bitmap.c 38.3 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
L
Linus Torvalds 已提交
2 3 4 5
/*
 * lib/bitmap.c
 * Helper functions for bitmap.h.
 */
6 7
#include <linux/export.h>
#include <linux/thread_info.h>
L
Linus Torvalds 已提交
8 9 10 11
#include <linux/ctype.h>
#include <linux/errno.h>
#include <linux/bitmap.h>
#include <linux/bitops.h>
12
#include <linux/bug.h>
13
#include <linux/kernel.h>
14
#include <linux/mm.h>
15
#include <linux/slab.h>
16
#include <linux/string.h>
17
#include <linux/uaccess.h>
18 19

#include <asm/page.h>
L
Linus Torvalds 已提交
20

Y
Yury Norov 已提交
21 22
#include "kstrtox.h"

23 24 25
/**
 * DOC: bitmap introduction
 *
L
Linus Torvalds 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
 * bitmaps provide an array of bits, implemented using an an
 * array of unsigned longs.  The number of valid bits in a
 * given bitmap does _not_ need to be an exact multiple of
 * BITS_PER_LONG.
 *
 * The possible unused bits in the last, partially used word
 * of a bitmap are 'don't care'.  The implementation makes
 * no particular effort to keep them zero.  It ensures that
 * their value will not affect the results of any operation.
 * The bitmap operations that return Boolean (bitmap_empty,
 * for example) or scalar (bitmap_weight, for example) results
 * carefully filter out these unused bits from impacting their
 * results.
 *
 * The byte ordering of bitmaps is more natural on little
 * endian architectures.  See the big-endian headers
 * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h
 * for the best explanations of this ordering.
 */

int __bitmap_equal(const unsigned long *bitmap1,
47
		const unsigned long *bitmap2, unsigned int bits)
L
Linus Torvalds 已提交
48
{
49
	unsigned int k, lim = bits/BITS_PER_LONG;
L
Linus Torvalds 已提交
50 51 52 53 54 55 56 57 58 59 60 61
	for (k = 0; k < lim; ++k)
		if (bitmap1[k] != bitmap2[k])
			return 0;

	if (bits % BITS_PER_LONG)
		if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
			return 0;

	return 1;
}
EXPORT_SYMBOL(__bitmap_equal);

62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
bool __bitmap_or_equal(const unsigned long *bitmap1,
		       const unsigned long *bitmap2,
		       const unsigned long *bitmap3,
		       unsigned int bits)
{
	unsigned int k, lim = bits / BITS_PER_LONG;
	unsigned long tmp;

	for (k = 0; k < lim; ++k) {
		if ((bitmap1[k] | bitmap2[k]) != bitmap3[k])
			return false;
	}

	if (!(bits % BITS_PER_LONG))
		return true;

	tmp = (bitmap1[k] | bitmap2[k]) ^ bitmap3[k];
	return (tmp & BITMAP_LAST_WORD_MASK(bits)) == 0;
}

82
void __bitmap_complement(unsigned long *dst, const unsigned long *src, unsigned int bits)
L
Linus Torvalds 已提交
83
{
84
	unsigned int k, lim = BITS_TO_LONGS(bits);
L
Linus Torvalds 已提交
85 86 87 88 89
	for (k = 0; k < lim; ++k)
		dst[k] = ~src[k];
}
EXPORT_SYMBOL(__bitmap_complement);

90
/**
L
Linus Torvalds 已提交
91
 * __bitmap_shift_right - logical right shift of the bits in a bitmap
92 93 94
 *   @dst : destination bitmap
 *   @src : source bitmap
 *   @shift : shift by this many bits
95
 *   @nbits : bitmap size, in bits
L
Linus Torvalds 已提交
96 97 98 99 100
 *
 * Shifting right (dividing) means moving bits in the MS -> LS bit
 * direction.  Zeros are fed into the vacated MS positions and the
 * LS bits shifted off the bottom are lost.
 */
101 102
void __bitmap_shift_right(unsigned long *dst, const unsigned long *src,
			unsigned shift, unsigned nbits)
L
Linus Torvalds 已提交
103
{
104
	unsigned k, lim = BITS_TO_LONGS(nbits);
105
	unsigned off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
106
	unsigned long mask = BITMAP_LAST_WORD_MASK(nbits);
L
Linus Torvalds 已提交
107 108 109 110 111 112 113 114 115 116 117
	for (k = 0; off + k < lim; ++k) {
		unsigned long upper, lower;

		/*
		 * If shift is not word aligned, take lower rem bits of
		 * word above and make them the top rem bits of result.
		 */
		if (!rem || off + k + 1 >= lim)
			upper = 0;
		else {
			upper = src[off + k + 1];
118
			if (off + k + 1 == lim - 1)
L
Linus Torvalds 已提交
119
				upper &= mask;
120
			upper <<= (BITS_PER_LONG - rem);
L
Linus Torvalds 已提交
121 122
		}
		lower = src[off + k];
123
		if (off + k == lim - 1)
L
Linus Torvalds 已提交
124
			lower &= mask;
125 126
		lower >>= rem;
		dst[k] = lower | upper;
L
Linus Torvalds 已提交
127 128 129 130 131 132 133
	}
	if (off)
		memset(&dst[lim - off], 0, off*sizeof(unsigned long));
}
EXPORT_SYMBOL(__bitmap_shift_right);


134
/**
L
Linus Torvalds 已提交
135
 * __bitmap_shift_left - logical left shift of the bits in a bitmap
136 137 138
 *   @dst : destination bitmap
 *   @src : source bitmap
 *   @shift : shift by this many bits
139
 *   @nbits : bitmap size, in bits
L
Linus Torvalds 已提交
140 141 142 143 144 145
 *
 * Shifting left (multiplying) means moving bits in the LS -> MS
 * direction.  Zeros are fed into the vacated LS bit positions
 * and those MS bits shifted off the top are lost.
 */

146 147
void __bitmap_shift_left(unsigned long *dst, const unsigned long *src,
			unsigned int shift, unsigned int nbits)
L
Linus Torvalds 已提交
148
{
149
	int k;
150
	unsigned int lim = BITS_TO_LONGS(nbits);
151
	unsigned int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
L
Linus Torvalds 已提交
152 153 154 155 156 157 158 159
	for (k = lim - off - 1; k >= 0; --k) {
		unsigned long upper, lower;

		/*
		 * If shift is not word aligned, take upper rem bits of
		 * word below and make them the bottom rem bits of result.
		 */
		if (rem && k > 0)
160
			lower = src[k - 1] >> (BITS_PER_LONG - rem);
L
Linus Torvalds 已提交
161 162
		else
			lower = 0;
163
		upper = src[k] << rem;
164
		dst[k + off] = lower | upper;
L
Linus Torvalds 已提交
165 166 167 168 169 170
	}
	if (off)
		memset(dst, 0, off*sizeof(unsigned long));
}
EXPORT_SYMBOL(__bitmap_shift_left);

171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
/**
 * bitmap_cut() - remove bit region from bitmap and right shift remaining bits
 * @dst: destination bitmap, might overlap with src
 * @src: source bitmap
 * @first: start bit of region to be removed
 * @cut: number of bits to remove
 * @nbits: bitmap size, in bits
 *
 * Set the n-th bit of @dst iff the n-th bit of @src is set and
 * n is less than @first, or the m-th bit of @src is set for any
 * m such that @first <= n < nbits, and m = n + @cut.
 *
 * In pictures, example for a big-endian 32-bit architecture:
 *
 * @src:
 * 31                                   63
 * |                                    |
 * 10000000 11000001 11110010 00010101  10000000 11000001 01110010 00010101
 *                 |  |              |                                    |
 *                16  14             0                                   32
 *
 * if @cut is 3, and @first is 14, bits 14-16 in @src are cut and @dst is:
 *
 * 31                                   63
 * |                                    |
 * 10110000 00011000 00110010 00010101  00010000 00011000 00101110 01000010
 *                    |              |                                    |
 *                    14 (bit 17     0                                   32
 *                        from @src)
 *
 * Note that @dst and @src might overlap partially or entirely.
 *
 * This is implemented in the obvious way, with a shift and carry
 * step for each moved bit. Optimisation is left as an exercise
 * for the compiler.
 */
void bitmap_cut(unsigned long *dst, const unsigned long *src,
		unsigned int first, unsigned int cut, unsigned int nbits)
{
	unsigned int len = BITS_TO_LONGS(nbits);
	unsigned long keep = 0, carry;
	int i;

	memmove(dst, src, len * sizeof(*dst));

	if (first % BITS_PER_LONG) {
		keep = src[first / BITS_PER_LONG] &
		       (~0UL >> (BITS_PER_LONG - first % BITS_PER_LONG));
	}

	while (cut--) {
		for (i = first / BITS_PER_LONG; i < len; i++) {
			if (i < len - 1)
				carry = dst[i + 1] & 1UL;
			else
				carry = 0;

			dst[i] = (dst[i] >> 1) | (carry << (BITS_PER_LONG - 1));
		}
	}

	dst[first / BITS_PER_LONG] &= ~0UL << (first % BITS_PER_LONG);
	dst[first / BITS_PER_LONG] |= keep;
}
EXPORT_SYMBOL(bitmap_cut);

237
int __bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
238
				const unsigned long *bitmap2, unsigned int bits)
L
Linus Torvalds 已提交
239
{
240
	unsigned int k;
241
	unsigned int lim = bits/BITS_PER_LONG;
242
	unsigned long result = 0;
L
Linus Torvalds 已提交
243

244
	for (k = 0; k < lim; k++)
245
		result |= (dst[k] = bitmap1[k] & bitmap2[k]);
246 247 248
	if (bits % BITS_PER_LONG)
		result |= (dst[k] = bitmap1[k] & bitmap2[k] &
			   BITMAP_LAST_WORD_MASK(bits));
249
	return result != 0;
L
Linus Torvalds 已提交
250 251 252 253
}
EXPORT_SYMBOL(__bitmap_and);

void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
254
				const unsigned long *bitmap2, unsigned int bits)
L
Linus Torvalds 已提交
255
{
256 257
	unsigned int k;
	unsigned int nr = BITS_TO_LONGS(bits);
L
Linus Torvalds 已提交
258 259 260 261 262 263 264

	for (k = 0; k < nr; k++)
		dst[k] = bitmap1[k] | bitmap2[k];
}
EXPORT_SYMBOL(__bitmap_or);

void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
265
				const unsigned long *bitmap2, unsigned int bits)
L
Linus Torvalds 已提交
266
{
267 268
	unsigned int k;
	unsigned int nr = BITS_TO_LONGS(bits);
L
Linus Torvalds 已提交
269 270 271 272 273 274

	for (k = 0; k < nr; k++)
		dst[k] = bitmap1[k] ^ bitmap2[k];
}
EXPORT_SYMBOL(__bitmap_xor);

275
int __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
276
				const unsigned long *bitmap2, unsigned int bits)
L
Linus Torvalds 已提交
277
{
278
	unsigned int k;
279
	unsigned int lim = bits/BITS_PER_LONG;
280
	unsigned long result = 0;
L
Linus Torvalds 已提交
281

282
	for (k = 0; k < lim; k++)
283
		result |= (dst[k] = bitmap1[k] & ~bitmap2[k]);
284 285 286
	if (bits % BITS_PER_LONG)
		result |= (dst[k] = bitmap1[k] & ~bitmap2[k] &
			   BITMAP_LAST_WORD_MASK(bits));
287
	return result != 0;
L
Linus Torvalds 已提交
288 289 290
}
EXPORT_SYMBOL(__bitmap_andnot);

291 292 293 294 295 296 297 298 299 300 301 302
void __bitmap_replace(unsigned long *dst,
		      const unsigned long *old, const unsigned long *new,
		      const unsigned long *mask, unsigned int nbits)
{
	unsigned int k;
	unsigned int nr = BITS_TO_LONGS(nbits);

	for (k = 0; k < nr; k++)
		dst[k] = (old[k] & ~mask[k]) | (new[k] & mask[k]);
}
EXPORT_SYMBOL(__bitmap_replace);

L
Linus Torvalds 已提交
303
int __bitmap_intersects(const unsigned long *bitmap1,
304
			const unsigned long *bitmap2, unsigned int bits)
L
Linus Torvalds 已提交
305
{
306
	unsigned int k, lim = bits/BITS_PER_LONG;
L
Linus Torvalds 已提交
307 308 309 310 311 312 313 314 315 316 317 318
	for (k = 0; k < lim; ++k)
		if (bitmap1[k] & bitmap2[k])
			return 1;

	if (bits % BITS_PER_LONG)
		if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
			return 1;
	return 0;
}
EXPORT_SYMBOL(__bitmap_intersects);

int __bitmap_subset(const unsigned long *bitmap1,
319
		    const unsigned long *bitmap2, unsigned int bits)
L
Linus Torvalds 已提交
320
{
321
	unsigned int k, lim = bits/BITS_PER_LONG;
L
Linus Torvalds 已提交
322 323 324 325 326 327 328 329 330 331 332
	for (k = 0; k < lim; ++k)
		if (bitmap1[k] & ~bitmap2[k])
			return 0;

	if (bits % BITS_PER_LONG)
		if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
			return 0;
	return 1;
}
EXPORT_SYMBOL(__bitmap_subset);

333
int __bitmap_weight(const unsigned long *bitmap, unsigned int bits)
L
Linus Torvalds 已提交
334
{
335 336
	unsigned int k, lim = bits/BITS_PER_LONG;
	int w = 0;
L
Linus Torvalds 已提交
337 338

	for (k = 0; k < lim; k++)
339
		w += hweight_long(bitmap[k]);
L
Linus Torvalds 已提交
340 341

	if (bits % BITS_PER_LONG)
342
		w += hweight_long(bitmap[k] & BITMAP_LAST_WORD_MASK(bits));
L
Linus Torvalds 已提交
343 344 345 346 347

	return w;
}
EXPORT_SYMBOL(__bitmap_weight);

348
void __bitmap_set(unsigned long *map, unsigned int start, int len)
349 350
{
	unsigned long *p = map + BIT_WORD(start);
351
	const unsigned int size = start + len;
352 353 354
	int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
	unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);

355
	while (len - bits_to_set >= 0) {
356
		*p |= mask_to_set;
357
		len -= bits_to_set;
358 359 360 361
		bits_to_set = BITS_PER_LONG;
		mask_to_set = ~0UL;
		p++;
	}
362
	if (len) {
363 364 365 366
		mask_to_set &= BITMAP_LAST_WORD_MASK(size);
		*p |= mask_to_set;
	}
}
367
EXPORT_SYMBOL(__bitmap_set);
368

369
void __bitmap_clear(unsigned long *map, unsigned int start, int len)
370 371
{
	unsigned long *p = map + BIT_WORD(start);
372
	const unsigned int size = start + len;
373 374 375
	int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
	unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);

376
	while (len - bits_to_clear >= 0) {
377
		*p &= ~mask_to_clear;
378
		len -= bits_to_clear;
379 380 381 382
		bits_to_clear = BITS_PER_LONG;
		mask_to_clear = ~0UL;
		p++;
	}
383
	if (len) {
384 385 386 387
		mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
		*p &= ~mask_to_clear;
	}
}
388
EXPORT_SYMBOL(__bitmap_clear);
389

390 391
/**
 * bitmap_find_next_zero_area_off - find a contiguous aligned zero area
392 393 394 395 396
 * @map: The address to base the search on
 * @size: The bitmap size in bits
 * @start: The bitnumber to start searching at
 * @nr: The number of zeroed bits we're looking for
 * @align_mask: Alignment mask for zero area
397
 * @align_offset: Alignment offset for zero area.
398 399
 *
 * The @align_mask should be one less than a power of 2; the effect is that
400 401
 * the bit offset of all zero areas this function finds plus @align_offset
 * is multiple of that power of 2.
402
 */
403 404 405 406 407 408
unsigned long bitmap_find_next_zero_area_off(unsigned long *map,
					     unsigned long size,
					     unsigned long start,
					     unsigned int nr,
					     unsigned long align_mask,
					     unsigned long align_offset)
409 410 411 412 413 414
{
	unsigned long index, end, i;
again:
	index = find_next_zero_bit(map, size, start);

	/* Align allocation */
415
	index = __ALIGN_MASK(index + align_offset, align_mask) - align_offset;
416 417 418 419 420 421 422 423 424 425 426

	end = index + nr;
	if (end > size)
		return end;
	i = find_next_bit(map, end, index);
	if (i < end) {
		start = i + 1;
		goto again;
	}
	return index;
}
427
EXPORT_SYMBOL(bitmap_find_next_zero_area_off);
428

L
Linus Torvalds 已提交
429
/*
430
 * Bitmap printing & parsing functions: first version by Nadia Yvette Chambers,
L
Linus Torvalds 已提交
431 432 433 434 435 436 437 438
 * second version by Paul Jackson, third by Joe Korty.
 */

#define CHUNKSZ				32
#define nbits_to_hold_value(val)	fls(val)
#define BASEDEC 10		/* fancier cpuset lists input in decimal */

/**
439 440 441
 * __bitmap_parse - convert an ASCII hex string into a bitmap.
 * @buf: pointer to buffer containing string.
 * @buflen: buffer size in bytes.  If string is smaller than this
L
Linus Torvalds 已提交
442
 *    then it must be terminated with a \0.
443
 * @is_user: location of buffer, 0 indicates kernel space
L
Linus Torvalds 已提交
444 445 446 447 448
 * @maskp: pointer to bitmap array that will contain result.
 * @nmaskbits: size of bitmap, in bits.
 *
 * Commas group hex digits into chunks.  Each chunk defines exactly 32
 * bits of the resultant bitmask.  No chunk may specify a value larger
449 450
 * than 32 bits (%-EOVERFLOW), and if a chunk specifies a smaller value
 * then leading 0-bits are prepended.  %-EINVAL is returned for illegal
L
Linus Torvalds 已提交
451 452 453
 * characters and for grouping errors such as "1,,5", ",44", "," and "".
 * Leading and trailing whitespace accepted, but not embedded whitespace.
 */
454 455 456
int __bitmap_parse(const char *buf, unsigned int buflen,
		int is_user, unsigned long *maskp,
		int nmaskbits)
L
Linus Torvalds 已提交
457 458 459
{
	int c, old_c, totaldigits, ndigits, nchunks, nbits;
	u32 chunk;
460
	const char __user __force *ubuf = (const char __user __force *)buf;
L
Linus Torvalds 已提交
461 462 463 464 465

	bitmap_zero(maskp, nmaskbits);

	nchunks = nbits = totaldigits = c = 0;
	do {
466 467
		chunk = 0;
		ndigits = totaldigits;
L
Linus Torvalds 已提交
468 469

		/* Get the next chunk of the bitmap */
470
		while (buflen) {
L
Linus Torvalds 已提交
471
			old_c = c;
472 473 474 475 476 477 478
			if (is_user) {
				if (__get_user(c, ubuf++))
					return -EFAULT;
			}
			else
				c = *buf++;
			buflen--;
L
Linus Torvalds 已提交
479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
			if (isspace(c))
				continue;

			/*
			 * If the last character was a space and the current
			 * character isn't '\0', we've got embedded whitespace.
			 * This is a no-no, so throw an error.
			 */
			if (totaldigits && c && isspace(old_c))
				return -EINVAL;

			/* A '\0' or a ',' signal the end of the chunk */
			if (c == '\0' || c == ',')
				break;

			if (!isxdigit(c))
				return -EINVAL;

			/*
			 * Make sure there are at least 4 free bits in 'chunk'.
			 * If not, this hexdigit will overflow 'chunk', so
			 * throw an error.
			 */
			if (chunk & ~((1UL << (CHUNKSZ - 4)) - 1))
				return -EOVERFLOW;

A
Andy Shevchenko 已提交
505
			chunk = (chunk << 4) | hex_to_bin(c);
506
			totaldigits++;
L
Linus Torvalds 已提交
507
		}
508
		if (ndigits == totaldigits)
L
Linus Torvalds 已提交
509 510 511 512 513 514 515 516 517 518
			return -EINVAL;
		if (nchunks == 0 && chunk == 0)
			continue;

		__bitmap_shift_left(maskp, maskp, CHUNKSZ, nmaskbits);
		*maskp |= chunk;
		nchunks++;
		nbits += (nchunks == 1) ? nbits_to_hold_value(chunk) : CHUNKSZ;
		if (nbits > nmaskbits)
			return -EOVERFLOW;
519
	} while (buflen && c == ',');
L
Linus Torvalds 已提交
520 521 522

	return 0;
}
523 524 525
EXPORT_SYMBOL(__bitmap_parse);

/**
526
 * bitmap_parse_user - convert an ASCII hex string in a user buffer into a bitmap
527 528 529 530 531 532 533 534 535 536 537
 *
 * @ubuf: pointer to user buffer containing string.
 * @ulen: buffer size in bytes.  If string is smaller than this
 *    then it must be terminated with a \0.
 * @maskp: pointer to bitmap array that will contain result.
 * @nmaskbits: size of bitmap, in bits.
 */
int bitmap_parse_user(const char __user *ubuf,
			unsigned int ulen, unsigned long *maskp,
			int nmaskbits)
{
538 539 540 541 542 543 544 545
	char *buf;
	int ret;

	buf = memdup_user_nul(ubuf, ulen);
	if (IS_ERR(buf))
		return PTR_ERR(buf);

	ret = bitmap_parse(buf, ulen, maskp, nmaskbits);
546

547 548
	kfree(buf);
	return ret;
549 550
}
EXPORT_SYMBOL(bitmap_parse_user);
L
Linus Torvalds 已提交
551

552 553 554 555 556 557 558 559 560 561
/**
 * bitmap_print_to_pagebuf - convert bitmap to list or hex format ASCII string
 * @list: indicates whether the bitmap must be list
 * @buf: page aligned buffer into which string is placed
 * @maskp: pointer to bitmap to convert
 * @nmaskbits: size of bitmap, in bits
 *
 * Output format is a comma-separated list of decimal numbers and
 * ranges if list is specified or hex digits grouped into comma-separated
 * sets of 8 digits/set. Returns the number of characters written to buf.
562
 *
563 564 565 566
 * It is assumed that @buf is a pointer into a PAGE_SIZE, page-aligned
 * area and that sufficient storage remains at @buf to accommodate the
 * bitmap_print_to_pagebuf() output. Returns the number of characters
 * actually printed to @buf, excluding terminating '\0'.
567 568 569 570
 */
int bitmap_print_to_pagebuf(bool list, char *buf, const unsigned long *maskp,
			    int nmaskbits)
{
571
	ptrdiff_t len = PAGE_SIZE - offset_in_page(buf);
572

573 574
	return list ? scnprintf(buf, len, "%*pbl\n", nmaskbits, maskp) :
		      scnprintf(buf, len, "%*pb\n", nmaskbits, maskp);
575 576 577
}
EXPORT_SYMBOL(bitmap_print_to_pagebuf);

Y
Yury Norov 已提交
578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695
/*
 * Region 9-38:4/10 describes the following bitmap structure:
 * 0	   9  12    18			38
 * .........****......****......****......
 *	    ^  ^     ^			 ^
 *      start  off   group_len	       end
 */
struct region {
	unsigned int start;
	unsigned int off;
	unsigned int group_len;
	unsigned int end;
};

static int bitmap_set_region(const struct region *r,
				unsigned long *bitmap, int nbits)
{
	unsigned int start;

	if (r->end >= nbits)
		return -ERANGE;

	for (start = r->start; start <= r->end; start += r->group_len)
		bitmap_set(bitmap, start, min(r->end - start + 1, r->off));

	return 0;
}

static int bitmap_check_region(const struct region *r)
{
	if (r->start > r->end || r->group_len == 0 || r->off > r->group_len)
		return -EINVAL;

	return 0;
}

static const char *bitmap_getnum(const char *str, unsigned int *num)
{
	unsigned long long n;
	unsigned int len;

	len = _parse_integer(str, 10, &n);
	if (!len)
		return ERR_PTR(-EINVAL);
	if (len & KSTRTOX_OVERFLOW || n != (unsigned int)n)
		return ERR_PTR(-EOVERFLOW);

	*num = n;
	return str + len;
}

static inline bool end_of_str(char c)
{
	return c == '\0' || c == '\n';
}

static inline bool __end_of_region(char c)
{
	return isspace(c) || c == ',';
}

static inline bool end_of_region(char c)
{
	return __end_of_region(c) || end_of_str(c);
}

/*
 * The format allows commas and whitespases at the beginning
 * of the region.
 */
static const char *bitmap_find_region(const char *str)
{
	while (__end_of_region(*str))
		str++;

	return end_of_str(*str) ? NULL : str;
}

static const char *bitmap_parse_region(const char *str, struct region *r)
{
	str = bitmap_getnum(str, &r->start);
	if (IS_ERR(str))
		return str;

	if (end_of_region(*str))
		goto no_end;

	if (*str != '-')
		return ERR_PTR(-EINVAL);

	str = bitmap_getnum(str + 1, &r->end);
	if (IS_ERR(str))
		return str;

	if (end_of_region(*str))
		goto no_pattern;

	if (*str != ':')
		return ERR_PTR(-EINVAL);

	str = bitmap_getnum(str + 1, &r->off);
	if (IS_ERR(str))
		return str;

	if (*str != '/')
		return ERR_PTR(-EINVAL);

	return bitmap_getnum(str + 1, &r->group_len);

no_end:
	r->end = r->start;
no_pattern:
	r->off = r->end + 1;
	r->group_len = r->end + 1;

	return end_of_str(*str) ? NULL : str;
}

L
Linus Torvalds 已提交
696
/**
Y
Yury Norov 已提交
697 698 699
 * bitmap_parselist - convert list format ASCII string to bitmap
 * @buf: read user string from this buffer; must be terminated
 *    with a \0 or \n.
700
 * @maskp: write resulting mask here
L
Linus Torvalds 已提交
701 702 703 704 705 706
 * @nmaskbits: number of bits in mask to be written
 *
 * Input format is a comma-separated list of decimal numbers and
 * ranges.  Consecutively set bits are shown as two hyphen-separated
 * decimal numbers, the smallest and largest bit numbers set in
 * the range.
N
Noam Camus 已提交
707 708 709 710 711
 * Optionally each range can be postfixed to denote that only parts of it
 * should be set. The range will divided to groups of specific size.
 * From each group will be used only defined amount of bits.
 * Syntax: range:used_size/group_size
 * Example: 0-1023:2/256 ==> 0,1,256,257,512,513,768,769
L
Linus Torvalds 已提交
712
 *
713 714
 * Returns: 0 on success, -errno on invalid input strings. Error values:
 *
Y
Yury Norov 已提交
715
 *   - ``-EINVAL``: wrong region format
716 717
 *   - ``-EINVAL``: invalid character in string
 *   - ``-ERANGE``: bit number specified too large for mask
Y
Yury Norov 已提交
718
 *   - ``-EOVERFLOW``: integer overflow in the input parameters
L
Linus Torvalds 已提交
719
 */
Y
Yury Norov 已提交
720
int bitmap_parselist(const char *buf, unsigned long *maskp, int nmaskbits)
L
Linus Torvalds 已提交
721
{
Y
Yury Norov 已提交
722 723
	struct region r;
	long ret;
L
Linus Torvalds 已提交
724 725

	bitmap_zero(maskp, nmaskbits);
726

Y
Yury Norov 已提交
727 728 729 730
	while (buf) {
		buf = bitmap_find_region(buf);
		if (buf == NULL)
			return 0;
N
Noam Camus 已提交
731

Y
Yury Norov 已提交
732 733 734
		buf = bitmap_parse_region(buf, &r);
		if (IS_ERR(buf))
			return PTR_ERR(buf);
N
Noam Camus 已提交
735

Y
Yury Norov 已提交
736 737 738
		ret = bitmap_check_region(&r);
		if (ret)
			return ret;
739

Y
Yury Norov 已提交
740 741 742 743
		ret = bitmap_set_region(&r, maskp, nmaskbits);
		if (ret)
			return ret;
	}
744

L
Linus Torvalds 已提交
745 746 747 748
	return 0;
}
EXPORT_SYMBOL(bitmap_parselist);

749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764

/**
 * bitmap_parselist_user()
 *
 * @ubuf: pointer to user buffer containing string.
 * @ulen: buffer size in bytes.  If string is smaller than this
 *    then it must be terminated with a \0.
 * @maskp: pointer to bitmap array that will contain result.
 * @nmaskbits: size of bitmap, in bits.
 *
 * Wrapper for bitmap_parselist(), providing it with user buffer.
 */
int bitmap_parselist_user(const char __user *ubuf,
			unsigned int ulen, unsigned long *maskp,
			int nmaskbits)
{
765 766 767 768 769 770 771 772 773 774 775
	char *buf;
	int ret;

	buf = memdup_user_nul(ubuf, ulen);
	if (IS_ERR(buf))
		return PTR_ERR(buf);

	ret = bitmap_parselist(buf, maskp, nmaskbits);

	kfree(buf);
	return ret;
776 777 778 779
}
EXPORT_SYMBOL(bitmap_parselist_user);


780
#ifdef CONFIG_NUMA
781
/**
782
 * bitmap_pos_to_ord - find ordinal of set bit at given position in bitmap
783
 *	@buf: pointer to a bitmap
784 785
 *	@pos: a bit position in @buf (0 <= @pos < @nbits)
 *	@nbits: number of valid bit positions in @buf
786
 *
787
 * Map the bit at position @pos in @buf (of length @nbits) to the
788
 * ordinal of which set bit it is.  If it is not set or if @pos
789
 * is not a valid bit position, map to -1.
790 791 792
 *
 * If for example, just bits 4 through 7 are set in @buf, then @pos
 * values 4 through 7 will get mapped to 0 through 3, respectively,
793
 * and other @pos values will get mapped to -1.  When @pos value 7
794 795 796 797 798
 * gets mapped to (returns) @ord value 3 in this example, that means
 * that bit 7 is the 3rd (starting with 0th) set bit in @buf.
 *
 * The bit positions 0 through @bits are valid positions in @buf.
 */
799
static int bitmap_pos_to_ord(const unsigned long *buf, unsigned int pos, unsigned int nbits)
800
{
801
	if (pos >= nbits || !test_bit(pos, buf))
802
		return -1;
803

804
	return __bitmap_weight(buf, pos);
805 806 807
}

/**
808
 * bitmap_ord_to_pos - find position of n-th set bit in bitmap
809 810
 *	@buf: pointer to bitmap
 *	@ord: ordinal bit position (n-th set bit, n >= 0)
811
 *	@nbits: number of valid bit positions in @buf
812 813
 *
 * Map the ordinal offset of bit @ord in @buf to its position in @buf.
814 815
 * Value of @ord should be in range 0 <= @ord < weight(buf). If @ord
 * >= weight(buf), returns @nbits.
816 817 818
 *
 * If for example, just bits 4 through 7 are set in @buf, then @ord
 * values 0 through 3 will get mapped to 4 through 7, respectively,
819
 * and all other @ord values returns @nbits.  When @ord value 3
820 821 822
 * gets mapped to (returns) @pos value 7 in this example, that means
 * that the 3rd set bit (starting with 0th) is at position 7 in @buf.
 *
823
 * The bit positions 0 through @nbits-1 are valid positions in @buf.
824
 */
825
unsigned int bitmap_ord_to_pos(const unsigned long *buf, unsigned int ord, unsigned int nbits)
826
{
827
	unsigned int pos;
828

829 830 831 832
	for (pos = find_first_bit(buf, nbits);
	     pos < nbits && ord;
	     pos = find_next_bit(buf, nbits, pos + 1))
		ord--;
833 834 835 836 837 838 839

	return pos;
}

/**
 * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap
 *	@dst: remapped result
840
 *	@src: subset to be remapped
841 842
 *	@old: defines domain of map
 *	@new: defines range of map
843
 *	@nbits: number of bits in each of these bitmaps
844 845 846 847 848 849 850 851
 *
 * Let @old and @new define a mapping of bit positions, such that
 * whatever position is held by the n-th set bit in @old is mapped
 * to the n-th set bit in @new.  In the more general case, allowing
 * for the possibility that the weight 'w' of @new is less than the
 * weight of @old, map the position of the n-th set bit in @old to
 * the position of the m-th set bit in @new, where m == n % w.
 *
852 853 854
 * If either of the @old and @new bitmaps are empty, or if @src and
 * @dst point to the same location, then this routine copies @src
 * to @dst.
855
 *
856 857
 * The positions of unset bits in @old are mapped to themselves
 * (the identify map).
858 859 860 861 862 863 864
 *
 * Apply the above specified mapping to @src, placing the result in
 * @dst, clearing any bits previously set in @dst.
 *
 * For example, lets say that @old has bits 4 through 7 set, and
 * @new has bits 12 through 15 set.  This defines the mapping of bit
 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
865 866 867
 * bit positions unchanged.  So if say @src comes into this routine
 * with bits 1, 5 and 7 set, then @dst should leave with bits 1,
 * 13 and 15 set.
868 869 870
 */
void bitmap_remap(unsigned long *dst, const unsigned long *src,
		const unsigned long *old, const unsigned long *new,
871
		unsigned int nbits)
872
{
873
	unsigned int oldbit, w;
874 875 876

	if (dst == src)		/* following doesn't handle inplace remaps */
		return;
877
	bitmap_zero(dst, nbits);
878

879 880 881
	w = bitmap_weight(new, nbits);
	for_each_set_bit(oldbit, src, nbits) {
		int n = bitmap_pos_to_ord(old, oldbit, nbits);
A
Akinobu Mita 已提交
882

883 884 885
		if (n < 0 || w == 0)
			set_bit(oldbit, dst);	/* identity map */
		else
886
			set_bit(bitmap_ord_to_pos(new, n % w, nbits), dst);
887 888 889 890 891
	}
}

/**
 * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit
892 893 894 895
 *	@oldbit: bit position to be mapped
 *	@old: defines domain of map
 *	@new: defines range of map
 *	@bits: number of bits in each of these bitmaps
896 897 898 899 900 901 902 903
 *
 * Let @old and @new define a mapping of bit positions, such that
 * whatever position is held by the n-th set bit in @old is mapped
 * to the n-th set bit in @new.  In the more general case, allowing
 * for the possibility that the weight 'w' of @new is less than the
 * weight of @old, map the position of the n-th set bit in @old to
 * the position of the m-th set bit in @new, where m == n % w.
 *
904 905
 * The positions of unset bits in @old are mapped to themselves
 * (the identify map).
906 907 908 909 910 911 912
 *
 * Apply the above specified mapping to bit position @oldbit, returning
 * the new bit position.
 *
 * For example, lets say that @old has bits 4 through 7 set, and
 * @new has bits 12 through 15 set.  This defines the mapping of bit
 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
913 914
 * bit positions unchanged.  So if say @oldbit is 5, then this routine
 * returns 13.
915 916 917 918
 */
int bitmap_bitremap(int oldbit, const unsigned long *old,
				const unsigned long *new, int bits)
{
919 920 921 922 923 924
	int w = bitmap_weight(new, bits);
	int n = bitmap_pos_to_ord(old, oldbit, bits);
	if (n < 0 || w == 0)
		return oldbit;
	else
		return bitmap_ord_to_pos(new, n % w, bits);
925 926
}

927 928 929 930 931 932 933 934 935 936 937 938 939 940
/**
 * bitmap_onto - translate one bitmap relative to another
 *	@dst: resulting translated bitmap
 * 	@orig: original untranslated bitmap
 * 	@relmap: bitmap relative to which translated
 *	@bits: number of bits in each of these bitmaps
 *
 * Set the n-th bit of @dst iff there exists some m such that the
 * n-th bit of @relmap is set, the m-th bit of @orig is set, and
 * the n-th bit of @relmap is also the m-th _set_ bit of @relmap.
 * (If you understood the previous sentence the first time your
 * read it, you're overqualified for your current job.)
 *
 * In other words, @orig is mapped onto (surjectively) @dst,
941
 * using the map { <n, m> | the n-th bit of @relmap is the
942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975
 * m-th set bit of @relmap }.
 *
 * Any set bits in @orig above bit number W, where W is the
 * weight of (number of set bits in) @relmap are mapped nowhere.
 * In particular, if for all bits m set in @orig, m >= W, then
 * @dst will end up empty.  In situations where the possibility
 * of such an empty result is not desired, one way to avoid it is
 * to use the bitmap_fold() operator, below, to first fold the
 * @orig bitmap over itself so that all its set bits x are in the
 * range 0 <= x < W.  The bitmap_fold() operator does this by
 * setting the bit (m % W) in @dst, for each bit (m) set in @orig.
 *
 * Example [1] for bitmap_onto():
 *  Let's say @relmap has bits 30-39 set, and @orig has bits
 *  1, 3, 5, 7, 9 and 11 set.  Then on return from this routine,
 *  @dst will have bits 31, 33, 35, 37 and 39 set.
 *
 *  When bit 0 is set in @orig, it means turn on the bit in
 *  @dst corresponding to whatever is the first bit (if any)
 *  that is turned on in @relmap.  Since bit 0 was off in the
 *  above example, we leave off that bit (bit 30) in @dst.
 *
 *  When bit 1 is set in @orig (as in the above example), it
 *  means turn on the bit in @dst corresponding to whatever
 *  is the second bit that is turned on in @relmap.  The second
 *  bit in @relmap that was turned on in the above example was
 *  bit 31, so we turned on bit 31 in @dst.
 *
 *  Similarly, we turned on bits 33, 35, 37 and 39 in @dst,
 *  because they were the 4th, 6th, 8th and 10th set bits
 *  set in @relmap, and the 4th, 6th, 8th and 10th bits of
 *  @orig (i.e. bits 3, 5, 7 and 9) were also set.
 *
 *  When bit 11 is set in @orig, it means turn on the bit in
L
Lucas De Marchi 已提交
976
 *  @dst corresponding to whatever is the twelfth bit that is
977 978 979 980 981
 *  turned on in @relmap.  In the above example, there were
 *  only ten bits turned on in @relmap (30..39), so that bit
 *  11 was set in @orig had no affect on @dst.
 *
 * Example [2] for bitmap_fold() + bitmap_onto():
982 983
 *  Let's say @relmap has these ten bits set::
 *
984
 *		40 41 42 43 45 48 53 61 74 95
985
 *
986 987 988 989 990
 *  (for the curious, that's 40 plus the first ten terms of the
 *  Fibonacci sequence.)
 *
 *  Further lets say we use the following code, invoking
 *  bitmap_fold() then bitmap_onto, as suggested above to
991
 *  avoid the possibility of an empty @dst result::
992 993 994 995 996 997 998 999 1000 1001
 *
 *	unsigned long *tmp;	// a temporary bitmap's bits
 *
 *	bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits);
 *	bitmap_onto(dst, tmp, relmap, bits);
 *
 *  Then this table shows what various values of @dst would be, for
 *  various @orig's.  I list the zero-based positions of each set bit.
 *  The tmp column shows the intermediate result, as computed by
 *  using bitmap_fold() to fold the @orig bitmap modulo ten
1002
 *  (the weight of @relmap):
1003
 *
1004
 *      =============== ============== =================
1005 1006 1007 1008
 *      @orig           tmp            @dst
 *      0                0             40
 *      1                1             41
 *      9                9             95
1009
 *      10               0             40 [#f1]_
1010 1011 1012 1013 1014 1015
 *      1 3 5 7          1 3 5 7       41 43 48 61
 *      0 1 2 3 4        0 1 2 3 4     40 41 42 43 45
 *      0 9 18 27        0 9 8 7       40 61 74 95
 *      0 10 20 30       0             40
 *      0 11 22 33       0 1 2 3       40 41 42 43
 *      0 12 24 36       0 2 4 6       40 42 45 53
1016 1017 1018 1019
 *      78 102 211       1 2 8         41 42 74 [#f1]_
 *      =============== ============== =================
 *
 * .. [#f1]
1020
 *
1021
 *     For these marked lines, if we hadn't first done bitmap_fold()
1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
 *     into tmp, then the @dst result would have been empty.
 *
 * If either of @orig or @relmap is empty (no set bits), then @dst
 * will be returned empty.
 *
 * If (as explained above) the only set bits in @orig are in positions
 * m where m >= W, (where W is the weight of @relmap) then @dst will
 * once again be returned empty.
 *
 * All bits in @dst not set by the above rule are cleared.
 */
void bitmap_onto(unsigned long *dst, const unsigned long *orig,
1034
			const unsigned long *relmap, unsigned int bits)
1035
{
1036
	unsigned int n, m;	/* same meaning as in above comment */
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052

	if (dst == orig)	/* following doesn't handle inplace mappings */
		return;
	bitmap_zero(dst, bits);

	/*
	 * The following code is a more efficient, but less
	 * obvious, equivalent to the loop:
	 *	for (m = 0; m < bitmap_weight(relmap, bits); m++) {
	 *		n = bitmap_ord_to_pos(orig, m, bits);
	 *		if (test_bit(m, orig))
	 *			set_bit(n, dst);
	 *	}
	 */

	m = 0;
A
Akinobu Mita 已提交
1053
	for_each_set_bit(n, relmap, bits) {
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
		/* m == bitmap_pos_to_ord(relmap, n, bits) */
		if (test_bit(m, orig))
			set_bit(n, dst);
		m++;
	}
}

/**
 * bitmap_fold - fold larger bitmap into smaller, modulo specified size
 *	@dst: resulting smaller bitmap
 *	@orig: original larger bitmap
 *	@sz: specified size
1066
 *	@nbits: number of bits in each of these bitmaps
1067 1068 1069 1070 1071 1072
 *
 * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst.
 * Clear all other bits in @dst.  See further the comment and
 * Example [2] for bitmap_onto() for why and how to use this.
 */
void bitmap_fold(unsigned long *dst, const unsigned long *orig,
1073
			unsigned int sz, unsigned int nbits)
1074
{
1075
	unsigned int oldbit;
1076 1077 1078

	if (dst == orig)	/* following doesn't handle inplace mappings */
		return;
1079
	bitmap_zero(dst, nbits);
1080

1081
	for_each_set_bit(oldbit, orig, nbits)
1082 1083
		set_bit(oldbit % sz, dst);
}
1084
#endif /* CONFIG_NUMA */
1085

1086 1087 1088 1089 1090 1091
/*
 * Common code for bitmap_*_region() routines.
 *	bitmap: array of unsigned longs corresponding to the bitmap
 *	pos: the beginning of the region
 *	order: region size (log base 2 of number of bits)
 *	reg_op: operation(s) to perform on that region of bitmap
L
Linus Torvalds 已提交
1092
 *
1093 1094
 * Can set, verify and/or release a region of bits in a bitmap,
 * depending on which combination of REG_OP_* flag bits is set.
L
Linus Torvalds 已提交
1095
 *
1096 1097 1098 1099 1100 1101
 * A region of a bitmap is a sequence of bits in the bitmap, of
 * some size '1 << order' (a power of two), aligned to that same
 * '1 << order' power of two.
 *
 * Returns 1 if REG_OP_ISFREE succeeds (region is all zero bits).
 * Returns 0 in all other cases and reg_ops.
L
Linus Torvalds 已提交
1102
 */
1103 1104 1105 1106 1107 1108 1109

enum {
	REG_OP_ISFREE,		/* true if region is all zero bits */
	REG_OP_ALLOC,		/* set all bits in region */
	REG_OP_RELEASE,		/* clear all bits in region */
};

1110
static int __reg_op(unsigned long *bitmap, unsigned int pos, int order, int reg_op)
L
Linus Torvalds 已提交
1111
{
1112 1113 1114 1115
	int nbits_reg;		/* number of bits in region */
	int index;		/* index first long of region in bitmap */
	int offset;		/* bit offset region in bitmap[index] */
	int nlongs_reg;		/* num longs spanned by region in bitmap */
1116
	int nbitsinlong;	/* num bits of region in each spanned long */
1117
	unsigned long mask;	/* bitmask for one long of region */
1118
	int i;			/* scans bitmap by longs */
1119
	int ret = 0;		/* return value */
1120

1121 1122 1123 1124 1125 1126 1127 1128 1129
	/*
	 * Either nlongs_reg == 1 (for small orders that fit in one long)
	 * or (offset == 0 && mask == ~0UL) (for larger multiword orders.)
	 */
	nbits_reg = 1 << order;
	index = pos / BITS_PER_LONG;
	offset = pos - (index * BITS_PER_LONG);
	nlongs_reg = BITS_TO_LONGS(nbits_reg);
	nbitsinlong = min(nbits_reg,  BITS_PER_LONG);
L
Linus Torvalds 已提交
1130

1131 1132 1133 1134
	/*
	 * Can't do "mask = (1UL << nbitsinlong) - 1", as that
	 * overflows if nbitsinlong == BITS_PER_LONG.
	 */
1135
	mask = (1UL << (nbitsinlong - 1));
L
Linus Torvalds 已提交
1136
	mask += mask - 1;
1137
	mask <<= offset;
L
Linus Torvalds 已提交
1138

1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
	switch (reg_op) {
	case REG_OP_ISFREE:
		for (i = 0; i < nlongs_reg; i++) {
			if (bitmap[index + i] & mask)
				goto done;
		}
		ret = 1;	/* all bits in region free (zero) */
		break;

	case REG_OP_ALLOC:
		for (i = 0; i < nlongs_reg; i++)
			bitmap[index + i] |= mask;
		break;

	case REG_OP_RELEASE:
		for (i = 0; i < nlongs_reg; i++)
			bitmap[index + i] &= ~mask;
		break;
L
Linus Torvalds 已提交
1157
	}
1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
done:
	return ret;
}

/**
 * bitmap_find_free_region - find a contiguous aligned mem region
 *	@bitmap: array of unsigned longs corresponding to the bitmap
 *	@bits: number of bits in the bitmap
 *	@order: region size (log base 2 of number of bits) to find
 *
 * Find a region of free (zero) bits in a @bitmap of @bits bits and
 * allocate them (set them to one).  Only consider regions of length
 * a power (@order) of two, aligned to that power of two, which
 * makes the search algorithm much faster.
 *
 * Return the bit offset in bitmap of the allocated region,
 * or -errno on failure.
 */
1176
int bitmap_find_free_region(unsigned long *bitmap, unsigned int bits, int order)
1177
{
1178
	unsigned int pos, end;		/* scans bitmap by regions of size order */
1179

1180
	for (pos = 0 ; (end = pos + (1U << order)) <= bits; pos = end) {
1181 1182 1183 1184 1185 1186
		if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
			continue;
		__reg_op(bitmap, pos, order, REG_OP_ALLOC);
		return pos;
	}
	return -ENOMEM;
L
Linus Torvalds 已提交
1187 1188 1189 1190
}
EXPORT_SYMBOL(bitmap_find_free_region);

/**
P
Paul Jackson 已提交
1191
 * bitmap_release_region - release allocated bitmap region
1192 1193 1194
 *	@bitmap: array of unsigned longs corresponding to the bitmap
 *	@pos: beginning of bit region to release
 *	@order: region size (log base 2 of number of bits) to release
L
Linus Torvalds 已提交
1195
 *
1196
 * This is the complement to __bitmap_find_free_region() and releases
L
Linus Torvalds 已提交
1197
 * the found region (by clearing it in the bitmap).
1198 1199
 *
 * No return value.
L
Linus Torvalds 已提交
1200
 */
1201
void bitmap_release_region(unsigned long *bitmap, unsigned int pos, int order)
L
Linus Torvalds 已提交
1202
{
1203
	__reg_op(bitmap, pos, order, REG_OP_RELEASE);
L
Linus Torvalds 已提交
1204 1205 1206
}
EXPORT_SYMBOL(bitmap_release_region);

P
Paul Jackson 已提交
1207 1208
/**
 * bitmap_allocate_region - allocate bitmap region
1209 1210 1211
 *	@bitmap: array of unsigned longs corresponding to the bitmap
 *	@pos: beginning of bit region to allocate
 *	@order: region size (log base 2 of number of bits) to allocate
P
Paul Jackson 已提交
1212 1213
 *
 * Allocate (set bits in) a specified region of a bitmap.
1214
 *
1215
 * Return 0 on success, or %-EBUSY if specified region wasn't
P
Paul Jackson 已提交
1216 1217
 * free (not all bits were zero).
 */
1218
int bitmap_allocate_region(unsigned long *bitmap, unsigned int pos, int order)
L
Linus Torvalds 已提交
1219
{
1220 1221
	if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
		return -EBUSY;
1222
	return __reg_op(bitmap, pos, order, REG_OP_ALLOC);
L
Linus Torvalds 已提交
1223 1224
}
EXPORT_SYMBOL(bitmap_allocate_region);
D
David Vrabel 已提交
1225 1226 1227 1228 1229 1230 1231 1232 1233

/**
 * bitmap_copy_le - copy a bitmap, putting the bits into little-endian order.
 * @dst:   destination buffer
 * @src:   bitmap to copy
 * @nbits: number of bits in the bitmap
 *
 * Require nbits % BITS_PER_LONG == 0.
 */
1234
#ifdef __BIG_ENDIAN
1235
void bitmap_copy_le(unsigned long *dst, const unsigned long *src, unsigned int nbits)
D
David Vrabel 已提交
1236
{
1237
	unsigned int i;
D
David Vrabel 已提交
1238 1239 1240

	for (i = 0; i < nbits/BITS_PER_LONG; i++) {
		if (BITS_PER_LONG == 64)
1241
			dst[i] = cpu_to_le64(src[i]);
D
David Vrabel 已提交
1242
		else
1243
			dst[i] = cpu_to_le32(src[i]);
D
David Vrabel 已提交
1244 1245 1246
	}
}
EXPORT_SYMBOL(bitmap_copy_le);
1247
#endif
1248

1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267
unsigned long *bitmap_alloc(unsigned int nbits, gfp_t flags)
{
	return kmalloc_array(BITS_TO_LONGS(nbits), sizeof(unsigned long),
			     flags);
}
EXPORT_SYMBOL(bitmap_alloc);

unsigned long *bitmap_zalloc(unsigned int nbits, gfp_t flags)
{
	return bitmap_alloc(nbits, flags | __GFP_ZERO);
}
EXPORT_SYMBOL(bitmap_zalloc);

void bitmap_free(const unsigned long *bitmap)
{
	kfree(bitmap);
}
EXPORT_SYMBOL(bitmap_free);

1268 1269 1270 1271 1272 1273 1274
#if BITS_PER_LONG == 64
/**
 * bitmap_from_arr32 - copy the contents of u32 array of bits to bitmap
 *	@bitmap: array of unsigned longs, the destination bitmap
 *	@buf: array of u32 (in host byte order), the source bitmap
 *	@nbits: number of bits in @bitmap
 */
1275
void bitmap_from_arr32(unsigned long *bitmap, const u32 *buf, unsigned int nbits)
1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315
{
	unsigned int i, halfwords;

	halfwords = DIV_ROUND_UP(nbits, 32);
	for (i = 0; i < halfwords; i++) {
		bitmap[i/2] = (unsigned long) buf[i];
		if (++i < halfwords)
			bitmap[i/2] |= ((unsigned long) buf[i]) << 32;
	}

	/* Clear tail bits in last word beyond nbits. */
	if (nbits % BITS_PER_LONG)
		bitmap[(halfwords - 1) / 2] &= BITMAP_LAST_WORD_MASK(nbits);
}
EXPORT_SYMBOL(bitmap_from_arr32);

/**
 * bitmap_to_arr32 - copy the contents of bitmap to a u32 array of bits
 *	@buf: array of u32 (in host byte order), the dest bitmap
 *	@bitmap: array of unsigned longs, the source bitmap
 *	@nbits: number of bits in @bitmap
 */
void bitmap_to_arr32(u32 *buf, const unsigned long *bitmap, unsigned int nbits)
{
	unsigned int i, halfwords;

	halfwords = DIV_ROUND_UP(nbits, 32);
	for (i = 0; i < halfwords; i++) {
		buf[i] = (u32) (bitmap[i/2] & UINT_MAX);
		if (++i < halfwords)
			buf[i] = (u32) (bitmap[i/2] >> 32);
	}

	/* Clear tail bits in last element of array beyond nbits. */
	if (nbits % BITS_PER_LONG)
		buf[halfwords - 1] &= (u32) (UINT_MAX >> ((-nbits) & 31));
}
EXPORT_SYMBOL(bitmap_to_arr32);

#endif