;
	struct address_space *mapping;
	struct inode *inode;
	struct page *page;

	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 */
1463 1464 1465 1466
	page_count = obj->base.size / PAGE_SIZE;
	BUG_ON(obj->pages != NULL);
	obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
	if (obj->pages == NULL)
1467 1468
		return -ENOMEM;

1469
	inode = obj->base.filp->f_path.dentry->d_inode;
1470
	mapping = inode->i_mapping;
1471 1472
	gfpmask |= mapping_gfp_mask(mapping);

1473
	for (i = 0; i < page_count; i++) {
1474
		page = shmem_read_mapping_page_gfp(mapping, i, gfpmask);
1475 1476 1477
		if (IS_ERR(page))
			goto err_pages;

1478
		obj->pages[i] = page;
1479 1480
	}

1481
	if (i915_gem_object_needs_bit17_swizzle(obj))
1482 1483 1484 1485 1486 1487
		i915_gem_object_do_bit_17_swizzle(obj);

	return 0;

err_pages:
	while (i--)
1488
		page_cache_release(obj->pages[i]);
1489

1490 1491
	drm_free_large(obj->pages);
	obj->pages = NULL;
1492 1493 1494
	return PTR_ERR(page);
}

1495
static void
1496
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1497
{
1498
	int page_count = obj->base.size / PAGE_SIZE;
1499 1500
	int i;

1501
	BUG_ON(obj->madv == __I915_MADV_PURGED);
1502

1503
	if (i915_gem_object_needs_bit17_swizzle(obj))
1504 1505
		i915_gem_object_save_bit_17_swizzle(obj);

1506 1507
	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;
1508 1509

	for (i = 0; i < page_count; i++) {
1510 1511
		if (obj->dirty)
			set_page_dirty(obj->pages[i]);
1512

1513 1514
		if (obj->madv == I915_MADV_WILLNEED)
			mark_page_accessed(obj->pages[i]);
1515

1516
		page_cache_release(obj->pages[i]);
1517
	}
1518
	obj->dirty = 0;
1519

1520 1521
	drm_free_large(obj->pages);
	obj->pages = NULL;
1522 1523
}

1524
void
1525
i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1526 1527
			       struct intel_ring_buffer *ring,
			       u32 seqno)
1528
{
1529
	struct drm_device *dev = obj->base.dev;
1530
	struct drm_i915_private *dev_priv = dev->dev_private;
1531

1532
	BUG_ON(ring == NULL);
1533
	obj->ring = ring;
1534 1535

	/* Add a reference if we're newly entering the active list. */
1536 1537 1538
	if (!obj->active) {
		drm_gem_object_reference(&obj->base);
		obj->active = 1;
1539
	}
1540

1541
	/* Move from whatever list we were on to the tail of execution. */
1542 1543
	list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
	list_move_tail(&obj->ring_list, &ring->active_list);
1544

1545
	obj->last_rendering_seqno = seqno;
1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563
	if (obj->fenced_gpu_access) {
		struct drm_i915_fence_reg *reg;

		BUG_ON(obj->fence_reg == I915_FENCE_REG_NONE);

		obj->last_fenced_seqno = seqno;
		obj->last_fenced_ring = ring;

		reg = &dev_priv->fence_regs[obj->fence_reg];
		list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
	}
}

static void
i915_gem_object_move_off_active(struct drm_i915_gem_object *obj)
{
	list_del_init(&obj->ring_list);
	obj->last_rendering_seqno = 0;
1564 1565
}

1566
static void
1567
i915_gem_object_move_to_flushing(struct drm_i915_gem_object *obj)
1568
{
1569
	struct drm_device *dev = obj->base.dev;
1570 1571
	drm_i915_private_t *dev_priv = dev->dev_private;

1572 1573
	BUG_ON(!obj->active);
	list_move_tail(&obj->mm_list, &dev_priv->mm.flushing_list);
1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596

	i915_gem_object_move_off_active(obj);
}

static void
i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
{
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (obj->pin_count != 0)
		list_move_tail(&obj->mm_list, &dev_priv->mm.pinned_list);
	else
		list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);

	BUG_ON(!list_empty(&obj->gpu_write_list));
	BUG_ON(!obj->active);
	obj->ring = NULL;

	i915_gem_object_move_off_active(obj);
	obj->fenced_gpu_access = false;

	obj->active = 0;
1597
	obj->pending_gpu_write = false;
1598 1599 1600
	drm_gem_object_unreference(&obj->base);

	WARN_ON(i915_verify_lists(dev));
1601
}
1602

1603 1604
/* Immediately discard the backing storage */
static void
1605
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1606
{
C
Chris Wilson 已提交
1607
	struct inode *inode;
1608

1609 1610 1611
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
1612
	 * backing pages, *now*.
1613
	 */
1614
	inode = obj->base.filp->f_path.dentry->d_inode;
1615
	shmem_truncate_range(inode, 0, (loff_t)-1);
C
Chris Wilson 已提交
1616

1617
	obj->madv = __I915_MADV_PURGED;
1618 1619 1620
}

static inline int
1621
i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1622
{
1623
	return obj->madv == I915_MADV_DONTNEED;
1624 1625
}

1626
static void
C
Chris Wilson 已提交
1627 1628
i915_gem_process_flushing_list(struct intel_ring_buffer *ring,
			       uint32_t flush_domains)
1629
{
1630
	struct drm_i915_gem_object *obj, *next;
1631

1632
	list_for_each_entry_safe(obj, next,
1633
				 &ring->gpu_write_list,
1634
				 gpu_write_list) {
1635 1636
		if (obj->base.write_domain & flush_domains) {
			uint32_t old_write_domain = obj->base.write_domain;
1637

1638 1639
			obj->base.write_domain = 0;
			list_del_init(&obj->gpu_write_list);
1640
			i915_gem_object_move_to_active(obj, ring,
C
Chris Wilson 已提交
1641
						       i915_gem_next_request_seqno(ring));
1642 1643

			trace_i915_gem_object_change_domain(obj,
1644
							    obj->base.read_domains,
1645 1646 1647 1648
							    old_write_domain);
		}
	}
}
1649

1650
int
C
Chris Wilson 已提交
1651
i915_add_request(struct intel_ring_buffer *ring,
1652
		 struct drm_file *file,
C
Chris Wilson 已提交
1653
		 struct drm_i915_gem_request *request)
1654
{
C
Chris Wilson 已提交
1655
	drm_i915_private_t *dev_priv = ring->dev->dev_private;
1656 1657
	uint32_t seqno;
	int was_empty;
1658 1659 1660
	int ret;

	BUG_ON(request == NULL);
1661

1662 1663 1664
	ret = ring->add_request(ring, &seqno);
	if (ret)
	    return ret;
1665

C
Chris Wilson 已提交
1666
	trace_i915_gem_request_add(ring, seqno);
1667 1668

	request->seqno = seqno;
1669
	request->ring = ring;
1670
	request->emitted_jiffies = jiffies;
1671 1672 1673
	was_empty = list_empty(&ring->request_list);
	list_add_tail(&request->list, &ring->request_list);

C
Chris Wilson 已提交
1674 1675 1676
	if (file) {
		struct drm_i915_file_private *file_priv = file->driver_priv;

1677
		spin_lock(&file_priv->mm.lock);
1678
		request->file_priv = file_priv;
1679
		list_add_tail(&request->client_list,
1680
			      &file_priv->mm.request_list);
1681
		spin_unlock(&file_priv->mm.lock);
1682
	}
1683

C
Chris Wilson 已提交
1684 1685
	ring->outstanding_lazy_request = false;

B
Ben Gamari 已提交
1686
	if (!dev_priv->mm.suspended) {
1687 1688 1689 1690 1691
		if (i915_enable_hangcheck) {
			mod_timer(&dev_priv->hangcheck_timer,
				  jiffies +
				  msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
		}
B
Ben Gamari 已提交
1692
		if (was_empty)
1693 1694
			queue_delayed_work(dev_priv->wq,
					   &dev_priv->mm.retire_work, HZ);
B
Ben Gamari 已提交
1695
	}
1696
	return 0;
1697 1698
}

1699 1700
static inline void
i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1701
{
1702
	struct drm_i915_file_private *file_priv = request->file_priv;
1703

1704 1705
	if (!file_priv)
		return;
C
Chris Wilson 已提交
1706

1707
	spin_lock(&file_priv->mm.lock);
1708 1709 1710 1711
	if (request->file_priv) {
		list_del(&request->client_list);
		request->file_priv = NULL;
	}
1712
	spin_unlock(&file_priv->mm.lock);
1713 1714
}

1715 1716
static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
				      struct intel_ring_buffer *ring)
1717
{
1718 1719
	while (!list_empty(&ring->request_list)) {
		struct drm_i915_gem_request *request;
1720

1721 1722 1723
		request = list_first_entry(&ring->request_list,
					   struct drm_i915_gem_request,
					   list);
1724

1725
		list_del(&request->list);
1726
		i915_gem_request_remove_from_client(request);
1727 1728
		kfree(request);
	}
1729

1730
	while (!list_empty(&ring->active_list)) {
1731
		struct drm_i915_gem_object *obj;
1732

1733 1734 1735
		obj = list_first_entry(&ring->active_list,
				       struct drm_i915_gem_object,
				       ring_list);
1736

1737 1738 1739
		obj->base.write_domain = 0;
		list_del_init(&obj->gpu_write_list);
		i915_gem_object_move_to_inactive(obj);
1740 1741 1742
	}
}

1743 1744 1745 1746 1747
static void i915_gem_reset_fences(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int i;

1748
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
1749
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
1750 1751 1752 1753 1754 1755 1756 1757
		struct drm_i915_gem_object *obj = reg->obj;

		if (!obj)
			continue;

		if (obj->tiling_mode)
			i915_gem_release_mmap(obj);

1758 1759 1760 1761 1762
		reg->obj->fence_reg = I915_FENCE_REG_NONE;
		reg->obj->fenced_gpu_access = false;
		reg->obj->last_fenced_seqno = 0;
		reg->obj->last_fenced_ring = NULL;
		i915_gem_clear_fence_reg(dev, reg);
1763 1764 1765
	}
}

1766
void i915_gem_reset(struct drm_device *dev)
1767
{
1768
	struct drm_i915_private *dev_priv = dev->dev_private;
1769
	struct drm_i915_gem_object *obj;
1770
	int i;
1771

1772 1773
	for (i = 0; i < I915_NUM_RINGS; i++)
		i915_gem_reset_ring_lists(dev_priv, &dev_priv->ring[i]);
1774 1775 1776 1777 1778 1779

	/* Remove anything from the flushing lists. The GPU cache is likely
	 * to be lost on reset along with the data, so simply move the
	 * lost bo to the inactive list.
	 */
	while (!list_empty(&dev_priv->mm.flushing_list)) {
1780
		obj = list_first_entry(&dev_priv->mm.flushing_list,
1781 1782
				      struct drm_i915_gem_object,
				      mm_list);
1783

1784 1785 1786
		obj->base.write_domain = 0;
		list_del_init(&obj->gpu_write_list);
		i915_gem_object_move_to_inactive(obj);
1787 1788 1789 1790 1791
	}

	/* Move everything out of the GPU domains to ensure we do any
	 * necessary invalidation upon reuse.
	 */
1792
	list_for_each_entry(obj,
1793
			    &dev_priv->mm.inactive_list,
1794
			    mm_list)
1795
	{
1796
		obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
1797
	}
1798 1799

	/* The fence registers are invalidated so clear them out */
1800
	i915_gem_reset_fences(dev);
1801 1802 1803 1804 1805
}

/**
 * This function clears the request list as sequence numbers are passed.
 */
1806
static void
C
Chris Wilson 已提交
1807
i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
1808 1809
{
	uint32_t seqno;
1810
	int i;
1811

C
Chris Wilson 已提交
1812
	if (list_empty(&ring->request_list))
1813 1814
		return;

C
Chris Wilson 已提交
1815
	WARN_ON(i915_verify_lists(ring->dev));
1816

1817
	seqno = ring->get_seqno(ring);
1818

1819
	for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
1820 1821 1822
		if (seqno >= ring->sync_seqno[i])
			ring->sync_seqno[i] = 0;

1823
	while (!list_empty(&ring->request_list)) {
1824 1825
		struct drm_i915_gem_request *request;

1826
		request = list_first_entry(&ring->request_list,
1827 1828 1829
					   struct drm_i915_gem_request,
					   list);

1830
		if (!i915_seqno_passed(seqno, request->seqno))
1831 1832
			break;

C
Chris Wilson 已提交
1833
		trace_i915_gem_request_retire(ring, request->seqno);
1834 1835

		list_del(&request->list);
1836
		i915_gem_request_remove_from_client(request);
1837 1838
		kfree(request);
	}
1839

1840 1841 1842 1843
	/* Move any buffers on the active list that are no longer referenced
	 * by the ringbuffer to the flushing/inactive lists as appropriate.
	 */
	while (!list_empty(&ring->active_list)) {
1844
		struct drm_i915_gem_object *obj;
1845

1846
		obj = list_first_entry(&ring->active_list,
1847 1848
				      struct drm_i915_gem_object,
				      ring_list);
1849

1850
		if (!i915_seqno_passed(seqno, obj->last_rendering_seqno))
1851
			break;
1852

1853
		if (obj->base.write_domain != 0)
1854 1855 1856
			i915_gem_object_move_to_flushing(obj);
		else
			i915_gem_object_move_to_inactive(obj);
1857
	}
1858

C
Chris Wilson 已提交
1859 1860
	if (unlikely(ring->trace_irq_seqno &&
		     i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1861
		ring->irq_put(ring);
C
Chris Wilson 已提交
1862
		ring->trace_irq_seqno = 0;
1863
	}
1864

C
Chris Wilson 已提交
1865
	WARN_ON(i915_verify_lists(ring->dev));
1866 1867
}

1868 1869 1870 1871
void
i915_gem_retire_requests(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
1872
	int i;
1873

1874
	if (!list_empty(&dev_priv->mm.deferred_free_list)) {
1875
	    struct drm_i915_gem_object *obj, *next;
1876 1877 1878 1879 1880 1881

	    /* We must be careful that during unbind() we do not
	     * accidentally infinitely recurse into retire requests.
	     * Currently:
	     *   retire -> free -> unbind -> wait -> retire_ring
	     */
1882
	    list_for_each_entry_safe(obj, next,
1883
				     &dev_priv->mm.deferred_free_list,
1884
				     mm_list)
1885
		    i915_gem_free_object_tail(obj);
1886 1887
	}

1888
	for (i = 0; i < I915_NUM_RINGS; i++)
C
Chris Wilson 已提交
1889
		i915_gem_retire_requests_ring(&dev_priv->ring[i]);
1890 1891
}

1892
static void
1893 1894 1895 1896
i915_gem_retire_work_handler(struct work_struct *work)
{
	drm_i915_private_t *dev_priv;
	struct drm_device *dev;
1897 1898
	bool idle;
	int i;
1899 1900 1901 1902 1903

	dev_priv = container_of(work, drm_i915_private_t,
				mm.retire_work.work);
	dev = dev_priv->dev;

1904 1905 1906 1907 1908 1909
	/* Come back later if the device is busy... */
	if (!mutex_trylock(&dev->struct_mutex)) {
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
		return;
	}

1910
	i915_gem_retire_requests(dev);
1911

1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922
	/* Send a periodic flush down the ring so we don't hold onto GEM
	 * objects indefinitely.
	 */
	idle = true;
	for (i = 0; i < I915_NUM_RINGS; i++) {
		struct intel_ring_buffer *ring = &dev_priv->ring[i];

		if (!list_empty(&ring->gpu_write_list)) {
			struct drm_i915_gem_request *request;
			int ret;

C
Chris Wilson 已提交
1923 1924
			ret = i915_gem_flush_ring(ring,
						  0, I915_GEM_GPU_DOMAINS);
1925 1926
			request = kzalloc(sizeof(*request), GFP_KERNEL);
			if (ret || request == NULL ||
C
Chris Wilson 已提交
1927
			    i915_add_request(ring, NULL, request))
1928 1929 1930 1931 1932 1933 1934
			    kfree(request);
		}

		idle &= list_empty(&ring->request_list);
	}

	if (!dev_priv->mm.suspended && !idle)
1935
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1936

1937 1938 1939
	mutex_unlock(&dev->struct_mutex);
}

C
Chris Wilson 已提交
1940 1941 1942 1943
/**
 * Waits for a sequence number to be signaled, and cleans up the
 * request and object lists appropriately for that event.
 */
1944
int
C
Chris Wilson 已提交
1945
i915_wait_request(struct intel_ring_buffer *ring,
1946
		  uint32_t seqno)
1947
{
C
Chris Wilson 已提交
1948
	drm_i915_private_t *dev_priv = ring->dev->dev_private;
1949
	u32 ier;
1950 1951 1952 1953
	int ret = 0;

	BUG_ON(seqno == 0);

1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965
	if (atomic_read(&dev_priv->mm.wedged)) {
		struct completion *x = &dev_priv->error_completion;
		bool recovery_complete;
		unsigned long flags;

		/* Give the error handler a chance to run. */
		spin_lock_irqsave(&x->wait.lock, flags);
		recovery_complete = x->done > 0;
		spin_unlock_irqrestore(&x->wait.lock, flags);

		return recovery_complete ? -EIO : -EAGAIN;
	}
1966

1967
	if (seqno == ring->outstanding_lazy_request) {
1968 1969 1970 1971
		struct drm_i915_gem_request *request;

		request = kzalloc(sizeof(*request), GFP_KERNEL);
		if (request == NULL)
1972
			return -ENOMEM;
1973

C
Chris Wilson 已提交
1974
		ret = i915_add_request(ring, NULL, request);
1975 1976 1977 1978 1979 1980
		if (ret) {
			kfree(request);
			return ret;
		}

		seqno = request->seqno;
1981
	}
1982

1983
	if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
C
Chris Wilson 已提交
1984
		if (HAS_PCH_SPLIT(ring->dev))
1985 1986 1987
			ier = I915_READ(DEIER) | I915_READ(GTIER);
		else
			ier = I915_READ(IER);
1988 1989 1990
		if (!ier) {
			DRM_ERROR("something (likely vbetool) disabled "
				  "interrupts, re-enabling\n");
1991 1992
			ring->dev->driver->irq_preinstall(ring->dev);
			ring->dev->driver->irq_postinstall(ring->dev);
1993 1994
		}

C
Chris Wilson 已提交
1995
		trace_i915_gem_request_wait_begin(ring, seqno);
C
Chris Wilson 已提交
1996

1997
		ring->waiting_seqno = seqno;
1998
		if (ring->irq_get(ring)) {
1999
			if (dev_priv->mm.interruptible)
2000 2001 2002 2003 2004 2005 2006 2007 2008
				ret = wait_event_interruptible(ring->irq_queue,
							       i915_seqno_passed(ring->get_seqno(ring), seqno)
							       || atomic_read(&dev_priv->mm.wedged));
			else
				wait_event(ring->irq_queue,
					   i915_seqno_passed(ring->get_seqno(ring), seqno)
					   || atomic_read(&dev_priv->mm.wedged));

			ring->irq_put(ring);
2009 2010 2011 2012
		} else if (wait_for(i915_seqno_passed(ring->get_seqno(ring),
						      seqno) ||
				    atomic_read(&dev_priv->mm.wedged), 3000))
			ret = -EBUSY;
2013
		ring->waiting_seqno = 0;
C
Chris Wilson 已提交
2014

C
Chris Wilson 已提交
2015
		trace_i915_gem_request_wait_end(ring, seqno);
2016
	}
2017
	if (atomic_read(&dev_priv->mm.wedged))
2018
		ret = -EAGAIN;
2019 2020

	if (ret && ret != -ERESTARTSYS)
2021
		DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
2022
			  __func__, ret, seqno, ring->get_seqno(ring),
2023
			  dev_priv->next_seqno);
2024 2025 2026 2027 2028

	/* Directly dispatch request retiring.  While we have the work queue
	 * to handle this, the waiter on a request often wants an associated
	 * buffer to have made it to the inactive list, and we would need
	 * a separate wait queue to handle that.
2029 2030 2031 2032 2033
	 *
	 * To avoid a recursion with the ilk VT-d workaround (that calls
	 * gpu_idle when unbinding objects with interruptible==false) don't
	 * retire requests in that case (because it might call unbind if the
	 * active list holds the last reference to the object).
2034
	 */
2035
	if (ret == 0 && dev_priv->mm.interruptible)
C
Chris Wilson 已提交
2036
		i915_gem_retire_requests_ring(ring);
2037 2038 2039 2040 2041 2042 2043 2044

	return ret;
}

/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
 */
2045
int
2046
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj)
2047 2048 2049
{
	int ret;

2050 2051
	/* This function only exists to support waiting for existing rendering,
	 * not for emitting required flushes.
2052
	 */
2053
	BUG_ON((obj->base.write_domain & I915_GEM_GPU_DOMAINS) != 0);
2054 2055 2056 2057

	/* If there is rendering queued on the buffer being evicted, wait for
	 * it.
	 */
2058
	if (obj->active) {
2059
		ret = i915_wait_request(obj->ring, obj->last_rendering_seqno);
2060
		if (ret)
2061 2062 2063 2064 2065 2066
			return ret;
	}

	return 0;
}

2067 2068 2069 2070 2071 2072 2073 2074 2075 2076
static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
{
	u32 old_write_domain, old_read_domains;

	/* Act a barrier for all accesses through the GTT */
	mb();

	/* Force a pagefault for domain tracking on next user access */
	i915_gem_release_mmap(obj);

2077 2078 2079
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		return;

2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090
	old_read_domains = obj->base.read_domains;
	old_write_domain = obj->base.write_domain;

	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);
}

2091 2092 2093
/**
 * Unbinds an object from the GTT aperture.
 */
2094
int
2095
i915_gem_object_unbind(struct drm_i915_gem_object *obj)
2096 2097 2098
{
	int ret = 0;

2099
	if (obj->gtt_space == NULL)
2100 2101
		return 0;

2102
	if (obj->pin_count != 0) {
2103 2104 2105 2106
		DRM_ERROR("Attempting to unbind pinned buffer\n");
		return -EINVAL;
	}

2107 2108 2109 2110 2111 2112 2113 2114
	ret = i915_gem_object_finish_gpu(obj);
	if (ret == -ERESTARTSYS)
		return ret;
	/* Continue on if we fail due to EIO, the GPU is hung so we
	 * should be safe and we need to cleanup or else we might
	 * cause memory corruption through use-after-free.
	 */

2115
	i915_gem_object_finish_gtt(obj);
2116

2117 2118
	/* Move the object to the CPU domain to ensure that
	 * any possible CPU writes while it's not in the GTT
2119
	 * are flushed when we go to remap it.
2120
	 */
2121 2122
	if (ret == 0)
		ret = i915_gem_object_set_to_cpu_domain(obj, 1);
2123
	if (ret == -ERESTARTSYS)
2124
		return ret;
2125
	if (ret) {
2126 2127 2128
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
2129
		i915_gem_clflush_object(obj);
2130
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2131
	}
2132

2133
	/* release the fence reg _after_ flushing */
2134 2135 2136
	ret = i915_gem_object_put_fence(obj);
	if (ret == -ERESTARTSYS)
		return ret;
2137

C
Chris Wilson 已提交
2138 2139
	trace_i915_gem_object_unbind(obj);

2140
	i915_gem_gtt_unbind_object(obj);
2141
	i915_gem_object_put_pages_gtt(obj);
2142

2143
	list_del_init(&obj->gtt_list);
2144
	list_del_init(&obj->mm_list);
2145
	/* Avoid an unnecessary call to unbind on rebind. */
2146
	obj->map_and_fenceable = true;
2147

2148 2149 2150
	drm_mm_put_block(obj->gtt_space);
	obj->gtt_space = NULL;
	obj->gtt_offset = 0;
2151

2152
	if (i915_gem_object_is_purgeable(obj))
2153 2154
		i915_gem_object_truncate(obj);

2155
	return ret;
2156 2157
}

2158
int
C
Chris Wilson 已提交
2159
i915_gem_flush_ring(struct intel_ring_buffer *ring,
2160 2161 2162
		    uint32_t invalidate_domains,
		    uint32_t flush_domains)
{
2163 2164
	int ret;

2165 2166 2167
	if (((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) == 0)
		return 0;

C
Chris Wilson 已提交
2168 2169
	trace_i915_gem_ring_flush(ring, invalidate_domains, flush_domains);

2170 2171 2172 2173
	ret = ring->flush(ring, invalidate_domains, flush_domains);
	if (ret)
		return ret;

2174 2175 2176
	if (flush_domains & I915_GEM_GPU_DOMAINS)
		i915_gem_process_flushing_list(ring, flush_domains);

2177
	return 0;
2178 2179
}

C
Chris Wilson 已提交
2180
static int i915_ring_idle(struct intel_ring_buffer *ring)
2181
{
2182 2183
	int ret;

2184
	if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
2185 2186
		return 0;

2187
	if (!list_empty(&ring->gpu_write_list)) {
C
Chris Wilson 已提交
2188
		ret = i915_gem_flush_ring(ring,
2189
				    I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2190 2191 2192 2193
		if (ret)
			return ret;
	}

2194
	return i915_wait_request(ring, i915_gem_next_request_seqno(ring));
2195 2196
}

2197
int
2198 2199 2200
i915_gpu_idle(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
2201
	int ret, i;
2202 2203

	/* Flush everything onto the inactive list. */
2204
	for (i = 0; i < I915_NUM_RINGS; i++) {
C
Chris Wilson 已提交
2205
		ret = i915_ring_idle(&dev_priv->ring[i]);
2206 2207 2208
		if (ret)
			return ret;
	}
2209

2210
	return 0;
2211 2212
}

2213 2214
static int sandybridge_write_fence_reg(struct drm_i915_gem_object *obj,
				       struct intel_ring_buffer *pipelined)
2215
{
2216
	struct drm_device *dev = obj->base.dev;
2217
	drm_i915_private_t *dev_priv = dev->dev_private;
2218 2219
	u32 size = obj->gtt_space->size;
	int regnum = obj->fence_reg;
2220 2221
	uint64_t val;

2222
	val = (uint64_t)((obj->gtt_offset + size - 4096) &
2223
			 0xfffff000) << 32;
2224 2225
	val |= obj->gtt_offset & 0xfffff000;
	val |= (uint64_t)((obj->stride / 128) - 1) <<
2226 2227
		SANDYBRIDGE_FENCE_PITCH_SHIFT;

2228
	if (obj->tiling_mode == I915_TILING_Y)
2229 2230 2231
		val |= 1 << I965_FENCE_TILING_Y_SHIFT;
	val |= I965_FENCE_REG_VALID;

2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247
	if (pipelined) {
		int ret = intel_ring_begin(pipelined, 6);
		if (ret)
			return ret;

		intel_ring_emit(pipelined, MI_NOOP);
		intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
		intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8);
		intel_ring_emit(pipelined, (u32)val);
		intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8 + 4);
		intel_ring_emit(pipelined, (u32)(val >> 32));
		intel_ring_advance(pipelined);
	} else
		I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + regnum * 8, val);

	return 0;
2248 2249
}

2250 2251
static int i965_write_fence_reg(struct drm_i915_gem_object *obj,
				struct intel_ring_buffer *pipelined)
2252
{
2253
	struct drm_device *dev = obj->base.dev;
2254
	drm_i915_private_t *dev_priv = dev->dev_private;
2255 2256
	u32 size = obj->gtt_space->size;
	int regnum = obj->fence_reg;
2257 2258
	uint64_t val;

2259
	val = (uint64_t)((obj->gtt_offset + size - 4096) &
2260
		    0xfffff000) << 32;
2261 2262 2263
	val |= obj->gtt_offset & 0xfffff000;
	val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
	if (obj->tiling_mode == I915_TILING_Y)
2264 2265 2266
		val |= 1 << I965_FENCE_TILING_Y_SHIFT;
	val |= I965_FENCE_REG_VALID;

2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282
	if (pipelined) {
		int ret = intel_ring_begin(pipelined, 6);
		if (ret)
			return ret;

		intel_ring_emit(pipelined, MI_NOOP);
		intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
		intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8);
		intel_ring_emit(pipelined, (u32)val);
		intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8 + 4);
		intel_ring_emit(pipelined, (u32)(val >> 32));
		intel_ring_advance(pipelined);
	} else
		I915_WRITE64(FENCE_REG_965_0 + regnum * 8, val);

	return 0;
2283 2284
}

2285 2286
static int i915_write_fence_reg(struct drm_i915_gem_object *obj,
				struct intel_ring_buffer *pipelined)
2287
{
2288
	struct drm_device *dev = obj->base.dev;
2289
	drm_i915_private_t *dev_priv = dev->dev_private;
2290
	u32 size = obj->gtt_space->size;
2291
	u32 fence_reg, val, pitch_val;
2292
	int tile_width;
2293

2294 2295 2296 2297 2298 2299
	if (WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
		 (size & -size) != size ||
		 (obj->gtt_offset & (size - 1)),
		 "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
		 obj->gtt_offset, obj->map_and_fenceable, size))
		return -EINVAL;
2300

2301
	if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2302
		tile_width = 128;
2303
	else
2304 2305 2306
		tile_width = 512;

	/* Note: pitch better be a power of two tile widths */
2307
	pitch_val = obj->stride / tile_width;
2308
	pitch_val = ffs(pitch_val) - 1;
2309

2310 2311
	val = obj->gtt_offset;
	if (obj->tiling_mode == I915_TILING_Y)
2312
		val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2313
	val |= I915_FENCE_SIZE_BITS(size);
2314 2315 2316
	val |= pitch_val << I830_FENCE_PITCH_SHIFT;
	val |= I830_FENCE_REG_VALID;

2317
	fence_reg = obj->fence_reg;
2318 2319
	if (fence_reg < 8)
		fence_reg = FENCE_REG_830_0 + fence_reg * 4;
2320
	else
2321
		fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336

	if (pipelined) {
		int ret = intel_ring_begin(pipelined, 4);
		if (ret)
			return ret;

		intel_ring_emit(pipelined, MI_NOOP);
		intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
		intel_ring_emit(pipelined, fence_reg);
		intel_ring_emit(pipelined, val);
		intel_ring_advance(pipelined);
	} else
		I915_WRITE(fence_reg, val);

	return 0;
2337 2338
}

2339 2340
static int i830_write_fence_reg(struct drm_i915_gem_object *obj,
				struct intel_ring_buffer *pipelined)
2341
{
2342
	struct drm_device *dev = obj->base.dev;
2343
	drm_i915_private_t *dev_priv = dev->dev_private;
2344 2345
	u32 size = obj->gtt_space->size;
	int regnum = obj->fence_reg;
2346 2347 2348
	uint32_t val;
	uint32_t pitch_val;

2349 2350 2351 2352 2353 2354
	if (WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
		 (size & -size) != size ||
		 (obj->gtt_offset & (size - 1)),
		 "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
		 obj->gtt_offset, size))
		return -EINVAL;
2355

2356
	pitch_val = obj->stride / 128;
2357 2358
	pitch_val = ffs(pitch_val) - 1;

2359 2360
	val = obj->gtt_offset;
	if (obj->tiling_mode == I915_TILING_Y)
2361
		val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2362
	val |= I830_FENCE_SIZE_BITS(size);
2363 2364 2365
	val |= pitch_val << I830_FENCE_PITCH_SHIFT;
	val |= I830_FENCE_REG_VALID;

2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379
	if (pipelined) {
		int ret = intel_ring_begin(pipelined, 4);
		if (ret)
			return ret;

		intel_ring_emit(pipelined, MI_NOOP);
		intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
		intel_ring_emit(pipelined, FENCE_REG_830_0 + regnum*4);
		intel_ring_emit(pipelined, val);
		intel_ring_advance(pipelined);
	} else
		I915_WRITE(FENCE_REG_830_0 + regnum * 4, val);

	return 0;
2380 2381
}

2382 2383 2384 2385 2386 2387 2388
static bool ring_passed_seqno(struct intel_ring_buffer *ring, u32 seqno)
{
	return i915_seqno_passed(ring->get_seqno(ring), seqno);
}

static int
i915_gem_object_flush_fence(struct drm_i915_gem_object *obj,
2389
			    struct intel_ring_buffer *pipelined)
2390 2391 2392 2393
{
	int ret;

	if (obj->fenced_gpu_access) {
2394
		if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
C
Chris Wilson 已提交
2395
			ret = i915_gem_flush_ring(obj->last_fenced_ring,
2396 2397 2398 2399
						  0, obj->base.write_domain);
			if (ret)
				return ret;
		}
2400 2401 2402 2403 2404 2405 2406

		obj->fenced_gpu_access = false;
	}

	if (obj->last_fenced_seqno && pipelined != obj->last_fenced_ring) {
		if (!ring_passed_seqno(obj->last_fenced_ring,
				       obj->last_fenced_seqno)) {
C
Chris Wilson 已提交
2407
			ret = i915_wait_request(obj->last_fenced_ring,
2408
						obj->last_fenced_seqno);
2409 2410 2411 2412 2413 2414 2415 2416
			if (ret)
				return ret;
		}

		obj->last_fenced_seqno = 0;
		obj->last_fenced_ring = NULL;
	}

2417 2418 2419 2420 2421 2422
	/* Ensure that all CPU reads are completed before installing a fence
	 * and all writes before removing the fence.
	 */
	if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
		mb();

2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433
	return 0;
}

int
i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
{
	int ret;

	if (obj->tiling_mode)
		i915_gem_release_mmap(obj);

2434
	ret = i915_gem_object_flush_fence(obj, NULL);
2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451
	if (ret)
		return ret;

	if (obj->fence_reg != I915_FENCE_REG_NONE) {
		struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
		i915_gem_clear_fence_reg(obj->base.dev,
					 &dev_priv->fence_regs[obj->fence_reg]);

		obj->fence_reg = I915_FENCE_REG_NONE;
	}

	return 0;
}

static struct drm_i915_fence_reg *
i915_find_fence_reg(struct drm_device *dev,
		    struct intel_ring_buffer *pipelined)
2452 2453
{
	struct drm_i915_private *dev_priv = dev->dev_private;
2454 2455
	struct drm_i915_fence_reg *reg, *first, *avail;
	int i;
2456 2457

	/* First try to find a free reg */
2458
	avail = NULL;
2459 2460 2461
	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
		reg = &dev_priv->fence_regs[i];
		if (!reg->obj)
2462
			return reg;
2463

2464
		if (!reg->obj->pin_count)
2465
			avail = reg;
2466 2467
	}

2468 2469
	if (avail == NULL)
		return NULL;
2470 2471

	/* None available, try to steal one or wait for a user to finish */
2472 2473 2474
	avail = first = NULL;
	list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
		if (reg->obj->pin_count)
2475 2476
			continue;

2477 2478 2479 2480 2481 2482 2483 2484 2485
		if (first == NULL)
			first = reg;

		if (!pipelined ||
		    !reg->obj->last_fenced_ring ||
		    reg->obj->last_fenced_ring == pipelined) {
			avail = reg;
			break;
		}
2486 2487
	}

2488 2489
	if (avail == NULL)
		avail = first;
2490

2491
	return avail;
2492 2493
}

2494
/**
2495
 * i915_gem_object_get_fence - set up a fence reg for an object
2496
 * @obj: object to map through a fence reg
2497 2498
 * @pipelined: ring on which to queue the change, or NULL for CPU access
 * @interruptible: must we wait uninterruptibly for the register to retire?
2499 2500 2501 2502 2503 2504 2505 2506 2507 2508
 *
 * When mapping objects through the GTT, userspace wants to be able to write
 * to them without having to worry about swizzling if the object is tiled.
 *
 * This function walks the fence regs looking for a free one for @obj,
 * stealing one if it can't find any.
 *
 * It then sets up the reg based on the object's properties: address, pitch
 * and tiling format.
 */
2509
int
2510
i915_gem_object_get_fence(struct drm_i915_gem_object *obj,
2511
			  struct intel_ring_buffer *pipelined)
2512
{
2513
	struct drm_device *dev = obj->base.dev;
J
Jesse Barnes 已提交
2514
	struct drm_i915_private *dev_priv = dev->dev_private;
2515
	struct drm_i915_fence_reg *reg;
2516
	int ret;
2517

2518 2519 2520
	/* XXX disable pipelining. There are bugs. Shocking. */
	pipelined = NULL;

2521
	/* Just update our place in the LRU if our fence is getting reused. */
2522 2523
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
		reg = &dev_priv->fence_regs[obj->fence_reg];
2524
		list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2525

2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542
		if (obj->tiling_changed) {
			ret = i915_gem_object_flush_fence(obj, pipelined);
			if (ret)
				return ret;

			if (!obj->fenced_gpu_access && !obj->last_fenced_seqno)
				pipelined = NULL;

			if (pipelined) {
				reg->setup_seqno =
					i915_gem_next_request_seqno(pipelined);
				obj->last_fenced_seqno = reg->setup_seqno;
				obj->last_fenced_ring = pipelined;
			}

			goto update;
		}
2543 2544 2545 2546 2547

		if (!pipelined) {
			if (reg->setup_seqno) {
				if (!ring_passed_seqno(obj->last_fenced_ring,
						       reg->setup_seqno)) {
C
Chris Wilson 已提交
2548
					ret = i915_wait_request(obj->last_fenced_ring,
2549
								reg->setup_seqno);
2550 2551 2552 2553 2554 2555 2556 2557
					if (ret)
						return ret;
				}

				reg->setup_seqno = 0;
			}
		} else if (obj->last_fenced_ring &&
			   obj->last_fenced_ring != pipelined) {
2558
			ret = i915_gem_object_flush_fence(obj, pipelined);
2559 2560 2561 2562
			if (ret)
				return ret;
		}

2563 2564 2565
		return 0;
	}

2566 2567 2568
	reg = i915_find_fence_reg(dev, pipelined);
	if (reg == NULL)
		return -ENOSPC;
2569

2570
	ret = i915_gem_object_flush_fence(obj, pipelined);
2571
	if (ret)
2572
		return ret;
2573

2574 2575 2576 2577 2578 2579 2580 2581
	if (reg->obj) {
		struct drm_i915_gem_object *old = reg->obj;

		drm_gem_object_reference(&old->base);

		if (old->tiling_mode)
			i915_gem_release_mmap(old);

2582
		ret = i915_gem_object_flush_fence(old, pipelined);
2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593
		if (ret) {
			drm_gem_object_unreference(&old->base);
			return ret;
		}

		if (old->last_fenced_seqno == 0 && obj->last_fenced_seqno == 0)
			pipelined = NULL;

		old->fence_reg = I915_FENCE_REG_NONE;
		old->last_fenced_ring = pipelined;
		old->last_fenced_seqno =
C
Chris Wilson 已提交
2594
			pipelined ? i915_gem_next_request_seqno(pipelined) : 0;
2595 2596 2597 2598

		drm_gem_object_unreference(&old->base);
	} else if (obj->last_fenced_seqno == 0)
		pipelined = NULL;
2599

2600
	reg->obj = obj;
2601 2602 2603
	list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
	obj->fence_reg = reg - dev_priv->fence_regs;
	obj->last_fenced_ring = pipelined;
2604

2605
	reg->setup_seqno =
C
Chris Wilson 已提交
2606
		pipelined ? i915_gem_next_request_seqno(pipelined) : 0;
2607 2608 2609 2610
	obj->last_fenced_seqno = reg->setup_seqno;

update:
	obj->tiling_changed = false;
2611
	switch (INTEL_INFO(dev)->gen) {
2612
	case 7:
2613
	case 6:
2614
		ret = sandybridge_write_fence_reg(obj, pipelined);
2615 2616 2617
		break;
	case 5:
	case 4:
2618
		ret = i965_write_fence_reg(obj, pipelined);
2619 2620
		break;
	case 3:
2621
		ret = i915_write_fence_reg(obj, pipelined);
2622 2623
		break;
	case 2:
2624
		ret = i830_write_fence_reg(obj, pipelined);
2625 2626
		break;
	}
2627

2628
	return ret;
2629 2630 2631 2632 2633 2634 2635
}

/**
 * i915_gem_clear_fence_reg - clear out fence register info
 * @obj: object to clear
 *
 * Zeroes out the fence register itself and clears out the associated
2636
 * data structures in dev_priv and obj.
2637 2638
 */
static void
2639 2640
i915_gem_clear_fence_reg(struct drm_device *dev,
			 struct drm_i915_fence_reg *reg)
2641
{
J
Jesse Barnes 已提交
2642
	drm_i915_private_t *dev_priv = dev->dev_private;
2643
	uint32_t fence_reg = reg - dev_priv->fence_regs;
2644

2645
	switch (INTEL_INFO(dev)->gen) {
2646
	case 7:
2647
	case 6:
2648
		I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + fence_reg*8, 0);
2649 2650 2651
		break;
	case 5:
	case 4:
2652
		I915_WRITE64(FENCE_REG_965_0 + fence_reg*8, 0);
2653 2654
		break;
	case 3:
2655 2656
		if (fence_reg >= 8)
			fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
2657
		else
2658
	case 2:
2659
			fence_reg = FENCE_REG_830_0 + fence_reg * 4;
2660 2661

		I915_WRITE(fence_reg, 0);
2662
		break;
2663
	}
2664

2665
	list_del_init(&reg->lru_list);
2666 2667
	reg->obj = NULL;
	reg->setup_seqno = 0;
2668 2669
}

2670 2671 2672 2673
/**
 * Finds free space in the GTT aperture and binds the object there.
 */
static int
2674
i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
2675
			    unsigned alignment,
2676
			    bool map_and_fenceable)
2677
{
2678
	struct drm_device *dev = obj->base.dev;
2679 2680
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_mm_node *free_space;
2681
	gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
2682
	u32 size, fence_size, fence_alignment, unfenced_alignment;
2683
	bool mappable, fenceable;
2684
	int ret;
2685

2686
	if (obj->madv != I915_MADV_WILLNEED) {
2687 2688 2689 2690
		DRM_ERROR("Attempting to bind a purgeable object\n");
		return -EINVAL;
	}

2691 2692 2693 2694 2695 2696 2697 2698 2699 2700
	fence_size = i915_gem_get_gtt_size(dev,
					   obj->base.size,
					   obj->tiling_mode);
	fence_alignment = i915_gem_get_gtt_alignment(dev,
						     obj->base.size,
						     obj->tiling_mode);
	unfenced_alignment =
		i915_gem_get_unfenced_gtt_alignment(dev,
						    obj->base.size,
						    obj->tiling_mode);
2701

2702
	if (alignment == 0)
2703 2704
		alignment = map_and_fenceable ? fence_alignment :
						unfenced_alignment;
2705
	if (map_and_fenceable && alignment & (fence_alignment - 1)) {
2706 2707 2708 2709
		DRM_ERROR("Invalid object alignment requested %u\n", alignment);
		return -EINVAL;
	}

2710
	size = map_and_fenceable ? fence_size : obj->base.size;
2711

2712 2713 2714
	/* If the object is bigger than the entire aperture, reject it early
	 * before evicting everything in a vain attempt to find space.
	 */
2715
	if (obj->base.size >
2716
	    (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
2717 2718 2719 2720
		DRM_ERROR("Attempting to bind an object larger than the aperture\n");
		return -E2BIG;
	}

2721
 search_free:
2722
	if (map_and_fenceable)
2723 2724
		free_space =
			drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
2725
						    size, alignment, 0,
2726 2727 2728 2729
						    dev_priv->mm.gtt_mappable_end,
						    0);
	else
		free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2730
						size, alignment, 0);
2731 2732

	if (free_space != NULL) {
2733
		if (map_and_fenceable)
2734
			obj->gtt_space =
2735
				drm_mm_get_block_range_generic(free_space,
2736
							       size, alignment, 0,
2737 2738 2739
							       dev_priv->mm.gtt_mappable_end,
							       0);
		else
2740
			obj->gtt_space =
2741
				drm_mm_get_block(free_space, size, alignment);
2742
	}
2743
	if (obj->gtt_space == NULL) {
2744 2745 2746
		/* If the gtt is empty and we're still having trouble
		 * fitting our object in, we're out of memory.
		 */
2747 2748
		ret = i915_gem_evict_something(dev, size, alignment,
					       map_and_fenceable);
2749
		if (ret)
2750
			return ret;
2751

2752 2753 2754
		goto search_free;
	}

2755
	ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
2756
	if (ret) {
2757 2758
		drm_mm_put_block(obj->gtt_space);
		obj->gtt_space = NULL;
2759 2760

		if (ret == -ENOMEM) {
2761 2762
			/* first try to reclaim some memory by clearing the GTT */
			ret = i915_gem_evict_everything(dev, false);
2763 2764
			if (ret) {
				/* now try to shrink everyone else */
2765 2766 2767
				if (gfpmask) {
					gfpmask = 0;
					goto search_free;
2768 2769
				}

2770
				return -ENOMEM;
2771 2772 2773 2774 2775
			}

			goto search_free;
		}

2776 2777 2778
		return ret;
	}

2779 2780
	ret = i915_gem_gtt_bind_object(obj);
	if (ret) {
2781
		i915_gem_object_put_pages_gtt(obj);
2782 2783
		drm_mm_put_block(obj->gtt_space);
		obj->gtt_space = NULL;
2784

2785
		if (i915_gem_evict_everything(dev, false))
2786 2787 2788
			return ret;

		goto search_free;
2789 2790
	}

2791
	list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
2792
	list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2793

2794 2795 2796 2797
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
2798 2799
	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2800

2801
	obj->gtt_offset = obj->gtt_space->start;
C
Chris Wilson 已提交
2802

2803
	fenceable =
2804
		obj->gtt_space->size == fence_size &&
2805
		(obj->gtt_space->start & (fence_alignment - 1)) == 0;
2806

2807
	mappable =
2808
		obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
2809

2810
	obj->map_and_fenceable = mappable && fenceable;
2811

C
Chris Wilson 已提交
2812
	trace_i915_gem_object_bind(obj, map_and_fenceable);
2813 2814 2815 2816
	return 0;
}

void
2817
i915_gem_clflush_object(struct drm_i915_gem_object *obj)
2818 2819 2820 2821 2822
{
	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
2823
	if (obj->pages == NULL)
2824 2825
		return;

2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836
	/* If the GPU is snooping the contents of the CPU cache,
	 * we do not need to manually clear the CPU cache lines.  However,
	 * the caches are only snooped when the render cache is
	 * flushed/invalidated.  As we always have to emit invalidations
	 * and flushes when moving into and out of the RENDER domain, correct
	 * snooping behaviour occurs naturally as the result of our domain
	 * tracking.
	 */
	if (obj->cache_level != I915_CACHE_NONE)
		return;

C
Chris Wilson 已提交
2837
	trace_i915_gem_object_clflush(obj);
2838

2839
	drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
2840 2841
}

2842
/** Flushes any GPU write domain for the object if it's dirty. */
2843
static int
2844
i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj)
2845
{
2846
	if ((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0)
2847
		return 0;
2848 2849

	/* Queue the GPU write cache flushing we need. */
C
Chris Wilson 已提交
2850
	return i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
2851 2852 2853 2854
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
2855
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
2856
{
C
Chris Wilson 已提交
2857 2858
	uint32_t old_write_domain;

2859
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
2860 2861
		return;

2862
	/* No actual flushing is required for the GTT write domain.  Writes
2863 2864
	 * to it immediately go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
2865 2866 2867 2868
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
2869
	 */
2870 2871
	wmb();

2872 2873
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
2874 2875

	trace_i915_gem_object_change_domain(obj,
2876
					    obj->base.read_domains,
C
Chris Wilson 已提交
2877
					    old_write_domain);
2878 2879 2880 2881
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
2882
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
2883
{
C
Chris Wilson 已提交
2884
	uint32_t old_write_domain;
2885

2886
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
2887 2888 2889
		return;

	i915_gem_clflush_object(obj);
2890
	intel_gtt_chipset_flush();
2891 2892
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
2893 2894

	trace_i915_gem_object_change_domain(obj,
2895
					    obj->base.read_domains,
C
Chris Wilson 已提交
2896
					    old_write_domain);
2897 2898
}

2899 2900 2901 2902 2903 2904
/**
 * Moves a single object to the GTT read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
2905
int
2906
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2907
{
C
Chris Wilson 已提交
2908
	uint32_t old_write_domain, old_read_domains;
2909
	int ret;
2910

2911
	/* Not valid to be called on unbound objects. */
2912
	if (obj->gtt_space == NULL)
2913 2914
		return -EINVAL;

2915 2916 2917
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

2918 2919 2920 2921
	ret = i915_gem_object_flush_gpu_write_domain(obj);
	if (ret)
		return ret;

2922
	if (obj->pending_gpu_write || write) {
2923
		ret = i915_gem_object_wait_rendering(obj);
2924 2925 2926
		if (ret)
			return ret;
	}
2927

2928
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
2929

2930 2931
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
2932

2933 2934 2935
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
2936 2937
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
2938
	if (write) {
2939 2940 2941
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
		obj->dirty = 1;
2942 2943
	}

C
Chris Wilson 已提交
2944 2945 2946 2947
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

2948 2949 2950
	return 0;
}

2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
	int ret;

	if (obj->cache_level == cache_level)
		return 0;

	if (obj->pin_count) {
		DRM_DEBUG("can not change the cache level of pinned objects\n");
		return -EBUSY;
	}

	if (obj->gtt_space) {
		ret = i915_gem_object_finish_gpu(obj);
		if (ret)
			return ret;

		i915_gem_object_finish_gtt(obj);

		/* Before SandyBridge, you could not use tiling or fence
		 * registers with snooped memory, so relinquish any fences
		 * currently pointing to our region in the aperture.
		 */
		if (INTEL_INFO(obj->base.dev)->gen < 6) {
			ret = i915_gem_object_put_fence(obj);
			if (ret)
				return ret;
		}

		i915_gem_gtt_rebind_object(obj, cache_level);
	}

	if (cache_level == I915_CACHE_NONE) {
		u32 old_read_domains, old_write_domain;

		/* If we're coming from LLC cached, then we haven't
		 * actually been tracking whether the data is in the
		 * CPU cache or not, since we only allow one bit set
		 * in obj->write_domain and have been skipping the clflushes.
		 * Just set it to the CPU cache for now.
		 */
		WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
		WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);

		old_read_domains = obj->base.read_domains;
		old_write_domain = obj->base.write_domain;

		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;

		trace_i915_gem_object_change_domain(obj,
						    old_read_domains,
						    old_write_domain);
	}

	obj->cache_level = cache_level;
	return 0;
}

3011
/*
3012 3013 3014 3015 3016 3017 3018 3019
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
 *
 * For the display plane, we want to be in the GTT but out of any write
 * domains. So in many ways this looks like set_to_gtt_domain() apart from the
 * ability to pipeline the waits, pinning and any additional subtleties
 * that may differentiate the display plane from ordinary buffers.
3020 3021
 */
int
3022 3023
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
3024
				     struct intel_ring_buffer *pipelined)
3025
{
3026
	u32 old_read_domains, old_write_domain;
3027 3028
	int ret;

3029 3030 3031 3032
	ret = i915_gem_object_flush_gpu_write_domain(obj);
	if (ret)
		return ret;

3033
	if (pipelined != obj->ring) {
3034
		ret = i915_gem_object_wait_rendering(obj);
3035
		if (ret == -ERESTARTSYS)
3036 3037 3038
			return ret;
	}

3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
	ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
	if (ret)
		return ret;

3052 3053 3054 3055 3056 3057 3058 3059
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
	 * always use map_and_fenceable for all scanout buffers.
	 */
	ret = i915_gem_object_pin(obj, alignment, true);
	if (ret)
		return ret;

3060 3061
	i915_gem_object_flush_cpu_write_domain(obj);

3062
	old_write_domain = obj->base.write_domain;
3063
	old_read_domains = obj->base.read_domains;
3064 3065 3066 3067 3068

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3069
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3070 3071 3072

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
3073
					    old_write_domain);
3074 3075 3076 3077

	return 0;
}

3078
int
3079
i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3080
{
3081 3082
	int ret;

3083
	if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3084 3085
		return 0;

3086
	if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
C
Chris Wilson 已提交
3087
		ret = i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
3088 3089 3090
		if (ret)
			return ret;
	}
3091

3092 3093 3094
	/* Ensure that we invalidate the GPU's caches and TLBs. */
	obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;

3095
	return i915_gem_object_wait_rendering(obj);
3096 3097
}

3098 3099 3100 3101 3102 3103 3104
/**
 * Moves a single object to the CPU read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
static int
3105
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3106
{
C
Chris Wilson 已提交
3107
	uint32_t old_write_domain, old_read_domains;
3108 3109
	int ret;

3110 3111 3112
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return 0;

3113 3114 3115 3116
	ret = i915_gem_object_flush_gpu_write_domain(obj);
	if (ret)
		return ret;

3117
	ret = i915_gem_object_wait_rendering(obj);
3118
	if (ret)
3119
		return ret;
3120

3121
	i915_gem_object_flush_gtt_write_domain(obj);
3122

3123 3124
	/* If we have a partially-valid cache of the object in the CPU,
	 * finish invalidating it and free the per-page flags.
3125
	 */
3126
	i915_gem_object_set_to_full_cpu_read_domain(obj);
3127

3128 3129
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3130

3131
	/* Flush the CPU cache if it's still invalid. */
3132
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3133 3134
		i915_gem_clflush_object(obj);

3135
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3136 3137 3138 3139 3140
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3141
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3142 3143 3144 3145 3146

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
3147 3148
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3149
	}
3150

C
Chris Wilson 已提交
3151 3152 3153 3154
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3155 3156 3157
	return 0;
}

3158
/**
3159
 * Moves the object from a partially CPU read to a full one.
3160
 *
3161 3162
 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
3163
 */
3164
static void
3165
i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj)
3166
{
3167
	if (!obj->page_cpu_valid)
3168 3169 3170 3171
		return;

	/* If we're partially in the CPU read domain, finish moving it in.
	 */
3172
	if (obj->base.read_domains & I915_GEM_DOMAIN_CPU) {
3173 3174
		int i;

3175 3176
		for (i = 0; i <= (obj->base.size - 1) / PAGE_SIZE; i++) {
			if (obj->page_cpu_valid[i])
3177
				continue;
3178
			drm_clflush_pages(obj->pages + i, 1);
3179 3180 3181 3182 3183 3184
		}
	}

	/* Free the page_cpu_valid mappings which are now stale, whether
	 * or not we've got I915_GEM_DOMAIN_CPU.
	 */
3185 3186
	kfree(obj->page_cpu_valid);
	obj->page_cpu_valid = NULL;
3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201
}

/**
 * Set the CPU read domain on a range of the object.
 *
 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
 * not entirely valid.  The page_cpu_valid member of the object flags which
 * pages have been flushed, and will be respected by
 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
 * of the whole object.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
static int
3202
i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
3203 3204
					  uint64_t offset, uint64_t size)
{
C
Chris Wilson 已提交
3205
	uint32_t old_read_domains;
3206
	int i, ret;
3207

3208
	if (offset == 0 && size == obj->base.size)
3209
		return i915_gem_object_set_to_cpu_domain(obj, 0);
3210

3211 3212 3213 3214
	ret = i915_gem_object_flush_gpu_write_domain(obj);
	if (ret)
		return ret;

3215
	ret = i915_gem_object_wait_rendering(obj);
3216
	if (ret)
3217
		return ret;
3218

3219 3220 3221
	i915_gem_object_flush_gtt_write_domain(obj);

	/* If we're already fully in the CPU read domain, we're done. */
3222 3223
	if (obj->page_cpu_valid == NULL &&
	    (obj->base.read_domains & I915_GEM_DOMAIN_CPU) != 0)
3224
		return 0;
3225

3226 3227 3228
	/* Otherwise, create/clear the per-page CPU read domain flag if we're
	 * newly adding I915_GEM_DOMAIN_CPU
	 */
3229 3230 3231 3232
	if (obj->page_cpu_valid == NULL) {
		obj->page_cpu_valid = kzalloc(obj->base.size / PAGE_SIZE,
					      GFP_KERNEL);
		if (obj->page_cpu_valid == NULL)
3233
			return -ENOMEM;
3234 3235
	} else if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
		memset(obj->page_cpu_valid, 0, obj->base.size / PAGE_SIZE);
3236 3237 3238 3239

	/* Flush the cache on any pages that are still invalid from the CPU's
	 * perspective.
	 */
3240 3241
	for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
	     i++) {
3242
		if (obj->page_cpu_valid[i])
3243 3244
			continue;

3245
		drm_clflush_pages(obj->pages + i, 1);
3246

3247
		obj->page_cpu_valid[i] = 1;
3248 3249
	}

3250 3251 3252
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3253
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3254

3255 3256
	old_read_domains = obj->base.read_domains;
	obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3257

C
Chris Wilson 已提交
3258 3259
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
3260
					    obj->base.write_domain);
C
Chris Wilson 已提交
3261

3262 3263 3264 3265 3266 3267
	return 0;
}

/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
3268 3269 3270 3271
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
3272 3273 3274
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
3275
static int
3276
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3277
{
3278 3279
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_file_private *file_priv = file->driver_priv;
3280
	unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3281 3282 3283 3284
	struct drm_i915_gem_request *request;
	struct intel_ring_buffer *ring = NULL;
	u32 seqno = 0;
	int ret;
3285

3286 3287 3288
	if (atomic_read(&dev_priv->mm.wedged))
		return -EIO;

3289
	spin_lock(&file_priv->mm.lock);
3290
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3291 3292
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
3293

3294 3295
		ring = request->ring;
		seqno = request->seqno;
3296
	}
3297
	spin_unlock(&file_priv->mm.lock);
3298

3299 3300
	if (seqno == 0)
		return 0;
3301

3302
	ret = 0;
3303
	if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
3304 3305 3306 3307 3308
		/* And wait for the seqno passing without holding any locks and
		 * causing extra latency for others. This is safe as the irq
		 * generation is designed to be run atomically and so is
		 * lockless.
		 */
3309 3310 3311 3312 3313
		if (ring->irq_get(ring)) {
			ret = wait_event_interruptible(ring->irq_queue,
						       i915_seqno_passed(ring->get_seqno(ring), seqno)
						       || atomic_read(&dev_priv->mm.wedged));
			ring->irq_put(ring);
3314

3315 3316 3317
			if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
				ret = -EIO;
		}
3318 3319
	}

3320 3321
	if (ret == 0)
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3322 3323 3324 3325

	return ret;
}

3326
int
3327 3328
i915_gem_object_pin(struct drm_i915_gem_object *obj,
		    uint32_t alignment,
3329
		    bool map_and_fenceable)
3330
{
3331
	struct drm_device *dev = obj->base.dev;
C
Chris Wilson 已提交
3332
	struct drm_i915_private *dev_priv = dev->dev_private;
3333 3334
	int ret;

3335
	BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
3336
	WARN_ON(i915_verify_lists(dev));
3337

3338 3339 3340 3341
	if (obj->gtt_space != NULL) {
		if ((alignment && obj->gtt_offset & (alignment - 1)) ||
		    (map_and_fenceable && !obj->map_and_fenceable)) {
			WARN(obj->pin_count,
3342
			     "bo is already pinned with incorrect alignment:"
3343 3344
			     " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
			     " obj->map_and_fenceable=%d\n",
3345
			     obj->gtt_offset, alignment,
3346
			     map_and_fenceable,
3347
			     obj->map_and_fenceable);
3348 3349 3350 3351 3352 3353
			ret = i915_gem_object_unbind(obj);
			if (ret)
				return ret;
		}
	}

3354
	if (obj->gtt_space == NULL) {
3355
		ret = i915_gem_object_bind_to_gtt(obj, alignment,
3356
						  map_and_fenceable);
3357
		if (ret)
3358
			return ret;
3359
	}
J
Jesse Barnes 已提交
3360

3361 3362 3363
	if (obj->pin_count++ == 0) {
		if (!obj->active)
			list_move_tail(&obj->mm_list,
C
Chris Wilson 已提交
3364
				       &dev_priv->mm.pinned_list);
3365
	}
3366
	obj->pin_mappable |= map_and_fenceable;
3367

3368
	WARN_ON(i915_verify_lists(dev));
3369 3370 3371 3372
	return 0;
}

void
3373
i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3374
{
3375
	struct drm_device *dev = obj->base.dev;
3376 3377
	drm_i915_private_t *dev_priv = dev->dev_private;

3378
	WARN_ON(i915_verify_lists(dev));
3379 3380
	BUG_ON(obj->pin_count == 0);
	BUG_ON(obj->gtt_space == NULL);
3381

3382 3383 3384
	if (--obj->pin_count == 0) {
		if (!obj->active)
			list_move_tail(&obj->mm_list,
3385
				       &dev_priv->mm.inactive_list);
3386
		obj->pin_mappable = false;
3387
	}
3388
	WARN_ON(i915_verify_lists(dev));
3389 3390 3391 3392
}

int
i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3393
		   struct drm_file *file)
3394 3395
{
	struct drm_i915_gem_pin *args = data;
3396
	struct drm_i915_gem_object *obj;
3397 3398
	int ret;

3399 3400 3401
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;
3402

3403
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3404
	if (&obj->base == NULL) {
3405 3406
		ret = -ENOENT;
		goto unlock;
3407 3408
	}

3409
	if (obj->madv != I915_MADV_WILLNEED) {
C
Chris Wilson 已提交
3410
		DRM_ERROR("Attempting to pin a purgeable buffer\n");
3411 3412
		ret = -EINVAL;
		goto out;
3413 3414
	}

3415
	if (obj->pin_filp != NULL && obj->pin_filp != file) {
J
Jesse Barnes 已提交
3416 3417
		DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
			  args->handle);
3418 3419
		ret = -EINVAL;
		goto out;
J
Jesse Barnes 已提交
3420 3421
	}

3422 3423 3424
	obj->user_pin_count++;
	obj->pin_filp = file;
	if (obj->user_pin_count == 1) {
3425
		ret = i915_gem_object_pin(obj, args->alignment, true);
3426 3427
		if (ret)
			goto out;
3428 3429 3430 3431 3432
	}

	/* XXX - flush the CPU caches for pinned objects
	 * as the X server doesn't manage domains yet
	 */
3433
	i915_gem_object_flush_cpu_write_domain(obj);
3434
	args->offset = obj->gtt_offset;
3435
out:
3436
	drm_gem_object_unreference(&obj->base);
3437
unlock:
3438
	mutex_unlock(&dev->struct_mutex);
3439
	return ret;
3440 3441 3442 3443
}

int
i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3444
		     struct drm_file *file)
3445 3446
{
	struct drm_i915_gem_pin *args = data;
3447
	struct drm_i915_gem_object *obj;
3448
	int ret;
3449

3450 3451 3452
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;
3453

3454
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3455
	if (&obj->base == NULL) {
3456 3457
		ret = -ENOENT;
		goto unlock;
3458
	}
3459

3460
	if (obj->pin_filp != file) {
J
Jesse Barnes 已提交
3461 3462
		DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
			  args->handle);
3463 3464
		ret = -EINVAL;
		goto out;
J
Jesse Barnes 已提交
3465
	}
3466 3467 3468
	obj->user_pin_count--;
	if (obj->user_pin_count == 0) {
		obj->pin_filp = NULL;
J
Jesse Barnes 已提交
3469 3470
		i915_gem_object_unpin(obj);
	}
3471

3472
out:
3473
	drm_gem_object_unreference(&obj->base);
3474
unlock:
3475
	mutex_unlock(&dev->struct_mutex);
3476
	return ret;
3477 3478 3479 3480
}

int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3481
		    struct drm_file *file)
3482 3483
{
	struct drm_i915_gem_busy *args = data;
3484
	struct drm_i915_gem_object *obj;
3485 3486
	int ret;

3487
	ret = i915_mutex_lock_interruptible(dev);
3488
	if (ret)
3489
		return ret;
3490

3491
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3492
	if (&obj->base == NULL) {
3493 3494
		ret = -ENOENT;
		goto unlock;
3495
	}
3496

3497 3498 3499 3500
	/* Count all active objects as busy, even if they are currently not used
	 * by the gpu. Users of this interface expect objects to eventually
	 * become non-busy without any further actions, therefore emit any
	 * necessary flushes here.
3501
	 */
3502
	args->busy = obj->active;
3503 3504 3505 3506 3507 3508
	if (args->busy) {
		/* Unconditionally flush objects, even when the gpu still uses this
		 * object. Userspace calling this function indicates that it wants to
		 * use this buffer rather sooner than later, so issuing the required
		 * flush earlier is beneficial.
		 */
3509
		if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
C
Chris Wilson 已提交
3510
			ret = i915_gem_flush_ring(obj->ring,
3511
						  0, obj->base.write_domain);
3512 3513 3514 3515
		} else if (obj->ring->outstanding_lazy_request ==
			   obj->last_rendering_seqno) {
			struct drm_i915_gem_request *request;

3516 3517 3518
			/* This ring is not being cleared by active usage,
			 * so emit a request to do so.
			 */
3519
			request = kzalloc(sizeof(*request), GFP_KERNEL);
3520
			if (request) {
3521
				ret = i915_add_request(obj->ring, NULL, request);
3522 3523 3524
				if (ret)
					kfree(request);
			} else
3525 3526
				ret = -ENOMEM;
		}
3527 3528 3529 3530 3531 3532

		/* Update the active list for the hardware's current position.
		 * Otherwise this only updates on a delayed timer or when irqs
		 * are actually unmasked, and our working set ends up being
		 * larger than required.
		 */
C
Chris Wilson 已提交
3533
		i915_gem_retire_requests_ring(obj->ring);
3534

3535
		args->busy = obj->active;
3536
	}
3537

3538
	drm_gem_object_unreference(&obj->base);
3539
unlock:
3540
	mutex_unlock(&dev->struct_mutex);
3541
	return ret;
3542 3543 3544 3545 3546 3547
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
3548
	return i915_gem_ring_throttle(dev, file_priv);
3549 3550
}

3551 3552 3553 3554 3555
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
	struct drm_i915_gem_madvise *args = data;
3556
	struct drm_i915_gem_object *obj;
3557
	int ret;
3558 3559 3560 3561 3562 3563 3564 3565 3566

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

3567 3568 3569 3570
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

3571
	obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3572
	if (&obj->base == NULL) {
3573 3574
		ret = -ENOENT;
		goto unlock;
3575 3576
	}

3577
	if (obj->pin_count) {
3578 3579
		ret = -EINVAL;
		goto out;
3580 3581
	}

3582 3583
	if (obj->madv != __I915_MADV_PURGED)
		obj->madv = args->madv;
3584

3585
	/* if the object is no longer bound, discard its backing storage */
3586 3587
	if (i915_gem_object_is_purgeable(obj) &&
	    obj->gtt_space == NULL)
3588 3589
		i915_gem_object_truncate(obj);

3590
	args->retained = obj->madv != __I915_MADV_PURGED;
C
Chris Wilson 已提交
3591

3592
out:
3593
	drm_gem_object_unreference(&obj->base);
3594
unlock:
3595
	mutex_unlock(&dev->struct_mutex);
3596
	return ret;
3597 3598
}

3599 3600
struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
						  size_t size)
3601
{
3602
	struct drm_i915_private *dev_priv = dev->dev_private;
3603
	struct drm_i915_gem_object *obj;
3604
	struct address_space *mapping;
3605

3606 3607 3608
	obj = kzalloc(sizeof(*obj), GFP_KERNEL);
	if (obj == NULL)
		return NULL;
3609

3610 3611 3612 3613
	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
		kfree(obj);
		return NULL;
	}
3614

3615 3616 3617
	mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
	mapping_set_gfp_mask(mapping, GFP_HIGHUSER | __GFP_RECLAIMABLE);

3618 3619
	i915_gem_info_add_obj(dev_priv, size);

3620 3621
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3622

3623
	if (IS_GEN6(dev) || IS_GEN7(dev)) {
3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639
		/* On Gen6, we can have the GPU use the LLC (the CPU
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
		obj->cache_level = I915_CACHE_LLC;
	} else
		obj->cache_level = I915_CACHE_NONE;

3640
	obj->base.driver_private = NULL;
3641
	obj->fence_reg = I915_FENCE_REG_NONE;
3642
	INIT_LIST_HEAD(&obj->mm_list);
D
Daniel Vetter 已提交
3643
	INIT_LIST_HEAD(&obj->gtt_list);
3644
	INIT_LIST_HEAD(&obj->ring_list);
3645
	INIT_LIST_HEAD(&obj->exec_list);
3646 3647
	INIT_LIST_HEAD(&obj->gpu_write_list);
	obj->madv = I915_MADV_WILLNEED;
3648 3649
	/* Avoid an unnecessary call to unbind on the first bind. */
	obj->map_and_fenceable = true;
3650

3651
	return obj;
3652 3653 3654 3655 3656
}

int i915_gem_init_object(struct drm_gem_object *obj)
{
	BUG();
3657

3658 3659 3660
	return 0;
}

3661
static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj)
3662
{
3663
	struct drm_device *dev = obj->base.dev;
3664 3665
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;
3666

3667 3668
	ret = i915_gem_object_unbind(obj);
	if (ret == -ERESTARTSYS) {
3669
		list_move(&obj->mm_list,
3670 3671 3672
			  &dev_priv->mm.deferred_free_list);
		return;
	}
3673

3674 3675
	trace_i915_gem_object_destroy(obj);

3676
	if (obj->base.map_list.map)
3677
		drm_gem_free_mmap_offset(&obj->base);
3678

3679 3680
	drm_gem_object_release(&obj->base);
	i915_gem_info_remove_obj(dev_priv, obj->base.size);
3681

3682 3683 3684
	kfree(obj->page_cpu_valid);
	kfree(obj->bit_17);
	kfree(obj);
3685 3686
}

3687
void i915_gem_free_object(struct drm_gem_object *gem_obj)
3688
{
3689 3690
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
	struct drm_device *dev = obj->base.dev;
3691

3692
	while (obj->pin_count > 0)
3693 3694
		i915_gem_object_unpin(obj);

3695
	if (obj->phys_obj)
3696 3697 3698 3699 3700
		i915_gem_detach_phys_object(dev, obj);

	i915_gem_free_object_tail(obj);
}

3701 3702 3703 3704 3705
int
i915_gem_idle(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;
3706

3707
	mutex_lock(&dev->struct_mutex);
C
Chris Wilson 已提交
3708

3709
	if (dev_priv->mm.suspended) {
3710 3711
		mutex_unlock(&dev->struct_mutex);
		return 0;
3712 3713
	}

3714
	ret = i915_gpu_idle(dev);
3715 3716
	if (ret) {
		mutex_unlock(&dev->struct_mutex);
3717
		return ret;
3718
	}
3719

3720 3721
	/* Under UMS, be paranoid and evict. */
	if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
3722
		ret = i915_gem_evict_inactive(dev, false);
3723 3724 3725 3726 3727 3728
		if (ret) {
			mutex_unlock(&dev->struct_mutex);
			return ret;
		}
	}

3729 3730
	i915_gem_reset_fences(dev);

3731 3732 3733 3734 3735
	/* Hack!  Don't let anybody do execbuf while we don't control the chip.
	 * We need to replace this with a semaphore, or something.
	 * And not confound mm.suspended!
	 */
	dev_priv->mm.suspended = 1;
3736
	del_timer_sync(&dev_priv->hangcheck_timer);
3737 3738

	i915_kernel_lost_context(dev);
3739
	i915_gem_cleanup_ringbuffer(dev);
3740

3741 3742
	mutex_unlock(&dev->struct_mutex);

3743 3744 3745
	/* Cancel the retire work handler, which should be idle now. */
	cancel_delayed_work_sync(&dev_priv->mm.retire_work);

3746 3747 3748
	return 0;
}

3749 3750 3751 3752 3753
int
i915_gem_init_ringbuffer(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;
3754

3755
	ret = intel_init_render_ring_buffer(dev);
3756
	if (ret)
3757
		return ret;
3758 3759

	if (HAS_BSD(dev)) {
3760
		ret = intel_init_bsd_ring_buffer(dev);
3761 3762
		if (ret)
			goto cleanup_render_ring;
3763
	}
3764

3765 3766 3767 3768 3769 3770
	if (HAS_BLT(dev)) {
		ret = intel_init_blt_ring_buffer(dev);
		if (ret)
			goto cleanup_bsd_ring;
	}

3771 3772
	dev_priv->next_seqno = 1;

3773 3774
	return 0;

3775
cleanup_bsd_ring:
3776
	intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
3777
cleanup_render_ring:
3778
	intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
3779 3780 3781 3782 3783 3784 3785
	return ret;
}

void
i915_gem_cleanup_ringbuffer(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
3786
	int i;
3787

3788 3789
	for (i = 0; i < I915_NUM_RINGS; i++)
		intel_cleanup_ring_buffer(&dev_priv->ring[i]);
3790 3791
}

3792 3793 3794 3795 3796
int
i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
3797
	int ret, i;
3798

J
Jesse Barnes 已提交
3799 3800 3801
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return 0;

3802
	if (atomic_read(&dev_priv->mm.wedged)) {
3803
		DRM_ERROR("Reenabling wedged hardware, good luck\n");
3804
		atomic_set(&dev_priv->mm.wedged, 0);
3805 3806 3807
	}

	mutex_lock(&dev->struct_mutex);
3808 3809 3810
	dev_priv->mm.suspended = 0;

	ret = i915_gem_init_ringbuffer(dev);
3811 3812
	if (ret != 0) {
		mutex_unlock(&dev->struct_mutex);
3813
		return ret;
3814
	}
3815

3816
	BUG_ON(!list_empty(&dev_priv->mm.active_list));
3817 3818
	BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
	BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
3819 3820 3821 3822
	for (i = 0; i < I915_NUM_RINGS; i++) {
		BUG_ON(!list_empty(&dev_priv->ring[i].active_list));
		BUG_ON(!list_empty(&dev_priv->ring[i].request_list));
	}
3823
	mutex_unlock(&dev->struct_mutex);
3824

3825 3826 3827
	ret = drm_irq_install(dev);
	if (ret)
		goto cleanup_ringbuffer;
3828

3829
	return 0;
3830 3831 3832 3833 3834 3835 3836 3837

cleanup_ringbuffer:
	mutex_lock(&dev->struct_mutex);
	i915_gem_cleanup_ringbuffer(dev);
	dev_priv->mm.suspended = 1;
	mutex_unlock(&dev->struct_mutex);

	return ret;
3838 3839 3840 3841 3842 3843
}

int
i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
J
Jesse Barnes 已提交
3844 3845 3846
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return 0;

3847
	drm_irq_uninstall(dev);
3848
	return i915_gem_idle(dev);
3849 3850 3851 3852 3853 3854 3855
}

void
i915_gem_lastclose(struct drm_device *dev)
{
	int ret;

3856 3857 3858
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return;

3859 3860 3861
	ret = i915_gem_idle(dev);
	if (ret)
		DRM_ERROR("failed to idle hardware: %d\n", ret);
3862 3863
}

3864 3865 3866 3867 3868 3869 3870 3871
static void
init_ring_lists(struct intel_ring_buffer *ring)
{
	INIT_LIST_HEAD(&ring->active_list);
	INIT_LIST_HEAD(&ring->request_list);
	INIT_LIST_HEAD(&ring->gpu_write_list);
}

3872 3873 3874
void
i915_gem_load(struct drm_device *dev)
{
3875
	int i;
3876 3877
	drm_i915_private_t *dev_priv = dev->dev_private;

3878
	INIT_LIST_HEAD(&dev_priv->mm.active_list);
3879 3880
	INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
	INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
C
Chris Wilson 已提交
3881
	INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
3882
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
3883
	INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
D
Daniel Vetter 已提交
3884
	INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
3885 3886
	for (i = 0; i < I915_NUM_RINGS; i++)
		init_ring_lists(&dev_priv->ring[i]);
3887
	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
3888
		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
3889 3890
	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
			  i915_gem_retire_work_handler);
3891
	init_completion(&dev_priv->error_completion);
3892

3893 3894 3895 3896 3897 3898 3899 3900 3901 3902
	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	if (IS_GEN3(dev)) {
		u32 tmp = I915_READ(MI_ARB_STATE);
		if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
			/* arb state is a masked write, so set bit + bit in mask */
			tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
			I915_WRITE(MI_ARB_STATE, tmp);
		}
	}

3903 3904
	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;

3905
	/* Old X drivers will take 0-2 for front, back, depth buffers */
3906 3907
	if (!drm_core_check_feature(dev, DRIVER_MODESET))
		dev_priv->fence_reg_start = 3;
3908

3909
	if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
3910 3911 3912 3913
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

3914
	/* Initialize fence registers to zero */
3915 3916
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		i915_gem_clear_fence_reg(dev, &dev_priv->fence_regs[i]);
3917
	}
3918

3919
	i915_gem_detect_bit_6_swizzle(dev);
3920
	init_waitqueue_head(&dev_priv->pending_flip_queue);
3921

3922 3923
	dev_priv->mm.interruptible = true;

3924 3925 3926
	dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
	dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
	register_shrinker(&dev_priv->mm.inactive_shrinker);
3927
}
3928 3929 3930 3931 3932

/*
 * Create a physically contiguous memory object for this object
 * e.g. for cursor + overlay regs
 */
3933 3934
static int i915_gem_init_phys_object(struct drm_device *dev,
				     int id, int size, int align)
3935 3936 3937 3938 3939 3940 3941 3942
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_phys_object *phys_obj;
	int ret;

	if (dev_priv->mm.phys_objs[id - 1] || !size)
		return 0;

3943
	phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
3944 3945 3946 3947 3948
	if (!phys_obj)
		return -ENOMEM;

	phys_obj->id = id;

3949
	phys_obj->handle = drm_pci_alloc(dev, size, align);
3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961
	if (!phys_obj->handle) {
		ret = -ENOMEM;
		goto kfree_obj;
	}
#ifdef CONFIG_X86
	set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
#endif

	dev_priv->mm.phys_objs[id - 1] = phys_obj;

	return 0;
kfree_obj:
3962
	kfree(phys_obj);
3963 3964 3965
	return ret;
}

3966
static void i915_gem_free_phys_object(struct drm_device *dev, int id)
3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_phys_object *phys_obj;

	if (!dev_priv->mm.phys_objs[id - 1])
		return;

	phys_obj = dev_priv->mm.phys_objs[id - 1];
	if (phys_obj->cur_obj) {
		i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
	}

#ifdef CONFIG_X86
	set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
#endif
	drm_pci_free(dev, phys_obj->handle);
	kfree(phys_obj);
	dev_priv->mm.phys_objs[id - 1] = NULL;
}

void i915_gem_free_all_phys_object(struct drm_device *dev)
{
	int i;

3991
	for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
3992 3993 3994 3995
		i915_gem_free_phys_object(dev, i);
}

void i915_gem_detach_phys_object(struct drm_device *dev,
3996
				 struct drm_i915_gem_object *obj)
3997
{
3998
	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3999
	char *vaddr;
4000 4001 4002
	int i;
	int page_count;

4003
	if (!obj->phys_obj)
4004
		return;
4005
	vaddr = obj->phys_obj->handle->vaddr;
4006

4007
	page_count = obj->base.size / PAGE_SIZE;
4008
	for (i = 0; i < page_count; i++) {
4009
		struct page *page = shmem_read_mapping_page(mapping, i);
4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020
		if (!IS_ERR(page)) {
			char *dst = kmap_atomic(page);
			memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
			kunmap_atomic(dst);

			drm_clflush_pages(&page, 1);

			set_page_dirty(page);
			mark_page_accessed(page);
			page_cache_release(page);
		}
4021
	}
4022
	intel_gtt_chipset_flush();
4023

4024 4025
	obj->phys_obj->cur_obj = NULL;
	obj->phys_obj = NULL;
4026 4027 4028 4029
}

int
i915_gem_attach_phys_object(struct drm_device *dev,
4030
			    struct drm_i915_gem_object *obj,
4031 4032
			    int id,
			    int align)
4033
{
4034
	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
4035 4036 4037 4038 4039 4040 4041 4042
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret = 0;
	int page_count;
	int i;

	if (id > I915_MAX_PHYS_OBJECT)
		return -EINVAL;

4043 4044
	if (obj->phys_obj) {
		if (obj->phys_obj->id == id)
4045 4046 4047 4048 4049 4050 4051
			return 0;
		i915_gem_detach_phys_object(dev, obj);
	}

	/* create a new object */
	if (!dev_priv->mm.phys_objs[id - 1]) {
		ret = i915_gem_init_phys_object(dev, id,
4052
						obj->base.size, align);
4053
		if (ret) {
4054 4055
			DRM_ERROR("failed to init phys object %d size: %zu\n",
				  id, obj->base.size);
4056
			return ret;
4057 4058 4059 4060
		}
	}

	/* bind to the object */
4061 4062
	obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
	obj->phys_obj->cur_obj = obj;
4063

4064
	page_count = obj->base.size / PAGE_SIZE;
4065 4066

	for (i = 0; i < page_count; i++) {
4067 4068 4069
		struct page *page;
		char *dst, *src;

4070
		page = shmem_read_mapping_page(mapping, i);
4071 4072
		if (IS_ERR(page))
			return PTR_ERR(page);
4073

4074
		src = kmap_atomic(page);
4075
		dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4076
		memcpy(dst, src, PAGE_SIZE);
P
Peter Zijlstra 已提交
4077
		kunmap_atomic(src);
4078

4079 4080 4081
		mark_page_accessed(page);
		page_cache_release(page);
	}
4082

4083 4084 4085 4086
	return 0;
}

static int
4087 4088
i915_gem_phys_pwrite(struct drm_device *dev,
		     struct drm_i915_gem_object *obj,
4089 4090 4091
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
4092
	void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4093
	char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
4094

4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107
	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
		unsigned long unwritten;

		/* The physical object once assigned is fixed for the lifetime
		 * of the obj, so we can safely drop the lock and continue
		 * to access vaddr.
		 */
		mutex_unlock(&dev->struct_mutex);
		unwritten = copy_from_user(vaddr, user_data, args->size);
		mutex_lock(&dev->struct_mutex);
		if (unwritten)
			return -EFAULT;
	}
4108

4109
	intel_gtt_chipset_flush();
4110 4111
	return 0;
}
4112

4113
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4114
{
4115
	struct drm_i915_file_private *file_priv = file->driver_priv;
4116 4117 4118 4119 4120

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
4121
	spin_lock(&file_priv->mm.lock);
4122 4123 4124 4125 4126 4127 4128 4129 4130
	while (!list_empty(&file_priv->mm.request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&file_priv->mm.request_list,
					   struct drm_i915_gem_request,
					   client_list);
		list_del(&request->client_list);
		request->file_priv = NULL;
	}
4131
	spin_unlock(&file_priv->mm.lock);
4132
}
4133

4134 4135 4136 4137 4138 4139 4140
static int
i915_gpu_is_active(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int lists_empty;

	lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
4141
		      list_empty(&dev_priv->mm.active_list);
4142 4143 4144 4145

	return !lists_empty;
}

4146
static int
4147
i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
4148
{
4149 4150 4151 4152 4153 4154
	struct drm_i915_private *dev_priv =
		container_of(shrinker,
			     struct drm_i915_private,
			     mm.inactive_shrinker);
	struct drm_device *dev = dev_priv->dev;
	struct drm_i915_gem_object *obj, *next;
4155
	int nr_to_scan = sc->nr_to_scan;
4156 4157 4158
	int cnt;

	if (!mutex_trylock(&dev->struct_mutex))
4159
		return 0;
4160 4161 4162

	/* "fast-path" to count number of available objects */
	if (nr_to_scan == 0) {
4163 4164 4165 4166 4167 4168 4169
		cnt = 0;
		list_for_each_entry(obj,
				    &dev_priv->mm.inactive_list,
				    mm_list)
			cnt++;
		mutex_unlock(&dev->struct_mutex);
		return cnt / 100 * sysctl_vfs_cache_pressure;
4170 4171
	}

4172
rescan:
4173
	/* first scan for clean buffers */
4174
	i915_gem_retire_requests(dev);
4175

4176 4177 4178 4179
	list_for_each_entry_safe(obj, next,
				 &dev_priv->mm.inactive_list,
				 mm_list) {
		if (i915_gem_object_is_purgeable(obj)) {
4180 4181
			if (i915_gem_object_unbind(obj) == 0 &&
			    --nr_to_scan == 0)
4182
				break;
4183 4184 4185 4186
		}
	}

	/* second pass, evict/count anything still on the inactive list */
4187 4188 4189 4190
	cnt = 0;
	list_for_each_entry_safe(obj, next,
				 &dev_priv->mm.inactive_list,
				 mm_list) {
4191 4192
		if (nr_to_scan &&
		    i915_gem_object_unbind(obj) == 0)
4193
			nr_to_scan--;
4194
		else
4195 4196 4197 4198
			cnt++;
	}

	if (nr_to_scan && i915_gpu_is_active(dev)) {
4199 4200 4201 4202 4203 4204
		/*
		 * We are desperate for pages, so as a last resort, wait
		 * for the GPU to finish and discard whatever we can.
		 * This has a dramatic impact to reduce the number of
		 * OOM-killer events whilst running the GPU aggressively.
		 */
4205
		if (i915_gpu_idle(dev) == 0)
4206 4207
			goto rescan;
	}
4208 4209
	mutex_unlock(&dev->struct_mutex);
	return cnt / 100 * sysctl_vfs_cache_pressure;
4210
}