slab_common.c 31.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
/*
 * Slab allocator functions that are independent of the allocator strategy
 *
 * (C) 2012 Christoph Lameter <cl@linux.com>
 */
#include <linux/slab.h>

#include <linux/mm.h>
#include <linux/poison.h>
#include <linux/interrupt.h>
#include <linux/memory.h>
#include <linux/compiler.h>
#include <linux/module.h>
14 15
#include <linux/cpu.h>
#include <linux/uaccess.h>
16 17
#include <linux/seq_file.h>
#include <linux/proc_fs.h>
18 19 20
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
#include <asm/page.h>
21
#include <linux/memcontrol.h>
22 23

#define CREATE_TRACE_POINTS
24
#include <trace/events/kmem.h>
25

26 27 28
#include "slab.h"

enum slab_state slab_state;
29 30
LIST_HEAD(slab_caches);
DEFINE_MUTEX(slab_mutex);
31
struct kmem_cache *kmem_cache;
32

33 34 35 36 37
/*
 * Set of flags that will prevent slab merging
 */
#define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
		SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
A
Alexander Potapenko 已提交
38
		SLAB_FAILSLAB | SLAB_KASAN)
39

V
Vladimir Davydov 已提交
40 41
#define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
			 SLAB_NOTRACK | SLAB_ACCOUNT)
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

/*
 * Merge control. If this is set then no merging of slab caches will occur.
 * (Could be removed. This was introduced to pacify the merge skeptics.)
 */
static int slab_nomerge;

static int __init setup_slab_nomerge(char *str)
{
	slab_nomerge = 1;
	return 1;
}

#ifdef CONFIG_SLUB
__setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
#endif

__setup("slab_nomerge", setup_slab_nomerge);

61 62 63 64 65 66 67 68 69
/*
 * Determine the size of a slab object
 */
unsigned int kmem_cache_size(struct kmem_cache *s)
{
	return s->object_size;
}
EXPORT_SYMBOL(kmem_cache_size);

70
#ifdef CONFIG_DEBUG_VM
71
static int kmem_cache_sanity_check(const char *name, size_t size)
72 73 74 75 76
{
	struct kmem_cache *s = NULL;

	if (!name || in_interrupt() || size < sizeof(void *) ||
		size > KMALLOC_MAX_SIZE) {
77 78
		pr_err("kmem_cache_create(%s) integrity check failed\n", name);
		return -EINVAL;
79
	}
80

81 82 83 84 85 86 87 88 89 90 91
	list_for_each_entry(s, &slab_caches, list) {
		char tmp;
		int res;

		/*
		 * This happens when the module gets unloaded and doesn't
		 * destroy its slab cache and no-one else reuses the vmalloc
		 * area of the module.  Print a warning.
		 */
		res = probe_kernel_address(s->name, tmp);
		if (res) {
92
			pr_err("Slab cache with size %d has lost its name\n",
93 94 95 96 97 98
			       s->object_size);
			continue;
		}
	}

	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
99 100 101
	return 0;
}
#else
102
static inline int kmem_cache_sanity_check(const char *name, size_t size)
103 104 105
{
	return 0;
}
106 107
#endif

108 109 110 111
void __kmem_cache_free_bulk(struct kmem_cache *s, size_t nr, void **p)
{
	size_t i;

112 113 114 115 116 117
	for (i = 0; i < nr; i++) {
		if (s)
			kmem_cache_free(s, p[i]);
		else
			kfree(p[i]);
	}
118 119
}

120
int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t nr,
121 122 123 124 125 126 127 128
								void **p)
{
	size_t i;

	for (i = 0; i < nr; i++) {
		void *x = p[i] = kmem_cache_alloc(s, flags);
		if (!x) {
			__kmem_cache_free_bulk(s, i, p);
129
			return 0;
130 131
		}
	}
132
	return i;
133 134
}

135
#if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
136
void slab_init_memcg_params(struct kmem_cache *s)
137
{
138
	s->memcg_params.is_root_cache = true;
139
	INIT_LIST_HEAD(&s->memcg_params.list);
140 141 142 143 144 145 146
	RCU_INIT_POINTER(s->memcg_params.memcg_caches, NULL);
}

static int init_memcg_params(struct kmem_cache *s,
		struct mem_cgroup *memcg, struct kmem_cache *root_cache)
{
	struct memcg_cache_array *arr;
147

148 149 150 151
	if (memcg) {
		s->memcg_params.is_root_cache = false;
		s->memcg_params.memcg = memcg;
		s->memcg_params.root_cache = root_cache;
152
		return 0;
153
	}
154

155
	slab_init_memcg_params(s);
156

157 158
	if (!memcg_nr_cache_ids)
		return 0;
159

160 161 162 163 164
	arr = kzalloc(sizeof(struct memcg_cache_array) +
		      memcg_nr_cache_ids * sizeof(void *),
		      GFP_KERNEL);
	if (!arr)
		return -ENOMEM;
165

166
	RCU_INIT_POINTER(s->memcg_params.memcg_caches, arr);
167 168 169
	return 0;
}

170
static void destroy_memcg_params(struct kmem_cache *s)
171
{
172 173
	if (is_root_cache(s))
		kfree(rcu_access_pointer(s->memcg_params.memcg_caches));
174 175
}

176
static int update_memcg_params(struct kmem_cache *s, int new_array_size)
177
{
178
	struct memcg_cache_array *old, *new;
179

180 181
	if (!is_root_cache(s))
		return 0;
182

183 184 185
	new = kzalloc(sizeof(struct memcg_cache_array) +
		      new_array_size * sizeof(void *), GFP_KERNEL);
	if (!new)
186 187
		return -ENOMEM;

188 189 190 191 192
	old = rcu_dereference_protected(s->memcg_params.memcg_caches,
					lockdep_is_held(&slab_mutex));
	if (old)
		memcpy(new->entries, old->entries,
		       memcg_nr_cache_ids * sizeof(void *));
193

194 195 196
	rcu_assign_pointer(s->memcg_params.memcg_caches, new);
	if (old)
		kfree_rcu(old, rcu);
197 198 199
	return 0;
}

200 201 202 203 204
int memcg_update_all_caches(int num_memcgs)
{
	struct kmem_cache *s;
	int ret = 0;

205
	mutex_lock(&slab_mutex);
206
	list_for_each_entry(s, &slab_caches, list) {
207
		ret = update_memcg_params(s, num_memcgs);
208 209 210 211 212
		/*
		 * Instead of freeing the memory, we'll just leave the caches
		 * up to this point in an updated state.
		 */
		if (ret)
213
			break;
214 215 216 217
	}
	mutex_unlock(&slab_mutex);
	return ret;
}
218
#else
219 220
static inline int init_memcg_params(struct kmem_cache *s,
		struct mem_cgroup *memcg, struct kmem_cache *root_cache)
221 222 223 224
{
	return 0;
}

225
static inline void destroy_memcg_params(struct kmem_cache *s)
226 227
{
}
228
#endif /* CONFIG_MEMCG && !CONFIG_SLOB */
229

230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
/*
 * Find a mergeable slab cache
 */
int slab_unmergeable(struct kmem_cache *s)
{
	if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
		return 1;

	if (!is_root_cache(s))
		return 1;

	if (s->ctor)
		return 1;

	/*
	 * We may have set a slab to be unmergeable during bootstrap.
	 */
	if (s->refcount < 0)
		return 1;

	return 0;
}

struct kmem_cache *find_mergeable(size_t size, size_t align,
		unsigned long flags, const char *name, void (*ctor)(void *))
{
	struct kmem_cache *s;

	if (slab_nomerge || (flags & SLAB_NEVER_MERGE))
		return NULL;

	if (ctor)
		return NULL;

	size = ALIGN(size, sizeof(void *));
	align = calculate_alignment(flags, align, size);
	size = ALIGN(size, align);
	flags = kmem_cache_flags(size, flags, name, NULL);

269
	list_for_each_entry_reverse(s, &slab_caches, list) {
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
		if (slab_unmergeable(s))
			continue;

		if (size > s->size)
			continue;

		if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
			continue;
		/*
		 * Check if alignment is compatible.
		 * Courtesy of Adrian Drzewiecki
		 */
		if ((s->size & ~(align - 1)) != s->size)
			continue;

		if (s->size - size >= sizeof(void *))
			continue;

288 289 290 291
		if (IS_ENABLED(CONFIG_SLAB) && align &&
			(align > s->align || s->align % align))
			continue;

292 293 294 295 296
		return s;
	}
	return NULL;
}

297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
/*
 * Figure out what the alignment of the objects will be given a set of
 * flags, a user specified alignment and the size of the objects.
 */
unsigned long calculate_alignment(unsigned long flags,
		unsigned long align, unsigned long size)
{
	/*
	 * If the user wants hardware cache aligned objects then follow that
	 * suggestion if the object is sufficiently large.
	 *
	 * The hardware cache alignment cannot override the specified
	 * alignment though. If that is greater then use it.
	 */
	if (flags & SLAB_HWCACHE_ALIGN) {
		unsigned long ralign = cache_line_size();
		while (size <= ralign / 2)
			ralign /= 2;
		align = max(align, ralign);
	}

	if (align < ARCH_SLAB_MINALIGN)
		align = ARCH_SLAB_MINALIGN;

	return ALIGN(align, sizeof(void *));
}

324 325 326 327
static struct kmem_cache *create_cache(const char *name,
		size_t object_size, size_t size, size_t align,
		unsigned long flags, void (*ctor)(void *),
		struct mem_cgroup *memcg, struct kmem_cache *root_cache)
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
{
	struct kmem_cache *s;
	int err;

	err = -ENOMEM;
	s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
	if (!s)
		goto out;

	s->name = name;
	s->object_size = object_size;
	s->size = size;
	s->align = align;
	s->ctor = ctor;

343
	err = init_memcg_params(s, memcg, root_cache);
344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
	if (err)
		goto out_free_cache;

	err = __kmem_cache_create(s, flags);
	if (err)
		goto out_free_cache;

	s->refcount = 1;
	list_add(&s->list, &slab_caches);
out:
	if (err)
		return ERR_PTR(err);
	return s;

out_free_cache:
359
	destroy_memcg_params(s);
360
	kmem_cache_free(kmem_cache, s);
361 362
	goto out;
}
363

364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
/*
 * kmem_cache_create - Create a cache.
 * @name: A string which is used in /proc/slabinfo to identify this cache.
 * @size: The size of objects to be created in this cache.
 * @align: The required alignment for the objects.
 * @flags: SLAB flags
 * @ctor: A constructor for the objects.
 *
 * Returns a ptr to the cache on success, NULL on failure.
 * Cannot be called within a interrupt, but can be interrupted.
 * The @ctor is run when new pages are allocated by the cache.
 *
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
 * for buffer overruns.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
 */
388
struct kmem_cache *
389 390
kmem_cache_create(const char *name, size_t size, size_t align,
		  unsigned long flags, void (*ctor)(void *))
391
{
392
	struct kmem_cache *s = NULL;
393
	const char *cache_name;
394
	int err;
395

396
	get_online_cpus();
397
	get_online_mems();
398
	memcg_get_cache_ids();
399

400
	mutex_lock(&slab_mutex);
401

402
	err = kmem_cache_sanity_check(name, size);
A
Andrew Morton 已提交
403
	if (err) {
404
		goto out_unlock;
A
Andrew Morton 已提交
405
	}
406

407 408 409 410 411 412
	/* Refuse requests with allocator specific flags */
	if (flags & ~SLAB_FLAGS_PERMITTED) {
		err = -EINVAL;
		goto out_unlock;
	}

413 414 415 416 417 418 419
	/*
	 * Some allocators will constraint the set of valid flags to a subset
	 * of all flags. We expect them to define CACHE_CREATE_MASK in this
	 * case, and we'll just provide them with a sanitized version of the
	 * passed flags.
	 */
	flags &= CACHE_CREATE_MASK;
420

421 422
	s = __kmem_cache_alias(name, size, align, flags, ctor);
	if (s)
423
		goto out_unlock;
424

425
	cache_name = kstrdup_const(name, GFP_KERNEL);
426 427 428 429
	if (!cache_name) {
		err = -ENOMEM;
		goto out_unlock;
	}
430

431 432 433
	s = create_cache(cache_name, size, size,
			 calculate_alignment(flags, align, size),
			 flags, ctor, NULL, NULL);
434 435
	if (IS_ERR(s)) {
		err = PTR_ERR(s);
436
		kfree_const(cache_name);
437
	}
438 439

out_unlock:
440
	mutex_unlock(&slab_mutex);
441

442
	memcg_put_cache_ids();
443
	put_online_mems();
444 445
	put_online_cpus();

446
	if (err) {
447 448 449 450
		if (flags & SLAB_PANIC)
			panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
				name, err);
		else {
451
			pr_warn("kmem_cache_create(%s) failed with error %d\n",
452 453 454 455 456
				name, err);
			dump_stack();
		}
		return NULL;
	}
457 458
	return s;
}
459
EXPORT_SYMBOL(kmem_cache_create);
460

461
static int shutdown_cache(struct kmem_cache *s,
462 463
		struct list_head *release, bool *need_rcu_barrier)
{
464
	if (__kmem_cache_shutdown(s) != 0)
465 466 467 468 469 470 471 472 473
		return -EBUSY;

	if (s->flags & SLAB_DESTROY_BY_RCU)
		*need_rcu_barrier = true;

	list_move(&s->list, release);
	return 0;
}

474
static void release_caches(struct list_head *release, bool need_rcu_barrier)
475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
{
	struct kmem_cache *s, *s2;

	if (need_rcu_barrier)
		rcu_barrier();

	list_for_each_entry_safe(s, s2, release, list) {
#ifdef SLAB_SUPPORTS_SYSFS
		sysfs_slab_remove(s);
#else
		slab_kmem_cache_release(s);
#endif
	}
}

490
#if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
491
/*
492
 * memcg_create_kmem_cache - Create a cache for a memory cgroup.
493 494 495 496 497 498 499
 * @memcg: The memory cgroup the new cache is for.
 * @root_cache: The parent of the new cache.
 *
 * This function attempts to create a kmem cache that will serve allocation
 * requests going from @memcg to @root_cache. The new cache inherits properties
 * from its parent.
 */
500 501
void memcg_create_kmem_cache(struct mem_cgroup *memcg,
			     struct kmem_cache *root_cache)
502
{
503
	static char memcg_name_buf[NAME_MAX + 1]; /* protected by slab_mutex */
M
Michal Hocko 已提交
504
	struct cgroup_subsys_state *css = &memcg->css;
505
	struct memcg_cache_array *arr;
506
	struct kmem_cache *s = NULL;
507
	char *cache_name;
508
	int idx;
509 510

	get_online_cpus();
511 512
	get_online_mems();

513 514
	mutex_lock(&slab_mutex);

515
	/*
516
	 * The memory cgroup could have been offlined while the cache
517 518
	 * creation work was pending.
	 */
519
	if (memcg->kmem_state != KMEM_ONLINE)
520 521
		goto out_unlock;

522 523 524 525
	idx = memcg_cache_id(memcg);
	arr = rcu_dereference_protected(root_cache->memcg_params.memcg_caches,
					lockdep_is_held(&slab_mutex));

526 527 528 529 530
	/*
	 * Since per-memcg caches are created asynchronously on first
	 * allocation (see memcg_kmem_get_cache()), several threads can try to
	 * create the same cache, but only one of them may succeed.
	 */
531
	if (arr->entries[idx])
532 533
		goto out_unlock;

534
	cgroup_name(css->cgroup, memcg_name_buf, sizeof(memcg_name_buf));
535 536
	cache_name = kasprintf(GFP_KERNEL, "%s(%llu:%s)", root_cache->name,
			       css->serial_nr, memcg_name_buf);
537 538 539
	if (!cache_name)
		goto out_unlock;

540 541
	s = create_cache(cache_name, root_cache->object_size,
			 root_cache->size, root_cache->align,
542 543
			 root_cache->flags & CACHE_CREATE_MASK,
			 root_cache->ctor, memcg, root_cache);
544 545 546 547 548
	/*
	 * If we could not create a memcg cache, do not complain, because
	 * that's not critical at all as we can always proceed with the root
	 * cache.
	 */
549
	if (IS_ERR(s)) {
550
		kfree(cache_name);
551
		goto out_unlock;
552
	}
553

554 555
	list_add(&s->memcg_params.list, &root_cache->memcg_params.list);

556 557 558 559 560 561
	/*
	 * Since readers won't lock (see cache_from_memcg_idx()), we need a
	 * barrier here to ensure nobody will see the kmem_cache partially
	 * initialized.
	 */
	smp_wmb();
562
	arr->entries[idx] = s;
563

564 565
out_unlock:
	mutex_unlock(&slab_mutex);
566 567

	put_online_mems();
568
	put_online_cpus();
569
}
570

571 572 573 574
void memcg_deactivate_kmem_caches(struct mem_cgroup *memcg)
{
	int idx;
	struct memcg_cache_array *arr;
575
	struct kmem_cache *s, *c;
576 577 578

	idx = memcg_cache_id(memcg);

579 580 581
	get_online_cpus();
	get_online_mems();

582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604
#ifdef CONFIG_SLUB
	/*
	 * In case of SLUB, we need to disable empty slab caching to
	 * avoid pinning the offline memory cgroup by freeable kmem
	 * pages charged to it. SLAB doesn't need this, as it
	 * periodically purges unused slabs.
	 */
	mutex_lock(&slab_mutex);
	list_for_each_entry(s, &slab_caches, list) {
		c = is_root_cache(s) ? cache_from_memcg_idx(s, idx) : NULL;
		if (c) {
			c->cpu_partial = 0;
			c->min_partial = 0;
		}
	}
	mutex_unlock(&slab_mutex);
	/*
	 * kmem_cache->cpu_partial is checked locklessly (see
	 * put_cpu_partial()). Make sure the change is visible.
	 */
	synchronize_sched();
#endif

605 606 607 608 609 610 611
	mutex_lock(&slab_mutex);
	list_for_each_entry(s, &slab_caches, list) {
		if (!is_root_cache(s))
			continue;

		arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
						lockdep_is_held(&slab_mutex));
612 613 614 615
		c = arr->entries[idx];
		if (!c)
			continue;

616
		__kmem_cache_shrink(c);
617 618 619
		arr->entries[idx] = NULL;
	}
	mutex_unlock(&slab_mutex);
620 621 622

	put_online_mems();
	put_online_cpus();
623 624
}

625 626 627 628 629 630 631 632 633 634 635 636
static int __shutdown_memcg_cache(struct kmem_cache *s,
		struct list_head *release, bool *need_rcu_barrier)
{
	BUG_ON(is_root_cache(s));

	if (shutdown_cache(s, release, need_rcu_barrier))
		return -EBUSY;

	list_del(&s->memcg_params.list);
	return 0;
}

637
void memcg_destroy_kmem_caches(struct mem_cgroup *memcg)
638
{
639 640 641
	LIST_HEAD(release);
	bool need_rcu_barrier = false;
	struct kmem_cache *s, *s2;
642

643 644
	get_online_cpus();
	get_online_mems();
645 646

	mutex_lock(&slab_mutex);
647
	list_for_each_entry_safe(s, s2, &slab_caches, list) {
648
		if (is_root_cache(s) || s->memcg_params.memcg != memcg)
649 650 651 652 653
			continue;
		/*
		 * The cgroup is about to be freed and therefore has no charges
		 * left. Hence, all its caches must be empty by now.
		 */
654
		BUG_ON(__shutdown_memcg_cache(s, &release, &need_rcu_barrier));
655 656
	}
	mutex_unlock(&slab_mutex);
657

658 659 660
	put_online_mems();
	put_online_cpus();

661
	release_caches(&release, need_rcu_barrier);
662
}
663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724

static int shutdown_memcg_caches(struct kmem_cache *s,
		struct list_head *release, bool *need_rcu_barrier)
{
	struct memcg_cache_array *arr;
	struct kmem_cache *c, *c2;
	LIST_HEAD(busy);
	int i;

	BUG_ON(!is_root_cache(s));

	/*
	 * First, shutdown active caches, i.e. caches that belong to online
	 * memory cgroups.
	 */
	arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
					lockdep_is_held(&slab_mutex));
	for_each_memcg_cache_index(i) {
		c = arr->entries[i];
		if (!c)
			continue;
		if (__shutdown_memcg_cache(c, release, need_rcu_barrier))
			/*
			 * The cache still has objects. Move it to a temporary
			 * list so as not to try to destroy it for a second
			 * time while iterating over inactive caches below.
			 */
			list_move(&c->memcg_params.list, &busy);
		else
			/*
			 * The cache is empty and will be destroyed soon. Clear
			 * the pointer to it in the memcg_caches array so that
			 * it will never be accessed even if the root cache
			 * stays alive.
			 */
			arr->entries[i] = NULL;
	}

	/*
	 * Second, shutdown all caches left from memory cgroups that are now
	 * offline.
	 */
	list_for_each_entry_safe(c, c2, &s->memcg_params.list,
				 memcg_params.list)
		__shutdown_memcg_cache(c, release, need_rcu_barrier);

	list_splice(&busy, &s->memcg_params.list);

	/*
	 * A cache being destroyed must be empty. In particular, this means
	 * that all per memcg caches attached to it must be empty too.
	 */
	if (!list_empty(&s->memcg_params.list))
		return -EBUSY;
	return 0;
}
#else
static inline int shutdown_memcg_caches(struct kmem_cache *s,
		struct list_head *release, bool *need_rcu_barrier)
{
	return 0;
}
725
#endif /* CONFIG_MEMCG && !CONFIG_SLOB */
726

727 728
void slab_kmem_cache_release(struct kmem_cache *s)
{
729
	__kmem_cache_release(s);
730
	destroy_memcg_params(s);
731
	kfree_const(s->name);
732 733 734
	kmem_cache_free(kmem_cache, s);
}

735 736
void kmem_cache_destroy(struct kmem_cache *s)
{
737 738
	LIST_HEAD(release);
	bool need_rcu_barrier = false;
739
	int err;
740

741 742 743
	if (unlikely(!s))
		return;

744
	get_online_cpus();
745 746
	get_online_mems();

747
	kasan_cache_destroy(s);
748
	mutex_lock(&slab_mutex);
749

750
	s->refcount--;
751 752 753
	if (s->refcount)
		goto out_unlock;

754 755
	err = shutdown_memcg_caches(s, &release, &need_rcu_barrier);
	if (!err)
756
		err = shutdown_cache(s, &release, &need_rcu_barrier);
757

758
	if (err) {
J
Joe Perches 已提交
759 760
		pr_err("kmem_cache_destroy %s: Slab cache still has objects\n",
		       s->name);
761 762
		dump_stack();
	}
763 764
out_unlock:
	mutex_unlock(&slab_mutex);
765

766
	put_online_mems();
767
	put_online_cpus();
768

769
	release_caches(&release, need_rcu_barrier);
770 771 772
}
EXPORT_SYMBOL(kmem_cache_destroy);

773 774 775 776 777 778 779 780 781 782 783 784 785
/**
 * kmem_cache_shrink - Shrink a cache.
 * @cachep: The cache to shrink.
 *
 * Releases as many slabs as possible for a cache.
 * To help debugging, a zero exit status indicates all slabs were released.
 */
int kmem_cache_shrink(struct kmem_cache *cachep)
{
	int ret;

	get_online_cpus();
	get_online_mems();
786
	kasan_cache_shrink(cachep);
787
	ret = __kmem_cache_shrink(cachep);
788 789 790 791 792 793
	put_online_mems();
	put_online_cpus();
	return ret;
}
EXPORT_SYMBOL(kmem_cache_shrink);

794
bool slab_is_available(void)
795 796 797
{
	return slab_state >= UP;
}
798

799 800 801 802 803 804 805 806 807
#ifndef CONFIG_SLOB
/* Create a cache during boot when no slab services are available yet */
void __init create_boot_cache(struct kmem_cache *s, const char *name, size_t size,
		unsigned long flags)
{
	int err;

	s->name = name;
	s->size = s->object_size = size;
808
	s->align = calculate_alignment(flags, ARCH_KMALLOC_MINALIGN, size);
809 810 811

	slab_init_memcg_params(s);

812 813 814
	err = __kmem_cache_create(s, flags);

	if (err)
815
		panic("Creation of kmalloc slab %s size=%zu failed. Reason %d\n",
816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834
					name, size, err);

	s->refcount = -1;	/* Exempt from merging for now */
}

struct kmem_cache *__init create_kmalloc_cache(const char *name, size_t size,
				unsigned long flags)
{
	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);

	if (!s)
		panic("Out of memory when creating slab %s\n", name);

	create_boot_cache(s, name, size, flags);
	list_add(&s->list, &slab_caches);
	s->refcount = 1;
	return s;
}

835 836 837 838 839 840 841 842
struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1];
EXPORT_SYMBOL(kmalloc_caches);

#ifdef CONFIG_ZONE_DMA
struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1];
EXPORT_SYMBOL(kmalloc_dma_caches);
#endif

843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888
/*
 * Conversion table for small slabs sizes / 8 to the index in the
 * kmalloc array. This is necessary for slabs < 192 since we have non power
 * of two cache sizes there. The size of larger slabs can be determined using
 * fls.
 */
static s8 size_index[24] = {
	3,	/* 8 */
	4,	/* 16 */
	5,	/* 24 */
	5,	/* 32 */
	6,	/* 40 */
	6,	/* 48 */
	6,	/* 56 */
	6,	/* 64 */
	1,	/* 72 */
	1,	/* 80 */
	1,	/* 88 */
	1,	/* 96 */
	7,	/* 104 */
	7,	/* 112 */
	7,	/* 120 */
	7,	/* 128 */
	2,	/* 136 */
	2,	/* 144 */
	2,	/* 152 */
	2,	/* 160 */
	2,	/* 168 */
	2,	/* 176 */
	2,	/* 184 */
	2	/* 192 */
};

static inline int size_index_elem(size_t bytes)
{
	return (bytes - 1) / 8;
}

/*
 * Find the kmem_cache structure that serves a given size of
 * allocation
 */
struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
{
	int index;

889
	if (unlikely(size > KMALLOC_MAX_SIZE)) {
890
		WARN_ON_ONCE(!(flags & __GFP_NOWARN));
891
		return NULL;
892
	}
893

894 895 896 897 898 899 900 901 902
	if (size <= 192) {
		if (!size)
			return ZERO_SIZE_PTR;

		index = size_index[size_index_elem(size)];
	} else
		index = fls(size - 1);

#ifdef CONFIG_ZONE_DMA
903
	if (unlikely((flags & GFP_DMA)))
904 905 906 907 908 909
		return kmalloc_dma_caches[index];

#endif
	return kmalloc_caches[index];
}

910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934
/*
 * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
 * kmalloc_index() supports up to 2^26=64MB, so the final entry of the table is
 * kmalloc-67108864.
 */
static struct {
	const char *name;
	unsigned long size;
} const kmalloc_info[] __initconst = {
	{NULL,                      0},		{"kmalloc-96",             96},
	{"kmalloc-192",           192},		{"kmalloc-8",               8},
	{"kmalloc-16",             16},		{"kmalloc-32",             32},
	{"kmalloc-64",             64},		{"kmalloc-128",           128},
	{"kmalloc-256",           256},		{"kmalloc-512",           512},
	{"kmalloc-1024",         1024},		{"kmalloc-2048",         2048},
	{"kmalloc-4096",         4096},		{"kmalloc-8192",         8192},
	{"kmalloc-16384",       16384},		{"kmalloc-32768",       32768},
	{"kmalloc-65536",       65536},		{"kmalloc-131072",     131072},
	{"kmalloc-262144",     262144},		{"kmalloc-524288",     524288},
	{"kmalloc-1048576",   1048576},		{"kmalloc-2097152",   2097152},
	{"kmalloc-4194304",   4194304},		{"kmalloc-8388608",   8388608},
	{"kmalloc-16777216", 16777216},		{"kmalloc-33554432", 33554432},
	{"kmalloc-67108864", 67108864}
};

935
/*
936 937 938 939 940 941 942 943 944
 * Patch up the size_index table if we have strange large alignment
 * requirements for the kmalloc array. This is only the case for
 * MIPS it seems. The standard arches will not generate any code here.
 *
 * Largest permitted alignment is 256 bytes due to the way we
 * handle the index determination for the smaller caches.
 *
 * Make sure that nothing crazy happens if someone starts tinkering
 * around with ARCH_KMALLOC_MINALIGN
945
 */
946
void __init setup_kmalloc_cache_index_table(void)
947 948 949
{
	int i;

950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979
	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));

	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
		int elem = size_index_elem(i);

		if (elem >= ARRAY_SIZE(size_index))
			break;
		size_index[elem] = KMALLOC_SHIFT_LOW;
	}

	if (KMALLOC_MIN_SIZE >= 64) {
		/*
		 * The 96 byte size cache is not used if the alignment
		 * is 64 byte.
		 */
		for (i = 64 + 8; i <= 96; i += 8)
			size_index[size_index_elem(i)] = 7;

	}

	if (KMALLOC_MIN_SIZE >= 128) {
		/*
		 * The 192 byte sized cache is not used if the alignment
		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
		 * instead.
		 */
		for (i = 128 + 8; i <= 192; i += 8)
			size_index[size_index_elem(i)] = 8;
	}
980 981
}

982
static void __init new_kmalloc_cache(int idx, unsigned long flags)
983 984 985 986 987
{
	kmalloc_caches[idx] = create_kmalloc_cache(kmalloc_info[idx].name,
					kmalloc_info[idx].size, flags);
}

988 989 990 991 992 993 994 995 996
/*
 * Create the kmalloc array. Some of the regular kmalloc arrays
 * may already have been created because they were needed to
 * enable allocations for slab creation.
 */
void __init create_kmalloc_caches(unsigned long flags)
{
	int i;

997 998 999
	for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
		if (!kmalloc_caches[i])
			new_kmalloc_cache(i, flags);
1000

1001
		/*
1002 1003 1004
		 * Caches that are not of the two-to-the-power-of size.
		 * These have to be created immediately after the
		 * earlier power of two caches
1005
		 */
1006 1007 1008 1009
		if (KMALLOC_MIN_SIZE <= 32 && !kmalloc_caches[1] && i == 6)
			new_kmalloc_cache(1, flags);
		if (KMALLOC_MIN_SIZE <= 64 && !kmalloc_caches[2] && i == 7)
			new_kmalloc_cache(2, flags);
1010 1011
	}

1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
	/* Kmalloc array is now usable */
	slab_state = UP;

#ifdef CONFIG_ZONE_DMA
	for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
		struct kmem_cache *s = kmalloc_caches[i];

		if (s) {
			int size = kmalloc_size(i);
			char *n = kasprintf(GFP_NOWAIT,
				 "dma-kmalloc-%d", size);

			BUG_ON(!n);
			kmalloc_dma_caches[i] = create_kmalloc_cache(n,
				size, SLAB_CACHE_DMA | flags);
		}
	}
#endif
}
1031 1032
#endif /* !CONFIG_SLOB */

V
Vladimir Davydov 已提交
1033 1034 1035 1036 1037
/*
 * To avoid unnecessary overhead, we pass through large allocation requests
 * directly to the page allocator. We use __GFP_COMP, because we will need to
 * know the allocation order to free the pages properly in kfree.
 */
V
Vladimir Davydov 已提交
1038 1039 1040 1041 1042 1043
void *kmalloc_order(size_t size, gfp_t flags, unsigned int order)
{
	void *ret;
	struct page *page;

	flags |= __GFP_COMP;
1044
	page = alloc_pages(flags, order);
V
Vladimir Davydov 已提交
1045 1046
	ret = page ? page_address(page) : NULL;
	kmemleak_alloc(ret, size, 1, flags);
1047
	kasan_kmalloc_large(ret, size, flags);
V
Vladimir Davydov 已提交
1048 1049 1050 1051
	return ret;
}
EXPORT_SYMBOL(kmalloc_order);

1052 1053 1054 1055 1056 1057 1058 1059 1060
#ifdef CONFIG_TRACING
void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
{
	void *ret = kmalloc_order(size, flags, order);
	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
	return ret;
}
EXPORT_SYMBOL(kmalloc_order_trace);
#endif
1061

1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
#ifdef CONFIG_SLAB_FREELIST_RANDOM
/* Randomize a generic freelist */
static void freelist_randomize(struct rnd_state *state, unsigned int *list,
			size_t count)
{
	size_t i;
	unsigned int rand;

	for (i = 0; i < count; i++)
		list[i] = i;

	/* Fisher-Yates shuffle */
	for (i = count - 1; i > 0; i--) {
		rand = prandom_u32_state(state);
		rand %= (i + 1);
		swap(list[i], list[rand]);
	}
}

/* Create a random sequence per cache */
int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
				    gfp_t gfp)
{
	struct rnd_state state;

	if (count < 2 || cachep->random_seq)
		return 0;

	cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp);
	if (!cachep->random_seq)
		return -ENOMEM;

	/* Get best entropy at this stage of boot */
	prandom_seed_state(&state, get_random_long());

	freelist_randomize(&state, cachep->random_seq, count);
	return 0;
}

/* Destroy the per-cache random freelist sequence */
void cache_random_seq_destroy(struct kmem_cache *cachep)
{
	kfree(cachep->random_seq);
	cachep->random_seq = NULL;
}
#endif /* CONFIG_SLAB_FREELIST_RANDOM */

1109
#ifdef CONFIG_SLABINFO
1110 1111 1112 1113 1114 1115 1116

#ifdef CONFIG_SLAB
#define SLABINFO_RIGHTS (S_IWUSR | S_IRUSR)
#else
#define SLABINFO_RIGHTS S_IRUSR
#endif

1117
static void print_slabinfo_header(struct seq_file *m)
1118 1119 1120 1121 1122 1123 1124 1125 1126 1127
{
	/*
	 * Output format version, so at least we can change it
	 * without _too_ many complaints.
	 */
#ifdef CONFIG_DEBUG_SLAB
	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
#else
	seq_puts(m, "slabinfo - version: 2.1\n");
#endif
J
Joe Perches 已提交
1128
	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
1129 1130 1131
	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
#ifdef CONFIG_DEBUG_SLAB
J
Joe Perches 已提交
1132
	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
1133 1134 1135 1136 1137
	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
#endif
	seq_putc(m, '\n');
}

1138
void *slab_start(struct seq_file *m, loff_t *pos)
1139 1140 1141 1142 1143
{
	mutex_lock(&slab_mutex);
	return seq_list_start(&slab_caches, *pos);
}

1144
void *slab_next(struct seq_file *m, void *p, loff_t *pos)
1145 1146 1147 1148
{
	return seq_list_next(p, &slab_caches, pos);
}

1149
void slab_stop(struct seq_file *m, void *p)
1150 1151 1152 1153
{
	mutex_unlock(&slab_mutex);
}

1154 1155 1156 1157 1158 1159 1160 1161 1162
static void
memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info)
{
	struct kmem_cache *c;
	struct slabinfo sinfo;

	if (!is_root_cache(s))
		return;

1163
	for_each_memcg_cache(c, s) {
1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174
		memset(&sinfo, 0, sizeof(sinfo));
		get_slabinfo(c, &sinfo);

		info->active_slabs += sinfo.active_slabs;
		info->num_slabs += sinfo.num_slabs;
		info->shared_avail += sinfo.shared_avail;
		info->active_objs += sinfo.active_objs;
		info->num_objs += sinfo.num_objs;
	}
}

1175
static void cache_show(struct kmem_cache *s, struct seq_file *m)
1176
{
1177 1178 1179 1180 1181
	struct slabinfo sinfo;

	memset(&sinfo, 0, sizeof(sinfo));
	get_slabinfo(s, &sinfo);

1182 1183
	memcg_accumulate_slabinfo(s, &sinfo);

1184
	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
1185
		   cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size,
1186 1187 1188 1189 1190 1191 1192 1193
		   sinfo.objects_per_slab, (1 << sinfo.cache_order));

	seq_printf(m, " : tunables %4u %4u %4u",
		   sinfo.limit, sinfo.batchcount, sinfo.shared);
	seq_printf(m, " : slabdata %6lu %6lu %6lu",
		   sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
	slabinfo_show_stats(m, s);
	seq_putc(m, '\n');
1194 1195
}

1196
static int slab_show(struct seq_file *m, void *p)
1197 1198 1199
{
	struct kmem_cache *s = list_entry(p, struct kmem_cache, list);

1200 1201
	if (p == slab_caches.next)
		print_slabinfo_header(m);
1202 1203 1204 1205 1206
	if (is_root_cache(s))
		cache_show(s, m);
	return 0;
}

1207
#if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
1208 1209 1210 1211 1212 1213 1214
int memcg_slab_show(struct seq_file *m, void *p)
{
	struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));

	if (p == slab_caches.next)
		print_slabinfo_header(m);
1215
	if (!is_root_cache(s) && s->memcg_params.memcg == memcg)
1216 1217
		cache_show(s, m);
	return 0;
1218
}
1219
#endif
1220

1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
/*
 * slabinfo_op - iterator that generates /proc/slabinfo
 *
 * Output layout:
 * cache-name
 * num-active-objs
 * total-objs
 * object size
 * num-active-slabs
 * total-slabs
 * num-pages-per-slab
 * + further values on SMP and with statistics enabled
 */
static const struct seq_operations slabinfo_op = {
1235
	.start = slab_start,
1236 1237
	.next = slab_next,
	.stop = slab_stop,
1238
	.show = slab_show,
1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255
};

static int slabinfo_open(struct inode *inode, struct file *file)
{
	return seq_open(file, &slabinfo_op);
}

static const struct file_operations proc_slabinfo_operations = {
	.open		= slabinfo_open,
	.read		= seq_read,
	.write          = slabinfo_write,
	.llseek		= seq_lseek,
	.release	= seq_release,
};

static int __init slab_proc_init(void)
{
1256 1257
	proc_create("slabinfo", SLABINFO_RIGHTS, NULL,
						&proc_slabinfo_operations);
1258 1259 1260 1261
	return 0;
}
module_init(slab_proc_init);
#endif /* CONFIG_SLABINFO */
1262 1263 1264 1265 1266 1267 1268 1269 1270 1271

static __always_inline void *__do_krealloc(const void *p, size_t new_size,
					   gfp_t flags)
{
	void *ret;
	size_t ks = 0;

	if (p)
		ks = ksize(p);

1272
	if (ks >= new_size) {
1273
		kasan_krealloc((void *)p, new_size, flags);
1274
		return (void *)p;
1275
	}
1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362

	ret = kmalloc_track_caller(new_size, flags);
	if (ret && p)
		memcpy(ret, p, ks);

	return ret;
}

/**
 * __krealloc - like krealloc() but don't free @p.
 * @p: object to reallocate memory for.
 * @new_size: how many bytes of memory are required.
 * @flags: the type of memory to allocate.
 *
 * This function is like krealloc() except it never frees the originally
 * allocated buffer. Use this if you don't want to free the buffer immediately
 * like, for example, with RCU.
 */
void *__krealloc(const void *p, size_t new_size, gfp_t flags)
{
	if (unlikely(!new_size))
		return ZERO_SIZE_PTR;

	return __do_krealloc(p, new_size, flags);

}
EXPORT_SYMBOL(__krealloc);

/**
 * krealloc - reallocate memory. The contents will remain unchanged.
 * @p: object to reallocate memory for.
 * @new_size: how many bytes of memory are required.
 * @flags: the type of memory to allocate.
 *
 * The contents of the object pointed to are preserved up to the
 * lesser of the new and old sizes.  If @p is %NULL, krealloc()
 * behaves exactly like kmalloc().  If @new_size is 0 and @p is not a
 * %NULL pointer, the object pointed to is freed.
 */
void *krealloc(const void *p, size_t new_size, gfp_t flags)
{
	void *ret;

	if (unlikely(!new_size)) {
		kfree(p);
		return ZERO_SIZE_PTR;
	}

	ret = __do_krealloc(p, new_size, flags);
	if (ret && p != ret)
		kfree(p);

	return ret;
}
EXPORT_SYMBOL(krealloc);

/**
 * kzfree - like kfree but zero memory
 * @p: object to free memory of
 *
 * The memory of the object @p points to is zeroed before freed.
 * If @p is %NULL, kzfree() does nothing.
 *
 * Note: this function zeroes the whole allocated buffer which can be a good
 * deal bigger than the requested buffer size passed to kmalloc(). So be
 * careful when using this function in performance sensitive code.
 */
void kzfree(const void *p)
{
	size_t ks;
	void *mem = (void *)p;

	if (unlikely(ZERO_OR_NULL_PTR(mem)))
		return;
	ks = ksize(mem);
	memset(mem, 0, ks);
	kfree(mem);
}
EXPORT_SYMBOL(kzfree);

/* Tracepoints definitions. */
EXPORT_TRACEPOINT_SYMBOL(kmalloc);
EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
EXPORT_TRACEPOINT_SYMBOL(kfree);
EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);