cpufreq_governor.c 15.2 KB
Newer Older
1 2 3 4 5
/*
 * drivers/cpufreq/cpufreq_governor.c
 *
 * CPUFREQ governors common code
 *
6 7 8 9 10 11
 * Copyright	(C) 2001 Russell King
 *		(C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
 *		(C) 2003 Jun Nakajima <jun.nakajima@intel.com>
 *		(C) 2009 Alexander Clouter <alex@digriz.org.uk>
 *		(c) 2012 Viresh Kumar <viresh.kumar@linaro.org>
 *
12 13 14 15 16
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

17 18
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

19 20
#include <linux/export.h>
#include <linux/kernel_stat.h>
21
#include <linux/slab.h>
22 23 24

#include "cpufreq_governor.h"

25 26 27 28 29 30 31 32
static struct attribute_group *get_sysfs_attr(struct dbs_data *dbs_data)
{
	if (have_governor_per_policy())
		return dbs_data->cdata->attr_group_gov_pol;
	else
		return dbs_data->cdata->attr_group_gov_sys;
}

33 34
void dbs_check_cpu(struct dbs_data *dbs_data, int cpu)
{
35
	struct cpu_dbs_info *cdbs = dbs_data->cdata->get_cpu_cdbs(cpu);
36 37
	struct od_dbs_tuners *od_tuners = dbs_data->tuners;
	struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
38
	struct cpufreq_policy *policy = cdbs->shared->policy;
39
	unsigned int sampling_rate;
40 41 42 43
	unsigned int max_load = 0;
	unsigned int ignore_nice;
	unsigned int j;

44 45 46 47 48 49 50 51 52 53 54 55 56
	if (dbs_data->cdata->governor == GOV_ONDEMAND) {
		struct od_cpu_dbs_info_s *od_dbs_info =
				dbs_data->cdata->get_cpu_dbs_info_s(cpu);

		/*
		 * Sometimes, the ondemand governor uses an additional
		 * multiplier to give long delays. So apply this multiplier to
		 * the 'sampling_rate', so as to keep the wake-up-from-idle
		 * detection logic a bit conservative.
		 */
		sampling_rate = od_tuners->sampling_rate;
		sampling_rate *= od_dbs_info->rate_mult;

57
		ignore_nice = od_tuners->ignore_nice_load;
58 59
	} else {
		sampling_rate = cs_tuners->sampling_rate;
60
		ignore_nice = cs_tuners->ignore_nice_load;
61
	}
62

63
	/* Get Absolute Load */
64
	for_each_cpu(j, policy->cpus) {
65
		struct cpu_dbs_info *j_cdbs;
66 67
		u64 cur_wall_time, cur_idle_time;
		unsigned int idle_time, wall_time;
68
		unsigned int load;
69
		int io_busy = 0;
70

71
		j_cdbs = dbs_data->cdata->get_cpu_cdbs(j);
72

73 74 75 76 77 78 79 80 81
		/*
		 * For the purpose of ondemand, waiting for disk IO is
		 * an indication that you're performance critical, and
		 * not that the system is actually idle. So do not add
		 * the iowait time to the cpu idle time.
		 */
		if (dbs_data->cdata->governor == GOV_ONDEMAND)
			io_busy = od_tuners->io_is_busy;
		cur_idle_time = get_cpu_idle_time(j, &cur_wall_time, io_busy);
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111

		wall_time = (unsigned int)
			(cur_wall_time - j_cdbs->prev_cpu_wall);
		j_cdbs->prev_cpu_wall = cur_wall_time;

		idle_time = (unsigned int)
			(cur_idle_time - j_cdbs->prev_cpu_idle);
		j_cdbs->prev_cpu_idle = cur_idle_time;

		if (ignore_nice) {
			u64 cur_nice;
			unsigned long cur_nice_jiffies;

			cur_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE] -
					 cdbs->prev_cpu_nice;
			/*
			 * Assumption: nice time between sampling periods will
			 * be less than 2^32 jiffies for 32 bit sys
			 */
			cur_nice_jiffies = (unsigned long)
					cputime64_to_jiffies64(cur_nice);

			cdbs->prev_cpu_nice =
				kcpustat_cpu(j).cpustat[CPUTIME_NICE];
			idle_time += jiffies_to_usecs(cur_nice_jiffies);
		}

		if (unlikely(!wall_time || wall_time < idle_time))
			continue;

112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
		/*
		 * If the CPU had gone completely idle, and a task just woke up
		 * on this CPU now, it would be unfair to calculate 'load' the
		 * usual way for this elapsed time-window, because it will show
		 * near-zero load, irrespective of how CPU intensive that task
		 * actually is. This is undesirable for latency-sensitive bursty
		 * workloads.
		 *
		 * To avoid this, we reuse the 'load' from the previous
		 * time-window and give this task a chance to start with a
		 * reasonably high CPU frequency. (However, we shouldn't over-do
		 * this copy, lest we get stuck at a high load (high frequency)
		 * for too long, even when the current system load has actually
		 * dropped down. So we perform the copy only once, upon the
		 * first wake-up from idle.)
		 *
		 * Detecting this situation is easy: the governor's deferrable
		 * timer would not have fired during CPU-idle periods. Hence
		 * an unusually large 'wall_time' (as compared to the sampling
		 * rate) indicates this scenario.
132 133 134 135 136
		 *
		 * prev_load can be zero in two cases and we must recalculate it
		 * for both cases:
		 * - during long idle intervals
		 * - explicitly set to zero
137
		 */
138 139
		if (unlikely(wall_time > (2 * sampling_rate) &&
			     j_cdbs->prev_load)) {
140
			load = j_cdbs->prev_load;
141 142 143 144 145 146 147

			/*
			 * Perform a destructive copy, to ensure that we copy
			 * the previous load only once, upon the first wake-up
			 * from idle.
			 */
			j_cdbs->prev_load = 0;
148 149 150 151
		} else {
			load = 100 * (wall_time - idle_time) / wall_time;
			j_cdbs->prev_load = load;
		}
152 153 154 155 156

		if (load > max_load)
			max_load = load;
	}

157
	dbs_data->cdata->gov_check_cpu(cpu, max_load);
158 159 160
}
EXPORT_SYMBOL_GPL(dbs_check_cpu);

161 162
static inline void __gov_queue_work(int cpu, struct dbs_data *dbs_data,
		unsigned int delay)
163
{
164
	struct cpu_dbs_info *cdbs = dbs_data->cdata->get_cpu_cdbs(cpu);
165

166
	mod_delayed_work_on(cpu, system_wq, &cdbs->dwork, delay);
167 168
}

169 170
void gov_queue_work(struct dbs_data *dbs_data, struct cpufreq_policy *policy,
		unsigned int delay, bool all_cpus)
171
{
172 173 174
	int i;

	if (!all_cpus) {
175 176 177 178 179 180 181 182
		/*
		 * Use raw_smp_processor_id() to avoid preemptible warnings.
		 * We know that this is only called with all_cpus == false from
		 * works that have been queued with *_work_on() functions and
		 * those works are canceled during CPU_DOWN_PREPARE so they
		 * can't possibly run on any other CPU.
		 */
		__gov_queue_work(raw_smp_processor_id(), dbs_data, delay);
183 184 185 186 187 188 189 190 191 192
	} else {
		for_each_cpu(i, policy->cpus)
			__gov_queue_work(i, dbs_data, delay);
	}
}
EXPORT_SYMBOL_GPL(gov_queue_work);

static inline void gov_cancel_work(struct dbs_data *dbs_data,
		struct cpufreq_policy *policy)
{
193
	struct cpu_dbs_info *cdbs;
194
	int i;
195

196 197
	for_each_cpu(i, policy->cpus) {
		cdbs = dbs_data->cdata->get_cpu_cdbs(i);
198
		cancel_delayed_work_sync(&cdbs->dwork);
199
	}
200 201
}

202
/* Will return if we need to evaluate cpu load again or not */
203 204
static bool need_load_eval(struct cpu_common_dbs_info *shared,
			   unsigned int sampling_rate)
205
{
206
	if (policy_is_shared(shared->policy)) {
207
		ktime_t time_now = ktime_get();
208
		s64 delta_us = ktime_us_delta(time_now, shared->time_stamp);
209 210 211 212 213

		/* Do nothing if we recently have sampled */
		if (delta_us < (s64)(sampling_rate / 2))
			return false;
		else
214
			shared->time_stamp = time_now;
215 216 217 218
	}

	return true;
}
219 220 221 222 223 224

static void dbs_timer(struct work_struct *work)
{
	struct cpu_dbs_info *cdbs = container_of(work, struct cpu_dbs_info,
						 dwork.work);
	struct cpu_common_dbs_info *shared = cdbs->shared;
225 226
	struct cpufreq_policy *policy;
	struct dbs_data *dbs_data;
227 228 229 230 231
	unsigned int sampling_rate, delay;
	bool modify_all = true;

	mutex_lock(&shared->timer_mutex);

232 233 234 235 236 237 238 239 240 241 242
	policy = shared->policy;

	/*
	 * Governor might already be disabled and there is no point continuing
	 * with the work-handler.
	 */
	if (!policy)
		goto unlock;

	dbs_data = policy->governor_data;

243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
	if (dbs_data->cdata->governor == GOV_CONSERVATIVE) {
		struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;

		sampling_rate = cs_tuners->sampling_rate;
	} else {
		struct od_dbs_tuners *od_tuners = dbs_data->tuners;

		sampling_rate = od_tuners->sampling_rate;
	}

	if (!need_load_eval(cdbs->shared, sampling_rate))
		modify_all = false;

	delay = dbs_data->cdata->gov_dbs_timer(cdbs, dbs_data, modify_all);
	gov_queue_work(dbs_data, policy, delay, modify_all);

259
unlock:
260 261
	mutex_unlock(&shared->timer_mutex);
}
262

263 264 265 266 267 268 269 270 271 272 273 274
static void set_sampling_rate(struct dbs_data *dbs_data,
		unsigned int sampling_rate)
{
	if (dbs_data->cdata->governor == GOV_CONSERVATIVE) {
		struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
		cs_tuners->sampling_rate = sampling_rate;
	} else {
		struct od_dbs_tuners *od_tuners = dbs_data->tuners;
		od_tuners->sampling_rate = sampling_rate;
	}
}

275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
static int alloc_common_dbs_info(struct cpufreq_policy *policy,
				 struct common_dbs_data *cdata)
{
	struct cpu_common_dbs_info *shared;
	int j;

	/* Allocate memory for the common information for policy->cpus */
	shared = kzalloc(sizeof(*shared), GFP_KERNEL);
	if (!shared)
		return -ENOMEM;

	/* Set shared for all CPUs, online+offline */
	for_each_cpu(j, policy->related_cpus)
		cdata->get_cpu_cdbs(j)->shared = shared;

	return 0;
}

static void free_common_dbs_info(struct cpufreq_policy *policy,
				 struct common_dbs_data *cdata)
{
	struct cpu_dbs_info *cdbs = cdata->get_cpu_cdbs(policy->cpu);
	struct cpu_common_dbs_info *shared = cdbs->shared;
	int j;

	for_each_cpu(j, policy->cpus)
		cdata->get_cpu_cdbs(j)->shared = NULL;

	kfree(shared);
}

306 307 308
static int cpufreq_governor_init(struct cpufreq_policy *policy,
				 struct dbs_data *dbs_data,
				 struct common_dbs_data *cdata)
309
{
310 311
	unsigned int latency;
	int ret;
312

313 314 315 316
	/* State should be equivalent to EXIT */
	if (policy->governor_data)
		return -EBUSY;

317 318 319
	if (dbs_data) {
		if (WARN_ON(have_governor_per_policy()))
			return -EINVAL;
320 321 322 323 324

		ret = alloc_common_dbs_info(policy, cdata);
		if (ret)
			return ret;

325 326 327 328
		dbs_data->usage_count++;
		policy->governor_data = dbs_data;
		return 0;
	}
329

330 331 332
	dbs_data = kzalloc(sizeof(*dbs_data), GFP_KERNEL);
	if (!dbs_data)
		return -ENOMEM;
333

334 335 336 337
	ret = alloc_common_dbs_info(policy, cdata);
	if (ret)
		goto free_dbs_data;

338 339
	dbs_data->cdata = cdata;
	dbs_data->usage_count = 1;
340

341 342
	ret = cdata->init(dbs_data, !policy->governor->initialized);
	if (ret)
343
		goto free_common_dbs_info;
344

345 346 347 348
	/* policy latency is in ns. Convert it to us first */
	latency = policy->cpuinfo.transition_latency / 1000;
	if (latency == 0)
		latency = 1;
349

350 351 352 353 354
	/* Bring kernel and HW constraints together */
	dbs_data->min_sampling_rate = max(dbs_data->min_sampling_rate,
					  MIN_LATENCY_MULTIPLIER * latency);
	set_sampling_rate(dbs_data, max(dbs_data->min_sampling_rate,
					latency * LATENCY_MULTIPLIER));
355

356
	if (!have_governor_per_policy())
357
		cdata->gdbs_data = dbs_data;
358

359 360 361
	ret = sysfs_create_group(get_governor_parent_kobj(policy),
				 get_sysfs_attr(dbs_data));
	if (ret)
362
		goto reset_gdbs_data;
363

364
	policy->governor_data = dbs_data;
365

366
	return 0;
367

368 369
reset_gdbs_data:
	if (!have_governor_per_policy())
370 371
		cdata->gdbs_data = NULL;
	cdata->exit(dbs_data, !policy->governor->initialized);
372 373
free_common_dbs_info:
	free_common_dbs_info(policy, cdata);
374 375 376 377
free_dbs_data:
	kfree(dbs_data);
	return ret;
}
378

379 380
static int cpufreq_governor_exit(struct cpufreq_policy *policy,
				 struct dbs_data *dbs_data)
381 382
{
	struct common_dbs_data *cdata = dbs_data->cdata;
383 384 385 386 387
	struct cpu_dbs_info *cdbs = cdata->get_cpu_cdbs(policy->cpu);

	/* State should be equivalent to INIT */
	if (!cdbs->shared || cdbs->shared->policy)
		return -EBUSY;
388

389 390 391 392
	policy->governor_data = NULL;
	if (!--dbs_data->usage_count) {
		sysfs_remove_group(get_governor_parent_kobj(policy),
				   get_sysfs_attr(dbs_data));
393

394
		if (!have_governor_per_policy())
395
			cdata->gdbs_data = NULL;
396

397 398
		cdata->exit(dbs_data, policy->governor->initialized == 1);
		kfree(dbs_data);
399
	}
400 401

	free_common_dbs_info(policy, cdata);
402
	return 0;
403
}
404

405 406 407 408 409
static int cpufreq_governor_start(struct cpufreq_policy *policy,
				  struct dbs_data *dbs_data)
{
	struct common_dbs_data *cdata = dbs_data->cdata;
	unsigned int sampling_rate, ignore_nice, j, cpu = policy->cpu;
410
	struct cpu_dbs_info *cdbs = cdata->get_cpu_cdbs(cpu);
411
	struct cpu_common_dbs_info *shared = cdbs->shared;
412 413 414 415 416
	int io_busy = 0;

	if (!policy->cur)
		return -EINVAL;

417 418 419 420
	/* State should be equivalent to INIT */
	if (!shared || shared->policy)
		return -EBUSY;

421 422
	if (cdata->governor == GOV_CONSERVATIVE) {
		struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
423 424

		sampling_rate = cs_tuners->sampling_rate;
425
		ignore_nice = cs_tuners->ignore_nice_load;
426
	} else {
427 428
		struct od_dbs_tuners *od_tuners = dbs_data->tuners;

429
		sampling_rate = od_tuners->sampling_rate;
430
		ignore_nice = od_tuners->ignore_nice_load;
431
		io_busy = od_tuners->io_is_busy;
432 433
	}

434 435 436 437
	shared->policy = policy;
	shared->time_stamp = ktime_get();
	mutex_init(&shared->timer_mutex);

438
	for_each_cpu(j, policy->cpus) {
439
		struct cpu_dbs_info *j_cdbs = cdata->get_cpu_cdbs(j);
440
		unsigned int prev_load;
441

442 443
		j_cdbs->prev_cpu_idle =
			get_cpu_idle_time(j, &j_cdbs->prev_cpu_wall, io_busy);
444

445 446 447 448
		prev_load = (unsigned int)(j_cdbs->prev_cpu_wall -
					    j_cdbs->prev_cpu_idle);
		j_cdbs->prev_load = 100 * prev_load /
				    (unsigned int)j_cdbs->prev_cpu_wall;
449

450 451
		if (ignore_nice)
			j_cdbs->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
452

453
		INIT_DEFERRABLE_WORK(&j_cdbs->dwork, dbs_timer);
454
	}
455

456 457 458
	if (cdata->governor == GOV_CONSERVATIVE) {
		struct cs_cpu_dbs_info_s *cs_dbs_info =
			cdata->get_cpu_dbs_info_s(cpu);
459

460 461 462 463 464
		cs_dbs_info->down_skip = 0;
		cs_dbs_info->requested_freq = policy->cur;
	} else {
		struct od_ops *od_ops = cdata->gov_ops;
		struct od_cpu_dbs_info_s *od_dbs_info = cdata->get_cpu_dbs_info_s(cpu);
465

466 467 468 469
		od_dbs_info->rate_mult = 1;
		od_dbs_info->sample_type = OD_NORMAL_SAMPLE;
		od_ops->powersave_bias_init_cpu(cpu);
	}
470

471 472 473 474 475
	gov_queue_work(dbs_data, policy, delay_for_sampling_rate(sampling_rate),
		       true);
	return 0;
}

476 477
static int cpufreq_governor_stop(struct cpufreq_policy *policy,
				 struct dbs_data *dbs_data)
478
{
479
	struct cpu_dbs_info *cdbs = dbs_data->cdata->get_cpu_cdbs(policy->cpu);
480 481
	struct cpu_common_dbs_info *shared = cdbs->shared;

482 483 484 485
	/* State should be equivalent to START */
	if (!shared || !shared->policy)
		return -EBUSY;

486 487 488 489 490 491 492 493 494
	/*
	 * Work-handler must see this updated, as it should not proceed any
	 * further after governor is disabled. And so timer_mutex is taken while
	 * updating this value.
	 */
	mutex_lock(&shared->timer_mutex);
	shared->policy = NULL;
	mutex_unlock(&shared->timer_mutex);

495
	gov_cancel_work(dbs_data, policy);
496

497
	mutex_destroy(&shared->timer_mutex);
498
	return 0;
499
}
500

501 502
static int cpufreq_governor_limits(struct cpufreq_policy *policy,
				   struct dbs_data *dbs_data)
503 504 505
{
	struct common_dbs_data *cdata = dbs_data->cdata;
	unsigned int cpu = policy->cpu;
506
	struct cpu_dbs_info *cdbs = cdata->get_cpu_cdbs(cpu);
507

508
	/* State should be equivalent to START */
509
	if (!cdbs->shared || !cdbs->shared->policy)
510
		return -EBUSY;
511

512 513 514
	mutex_lock(&cdbs->shared->timer_mutex);
	if (policy->max < cdbs->shared->policy->cur)
		__cpufreq_driver_target(cdbs->shared->policy, policy->max,
515
					CPUFREQ_RELATION_H);
516 517
	else if (policy->min > cdbs->shared->policy->cur)
		__cpufreq_driver_target(cdbs->shared->policy, policy->min,
518 519
					CPUFREQ_RELATION_L);
	dbs_check_cpu(dbs_data, cpu);
520
	mutex_unlock(&cdbs->shared->timer_mutex);
521 522

	return 0;
523
}
524

525 526 527 528
int cpufreq_governor_dbs(struct cpufreq_policy *policy,
			 struct common_dbs_data *cdata, unsigned int event)
{
	struct dbs_data *dbs_data;
529
	int ret;
530

531 532 533
	/* Lock governor to block concurrent initialization of governor */
	mutex_lock(&cdata->mutex);

534 535 536 537 538
	if (have_governor_per_policy())
		dbs_data = policy->governor_data;
	else
		dbs_data = cdata->gdbs_data;

539
	if (!dbs_data && (event != CPUFREQ_GOV_POLICY_INIT)) {
540 541 542
		ret = -EINVAL;
		goto unlock;
	}
543 544 545 546 547 548

	switch (event) {
	case CPUFREQ_GOV_POLICY_INIT:
		ret = cpufreq_governor_init(policy, dbs_data, cdata);
		break;
	case CPUFREQ_GOV_POLICY_EXIT:
549
		ret = cpufreq_governor_exit(policy, dbs_data);
550 551 552 553 554
		break;
	case CPUFREQ_GOV_START:
		ret = cpufreq_governor_start(policy, dbs_data);
		break;
	case CPUFREQ_GOV_STOP:
555
		ret = cpufreq_governor_stop(policy, dbs_data);
556
		break;
557
	case CPUFREQ_GOV_LIMITS:
558
		ret = cpufreq_governor_limits(policy, dbs_data);
559
		break;
560 561
	default:
		ret = -EINVAL;
562
	}
563

564 565 566
unlock:
	mutex_unlock(&cdata->mutex);

567
	return ret;
568 569
}
EXPORT_SYMBOL_GPL(cpufreq_governor_dbs);