sge.c 103.9 KB
Newer Older
1 2 3
/*
 * This file is part of the Chelsio T4 Ethernet driver for Linux.
 *
4
 * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
 *
 * This software is available to you under a choice of one of two
 * licenses.  You may choose to be licensed under the terms of the GNU
 * General Public License (GPL) Version 2, available from the file
 * COPYING in the main directory of this source tree, or the
 * OpenIB.org BSD license below:
 *
 *     Redistribution and use in source and binary forms, with or
 *     without modification, are permitted provided that the following
 *     conditions are met:
 *
 *      - Redistributions of source code must retain the above
 *        copyright notice, this list of conditions and the following
 *        disclaimer.
 *
 *      - Redistributions in binary form must reproduce the above
 *        copyright notice, this list of conditions and the following
 *        disclaimer in the documentation and/or other materials
 *        provided with the distribution.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */

#include <linux/skbuff.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/if_vlan.h>
#include <linux/ip.h>
#include <linux/dma-mapping.h>
#include <linux/jiffies.h>
42
#include <linux/prefetch.h>
43
#include <linux/export.h>
44
#include <net/xfrm.h>
45 46
#include <net/ipv6.h>
#include <net/tcp.h>
47
#include <net/busy_poll.h>
V
Varun Prakash 已提交
48 49 50
#ifdef CONFIG_CHELSIO_T4_FCOE
#include <scsi/fc/fc_fcoe.h>
#endif /* CONFIG_CHELSIO_T4_FCOE */
51 52
#include "cxgb4.h"
#include "t4_regs.h"
53
#include "t4_values.h"
54 55
#include "t4_msg.h"
#include "t4fw_api.h"
56
#include "cxgb4_ptp.h"
57
#include "cxgb4_uld.h"
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123

/*
 * Rx buffer size.  We use largish buffers if possible but settle for single
 * pages under memory shortage.
 */
#if PAGE_SHIFT >= 16
# define FL_PG_ORDER 0
#else
# define FL_PG_ORDER (16 - PAGE_SHIFT)
#endif

/* RX_PULL_LEN should be <= RX_COPY_THRES */
#define RX_COPY_THRES    256
#define RX_PULL_LEN      128

/*
 * Main body length for sk_buffs used for Rx Ethernet packets with fragments.
 * Should be >= RX_PULL_LEN but possibly bigger to give pskb_may_pull some room.
 */
#define RX_PKT_SKB_LEN   512

/*
 * Max number of Tx descriptors we clean up at a time.  Should be modest as
 * freeing skbs isn't cheap and it happens while holding locks.  We just need
 * to free packets faster than they arrive, we eventually catch up and keep
 * the amortized cost reasonable.  Must be >= 2 * TXQ_STOP_THRES.
 */
#define MAX_TX_RECLAIM 16

/*
 * Max number of Rx buffers we replenish at a time.  Again keep this modest,
 * allocating buffers isn't cheap either.
 */
#define MAX_RX_REFILL 16U

/*
 * Period of the Rx queue check timer.  This timer is infrequent as it has
 * something to do only when the system experiences severe memory shortage.
 */
#define RX_QCHECK_PERIOD (HZ / 2)

/*
 * Period of the Tx queue check timer.
 */
#define TX_QCHECK_PERIOD (HZ / 2)

/*
 * Max number of Tx descriptors to be reclaimed by the Tx timer.
 */
#define MAX_TIMER_TX_RECLAIM 100

/*
 * Timer index used when backing off due to memory shortage.
 */
#define NOMEM_TMR_IDX (SGE_NTIMERS - 1)

/*
 * Suspension threshold for non-Ethernet Tx queues.  We require enough room
 * for a full sized WR.
 */
#define TXQ_STOP_THRES (SGE_MAX_WR_LEN / sizeof(struct tx_desc))

/*
 * Max Tx descriptor space we allow for an Ethernet packet to be inlined
 * into a WR.
 */
124
#define MAX_IMM_TX_PKT_LEN 256
125 126 127 128 129 130 131 132 133 134 135 136

/*
 * Max size of a WR sent through a control Tx queue.
 */
#define MAX_CTRL_WR_LEN SGE_MAX_WR_LEN

struct rx_sw_desc {                /* SW state per Rx descriptor */
	struct page *page;
	dma_addr_t dma_addr;
};

/*
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
 * Rx buffer sizes for "useskbs" Free List buffers (one ingress packet pe skb
 * buffer).  We currently only support two sizes for 1500- and 9000-byte MTUs.
 * We could easily support more but there doesn't seem to be much need for
 * that ...
 */
#define FL_MTU_SMALL 1500
#define FL_MTU_LARGE 9000

static inline unsigned int fl_mtu_bufsize(struct adapter *adapter,
					  unsigned int mtu)
{
	struct sge *s = &adapter->sge;

	return ALIGN(s->pktshift + ETH_HLEN + VLAN_HLEN + mtu, s->fl_align);
}

#define FL_MTU_SMALL_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_SMALL)
#define FL_MTU_LARGE_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_LARGE)

/*
 * Bits 0..3 of rx_sw_desc.dma_addr have special meaning.  The hardware uses
 * these to specify the buffer size as an index into the SGE Free List Buffer
 * Size register array.  We also use bit 4, when the buffer has been unmapped
 * for DMA, but this is of course never sent to the hardware and is only used
 * to prevent double unmappings.  All of the above requires that the Free List
 * Buffers which we allocate have the bottom 5 bits free (0) -- i.e. are
 * 32-byte or or a power of 2 greater in alignment.  Since the SGE's minimal
 * Free List Buffer alignment is 32 bytes, this works out for us ...
165 166
 */
enum {
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
	RX_BUF_FLAGS     = 0x1f,   /* bottom five bits are special */
	RX_BUF_SIZE      = 0x0f,   /* bottom three bits are for buf sizes */
	RX_UNMAPPED_BUF  = 0x10,   /* buffer is not mapped */

	/*
	 * XXX We shouldn't depend on being able to use these indices.
	 * XXX Especially when some other Master PF has initialized the
	 * XXX adapter or we use the Firmware Configuration File.  We
	 * XXX should really search through the Host Buffer Size register
	 * XXX array for the appropriately sized buffer indices.
	 */
	RX_SMALL_PG_BUF  = 0x0,   /* small (PAGE_SIZE) page buffer */
	RX_LARGE_PG_BUF  = 0x1,   /* buffer large (FL_PG_ORDER) page buffer */

	RX_SMALL_MTU_BUF = 0x2,   /* small MTU buffer */
	RX_LARGE_MTU_BUF = 0x3,   /* large MTU buffer */
183 184
};

185 186 187
static int timer_pkt_quota[] = {1, 1, 2, 3, 4, 5};
#define MIN_NAPI_WORK  1

188 189
static inline dma_addr_t get_buf_addr(const struct rx_sw_desc *d)
{
190
	return d->dma_addr & ~(dma_addr_t)RX_BUF_FLAGS;
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
}

static inline bool is_buf_mapped(const struct rx_sw_desc *d)
{
	return !(d->dma_addr & RX_UNMAPPED_BUF);
}

/**
 *	txq_avail - return the number of available slots in a Tx queue
 *	@q: the Tx queue
 *
 *	Returns the number of descriptors in a Tx queue available to write new
 *	packets.
 */
static inline unsigned int txq_avail(const struct sge_txq *q)
{
	return q->size - 1 - q->in_use;
}

/**
 *	fl_cap - return the capacity of a free-buffer list
 *	@fl: the FL
 *
 *	Returns the capacity of a free-buffer list.  The capacity is less than
 *	the size because one descriptor needs to be left unpopulated, otherwise
 *	HW will think the FL is empty.
 */
static inline unsigned int fl_cap(const struct sge_fl *fl)
{
	return fl->size - 8;   /* 1 descriptor = 8 buffers */
}

223 224 225 226 227 228 229 230 231 232 233
/**
 *	fl_starving - return whether a Free List is starving.
 *	@adapter: pointer to the adapter
 *	@fl: the Free List
 *
 *	Tests specified Free List to see whether the number of buffers
 *	available to the hardware has falled below our "starvation"
 *	threshold.
 */
static inline bool fl_starving(const struct adapter *adapter,
			       const struct sge_fl *fl)
234
{
235 236 237
	const struct sge *s = &adapter->sge;

	return fl->avail - fl->pend_cred <= s->fl_starve_thres;
238 239
}

240 241
int cxgb4_map_skb(struct device *dev, const struct sk_buff *skb,
		  dma_addr_t *addr)
242 243 244 245 246 247 248 249 250 251 252 253
{
	const skb_frag_t *fp, *end;
	const struct skb_shared_info *si;

	*addr = dma_map_single(dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE);
	if (dma_mapping_error(dev, *addr))
		goto out_err;

	si = skb_shinfo(skb);
	end = &si->frags[si->nr_frags];

	for (fp = si->frags; fp < end; fp++) {
254 255
		*++addr = skb_frag_dma_map(dev, fp, 0, skb_frag_size(fp),
					   DMA_TO_DEVICE);
256 257 258 259 260 261 262
		if (dma_mapping_error(dev, *addr))
			goto unwind;
	}
	return 0;

unwind:
	while (fp-- > si->frags)
E
Eric Dumazet 已提交
263
		dma_unmap_page(dev, *--addr, skb_frag_size(fp), DMA_TO_DEVICE);
264 265 266 267 268

	dma_unmap_single(dev, addr[-1], skb_headlen(skb), DMA_TO_DEVICE);
out_err:
	return -ENOMEM;
}
269
EXPORT_SYMBOL(cxgb4_map_skb);
270 271 272 273 274 275 276 277 278 279 280 281 282

#ifdef CONFIG_NEED_DMA_MAP_STATE
static void unmap_skb(struct device *dev, const struct sk_buff *skb,
		      const dma_addr_t *addr)
{
	const skb_frag_t *fp, *end;
	const struct skb_shared_info *si;

	dma_unmap_single(dev, *addr++, skb_headlen(skb), DMA_TO_DEVICE);

	si = skb_shinfo(skb);
	end = &si->frags[si->nr_frags];
	for (fp = si->frags; fp < end; fp++)
E
Eric Dumazet 已提交
283
		dma_unmap_page(dev, *addr++, skb_frag_size(fp), DMA_TO_DEVICE);
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
}

/**
 *	deferred_unmap_destructor - unmap a packet when it is freed
 *	@skb: the packet
 *
 *	This is the packet destructor used for Tx packets that need to remain
 *	mapped until they are freed rather than until their Tx descriptors are
 *	freed.
 */
static void deferred_unmap_destructor(struct sk_buff *skb)
{
	unmap_skb(skb->dev->dev.parent, skb, (dma_addr_t *)skb->head);
}
#endif

static void unmap_sgl(struct device *dev, const struct sk_buff *skb,
		      const struct ulptx_sgl *sgl, const struct sge_txq *q)
{
	const struct ulptx_sge_pair *p;
	unsigned int nfrags = skb_shinfo(skb)->nr_frags;

	if (likely(skb_headlen(skb)))
		dma_unmap_single(dev, be64_to_cpu(sgl->addr0), ntohl(sgl->len0),
				 DMA_TO_DEVICE);
	else {
		dma_unmap_page(dev, be64_to_cpu(sgl->addr0), ntohl(sgl->len0),
			       DMA_TO_DEVICE);
		nfrags--;
	}

	/*
	 * the complexity below is because of the possibility of a wrap-around
	 * in the middle of an SGL
	 */
	for (p = sgl->sge; nfrags >= 2; nfrags -= 2) {
		if (likely((u8 *)(p + 1) <= (u8 *)q->stat)) {
unmap:			dma_unmap_page(dev, be64_to_cpu(p->addr[0]),
				       ntohl(p->len[0]), DMA_TO_DEVICE);
			dma_unmap_page(dev, be64_to_cpu(p->addr[1]),
				       ntohl(p->len[1]), DMA_TO_DEVICE);
			p++;
		} else if ((u8 *)p == (u8 *)q->stat) {
			p = (const struct ulptx_sge_pair *)q->desc;
			goto unmap;
		} else if ((u8 *)p + 8 == (u8 *)q->stat) {
			const __be64 *addr = (const __be64 *)q->desc;

			dma_unmap_page(dev, be64_to_cpu(addr[0]),
				       ntohl(p->len[0]), DMA_TO_DEVICE);
			dma_unmap_page(dev, be64_to_cpu(addr[1]),
				       ntohl(p->len[1]), DMA_TO_DEVICE);
			p = (const struct ulptx_sge_pair *)&addr[2];
		} else {
			const __be64 *addr = (const __be64 *)q->desc;

			dma_unmap_page(dev, be64_to_cpu(p->addr[0]),
				       ntohl(p->len[0]), DMA_TO_DEVICE);
			dma_unmap_page(dev, be64_to_cpu(addr[0]),
				       ntohl(p->len[1]), DMA_TO_DEVICE);
			p = (const struct ulptx_sge_pair *)&addr[1];
		}
	}
	if (nfrags) {
		__be64 addr;

		if ((u8 *)p == (u8 *)q->stat)
			p = (const struct ulptx_sge_pair *)q->desc;
		addr = (u8 *)p + 16 <= (u8 *)q->stat ? p->addr[0] :
						       *(const __be64 *)q->desc;
		dma_unmap_page(dev, be64_to_cpu(addr), ntohl(p->len[0]),
			       DMA_TO_DEVICE);
	}
}

/**
 *	free_tx_desc - reclaims Tx descriptors and their buffers
 *	@adapter: the adapter
 *	@q: the Tx queue to reclaim descriptors from
 *	@n: the number of descriptors to reclaim
 *	@unmap: whether the buffers should be unmapped for DMA
 *
 *	Reclaims Tx descriptors from an SGE Tx queue and frees the associated
 *	Tx buffers.  Called with the Tx queue lock held.
 */
369 370
void free_tx_desc(struct adapter *adap, struct sge_txq *q,
		  unsigned int n, bool unmap)
371 372 373 374 375 376 377 378 379 380
{
	struct tx_sw_desc *d;
	unsigned int cidx = q->cidx;
	struct device *dev = adap->pdev_dev;

	d = &q->sdesc[cidx];
	while (n--) {
		if (d->skb) {                       /* an SGL is present */
			if (unmap)
				unmap_sgl(dev, d->skb, d->sgl, q);
381
			dev_consume_skb_any(d->skb);
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
			d->skb = NULL;
		}
		++d;
		if (++cidx == q->size) {
			cidx = 0;
			d = q->sdesc;
		}
	}
	q->cidx = cidx;
}

/*
 * Return the number of reclaimable descriptors in a Tx queue.
 */
static inline int reclaimable(const struct sge_txq *q)
{
398
	int hw_cidx = ntohs(READ_ONCE(q->stat->cidx));
399 400 401 402 403
	hw_cidx -= q->cidx;
	return hw_cidx < 0 ? hw_cidx + q->size : hw_cidx;
}

/**
404
 *	cxgb4_reclaim_completed_tx - reclaims completed Tx descriptors
405 406 407 408 409 410 411 412
 *	@adap: the adapter
 *	@q: the Tx queue to reclaim completed descriptors from
 *	@unmap: whether the buffers should be unmapped for DMA
 *
 *	Reclaims Tx descriptors that the SGE has indicated it has processed,
 *	and frees the associated buffers if possible.  Called with the Tx
 *	queue locked.
 */
413
inline void cxgb4_reclaim_completed_tx(struct adapter *adap, struct sge_txq *q,
414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
					bool unmap)
{
	int avail = reclaimable(q);

	if (avail) {
		/*
		 * Limit the amount of clean up work we do at a time to keep
		 * the Tx lock hold time O(1).
		 */
		if (avail > MAX_TX_RECLAIM)
			avail = MAX_TX_RECLAIM;

		free_tx_desc(adap, q, avail, unmap);
		q->in_use -= avail;
	}
}
430
EXPORT_SYMBOL(cxgb4_reclaim_completed_tx);
431

432 433
static inline int get_buf_size(struct adapter *adapter,
			       const struct rx_sw_desc *d)
434
{
435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
	struct sge *s = &adapter->sge;
	unsigned int rx_buf_size_idx = d->dma_addr & RX_BUF_SIZE;
	int buf_size;

	switch (rx_buf_size_idx) {
	case RX_SMALL_PG_BUF:
		buf_size = PAGE_SIZE;
		break;

	case RX_LARGE_PG_BUF:
		buf_size = PAGE_SIZE << s->fl_pg_order;
		break;

	case RX_SMALL_MTU_BUF:
		buf_size = FL_MTU_SMALL_BUFSIZE(adapter);
		break;

	case RX_LARGE_MTU_BUF:
		buf_size = FL_MTU_LARGE_BUFSIZE(adapter);
		break;

	default:
		BUG_ON(1);
	}

	return buf_size;
461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
}

/**
 *	free_rx_bufs - free the Rx buffers on an SGE free list
 *	@adap: the adapter
 *	@q: the SGE free list to free buffers from
 *	@n: how many buffers to free
 *
 *	Release the next @n buffers on an SGE free-buffer Rx queue.   The
 *	buffers must be made inaccessible to HW before calling this function.
 */
static void free_rx_bufs(struct adapter *adap, struct sge_fl *q, int n)
{
	while (n--) {
		struct rx_sw_desc *d = &q->sdesc[q->cidx];

		if (is_buf_mapped(d))
			dma_unmap_page(adap->pdev_dev, get_buf_addr(d),
479 480
				       get_buf_size(adap, d),
				       PCI_DMA_FROMDEVICE);
481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
		put_page(d->page);
		d->page = NULL;
		if (++q->cidx == q->size)
			q->cidx = 0;
		q->avail--;
	}
}

/**
 *	unmap_rx_buf - unmap the current Rx buffer on an SGE free list
 *	@adap: the adapter
 *	@q: the SGE free list
 *
 *	Unmap the current buffer on an SGE free-buffer Rx queue.   The
 *	buffer must be made inaccessible to HW before calling this function.
 *
 *	This is similar to @free_rx_bufs above but does not free the buffer.
 *	Do note that the FL still loses any further access to the buffer.
 */
static void unmap_rx_buf(struct adapter *adap, struct sge_fl *q)
{
	struct rx_sw_desc *d = &q->sdesc[q->cidx];

	if (is_buf_mapped(d))
		dma_unmap_page(adap->pdev_dev, get_buf_addr(d),
506
			       get_buf_size(adap, d), PCI_DMA_FROMDEVICE);
507 508 509 510 511 512 513 514 515
	d->page = NULL;
	if (++q->cidx == q->size)
		q->cidx = 0;
	q->avail--;
}

static inline void ring_fl_db(struct adapter *adap, struct sge_fl *q)
{
	if (q->pend_cred >= 8) {
516 517
		u32 val = adap->params.arch.sge_fl_db;

518
		if (is_t4(adap->params.chip))
519
			val |= PIDX_V(q->pend_cred / 8);
520
		else
521
			val |= PIDX_T5_V(q->pend_cred / 8);
522 523 524 525

		/* Make sure all memory writes to the Free List queue are
		 * committed before we tell the hardware about them.
		 */
526
		wmb();
527

528 529 530
		/* If we don't have access to the new User Doorbell (T5+), use
		 * the old doorbell mechanism; otherwise use the new BAR2
		 * mechanism.
531
		 */
532
		if (unlikely(q->bar2_addr == NULL)) {
533 534
			t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
				     val | QID_V(q->cntxt_id));
535
		} else {
536
			writel(val | QID_V(q->bar2_qid),
537
			       q->bar2_addr + SGE_UDB_KDOORBELL);
538 539 540 541 542 543

			/* This Write memory Barrier will force the write to
			 * the User Doorbell area to be flushed.
			 */
			wmb();
		}
544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571
		q->pend_cred &= 7;
	}
}

static inline void set_rx_sw_desc(struct rx_sw_desc *sd, struct page *pg,
				  dma_addr_t mapping)
{
	sd->page = pg;
	sd->dma_addr = mapping;      /* includes size low bits */
}

/**
 *	refill_fl - refill an SGE Rx buffer ring
 *	@adap: the adapter
 *	@q: the ring to refill
 *	@n: the number of new buffers to allocate
 *	@gfp: the gfp flags for the allocations
 *
 *	(Re)populate an SGE free-buffer queue with up to @n new packet buffers,
 *	allocated with the supplied gfp flags.  The caller must assure that
 *	@n does not exceed the queue's capacity.  If afterwards the queue is
 *	found critically low mark it as starving in the bitmap of starving FLs.
 *
 *	Returns the number of buffers allocated.
 */
static unsigned int refill_fl(struct adapter *adap, struct sge_fl *q, int n,
			      gfp_t gfp)
{
572
	struct sge *s = &adap->sge;
573 574 575 576 577
	struct page *pg;
	dma_addr_t mapping;
	unsigned int cred = q->avail;
	__be64 *d = &q->desc[q->pidx];
	struct rx_sw_desc *sd = &q->sdesc[q->pidx];
578
	int node;
579

580 581 582 583 584
#ifdef CONFIG_DEBUG_FS
	if (test_bit(q->cntxt_id - adap->sge.egr_start, adap->sge.blocked_fl))
		goto out;
#endif

585
	gfp |= __GFP_NOWARN;
586
	node = dev_to_node(adap->pdev_dev);
587

588 589 590
	if (s->fl_pg_order == 0)
		goto alloc_small_pages;

591 592 593 594
	/*
	 * Prefer large buffers
	 */
	while (n) {
595
		pg = alloc_pages_node(node, gfp | __GFP_COMP, s->fl_pg_order);
596 597 598 599 600 601
		if (unlikely(!pg)) {
			q->large_alloc_failed++;
			break;       /* fall back to single pages */
		}

		mapping = dma_map_page(adap->pdev_dev, pg, 0,
602
				       PAGE_SIZE << s->fl_pg_order,
603 604
				       PCI_DMA_FROMDEVICE);
		if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) {
605
			__free_pages(pg, s->fl_pg_order);
606
			q->mapping_err++;
607 608
			goto out;   /* do not try small pages for this error */
		}
609
		mapping |= RX_LARGE_PG_BUF;
610 611 612 613 614 615 616 617 618 619 620 621 622 623
		*d++ = cpu_to_be64(mapping);

		set_rx_sw_desc(sd, pg, mapping);
		sd++;

		q->avail++;
		if (++q->pidx == q->size) {
			q->pidx = 0;
			sd = q->sdesc;
			d = q->desc;
		}
		n--;
	}

624
alloc_small_pages:
625
	while (n--) {
626
		pg = alloc_pages_node(node, gfp, 0);
627 628 629 630 631 632 633 634
		if (unlikely(!pg)) {
			q->alloc_failed++;
			break;
		}

		mapping = dma_map_page(adap->pdev_dev, pg, 0, PAGE_SIZE,
				       PCI_DMA_FROMDEVICE);
		if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) {
635
			put_page(pg);
636
			q->mapping_err++;
637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655
			goto out;
		}
		*d++ = cpu_to_be64(mapping);

		set_rx_sw_desc(sd, pg, mapping);
		sd++;

		q->avail++;
		if (++q->pidx == q->size) {
			q->pidx = 0;
			sd = q->sdesc;
			d = q->desc;
		}
	}

out:	cred = q->avail - cred;
	q->pend_cred += cred;
	ring_fl_db(adap, q);

656
	if (unlikely(fl_starving(adap, q))) {
657
		smp_wmb();
658
		q->low++;
659 660
		set_bit(q->cntxt_id - adap->sge.egr_start,
			adap->sge.starving_fl);
661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680
	}

	return cred;
}

static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl)
{
	refill_fl(adap, fl, min(MAX_RX_REFILL, fl_cap(fl) - fl->avail),
		  GFP_ATOMIC);
}

/**
 *	alloc_ring - allocate resources for an SGE descriptor ring
 *	@dev: the PCI device's core device
 *	@nelem: the number of descriptors
 *	@elem_size: the size of each descriptor
 *	@sw_size: the size of the SW state associated with each ring element
 *	@phys: the physical address of the allocated ring
 *	@metadata: address of the array holding the SW state for the ring
 *	@stat_size: extra space in HW ring for status information
681
 *	@node: preferred node for memory allocations
682 683 684 685 686 687 688 689 690 691 692
 *
 *	Allocates resources for an SGE descriptor ring, such as Tx queues,
 *	free buffer lists, or response queues.  Each SGE ring requires
 *	space for its HW descriptors plus, optionally, space for the SW state
 *	associated with each HW entry (the metadata).  The function returns
 *	three values: the virtual address for the HW ring (the return value
 *	of the function), the bus address of the HW ring, and the address
 *	of the SW ring.
 */
static void *alloc_ring(struct device *dev, size_t nelem, size_t elem_size,
			size_t sw_size, dma_addr_t *phys, void *metadata,
693
			size_t stat_size, int node)
694 695 696 697 698 699 700 701
{
	size_t len = nelem * elem_size + stat_size;
	void *s = NULL;
	void *p = dma_alloc_coherent(dev, len, phys, GFP_KERNEL);

	if (!p)
		return NULL;
	if (sw_size) {
702
		s = kzalloc_node(nelem * sw_size, GFP_KERNEL, node);
703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723

		if (!s) {
			dma_free_coherent(dev, len, p, *phys);
			return NULL;
		}
	}
	if (metadata)
		*(void **)metadata = s;
	memset(p, 0, len);
	return p;
}

/**
 *	sgl_len - calculates the size of an SGL of the given capacity
 *	@n: the number of SGL entries
 *
 *	Calculates the number of flits needed for a scatter/gather list that
 *	can hold the given number of entries.
 */
static inline unsigned int sgl_len(unsigned int n)
{
724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739
	/* A Direct Scatter Gather List uses 32-bit lengths and 64-bit PCI DMA
	 * addresses.  The DSGL Work Request starts off with a 32-bit DSGL
	 * ULPTX header, then Length0, then Address0, then, for 1 <= i <= N,
	 * repeated sequences of { Length[i], Length[i+1], Address[i],
	 * Address[i+1] } (this ensures that all addresses are on 64-bit
	 * boundaries).  If N is even, then Length[N+1] should be set to 0 and
	 * Address[N+1] is omitted.
	 *
	 * The following calculation incorporates all of the above.  It's
	 * somewhat hard to follow but, briefly: the "+2" accounts for the
	 * first two flits which include the DSGL header, Length0 and
	 * Address0; the "(3*(n-1))/2" covers the main body of list entries (3
	 * flits for every pair of the remaining N) +1 if (n-1) is odd; and
	 * finally the "+((n-1)&1)" adds the one remaining flit needed if
	 * (n-1) is odd ...
	 */
740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761
	n--;
	return (3 * n) / 2 + (n & 1) + 2;
}

/**
 *	flits_to_desc - returns the num of Tx descriptors for the given flits
 *	@n: the number of flits
 *
 *	Returns the number of Tx descriptors needed for the supplied number
 *	of flits.
 */
static inline unsigned int flits_to_desc(unsigned int n)
{
	BUG_ON(n > SGE_MAX_WR_LEN / 8);
	return DIV_ROUND_UP(n, 8);
}

/**
 *	is_eth_imm - can an Ethernet packet be sent as immediate data?
 *	@skb: the packet
 *
 *	Returns whether an Ethernet packet is small enough to fit as
762
 *	immediate data. Return value corresponds to headroom required.
763
 */
764
static inline int is_eth_imm(const struct sk_buff *skb, unsigned int chip_ver)
765
{
766
	int hdrlen = 0;
767

768 769 770 771 772 773 774 775 776
	if (skb->encapsulation && skb_shinfo(skb)->gso_size &&
	    chip_ver > CHELSIO_T5) {
		hdrlen = sizeof(struct cpl_tx_tnl_lso);
		hdrlen += sizeof(struct cpl_tx_pkt_core);
	} else {
		hdrlen = skb_shinfo(skb)->gso_size ?
			 sizeof(struct cpl_tx_pkt_lso_core) : 0;
		hdrlen += sizeof(struct cpl_tx_pkt);
	}
777 778 779
	if (skb->len <= MAX_IMM_TX_PKT_LEN - hdrlen)
		return hdrlen;
	return 0;
780 781 782 783 784 785 786 787 788
}

/**
 *	calc_tx_flits - calculate the number of flits for a packet Tx WR
 *	@skb: the packet
 *
 *	Returns the number of flits needed for a Tx WR for the given Ethernet
 *	packet, including the needed WR and CPL headers.
 */
789 790
static inline unsigned int calc_tx_flits(const struct sk_buff *skb,
					 unsigned int chip_ver)
791 792
{
	unsigned int flits;
793
	int hdrlen = is_eth_imm(skb, chip_ver);
794

795 796 797 798 799
	/* If the skb is small enough, we can pump it out as a work request
	 * with only immediate data.  In that case we just have to have the
	 * TX Packet header plus the skb data in the Work Request.
	 */

800 801
	if (hdrlen)
		return DIV_ROUND_UP(skb->len + hdrlen, sizeof(__be64));
802

803 804 805 806 807 808 809 810
	/* Otherwise, we're going to have to construct a Scatter gather list
	 * of the skb body and fragments.  We also include the flits necessary
	 * for the TX Packet Work Request and CPL.  We always have a firmware
	 * Write Header (incorporated as part of the cpl_tx_pkt_lso and
	 * cpl_tx_pkt structures), followed by either a TX Packet Write CPL
	 * message or, if we're doing a Large Send Offload, an LSO CPL message
	 * with an embedded TX Packet Write CPL message.
	 */
811
	flits = sgl_len(skb_shinfo(skb)->nr_frags + 1);
812 813 814 815 816 817 818 819 820 821 822
	if (skb_shinfo(skb)->gso_size) {
		if (skb->encapsulation && chip_ver > CHELSIO_T5)
			hdrlen = sizeof(struct fw_eth_tx_pkt_wr) +
				 sizeof(struct cpl_tx_tnl_lso);
		else
			hdrlen = sizeof(struct fw_eth_tx_pkt_wr) +
				 sizeof(struct cpl_tx_pkt_lso_core);

		hdrlen += sizeof(struct cpl_tx_pkt_core);
		flits += (hdrlen / sizeof(__be64));
	} else {
823 824
		flits += (sizeof(struct fw_eth_tx_pkt_wr) +
			  sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
825
	}
826 827 828 829 830 831 832 833 834 835
	return flits;
}

/**
 *	calc_tx_descs - calculate the number of Tx descriptors for a packet
 *	@skb: the packet
 *
 *	Returns the number of Tx descriptors needed for the given Ethernet
 *	packet, including the needed WR and CPL headers.
 */
836 837
static inline unsigned int calc_tx_descs(const struct sk_buff *skb,
					 unsigned int chip_ver)
838
{
839
	return flits_to_desc(calc_tx_flits(skb, chip_ver));
840 841 842
}

/**
843
 *	cxgb4_write_sgl - populate a scatter/gather list for a packet
844 845 846 847 848 849 850 851 852 853 854 855 856 857 858
 *	@skb: the packet
 *	@q: the Tx queue we are writing into
 *	@sgl: starting location for writing the SGL
 *	@end: points right after the end of the SGL
 *	@start: start offset into skb main-body data to include in the SGL
 *	@addr: the list of bus addresses for the SGL elements
 *
 *	Generates a gather list for the buffers that make up a packet.
 *	The caller must provide adequate space for the SGL that will be written.
 *	The SGL includes all of the packet's page fragments and the data in its
 *	main body except for the first @start bytes.  @sgl must be 16-byte
 *	aligned and within a Tx descriptor with available space.  @end points
 *	right after the end of the SGL but does not account for any potential
 *	wrap around, i.e., @end > @sgl.
 */
859 860 861
void cxgb4_write_sgl(const struct sk_buff *skb, struct sge_txq *q,
		     struct ulptx_sgl *sgl, u64 *end, unsigned int start,
		     const dma_addr_t *addr)
862 863 864 865 866 867 868 869 870 871 872 873 874
{
	unsigned int i, len;
	struct ulptx_sge_pair *to;
	const struct skb_shared_info *si = skb_shinfo(skb);
	unsigned int nfrags = si->nr_frags;
	struct ulptx_sge_pair buf[MAX_SKB_FRAGS / 2 + 1];

	len = skb_headlen(skb) - start;
	if (likely(len)) {
		sgl->len0 = htonl(len);
		sgl->addr0 = cpu_to_be64(addr[0] + start);
		nfrags++;
	} else {
E
Eric Dumazet 已提交
875
		sgl->len0 = htonl(skb_frag_size(&si->frags[0]));
876 877 878
		sgl->addr0 = cpu_to_be64(addr[1]);
	}

879 880
	sgl->cmd_nsge = htonl(ULPTX_CMD_V(ULP_TX_SC_DSGL) |
			      ULPTX_NSGE_V(nfrags));
881 882 883 884 885 886 887 888 889 890
	if (likely(--nfrags == 0))
		return;
	/*
	 * Most of the complexity below deals with the possibility we hit the
	 * end of the queue in the middle of writing the SGL.  For this case
	 * only we create the SGL in a temporary buffer and then copy it.
	 */
	to = (u8 *)end > (u8 *)q->stat ? buf : sgl->sge;

	for (i = (nfrags != si->nr_frags); nfrags >= 2; nfrags -= 2, to++) {
E
Eric Dumazet 已提交
891 892
		to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i]));
		to->len[1] = cpu_to_be32(skb_frag_size(&si->frags[++i]));
893 894 895 896
		to->addr[0] = cpu_to_be64(addr[i]);
		to->addr[1] = cpu_to_be64(addr[++i]);
	}
	if (nfrags) {
E
Eric Dumazet 已提交
897
		to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i]));
898 899 900 901 902 903 904 905 906 907 908 909 910
		to->len[1] = cpu_to_be32(0);
		to->addr[0] = cpu_to_be64(addr[i + 1]);
	}
	if (unlikely((u8 *)end > (u8 *)q->stat)) {
		unsigned int part0 = (u8 *)q->stat - (u8 *)sgl->sge, part1;

		if (likely(part0))
			memcpy(sgl->sge, buf, part0);
		part1 = (u8 *)end - (u8 *)q->stat;
		memcpy(q->desc, (u8 *)buf + part0, part1);
		end = (void *)q->desc + part1;
	}
	if ((uintptr_t)end & 8)           /* 0-pad to multiple of 16 */
911
		*end = 0;
912
}
913
EXPORT_SYMBOL(cxgb4_write_sgl);
914

915 916 917
/* This function copies 64 byte coalesced work request to
 * memory mapped BAR2 space. For coalesced WR SGE fetches
 * data from the FIFO instead of from Host.
918
 */
919
static void cxgb_pio_copy(u64 __iomem *dst, u64 *src)
920
{
921
	int count = 8;
922 923 924 925 926 927 928 929 930

	while (count) {
		writeq(*src, dst);
		src++;
		dst++;
		count--;
	}
}

931
/**
932
 *	cxgb4_ring_tx_db - check and potentially ring a Tx queue's doorbell
933 934 935 936 937 938
 *	@adap: the adapter
 *	@q: the Tx queue
 *	@n: number of new descriptors to give to HW
 *
 *	Ring the doorbel for a Tx queue.
 */
939
inline void cxgb4_ring_tx_db(struct adapter *adap, struct sge_txq *q, int n)
940
{
941 942 943 944
	/* Make sure that all writes to the TX Descriptors are committed
	 * before we tell the hardware about them.
	 */
	wmb();
945

946 947 948 949
	/* If we don't have access to the new User Doorbell (T5+), use the old
	 * doorbell mechanism; otherwise use the new BAR2 mechanism.
	 */
	if (unlikely(q->bar2_addr == NULL)) {
950
		u32 val = PIDX_V(n);
951 952 953 954 955 956 957
		unsigned long flags;

		/* For T4 we need to participate in the Doorbell Recovery
		 * mechanism.
		 */
		spin_lock_irqsave(&q->db_lock, flags);
		if (!q->db_disabled)
958 959
			t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
				     QID_V(q->cntxt_id) | val);
960 961 962 963 964
		else
			q->db_pidx_inc += n;
		q->db_pidx = q->pidx;
		spin_unlock_irqrestore(&q->db_lock, flags);
	} else {
965
		u32 val = PIDX_T5_V(n);
966 967 968 969 970 971 972

		/* T4 and later chips share the same PIDX field offset within
		 * the doorbell, but T5 and later shrank the field in order to
		 * gain a bit for Doorbell Priority.  The field was absurdly
		 * large in the first place (14 bits) so we just use the T5
		 * and later limits and warn if a Queue ID is too large.
		 */
973
		WARN_ON(val & DBPRIO_F);
974

975 976 977
		/* If we're only writing a single TX Descriptor and we can use
		 * Inferred QID registers, we can use the Write Combining
		 * Gather Buffer; otherwise we use the simple doorbell.
978
		 */
979
		if (n == 1 && q->bar2_qid == 0) {
980 981 982
			int index = (q->pidx
				     ? (q->pidx - 1)
				     : (q->size - 1));
983
			u64 *wr = (u64 *)&q->desc[index];
984

985 986 987
			cxgb_pio_copy((u64 __iomem *)
				      (q->bar2_addr + SGE_UDB_WCDOORBELL),
				      wr);
988
		} else {
989
			writel(val | QID_V(q->bar2_qid),
990
			       q->bar2_addr + SGE_UDB_KDOORBELL);
991
		}
992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004

		/* This Write Memory Barrier will force the write to the User
		 * Doorbell area to be flushed.  This is needed to prevent
		 * writes on different CPUs for the same queue from hitting
		 * the adapter out of order.  This is required when some Work
		 * Requests take the Write Combine Gather Buffer path (user
		 * doorbell area offset [SGE_UDB_WCDOORBELL..+63]) and some
		 * take the traditional path where we simply increment the
		 * PIDX (User Doorbell area SGE_UDB_KDOORBELL) and have the
		 * hardware DMA read the actual Work Request.
		 */
		wmb();
	}
1005
}
1006
EXPORT_SYMBOL(cxgb4_ring_tx_db);
1007 1008

/**
1009
 *	cxgb4_inline_tx_skb - inline a packet's data into Tx descriptors
1010 1011 1012 1013 1014 1015 1016 1017 1018
 *	@skb: the packet
 *	@q: the Tx queue where the packet will be inlined
 *	@pos: starting position in the Tx queue where to inline the packet
 *
 *	Inline a packet's contents directly into Tx descriptors, starting at
 *	the given position within the Tx DMA ring.
 *	Most of the complexity of this operation is dealing with wrap arounds
 *	in the middle of the packet we want to inline.
 */
1019 1020
void cxgb4_inline_tx_skb(const struct sk_buff *skb,
			 const struct sge_txq *q, void *pos)
1021 1022
{
	int left = (void *)q->stat - pos;
1023
	u64 *p;
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041

	if (likely(skb->len <= left)) {
		if (likely(!skb->data_len))
			skb_copy_from_linear_data(skb, pos, skb->len);
		else
			skb_copy_bits(skb, 0, pos, skb->len);
		pos += skb->len;
	} else {
		skb_copy_bits(skb, 0, pos, left);
		skb_copy_bits(skb, left, q->desc, skb->len - left);
		pos = (void *)q->desc + (skb->len - left);
	}

	/* 0-pad to multiple of 16 */
	p = PTR_ALIGN(pos, 8);
	if ((uintptr_t)p & 8)
		*p = 0;
}
1042
EXPORT_SYMBOL(cxgb4_inline_tx_skb);
1043

1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
static void *inline_tx_skb_header(const struct sk_buff *skb,
				  const struct sge_txq *q,  void *pos,
				  int length)
{
	u64 *p;
	int left = (void *)q->stat - pos;

	if (likely(length <= left)) {
		memcpy(pos, skb->data, length);
		pos += length;
	} else {
		memcpy(pos, skb->data, left);
		memcpy(q->desc, skb->data + left, length - left);
		pos = (void *)q->desc + (length - left);
	}
	/* 0-pad to multiple of 16 */
	p = PTR_ALIGN(pos, 8);
	if ((uintptr_t)p & 8) {
		*p = 0;
		return p + 1;
	}
	return p;
}

1068 1069 1070 1071
/*
 * Figure out what HW csum a packet wants and return the appropriate control
 * bits.
 */
1072
static u64 hwcsum(enum chip_type chip, const struct sk_buff *skb)
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
{
	int csum_type;
	const struct iphdr *iph = ip_hdr(skb);

	if (iph->version == 4) {
		if (iph->protocol == IPPROTO_TCP)
			csum_type = TX_CSUM_TCPIP;
		else if (iph->protocol == IPPROTO_UDP)
			csum_type = TX_CSUM_UDPIP;
		else {
nocsum:			/*
			 * unknown protocol, disable HW csum
			 * and hope a bad packet is detected
			 */
1087
			return TXPKT_L4CSUM_DIS_F;
1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
		}
	} else {
		/*
		 * this doesn't work with extension headers
		 */
		const struct ipv6hdr *ip6h = (const struct ipv6hdr *)iph;

		if (ip6h->nexthdr == IPPROTO_TCP)
			csum_type = TX_CSUM_TCPIP6;
		else if (ip6h->nexthdr == IPPROTO_UDP)
			csum_type = TX_CSUM_UDPIP6;
		else
			goto nocsum;
	}

1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
	if (likely(csum_type >= TX_CSUM_TCPIP)) {
		u64 hdr_len = TXPKT_IPHDR_LEN_V(skb_network_header_len(skb));
		int eth_hdr_len = skb_network_offset(skb) - ETH_HLEN;

		if (CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5)
			hdr_len |= TXPKT_ETHHDR_LEN_V(eth_hdr_len);
		else
			hdr_len |= T6_TXPKT_ETHHDR_LEN_V(eth_hdr_len);
		return TXPKT_CSUM_TYPE_V(csum_type) | hdr_len;
	} else {
1113 1114
		int start = skb_transport_offset(skb);

1115 1116 1117
		return TXPKT_CSUM_TYPE_V(csum_type) |
			TXPKT_CSUM_START_V(start) |
			TXPKT_CSUM_LOC_V(start + skb->csum_offset);
1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
	}
}

static void eth_txq_stop(struct sge_eth_txq *q)
{
	netif_tx_stop_queue(q->txq);
	q->q.stops++;
}

static inline void txq_advance(struct sge_txq *q, unsigned int n)
{
	q->in_use += n;
	q->pidx += n;
	if (q->pidx >= q->size)
		q->pidx -= q->size;
}

V
Varun Prakash 已提交
1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
#ifdef CONFIG_CHELSIO_T4_FCOE
static inline int
cxgb_fcoe_offload(struct sk_buff *skb, struct adapter *adap,
		  const struct port_info *pi, u64 *cntrl)
{
	const struct cxgb_fcoe *fcoe = &pi->fcoe;

	if (!(fcoe->flags & CXGB_FCOE_ENABLED))
		return 0;

	if (skb->protocol != htons(ETH_P_FCOE))
		return 0;

	skb_reset_mac_header(skb);
	skb->mac_len = sizeof(struct ethhdr);

	skb_set_network_header(skb, skb->mac_len);
	skb_set_transport_header(skb, skb->mac_len + sizeof(struct fcoe_hdr));

	if (!cxgb_fcoe_sof_eof_supported(adap, skb))
		return -ENOTSUPP;

	/* FC CRC offload */
1158 1159 1160 1161 1162
	*cntrl = TXPKT_CSUM_TYPE_V(TX_CSUM_FCOE) |
		     TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F |
		     TXPKT_CSUM_START_V(CXGB_FCOE_TXPKT_CSUM_START) |
		     TXPKT_CSUM_END_V(CXGB_FCOE_TXPKT_CSUM_END) |
		     TXPKT_CSUM_LOC_V(CXGB_FCOE_TXPKT_CSUM_END);
V
Varun Prakash 已提交
1163 1164 1165 1166
	return 0;
}
#endif /* CONFIG_CHELSIO_T4_FCOE */

1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
/* Returns tunnel type if hardware supports offloading of the same.
 * It is called only for T5 and onwards.
 */
enum cpl_tx_tnl_lso_type cxgb_encap_offload_supported(struct sk_buff *skb)
{
	u8 l4_hdr = 0;
	enum cpl_tx_tnl_lso_type tnl_type = TX_TNL_TYPE_OPAQUE;
	struct port_info *pi = netdev_priv(skb->dev);
	struct adapter *adapter = pi->adapter;

	if (skb->inner_protocol_type != ENCAP_TYPE_ETHER ||
	    skb->inner_protocol != htons(ETH_P_TEB))
		return tnl_type;

	switch (vlan_get_protocol(skb)) {
	case htons(ETH_P_IP):
		l4_hdr = ip_hdr(skb)->protocol;
		break;
	case htons(ETH_P_IPV6):
		l4_hdr = ipv6_hdr(skb)->nexthdr;
		break;
	default:
		return tnl_type;
	}

	switch (l4_hdr) {
	case IPPROTO_UDP:
		if (adapter->vxlan_port == udp_hdr(skb)->dest)
			tnl_type = TX_TNL_TYPE_VXLAN;
1196 1197
		else if (adapter->geneve_port == udp_hdr(skb)->dest)
			tnl_type = TX_TNL_TYPE_GENEVE;
1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236
		break;
	default:
		return tnl_type;
	}

	return tnl_type;
}

static inline void t6_fill_tnl_lso(struct sk_buff *skb,
				   struct cpl_tx_tnl_lso *tnl_lso,
				   enum cpl_tx_tnl_lso_type tnl_type)
{
	u32 val;
	int in_eth_xtra_len;
	int l3hdr_len = skb_network_header_len(skb);
	int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN;
	const struct skb_shared_info *ssi = skb_shinfo(skb);
	bool v6 = (ip_hdr(skb)->version == 6);

	val = CPL_TX_TNL_LSO_OPCODE_V(CPL_TX_TNL_LSO) |
	      CPL_TX_TNL_LSO_FIRST_F |
	      CPL_TX_TNL_LSO_LAST_F |
	      (v6 ? CPL_TX_TNL_LSO_IPV6OUT_F : 0) |
	      CPL_TX_TNL_LSO_ETHHDRLENOUT_V(eth_xtra_len / 4) |
	      CPL_TX_TNL_LSO_IPHDRLENOUT_V(l3hdr_len / 4) |
	      (v6 ? 0 : CPL_TX_TNL_LSO_IPHDRCHKOUT_F) |
	      CPL_TX_TNL_LSO_IPLENSETOUT_F |
	      (v6 ? 0 : CPL_TX_TNL_LSO_IPIDINCOUT_F);
	tnl_lso->op_to_IpIdSplitOut = htonl(val);

	tnl_lso->IpIdOffsetOut = 0;

	/* Get the tunnel header length */
	val = skb_inner_mac_header(skb) - skb_mac_header(skb);
	in_eth_xtra_len = skb_inner_network_header(skb) -
			  skb_inner_mac_header(skb) - ETH_HLEN;

	switch (tnl_type) {
	case TX_TNL_TYPE_VXLAN:
1237
	case TX_TNL_TYPE_GENEVE:
1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265
		tnl_lso->UdpLenSetOut_to_TnlHdrLen =
			htons(CPL_TX_TNL_LSO_UDPCHKCLROUT_F |
			CPL_TX_TNL_LSO_UDPLENSETOUT_F);
		break;
	default:
		tnl_lso->UdpLenSetOut_to_TnlHdrLen = 0;
		break;
	}

	tnl_lso->UdpLenSetOut_to_TnlHdrLen |=
		 htons(CPL_TX_TNL_LSO_TNLHDRLEN_V(val) |
		       CPL_TX_TNL_LSO_TNLTYPE_V(tnl_type));

	tnl_lso->r1 = 0;

	val = CPL_TX_TNL_LSO_ETHHDRLEN_V(in_eth_xtra_len / 4) |
	      CPL_TX_TNL_LSO_IPV6_V(inner_ip_hdr(skb)->version == 6) |
	      CPL_TX_TNL_LSO_IPHDRLEN_V(skb_inner_network_header_len(skb) / 4) |
	      CPL_TX_TNL_LSO_TCPHDRLEN_V(inner_tcp_hdrlen(skb) / 4);
	tnl_lso->Flow_to_TcpHdrLen = htonl(val);

	tnl_lso->IpIdOffset = htons(0);

	tnl_lso->IpIdSplit_to_Mss = htons(CPL_TX_TNL_LSO_MSS_V(ssi->gso_size));
	tnl_lso->TCPSeqOffset = htonl(0);
	tnl_lso->EthLenOffset_Size = htonl(CPL_TX_TNL_LSO_SIZE_V(skb->len));
}

1266 1267 1268 1269 1270 1271 1272 1273 1274
/**
 *	t4_eth_xmit - add a packet to an Ethernet Tx queue
 *	@skb: the packet
 *	@dev: the egress net device
 *
 *	Add a packet to an SGE Ethernet Tx queue.  Runs with softirqs disabled.
 */
netdev_tx_t t4_eth_xmit(struct sk_buff *skb, struct net_device *dev)
{
1275
	u32 wr_mid, ctrl0, op;
1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
	u64 cntrl, *end;
	int qidx, credits;
	unsigned int flits, ndesc;
	struct adapter *adap;
	struct sge_eth_txq *q;
	const struct port_info *pi;
	struct fw_eth_tx_pkt_wr *wr;
	struct cpl_tx_pkt_core *cpl;
	const struct skb_shared_info *ssi;
	dma_addr_t addr[MAX_SKB_FRAGS + 1];
1286
	bool immediate = false;
1287
	int len, max_pkt_len;
1288
	bool ptp_enabled = is_ptp_enabled(skb, dev);
1289 1290 1291
	unsigned int chip_ver;
	enum cpl_tx_tnl_lso_type tnl_type = TX_TNL_TYPE_OPAQUE;

V
Varun Prakash 已提交
1292 1293 1294
#ifdef CONFIG_CHELSIO_T4_FCOE
	int err;
#endif /* CONFIG_CHELSIO_T4_FCOE */
1295 1296 1297 1298 1299 1300

	/*
	 * The chip min packet length is 10 octets but play safe and reject
	 * anything shorter than an Ethernet header.
	 */
	if (unlikely(skb->len < ETH_HLEN)) {
1301
out_free:	dev_kfree_skb_any(skb);
1302 1303 1304
		return NETDEV_TX_OK;
	}

1305 1306
	/* Discard the packet if the length is greater than mtu */
	max_pkt_len = ETH_HLEN + dev->mtu;
1307
	if (skb_vlan_tagged(skb))
1308 1309 1310 1311
		max_pkt_len += VLAN_HLEN;
	if (!skb_shinfo(skb)->gso_size && (unlikely(skb->len > max_pkt_len)))
		goto out_free;

1312 1313
	pi = netdev_priv(dev);
	adap = pi->adapter;
1314 1315 1316 1317 1318 1319
	ssi = skb_shinfo(skb);
#ifdef CONFIG_CHELSIO_IPSEC_INLINE
	if (xfrm_offload(skb) && !ssi->gso_size)
		return adap->uld[CXGB4_ULD_CRYPTO].tx_handler(skb, dev);
#endif /* CHELSIO_IPSEC_INLINE */

1320
	qidx = skb_get_queue_mapping(skb);
1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
	if (ptp_enabled) {
		spin_lock(&adap->ptp_lock);
		if (!(adap->ptp_tx_skb)) {
			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
			adap->ptp_tx_skb = skb_get(skb);
		} else {
			spin_unlock(&adap->ptp_lock);
			goto out_free;
		}
		q = &adap->sge.ptptxq;
	} else {
		q = &adap->sge.ethtxq[qidx + pi->first_qset];
	}
	skb_tx_timestamp(skb);
1335

1336
	cxgb4_reclaim_completed_tx(adap, &q->q, true);
1337
	cntrl = TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F;
V
Varun Prakash 已提交
1338 1339 1340

#ifdef CONFIG_CHELSIO_T4_FCOE
	err = cxgb_fcoe_offload(skb, adap, pi, &cntrl);
1341 1342 1343
	if (unlikely(err == -ENOTSUPP)) {
		if (ptp_enabled)
			spin_unlock(&adap->ptp_lock);
V
Varun Prakash 已提交
1344
		goto out_free;
1345
	}
V
Varun Prakash 已提交
1346
#endif /* CONFIG_CHELSIO_T4_FCOE */
1347

1348 1349
	chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip);
	flits = calc_tx_flits(skb, chip_ver);
1350 1351 1352 1353 1354 1355 1356 1357
	ndesc = flits_to_desc(flits);
	credits = txq_avail(&q->q) - ndesc;

	if (unlikely(credits < 0)) {
		eth_txq_stop(q);
		dev_err(adap->pdev_dev,
			"%s: Tx ring %u full while queue awake!\n",
			dev->name, qidx);
1358 1359
		if (ptp_enabled)
			spin_unlock(&adap->ptp_lock);
1360 1361 1362
		return NETDEV_TX_BUSY;
	}

1363
	if (is_eth_imm(skb, chip_ver))
1364 1365
		immediate = true;

1366 1367 1368
	if (skb->encapsulation && chip_ver > CHELSIO_T5)
		tnl_type = cxgb_encap_offload_supported(skb);

1369
	if (!immediate &&
1370
	    unlikely(cxgb4_map_skb(adap->pdev_dev, skb, addr) < 0)) {
1371
		q->mapping_err++;
1372 1373
		if (ptp_enabled)
			spin_unlock(&adap->ptp_lock);
1374 1375 1376
		goto out_free;
	}

1377
	wr_mid = FW_WR_LEN16_V(DIV_ROUND_UP(flits, 2));
1378 1379
	if (unlikely(credits < ETHTXQ_STOP_THRES)) {
		eth_txq_stop(q);
1380
		wr_mid |= FW_WR_EQUEQ_F | FW_WR_EQUIQ_F;
1381 1382 1383 1384 1385 1386 1387
	}

	wr = (void *)&q->q.desc[q->q.pidx];
	wr->equiq_to_len16 = htonl(wr_mid);
	wr->r3 = cpu_to_be64(0);
	end = (u64 *)wr + flits;

1388
	len = immediate ? skb->len : 0;
1389
	if (ssi->gso_size) {
1390
		struct cpl_tx_pkt_lso *lso = (void *)wr;
1391 1392 1393
		bool v6 = (ssi->gso_type & SKB_GSO_TCPV6) != 0;
		int l3hdr_len = skb_network_header_len(skb);
		int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN;
1394
		struct cpl_tx_tnl_lso *tnl_lso = (void *)(wr + 1);
1395

1396 1397
		if (tnl_type)
			len += sizeof(*tnl_lso);
1398
		else
1399
			len += sizeof(*lso);
1400

1401 1402 1403 1404
		wr->op_immdlen = htonl(FW_WR_OP_V(FW_ETH_TX_PKT_WR) |
				       FW_WR_IMMDLEN_V(len));
		if (tnl_type) {
			struct iphdr *iph = ip_hdr(skb);
1405

1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445
			t6_fill_tnl_lso(skb, tnl_lso, tnl_type);
			cpl = (void *)(tnl_lso + 1);
			/* Driver is expected to compute partial checksum that
			 * does not include the IP Total Length.
			 */
			if (iph->version == 4) {
				iph->check = 0;
				iph->tot_len = 0;
				iph->check = (u16)(~ip_fast_csum((u8 *)iph,
								 iph->ihl));
			}
			if (skb->ip_summed == CHECKSUM_PARTIAL)
				cntrl = hwcsum(adap->params.chip, skb);
		} else {
			lso->c.lso_ctrl = htonl(LSO_OPCODE_V(CPL_TX_PKT_LSO) |
					  LSO_FIRST_SLICE_F | LSO_LAST_SLICE_F |
					  LSO_IPV6_V(v6) |
					  LSO_ETHHDR_LEN_V(eth_xtra_len / 4) |
					  LSO_IPHDR_LEN_V(l3hdr_len / 4) |
					  LSO_TCPHDR_LEN_V(tcp_hdr(skb)->doff));
			lso->c.ipid_ofst = htons(0);
			lso->c.mss = htons(ssi->gso_size);
			lso->c.seqno_offset = htonl(0);
			if (is_t4(adap->params.chip))
				lso->c.len = htonl(skb->len);
			else
				lso->c.len =
					htonl(LSO_T5_XFER_SIZE_V(skb->len));
			cpl = (void *)(lso + 1);

			if (CHELSIO_CHIP_VERSION(adap->params.chip)
			    <= CHELSIO_T5)
				cntrl =	TXPKT_ETHHDR_LEN_V(eth_xtra_len);
			else
				cntrl = T6_TXPKT_ETHHDR_LEN_V(eth_xtra_len);

			cntrl |= TXPKT_CSUM_TYPE_V(v6 ?
				 TX_CSUM_TCPIP6 : TX_CSUM_TCPIP) |
				 TXPKT_IPHDR_LEN_V(l3hdr_len);
		}
1446 1447 1448
		q->tso++;
		q->tx_cso += ssi->gso_segs;
	} else {
1449
		len += sizeof(*cpl);
1450 1451 1452 1453 1454
		if (ptp_enabled)
			op = FW_PTP_TX_PKT_WR;
		else
			op = FW_ETH_TX_PKT_WR;
		wr->op_immdlen = htonl(FW_WR_OP_V(op) |
1455
				       FW_WR_IMMDLEN_V(len));
1456 1457
		cpl = (void *)(wr + 1);
		if (skb->ip_summed == CHECKSUM_PARTIAL) {
1458 1459
			cntrl = hwcsum(adap->params.chip, skb) |
				TXPKT_IPCSUM_DIS_F;
1460
			q->tx_cso++;
V
Varun Prakash 已提交
1461
		}
1462 1463
	}

1464
	if (skb_vlan_tag_present(skb)) {
1465
		q->vlan_ins++;
1466
		cntrl |= TXPKT_VLAN_VLD_F | TXPKT_VLAN_V(skb_vlan_tag_get(skb));
V
Varun Prakash 已提交
1467 1468
#ifdef CONFIG_CHELSIO_T4_FCOE
		if (skb->protocol == htons(ETH_P_FCOE))
1469
			cntrl |= TXPKT_VLAN_V(
V
Varun Prakash 已提交
1470 1471
				 ((skb->priority & 0x7) << VLAN_PRIO_SHIFT));
#endif /* CONFIG_CHELSIO_T4_FCOE */
1472 1473
	}

1474 1475
	ctrl0 = TXPKT_OPCODE_V(CPL_TX_PKT_XT) | TXPKT_INTF_V(pi->tx_chan) |
		TXPKT_PF_V(adap->pf);
1476 1477
	if (ptp_enabled)
		ctrl0 |= TXPKT_TSTAMP_F;
1478 1479 1480 1481 1482 1483 1484
#ifdef CONFIG_CHELSIO_T4_DCB
	if (is_t4(adap->params.chip))
		ctrl0 |= TXPKT_OVLAN_IDX_V(q->dcb_prio);
	else
		ctrl0 |= TXPKT_T5_OVLAN_IDX_V(q->dcb_prio);
#endif
	cpl->ctrl0 = htonl(ctrl0);
1485 1486 1487 1488
	cpl->pack = htons(0);
	cpl->len = htons(skb->len);
	cpl->ctrl1 = cpu_to_be64(cntrl);

1489
	if (immediate) {
1490
		cxgb4_inline_tx_skb(skb, &q->q, cpl + 1);
1491
		dev_consume_skb_any(skb);
1492 1493 1494
	} else {
		int last_desc;

1495 1496
		cxgb4_write_sgl(skb, &q->q, (struct ulptx_sgl *)(cpl + 1),
				end, 0, addr);
1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507
		skb_orphan(skb);

		last_desc = q->q.pidx + ndesc - 1;
		if (last_desc >= q->q.size)
			last_desc -= q->q.size;
		q->q.sdesc[last_desc].skb = skb;
		q->q.sdesc[last_desc].sgl = (struct ulptx_sgl *)(cpl + 1);
	}

	txq_advance(&q->q, ndesc);

1508
	cxgb4_ring_tx_db(adap, &q->q, ndesc);
1509 1510
	if (ptp_enabled)
		spin_unlock(&adap->ptp_lock);
1511 1512 1513 1514 1515 1516 1517
	return NETDEV_TX_OK;
}

/**
 *	reclaim_completed_tx_imm - reclaim completed control-queue Tx descs
 *	@q: the SGE control Tx queue
 *
1518 1519 1520
 *	This is a variant of cxgb4_reclaim_completed_tx() that is used
 *	for Tx queues that send only immediate data (presently just
 *	the control queues) and	thus do not have any sk_buffs to release.
1521 1522 1523
 */
static inline void reclaim_completed_tx_imm(struct sge_txq *q)
{
1524
	int hw_cidx = ntohs(READ_ONCE(q->stat->cidx));
1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558
	int reclaim = hw_cidx - q->cidx;

	if (reclaim < 0)
		reclaim += q->size;

	q->in_use -= reclaim;
	q->cidx = hw_cidx;
}

/**
 *	is_imm - check whether a packet can be sent as immediate data
 *	@skb: the packet
 *
 *	Returns true if a packet can be sent as a WR with immediate data.
 */
static inline int is_imm(const struct sk_buff *skb)
{
	return skb->len <= MAX_CTRL_WR_LEN;
}

/**
 *	ctrlq_check_stop - check if a control queue is full and should stop
 *	@q: the queue
 *	@wr: most recent WR written to the queue
 *
 *	Check if a control queue has become full and should be stopped.
 *	We clean up control queue descriptors very lazily, only when we are out.
 *	If the queue is still full after reclaiming any completed descriptors
 *	we suspend it and have the last WR wake it up.
 */
static void ctrlq_check_stop(struct sge_ctrl_txq *q, struct fw_wr_hdr *wr)
{
	reclaim_completed_tx_imm(&q->q);
	if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) {
1559
		wr->lo |= htonl(FW_WR_EQUEQ_F | FW_WR_EQUIQ_F);
1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594
		q->q.stops++;
		q->full = 1;
	}
}

/**
 *	ctrl_xmit - send a packet through an SGE control Tx queue
 *	@q: the control queue
 *	@skb: the packet
 *
 *	Send a packet through an SGE control Tx queue.  Packets sent through
 *	a control queue must fit entirely as immediate data.
 */
static int ctrl_xmit(struct sge_ctrl_txq *q, struct sk_buff *skb)
{
	unsigned int ndesc;
	struct fw_wr_hdr *wr;

	if (unlikely(!is_imm(skb))) {
		WARN_ON(1);
		dev_kfree_skb(skb);
		return NET_XMIT_DROP;
	}

	ndesc = DIV_ROUND_UP(skb->len, sizeof(struct tx_desc));
	spin_lock(&q->sendq.lock);

	if (unlikely(q->full)) {
		skb->priority = ndesc;                  /* save for restart */
		__skb_queue_tail(&q->sendq, skb);
		spin_unlock(&q->sendq.lock);
		return NET_XMIT_CN;
	}

	wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx];
1595
	cxgb4_inline_tx_skb(skb, &q->q, wr);
1596 1597 1598 1599 1600

	txq_advance(&q->q, ndesc);
	if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES))
		ctrlq_check_stop(q, wr);

1601
	cxgb4_ring_tx_db(q->adap, &q->q, ndesc);
1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627
	spin_unlock(&q->sendq.lock);

	kfree_skb(skb);
	return NET_XMIT_SUCCESS;
}

/**
 *	restart_ctrlq - restart a suspended control queue
 *	@data: the control queue to restart
 *
 *	Resumes transmission on a suspended Tx control queue.
 */
static void restart_ctrlq(unsigned long data)
{
	struct sk_buff *skb;
	unsigned int written = 0;
	struct sge_ctrl_txq *q = (struct sge_ctrl_txq *)data;

	spin_lock(&q->sendq.lock);
	reclaim_completed_tx_imm(&q->q);
	BUG_ON(txq_avail(&q->q) < TXQ_STOP_THRES);  /* q should be empty */

	while ((skb = __skb_dequeue(&q->sendq)) != NULL) {
		struct fw_wr_hdr *wr;
		unsigned int ndesc = skb->priority;     /* previously saved */

1628 1629
		written += ndesc;
		/* Write descriptors and free skbs outside the lock to limit
1630 1631
		 * wait times.  q->full is still set so new skbs will be queued.
		 */
1632 1633
		wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx];
		txq_advance(&q->q, ndesc);
1634 1635
		spin_unlock(&q->sendq.lock);

1636
		cxgb4_inline_tx_skb(skb, &q->q, wr);
1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648
		kfree_skb(skb);

		if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) {
			unsigned long old = q->q.stops;

			ctrlq_check_stop(q, wr);
			if (q->q.stops != old) {          /* suspended anew */
				spin_lock(&q->sendq.lock);
				goto ringdb;
			}
		}
		if (written > 16) {
1649
			cxgb4_ring_tx_db(q->adap, &q->q, written);
1650 1651 1652 1653 1654
			written = 0;
		}
		spin_lock(&q->sendq.lock);
	}
	q->full = 0;
1655 1656 1657
ringdb:
	if (written)
		cxgb4_ring_tx_db(q->adap, &q->q, written);
1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686
	spin_unlock(&q->sendq.lock);
}

/**
 *	t4_mgmt_tx - send a management message
 *	@adap: the adapter
 *	@skb: the packet containing the management message
 *
 *	Send a management message through control queue 0.
 */
int t4_mgmt_tx(struct adapter *adap, struct sk_buff *skb)
{
	int ret;

	local_bh_disable();
	ret = ctrl_xmit(&adap->sge.ctrlq[0], skb);
	local_bh_enable();
	return ret;
}

/**
 *	is_ofld_imm - check whether a packet can be sent as immediate data
 *	@skb: the packet
 *
 *	Returns true if a packet can be sent as an offload WR with immediate
 *	data.  We currently use the same limit as for Ethernet packets.
 */
static inline int is_ofld_imm(const struct sk_buff *skb)
{
1687 1688 1689 1690 1691 1692 1693
	struct work_request_hdr *req = (struct work_request_hdr *)skb->data;
	unsigned long opcode = FW_WR_OP_G(ntohl(req->wr_hi));

	if (opcode == FW_CRYPTO_LOOKASIDE_WR)
		return skb->len <= SGE_MAX_WR_LEN;
	else
		return skb->len <= MAX_IMM_TX_PKT_LEN;
1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712
}

/**
 *	calc_tx_flits_ofld - calculate # of flits for an offload packet
 *	@skb: the packet
 *
 *	Returns the number of flits needed for the given offload packet.
 *	These packets are already fully constructed and no additional headers
 *	will be added.
 */
static inline unsigned int calc_tx_flits_ofld(const struct sk_buff *skb)
{
	unsigned int flits, cnt;

	if (is_ofld_imm(skb))
		return DIV_ROUND_UP(skb->len, 8);

	flits = skb_transport_offset(skb) / 8U;   /* headers */
	cnt = skb_shinfo(skb)->nr_frags;
1713
	if (skb_tail_pointer(skb) != skb_transport_header(skb))
1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726
		cnt++;
	return flits + sgl_len(cnt);
}

/**
 *	txq_stop_maperr - stop a Tx queue due to I/O MMU exhaustion
 *	@adap: the adapter
 *	@q: the queue to stop
 *
 *	Mark a Tx queue stopped due to I/O MMU exhaustion and resulting
 *	inability to map packets.  A periodic timer attempts to restart
 *	queues so marked.
 */
1727
static void txq_stop_maperr(struct sge_uld_txq *q)
1728 1729 1730
{
	q->mapping_err++;
	q->q.stops++;
1731 1732
	set_bit(q->q.cntxt_id - q->adap->sge.egr_start,
		q->adap->sge.txq_maperr);
1733 1734 1735 1736 1737
}

/**
 *	ofldtxq_stop - stop an offload Tx queue that has become full
 *	@q: the queue to stop
1738
 *	@wr: the Work Request causing the queue to become full
1739 1740 1741 1742
 *
 *	Stops an offload Tx queue that has become full and modifies the packet
 *	being written to request a wakeup.
 */
1743
static void ofldtxq_stop(struct sge_uld_txq *q, struct fw_wr_hdr *wr)
1744
{
1745
	wr->lo |= htonl(FW_WR_EQUEQ_F | FW_WR_EQUIQ_F);
1746 1747 1748 1749 1750
	q->q.stops++;
	q->full = 1;
}

/**
1751
 *	service_ofldq - service/restart a suspended offload queue
1752 1753
 *	@q: the offload queue
 *
1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766
 *	Services an offload Tx queue by moving packets from its Pending Send
 *	Queue to the Hardware TX ring.  The function starts and ends with the
 *	Send Queue locked, but drops the lock while putting the skb at the
 *	head of the Send Queue onto the Hardware TX Ring.  Dropping the lock
 *	allows more skbs to be added to the Send Queue by other threads.
 *	The packet being processed at the head of the Pending Send Queue is
 *	left on the queue in case we experience DMA Mapping errors, etc.
 *	and need to give up and restart later.
 *
 *	service_ofldq() can be thought of as a task which opportunistically
 *	uses other threads execution contexts.  We use the Offload Queue
 *	boolean "service_ofldq_running" to make sure that only one instance
 *	is ever running at a time ...
1767
 */
1768
static void service_ofldq(struct sge_uld_txq *q)
1769
{
1770
	u64 *pos, *before, *end;
1771 1772
	int credits;
	struct sk_buff *skb;
1773 1774
	struct sge_txq *txq;
	unsigned int left;
1775 1776 1777
	unsigned int written = 0;
	unsigned int flits, ndesc;

1778 1779 1780 1781 1782 1783 1784 1785 1786 1787
	/* If another thread is currently in service_ofldq() processing the
	 * Pending Send Queue then there's nothing to do. Otherwise, flag
	 * that we're doing the work and continue.  Examining/modifying
	 * the Offload Queue boolean "service_ofldq_running" must be done
	 * while holding the Pending Send Queue Lock.
	 */
	if (q->service_ofldq_running)
		return;
	q->service_ofldq_running = true;

1788
	while ((skb = skb_peek(&q->sendq)) != NULL && !q->full) {
1789 1790 1791 1792 1793 1794
		/* We drop the lock while we're working with the skb at the
		 * head of the Pending Send Queue.  This allows more skbs to
		 * be added to the Pending Send Queue while we're working on
		 * this one.  We don't need to lock to guard the TX Ring
		 * updates because only one thread of execution is ever
		 * allowed into service_ofldq() at a time.
1795 1796 1797
		 */
		spin_unlock(&q->sendq.lock);

1798
		cxgb4_reclaim_completed_tx(q->adap, &q->q, false);
1799 1800 1801 1802 1803 1804

		flits = skb->priority;                /* previously saved */
		ndesc = flits_to_desc(flits);
		credits = txq_avail(&q->q) - ndesc;
		BUG_ON(credits < 0);
		if (unlikely(credits < TXQ_STOP_THRES))
1805
			ofldtxq_stop(q, (struct fw_wr_hdr *)skb->data);
1806 1807 1808

		pos = (u64 *)&q->q.desc[q->q.pidx];
		if (is_ofld_imm(skb))
1809 1810 1811
			cxgb4_inline_tx_skb(skb, &q->q, pos);
		else if (cxgb4_map_skb(q->adap->pdev_dev, skb,
				       (dma_addr_t *)skb->head)) {
1812 1813 1814 1815 1816 1817
			txq_stop_maperr(q);
			spin_lock(&q->sendq.lock);
			break;
		} else {
			int last_desc, hdr_len = skb_transport_offset(skb);

1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841
			/* The WR headers  may not fit within one descriptor.
			 * So we need to deal with wrap-around here.
			 */
			before = (u64 *)pos;
			end = (u64 *)pos + flits;
			txq = &q->q;
			pos = (void *)inline_tx_skb_header(skb, &q->q,
							   (void *)pos,
							   hdr_len);
			if (before > (u64 *)pos) {
				left = (u8 *)end - (u8 *)txq->stat;
				end = (void *)txq->desc + left;
			}

			/* If current position is already at the end of the
			 * ofld queue, reset the current to point to
			 * start of the queue and update the end ptr as well.
			 */
			if (pos == (u64 *)txq->stat) {
				left = (u8 *)end - (u8 *)txq->stat;
				end = (void *)txq->desc + left;
				pos = (void *)txq->desc;
			}

1842 1843 1844
			cxgb4_write_sgl(skb, &q->q, (void *)pos,
					end, hdr_len,
					(dma_addr_t *)skb->head);
1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857
#ifdef CONFIG_NEED_DMA_MAP_STATE
			skb->dev = q->adap->port[0];
			skb->destructor = deferred_unmap_destructor;
#endif
			last_desc = q->q.pidx + ndesc - 1;
			if (last_desc >= q->q.size)
				last_desc -= q->q.size;
			q->q.sdesc[last_desc].skb = skb;
		}

		txq_advance(&q->q, ndesc);
		written += ndesc;
		if (unlikely(written > 32)) {
1858
			cxgb4_ring_tx_db(q->adap, &q->q, written);
1859 1860 1861
			written = 0;
		}

1862 1863 1864 1865 1866
		/* Reacquire the Pending Send Queue Lock so we can unlink the
		 * skb we've just successfully transferred to the TX Ring and
		 * loop for the next skb which may be at the head of the
		 * Pending Send Queue.
		 */
1867 1868 1869 1870 1871 1872
		spin_lock(&q->sendq.lock);
		__skb_unlink(skb, &q->sendq);
		if (is_ofld_imm(skb))
			kfree_skb(skb);
	}
	if (likely(written))
1873
		cxgb4_ring_tx_db(q->adap, &q->q, written);
1874 1875 1876 1877 1878

	/*Indicate that no thread is processing the Pending Send Queue
	 * currently.
	 */
	q->service_ofldq_running = false;
1879 1880 1881 1882 1883 1884 1885 1886 1887
}

/**
 *	ofld_xmit - send a packet through an offload queue
 *	@q: the Tx offload queue
 *	@skb: the packet
 *
 *	Send an offload packet through an SGE offload queue.
 */
1888
static int ofld_xmit(struct sge_uld_txq *q, struct sk_buff *skb)
1889 1890 1891
{
	skb->priority = calc_tx_flits_ofld(skb);       /* save for restart */
	spin_lock(&q->sendq.lock);
1892 1893 1894 1895 1896 1897 1898 1899 1900

	/* Queue the new skb onto the Offload Queue's Pending Send Queue.  If
	 * that results in this new skb being the only one on the queue, start
	 * servicing it.  If there are other skbs already on the list, then
	 * either the queue is currently being processed or it's been stopped
	 * for some reason and it'll be restarted at a later time.  Restart
	 * paths are triggered by events like experiencing a DMA Mapping Error
	 * or filling the Hardware TX Ring.
	 */
1901 1902 1903
	__skb_queue_tail(&q->sendq, skb);
	if (q->sendq.qlen == 1)
		service_ofldq(q);
1904

1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916
	spin_unlock(&q->sendq.lock);
	return NET_XMIT_SUCCESS;
}

/**
 *	restart_ofldq - restart a suspended offload queue
 *	@data: the offload queue to restart
 *
 *	Resumes transmission on a suspended Tx offload queue.
 */
static void restart_ofldq(unsigned long data)
{
1917
	struct sge_uld_txq *q = (struct sge_uld_txq *)data;
1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948

	spin_lock(&q->sendq.lock);
	q->full = 0;            /* the queue actually is completely empty now */
	service_ofldq(q);
	spin_unlock(&q->sendq.lock);
}

/**
 *	skb_txq - return the Tx queue an offload packet should use
 *	@skb: the packet
 *
 *	Returns the Tx queue an offload packet should use as indicated by bits
 *	1-15 in the packet's queue_mapping.
 */
static inline unsigned int skb_txq(const struct sk_buff *skb)
{
	return skb->queue_mapping >> 1;
}

/**
 *	is_ctrl_pkt - return whether an offload packet is a control packet
 *	@skb: the packet
 *
 *	Returns whether an offload packet should use an OFLD or a CTRL
 *	Tx queue as indicated by bit 0 in the packet's queue_mapping.
 */
static inline unsigned int is_ctrl_pkt(const struct sk_buff *skb)
{
	return skb->queue_mapping & 1;
}

1949 1950
static inline int uld_send(struct adapter *adap, struct sk_buff *skb,
			   unsigned int tx_uld_type)
1951
{
1952 1953
	struct sge_uld_txq_info *txq_info;
	struct sge_uld_txq *txq;
1954 1955
	unsigned int idx = skb_txq(skb);

1956 1957 1958 1959
	if (unlikely(is_ctrl_pkt(skb))) {
		/* Single ctrl queue is a requirement for LE workaround path */
		if (adap->tids.nsftids)
			idx = 0;
1960
		return ctrl_xmit(&adap->sge.ctrlq[idx], skb);
1961
	}
A
Arjun V 已提交
1962 1963 1964 1965 1966 1967 1968 1969

	txq_info = adap->sge.uld_txq_info[tx_uld_type];
	if (unlikely(!txq_info)) {
		WARN_ON(true);
		return NET_XMIT_DROP;
	}

	txq = &txq_info->uldtxq[idx];
1970
	return ofld_xmit(txq, skb);
1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986
}

/**
 *	t4_ofld_send - send an offload packet
 *	@adap: the adapter
 *	@skb: the packet
 *
 *	Sends an offload packet.  We use the packet queue_mapping to select the
 *	appropriate Tx queue as follows: bit 0 indicates whether the packet
 *	should be sent as regular or control, bits 1-15 select the queue.
 */
int t4_ofld_send(struct adapter *adap, struct sk_buff *skb)
{
	int ret;

	local_bh_disable();
1987
	ret = uld_send(adap, skb, CXGB4_TX_OFLD);
1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
	local_bh_enable();
	return ret;
}

/**
 *	cxgb4_ofld_send - send an offload packet
 *	@dev: the net device
 *	@skb: the packet
 *
 *	Sends an offload packet.  This is an exported version of @t4_ofld_send,
 *	intended for ULDs.
 */
int cxgb4_ofld_send(struct net_device *dev, struct sk_buff *skb)
{
	return t4_ofld_send(netdev2adap(dev), skb);
}
EXPORT_SYMBOL(cxgb4_ofld_send);

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102
static void *inline_tx_header(const void *src,
			      const struct sge_txq *q,
			      void *pos, int length)
{
	int left = (void *)q->stat - pos;
	u64 *p;

	if (likely(length <= left)) {
		memcpy(pos, src, length);
		pos += length;
	} else {
		memcpy(pos, src, left);
		memcpy(q->desc, src + left, length - left);
		pos = (void *)q->desc + (length - left);
	}
	/* 0-pad to multiple of 16 */
	p = PTR_ALIGN(pos, 8);
	if ((uintptr_t)p & 8) {
		*p = 0;
		return p + 1;
	}
	return p;
}

/**
 *      ofld_xmit_direct - copy a WR into offload queue
 *      @q: the Tx offload queue
 *      @src: location of WR
 *      @len: WR length
 *
 *      Copy an immediate WR into an uncontended SGE offload queue.
 */
static int ofld_xmit_direct(struct sge_uld_txq *q, const void *src,
			    unsigned int len)
{
	unsigned int ndesc;
	int credits;
	u64 *pos;

	/* Use the lower limit as the cut-off */
	if (len > MAX_IMM_OFLD_TX_DATA_WR_LEN) {
		WARN_ON(1);
		return NET_XMIT_DROP;
	}

	/* Don't return NET_XMIT_CN here as the current
	 * implementation doesn't queue the request
	 * using an skb when the following conditions not met
	 */
	if (!spin_trylock(&q->sendq.lock))
		return NET_XMIT_DROP;

	if (q->full || !skb_queue_empty(&q->sendq) ||
	    q->service_ofldq_running) {
		spin_unlock(&q->sendq.lock);
		return NET_XMIT_DROP;
	}
	ndesc = flits_to_desc(DIV_ROUND_UP(len, 8));
	credits = txq_avail(&q->q) - ndesc;
	pos = (u64 *)&q->q.desc[q->q.pidx];

	/* ofldtxq_stop modifies WR header in-situ */
	inline_tx_header(src, &q->q, pos, len);
	if (unlikely(credits < TXQ_STOP_THRES))
		ofldtxq_stop(q, (struct fw_wr_hdr *)pos);
	txq_advance(&q->q, ndesc);
	cxgb4_ring_tx_db(q->adap, &q->q, ndesc);

	spin_unlock(&q->sendq.lock);
	return NET_XMIT_SUCCESS;
}

int cxgb4_immdata_send(struct net_device *dev, unsigned int idx,
		       const void *src, unsigned int len)
{
	struct sge_uld_txq_info *txq_info;
	struct sge_uld_txq *txq;
	struct adapter *adap;
	int ret;

	adap = netdev2adap(dev);

	local_bh_disable();
	txq_info = adap->sge.uld_txq_info[CXGB4_TX_OFLD];
	if (unlikely(!txq_info)) {
		WARN_ON(true);
		local_bh_enable();
		return NET_XMIT_DROP;
	}
	txq = &txq_info->uldtxq[idx];

	ret = ofld_xmit_direct(txq, src, len);
	local_bh_enable();
	return net_xmit_eval(ret);
}
EXPORT_SYMBOL(cxgb4_immdata_send);

2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135
/**
 *	t4_crypto_send - send crypto packet
 *	@adap: the adapter
 *	@skb: the packet
 *
 *	Sends crypto packet.  We use the packet queue_mapping to select the
 *	appropriate Tx queue as follows: bit 0 indicates whether the packet
 *	should be sent as regular or control, bits 1-15 select the queue.
 */
static int t4_crypto_send(struct adapter *adap, struct sk_buff *skb)
{
	int ret;

	local_bh_disable();
	ret = uld_send(adap, skb, CXGB4_TX_CRYPTO);
	local_bh_enable();
	return ret;
}

/**
 *	cxgb4_crypto_send - send crypto packet
 *	@dev: the net device
 *	@skb: the packet
 *
 *	Sends crypto packet.  This is an exported version of @t4_crypto_send,
 *	intended for ULDs.
 */
int cxgb4_crypto_send(struct net_device *dev, struct sk_buff *skb)
{
	return t4_crypto_send(netdev2adap(dev), skb);
}
EXPORT_SYMBOL(cxgb4_crypto_send);

2136
static inline void copy_frags(struct sk_buff *skb,
2137 2138
			      const struct pkt_gl *gl, unsigned int offset)
{
2139
	int i;
2140 2141

	/* usually there's just one frag */
2142 2143 2144 2145 2146 2147 2148 2149
	__skb_fill_page_desc(skb, 0, gl->frags[0].page,
			     gl->frags[0].offset + offset,
			     gl->frags[0].size - offset);
	skb_shinfo(skb)->nr_frags = gl->nfrags;
	for (i = 1; i < gl->nfrags; i++)
		__skb_fill_page_desc(skb, i, gl->frags[i].page,
				     gl->frags[i].offset,
				     gl->frags[i].size);
2150 2151

	/* get a reference to the last page, we don't own it */
2152
	get_page(gl->frags[gl->nfrags - 1].page);
2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186
}

/**
 *	cxgb4_pktgl_to_skb - build an sk_buff from a packet gather list
 *	@gl: the gather list
 *	@skb_len: size of sk_buff main body if it carries fragments
 *	@pull_len: amount of data to move to the sk_buff's main body
 *
 *	Builds an sk_buff from the given packet gather list.  Returns the
 *	sk_buff or %NULL if sk_buff allocation failed.
 */
struct sk_buff *cxgb4_pktgl_to_skb(const struct pkt_gl *gl,
				   unsigned int skb_len, unsigned int pull_len)
{
	struct sk_buff *skb;

	/*
	 * Below we rely on RX_COPY_THRES being less than the smallest Rx buffer
	 * size, which is expected since buffers are at least PAGE_SIZEd.
	 * In this case packets up to RX_COPY_THRES have only one fragment.
	 */
	if (gl->tot_len <= RX_COPY_THRES) {
		skb = dev_alloc_skb(gl->tot_len);
		if (unlikely(!skb))
			goto out;
		__skb_put(skb, gl->tot_len);
		skb_copy_to_linear_data(skb, gl->va, gl->tot_len);
	} else {
		skb = dev_alloc_skb(skb_len);
		if (unlikely(!skb))
			goto out;
		__skb_put(skb, pull_len);
		skb_copy_to_linear_data(skb, gl->va, pull_len);

2187
		copy_frags(skb, gl, pull_len);
2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202
		skb->len = gl->tot_len;
		skb->data_len = skb->len - pull_len;
		skb->truesize += skb->data_len;
	}
out:	return skb;
}
EXPORT_SYMBOL(cxgb4_pktgl_to_skb);

/**
 *	t4_pktgl_free - free a packet gather list
 *	@gl: the gather list
 *
 *	Releases the pages of a packet gather list.  We do not own the last
 *	page on the list and do not free it.
 */
2203
static void t4_pktgl_free(const struct pkt_gl *gl)
2204 2205
{
	int n;
2206
	const struct page_frag *p;
2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226

	for (p = gl->frags, n = gl->nfrags - 1; n--; p++)
		put_page(p->page);
}

/*
 * Process an MPS trace packet.  Give it an unused protocol number so it won't
 * be delivered to anyone and send it to the stack for capture.
 */
static noinline int handle_trace_pkt(struct adapter *adap,
				     const struct pkt_gl *gl)
{
	struct sk_buff *skb;

	skb = cxgb4_pktgl_to_skb(gl, RX_PULL_LEN, RX_PULL_LEN);
	if (unlikely(!skb)) {
		t4_pktgl_free(gl);
		return 0;
	}

2227
	if (is_t4(adap->params.chip))
S
Santosh Rastapur 已提交
2228 2229 2230 2231
		__skb_pull(skb, sizeof(struct cpl_trace_pkt));
	else
		__skb_pull(skb, sizeof(struct cpl_t5_trace_pkt));

2232 2233 2234 2235 2236 2237 2238
	skb_reset_mac_header(skb);
	skb->protocol = htons(0xffff);
	skb->dev = adap->port[0];
	netif_receive_skb(skb);
	return 0;
}

2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260
/**
 * cxgb4_sgetim_to_hwtstamp - convert sge time stamp to hw time stamp
 * @adap: the adapter
 * @hwtstamps: time stamp structure to update
 * @sgetstamp: 60bit iqe timestamp
 *
 * Every ingress queue entry has the 60-bit timestamp, convert that timestamp
 * which is in Core Clock ticks into ktime_t and assign it
 **/
static void cxgb4_sgetim_to_hwtstamp(struct adapter *adap,
				     struct skb_shared_hwtstamps *hwtstamps,
				     u64 sgetstamp)
{
	u64 ns;
	u64 tmp = (sgetstamp * 1000 * 1000 + adap->params.vpd.cclk / 2);

	ns = div_u64(tmp, adap->params.vpd.cclk);

	memset(hwtstamps, 0, sizeof(*hwtstamps));
	hwtstamps->hwtstamp = ns_to_ktime(ns);
}

2261 2262 2263
static void do_gro(struct sge_eth_rxq *rxq, const struct pkt_gl *gl,
		   const struct cpl_rx_pkt *pkt)
{
2264 2265
	struct adapter *adapter = rxq->rspq.adap;
	struct sge *s = &adapter->sge;
2266
	struct port_info *pi;
2267 2268 2269 2270 2271 2272 2273 2274 2275 2276
	int ret;
	struct sk_buff *skb;

	skb = napi_get_frags(&rxq->rspq.napi);
	if (unlikely(!skb)) {
		t4_pktgl_free(gl);
		rxq->stats.rx_drops++;
		return;
	}

2277 2278
	copy_frags(skb, gl, s->pktshift);
	skb->len = gl->tot_len - s->pktshift;
2279 2280 2281 2282
	skb->data_len = skb->len;
	skb->truesize += skb->data_len;
	skb->ip_summed = CHECKSUM_UNNECESSARY;
	skb_record_rx_queue(skb, rxq->rspq.idx);
2283 2284 2285 2286
	pi = netdev_priv(skb->dev);
	if (pi->rxtstamp)
		cxgb4_sgetim_to_hwtstamp(adapter, skb_hwtstamps(skb),
					 gl->sgetstamp);
D
Dimitris Michailidis 已提交
2287
	if (rxq->rspq.netdev->features & NETIF_F_RXHASH)
T
Tom Herbert 已提交
2288 2289
		skb_set_hash(skb, (__force u32)pkt->rsshdr.hash_val,
			     PKT_HASH_TYPE_L3);
2290 2291

	if (unlikely(pkt->vlan_ex)) {
2292
		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(pkt->vlan));
2293 2294 2295
		rxq->stats.vlan_ex++;
	}
	ret = napi_gro_frags(&rxq->rspq.napi);
2296
	if (ret == GRO_HELD)
2297 2298 2299 2300 2301 2302 2303
		rxq->stats.lro_pkts++;
	else if (ret == GRO_MERGED || ret == GRO_MERGED_FREE)
		rxq->stats.lro_merged++;
	rxq->stats.pkts++;
	rxq->stats.rx_cso++;
}

2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389
enum {
	RX_NON_PTP_PKT = 0,
	RX_PTP_PKT_SUC = 1,
	RX_PTP_PKT_ERR = 2
};

/**
 *     t4_systim_to_hwstamp - read hardware time stamp
 *     @adap: the adapter
 *     @skb: the packet
 *
 *     Read Time Stamp from MPS packet and insert in skb which
 *     is forwarded to PTP application
 */
static noinline int t4_systim_to_hwstamp(struct adapter *adapter,
					 struct sk_buff *skb)
{
	struct skb_shared_hwtstamps *hwtstamps;
	struct cpl_rx_mps_pkt *cpl = NULL;
	unsigned char *data;
	int offset;

	cpl = (struct cpl_rx_mps_pkt *)skb->data;
	if (!(CPL_RX_MPS_PKT_TYPE_G(ntohl(cpl->op_to_r1_hi)) &
	     X_CPL_RX_MPS_PKT_TYPE_PTP))
		return RX_PTP_PKT_ERR;

	data = skb->data + sizeof(*cpl);
	skb_pull(skb, 2 * sizeof(u64) + sizeof(struct cpl_rx_mps_pkt));
	offset = ETH_HLEN + IPV4_HLEN(skb->data) + UDP_HLEN;
	if (skb->len < offset + OFF_PTP_SEQUENCE_ID + sizeof(short))
		return RX_PTP_PKT_ERR;

	hwtstamps = skb_hwtstamps(skb);
	memset(hwtstamps, 0, sizeof(*hwtstamps));
	hwtstamps->hwtstamp = ns_to_ktime(be64_to_cpu(*((u64 *)data)));

	return RX_PTP_PKT_SUC;
}

/**
 *     t4_rx_hststamp - Recv PTP Event Message
 *     @adap: the adapter
 *     @rsp: the response queue descriptor holding the RX_PKT message
 *     @skb: the packet
 *
 *     PTP enabled and MPS packet, read HW timestamp
 */
static int t4_rx_hststamp(struct adapter *adapter, const __be64 *rsp,
			  struct sge_eth_rxq *rxq, struct sk_buff *skb)
{
	int ret;

	if (unlikely((*(u8 *)rsp == CPL_RX_MPS_PKT) &&
		     !is_t4(adapter->params.chip))) {
		ret = t4_systim_to_hwstamp(adapter, skb);
		if (ret == RX_PTP_PKT_ERR) {
			kfree_skb(skb);
			rxq->stats.rx_drops++;
		}
		return ret;
	}
	return RX_NON_PTP_PKT;
}

/**
 *      t4_tx_hststamp - Loopback PTP Transmit Event Message
 *      @adap: the adapter
 *      @skb: the packet
 *      @dev: the ingress net device
 *
 *      Read hardware timestamp for the loopback PTP Tx event message
 */
static int t4_tx_hststamp(struct adapter *adapter, struct sk_buff *skb,
			  struct net_device *dev)
{
	struct port_info *pi = netdev_priv(dev);

	if (!is_t4(adapter->params.chip) && adapter->ptp_tx_skb) {
		cxgb4_ptp_read_hwstamp(adapter, pi);
		kfree_skb(skb);
		return 0;
	}
	return 1;
}

2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404
/**
 *	t4_ethrx_handler - process an ingress ethernet packet
 *	@q: the response queue that received the packet
 *	@rsp: the response queue descriptor holding the RX_PKT message
 *	@si: the gather list of packet fragments
 *
 *	Process an ingress ethernet packet and deliver it to the stack.
 */
int t4_ethrx_handler(struct sge_rspq *q, const __be64 *rsp,
		     const struct pkt_gl *si)
{
	bool csum_ok;
	struct sk_buff *skb;
	const struct cpl_rx_pkt *pkt;
	struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq);
2405
	struct adapter *adapter = q->adap;
2406
	struct sge *s = &q->adap->sge;
2407
	int cpl_trace_pkt = is_t4(q->adap->params.chip) ?
S
Santosh Rastapur 已提交
2408
			    CPL_TRACE_PKT : CPL_TRACE_PKT_T5;
2409
	u16 err_vec;
V
Varun Prakash 已提交
2410
	struct port_info *pi;
2411
	int ret = 0;
2412

S
Santosh Rastapur 已提交
2413
	if (unlikely(*(u8 *)rsp == cpl_trace_pkt))
2414 2415
		return handle_trace_pkt(q->adap, si);

D
Dimitris Michailidis 已提交
2416
	pkt = (const struct cpl_rx_pkt *)rsp;
2417 2418 2419 2420 2421 2422 2423
	/* Compressed error vector is enabled for T6 only */
	if (q->adap->params.tp.rx_pkt_encap)
		err_vec = T6_COMPR_RXERR_VEC_G(be16_to_cpu(pkt->err_vec));
	else
		err_vec = be16_to_cpu(pkt->err_vec);

	csum_ok = pkt->csum_calc && !err_vec &&
2424
		  (q->netdev->features & NETIF_F_RXCSUM);
2425
	if ((pkt->l2info & htonl(RXF_TCP_F)) &&
2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436
	    (q->netdev->features & NETIF_F_GRO) && csum_ok && !pkt->ip_frag) {
		do_gro(rxq, si, pkt);
		return 0;
	}

	skb = cxgb4_pktgl_to_skb(si, RX_PKT_SKB_LEN, RX_PULL_LEN);
	if (unlikely(!skb)) {
		t4_pktgl_free(si);
		rxq->stats.rx_drops++;
		return 0;
	}
2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454
	pi = netdev_priv(q->netdev);

	/* Handle PTP Event Rx packet */
	if (unlikely(pi->ptp_enable)) {
		ret = t4_rx_hststamp(adapter, rsp, rxq, skb);
		if (ret == RX_PTP_PKT_ERR)
			return 0;
	}
	if (likely(!ret))
		__skb_pull(skb, s->pktshift); /* remove ethernet header pad */

	/* Handle the PTP Event Tx Loopback packet */
	if (unlikely(pi->ptp_enable && !ret &&
		     (pkt->l2info & htonl(RXF_UDP_F)) &&
		     cxgb4_ptp_is_ptp_rx(skb))) {
		if (!t4_tx_hststamp(adapter, skb, q->netdev))
			return 0;
	}
2455 2456 2457

	skb->protocol = eth_type_trans(skb, q->netdev);
	skb_record_rx_queue(skb, q->idx);
D
Dimitris Michailidis 已提交
2458
	if (skb->dev->features & NETIF_F_RXHASH)
T
Tom Herbert 已提交
2459 2460
		skb_set_hash(skb, (__force u32)pkt->rsshdr.hash_val,
			     PKT_HASH_TYPE_L3);
D
Dimitris Michailidis 已提交
2461

2462 2463
	rxq->stats.pkts++;

2464 2465 2466
	if (pi->rxtstamp)
		cxgb4_sgetim_to_hwtstamp(q->adap, skb_hwtstamps(skb),
					 si->sgetstamp);
2467
	if (csum_ok && (pkt->l2info & htonl(RXF_UDP_F | RXF_TCP_F))) {
2468
		if (!pkt->ip_frag) {
2469
			skb->ip_summed = CHECKSUM_UNNECESSARY;
2470
			rxq->stats.rx_cso++;
2471
		} else if (pkt->l2info & htonl(RXF_IP_F)) {
2472 2473 2474
			__sum16 c = (__force __sum16)pkt->csum;
			skb->csum = csum_unfold(c);
			skb->ip_summed = CHECKSUM_COMPLETE;
2475
			rxq->stats.rx_cso++;
2476
		}
V
Varun Prakash 已提交
2477
	} else {
2478
		skb_checksum_none_assert(skb);
V
Varun Prakash 已提交
2479 2480 2481 2482 2483 2484 2485
#ifdef CONFIG_CHELSIO_T4_FCOE
#define CPL_RX_PKT_FLAGS (RXF_PSH_F | RXF_SYN_F | RXF_UDP_F | \
			  RXF_TCP_F | RXF_IP_F | RXF_IP6_F | RXF_LRO_F)

		if (!(pkt->l2info & cpu_to_be32(CPL_RX_PKT_FLAGS))) {
			if ((pkt->l2info & cpu_to_be32(RXF_FCOE_F)) &&
			    (pi->fcoe.flags & CXGB_FCOE_ENABLED)) {
2486 2487 2488 2489 2490 2491
				if (q->adap->params.tp.rx_pkt_encap)
					csum_ok = err_vec &
						  T6_COMPR_RXERR_SUM_F;
				else
					csum_ok = err_vec & RXERR_CSUM_F;
				if (!csum_ok)
V
Varun Prakash 已提交
2492 2493 2494 2495 2496 2497 2498
					skb->ip_summed = CHECKSUM_UNNECESSARY;
			}
		}

#undef CPL_RX_PKT_FLAGS
#endif /* CONFIG_CHELSIO_T4_FCOE */
	}
2499 2500

	if (unlikely(pkt->vlan_ex)) {
2501
		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(pkt->vlan));
2502
		rxq->stats.vlan_ex++;
2503
	}
2504
	skb_mark_napi_id(skb, &q->napi);
2505
	netif_receive_skb(skb);
2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551
	return 0;
}

/**
 *	restore_rx_bufs - put back a packet's Rx buffers
 *	@si: the packet gather list
 *	@q: the SGE free list
 *	@frags: number of FL buffers to restore
 *
 *	Puts back on an FL the Rx buffers associated with @si.  The buffers
 *	have already been unmapped and are left unmapped, we mark them so to
 *	prevent further unmapping attempts.
 *
 *	This function undoes a series of @unmap_rx_buf calls when we find out
 *	that the current packet can't be processed right away afterall and we
 *	need to come back to it later.  This is a very rare event and there's
 *	no effort to make this particularly efficient.
 */
static void restore_rx_bufs(const struct pkt_gl *si, struct sge_fl *q,
			    int frags)
{
	struct rx_sw_desc *d;

	while (frags--) {
		if (q->cidx == 0)
			q->cidx = q->size - 1;
		else
			q->cidx--;
		d = &q->sdesc[q->cidx];
		d->page = si->frags[frags].page;
		d->dma_addr |= RX_UNMAPPED_BUF;
		q->avail++;
	}
}

/**
 *	is_new_response - check if a response is newly written
 *	@r: the response descriptor
 *	@q: the response queue
 *
 *	Returns true if a response descriptor contains a yet unprocessed
 *	response.
 */
static inline bool is_new_response(const struct rsp_ctrl *r,
				   const struct sge_rspq *q)
{
2552
	return (r->type_gen >> RSPD_GEN_S) == q->gen;
2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589
}

/**
 *	rspq_next - advance to the next entry in a response queue
 *	@q: the queue
 *
 *	Updates the state of a response queue to advance it to the next entry.
 */
static inline void rspq_next(struct sge_rspq *q)
{
	q->cur_desc = (void *)q->cur_desc + q->iqe_len;
	if (unlikely(++q->cidx == q->size)) {
		q->cidx = 0;
		q->gen ^= 1;
		q->cur_desc = q->desc;
	}
}

/**
 *	process_responses - process responses from an SGE response queue
 *	@q: the ingress queue to process
 *	@budget: how many responses can be processed in this round
 *
 *	Process responses from an SGE response queue up to the supplied budget.
 *	Responses include received packets as well as control messages from FW
 *	or HW.
 *
 *	Additionally choose the interrupt holdoff time for the next interrupt
 *	on this queue.  If the system is under memory shortage use a fairly
 *	long delay to help recovery.
 */
static int process_responses(struct sge_rspq *q, int budget)
{
	int ret, rsp_type;
	int budget_left = budget;
	const struct rsp_ctrl *rc;
	struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq);
2590 2591
	struct adapter *adapter = q->adap;
	struct sge *s = &adapter->sge;
2592 2593 2594

	while (likely(budget_left)) {
		rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc));
2595 2596 2597
		if (!is_new_response(rc, q)) {
			if (q->flush_handler)
				q->flush_handler(q);
2598
			break;
2599
		}
2600

2601
		dma_rmb();
2602 2603
		rsp_type = RSPD_TYPE_G(rc->type_gen);
		if (likely(rsp_type == RSPD_TYPE_FLBUF_X)) {
2604
			struct page_frag *fp;
2605 2606 2607 2608
			struct pkt_gl si;
			const struct rx_sw_desc *rsd;
			u32 len = ntohl(rc->pldbuflen_qid), bufsz, frags;

2609
			if (len & RSPD_NEWBUF_F) {
2610 2611 2612 2613
				if (likely(q->offset > 0)) {
					free_rx_bufs(q->adap, &rxq->fl, 1);
					q->offset = 0;
				}
2614
				len = RSPD_LEN_G(len);
2615 2616 2617 2618 2619 2620
			}
			si.tot_len = len;

			/* gather packet fragments */
			for (frags = 0, fp = si.frags; ; frags++, fp++) {
				rsd = &rxq->fl.sdesc[rxq->fl.cidx];
2621
				bufsz = get_buf_size(adapter, rsd);
2622
				fp->page = rsd->page;
2623 2624 2625
				fp->offset = q->offset;
				fp->size = min(bufsz, len);
				len -= fp->size;
2626 2627 2628 2629 2630
				if (!len)
					break;
				unmap_rx_buf(q->adap, &rxq->fl);
			}

2631 2632
			si.sgetstamp = SGE_TIMESTAMP_G(
					be64_to_cpu(rc->last_flit));
2633 2634 2635 2636 2637 2638
			/*
			 * Last buffer remains mapped so explicitly make it
			 * coherent for CPU access.
			 */
			dma_sync_single_for_cpu(q->adap->pdev_dev,
						get_buf_addr(rsd),
2639
						fp->size, DMA_FROM_DEVICE);
2640 2641

			si.va = page_address(si.frags[0].page) +
2642
				si.frags[0].offset;
2643 2644 2645 2646 2647
			prefetch(si.va);

			si.nfrags = frags + 1;
			ret = q->handler(q, q->cur_desc, &si);
			if (likely(ret == 0))
2648
				q->offset += ALIGN(fp->size, s->fl_align);
2649 2650
			else
				restore_rx_bufs(&si, &rxq->fl, frags);
2651
		} else if (likely(rsp_type == RSPD_TYPE_CPL_X)) {
2652 2653 2654 2655 2656 2657 2658
			ret = q->handler(q, q->cur_desc, NULL);
		} else {
			ret = q->handler(q, (const __be64 *)rc, CXGB4_MSG_AN);
		}

		if (unlikely(ret)) {
			/* couldn't process descriptor, back off for recovery */
2659
			q->next_intr_params = QINTR_TIMER_IDX_V(NOMEM_TMR_IDX);
2660 2661 2662 2663 2664 2665 2666
			break;
		}

		rspq_next(q);
		budget_left--;
	}

2667
	if (q->offset >= 0 && fl_cap(&rxq->fl) - rxq->fl.avail >= 16)
2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686
		__refill_fl(q->adap, &rxq->fl);
	return budget - budget_left;
}

/**
 *	napi_rx_handler - the NAPI handler for Rx processing
 *	@napi: the napi instance
 *	@budget: how many packets we can process in this round
 *
 *	Handler for new data events when using NAPI.  This does not need any
 *	locking or protection from interrupts as data interrupts are off at
 *	this point and other adapter interrupts do not interfere (the latter
 *	in not a concern at all with MSI-X as non-data interrupts then have
 *	a separate handler).
 */
static int napi_rx_handler(struct napi_struct *napi, int budget)
{
	unsigned int params;
	struct sge_rspq *q = container_of(napi, struct sge_rspq, napi);
2687
	int work_done;
2688
	u32 val;
2689

2690
	work_done = process_responses(q, budget);
2691
	if (likely(work_done < budget)) {
2692 2693
		int timer_index;

2694
		napi_complete_done(napi, work_done);
2695
		timer_index = QINTR_TIMER_IDX_G(q->next_intr_params);
2696 2697 2698 2699 2700 2701 2702 2703 2704

		if (q->adaptive_rx) {
			if (work_done > max(timer_pkt_quota[timer_index],
					    MIN_NAPI_WORK))
				timer_index = (timer_index + 1);
			else
				timer_index = timer_index - 1;

			timer_index = clamp(timer_index, 0, SGE_TIMERREGS - 1);
2705 2706 2707
			q->next_intr_params =
					QINTR_TIMER_IDX_V(timer_index) |
					QINTR_CNT_EN_V(0);
2708 2709 2710 2711 2712
			params = q->next_intr_params;
		} else {
			params = q->next_intr_params;
			q->next_intr_params = q->intr_params;
		}
2713
	} else
2714
		params = QINTR_TIMER_IDX_V(7);
2715

2716
	val = CIDXINC_V(work_done) | SEINTARM_V(params);
2717 2718 2719 2720 2721

	/* If we don't have access to the new User GTS (T5+), use the old
	 * doorbell mechanism; otherwise use the new BAR2 mechanism.
	 */
	if (unlikely(q->bar2_addr == NULL)) {
2722 2723
		t4_write_reg(q->adap, MYPF_REG(SGE_PF_GTS_A),
			     val | INGRESSQID_V((u32)q->cntxt_id));
2724
	} else {
2725
		writel(val | INGRESSQID_V(q->bar2_qid),
2726
		       q->bar2_addr + SGE_UDB_GTS);
2727 2728
		wmb();
	}
2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751
	return work_done;
}

/*
 * The MSI-X interrupt handler for an SGE response queue.
 */
irqreturn_t t4_sge_intr_msix(int irq, void *cookie)
{
	struct sge_rspq *q = cookie;

	napi_schedule(&q->napi);
	return IRQ_HANDLED;
}

/*
 * Process the indirect interrupt entries in the interrupt queue and kick off
 * NAPI for each queue that has generated an entry.
 */
static unsigned int process_intrq(struct adapter *adap)
{
	unsigned int credits;
	const struct rsp_ctrl *rc;
	struct sge_rspq *q = &adap->sge.intrq;
2752
	u32 val;
2753 2754 2755 2756 2757 2758 2759

	spin_lock(&adap->sge.intrq_lock);
	for (credits = 0; ; credits++) {
		rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc));
		if (!is_new_response(rc, q))
			break;

2760
		dma_rmb();
2761
		if (RSPD_TYPE_G(rc->type_gen) == RSPD_TYPE_INTR_X) {
2762 2763
			unsigned int qid = ntohl(rc->pldbuflen_qid);

2764
			qid -= adap->sge.ingr_start;
2765 2766 2767 2768 2769 2770
			napi_schedule(&adap->sge.ingr_map[qid]->napi);
		}

		rspq_next(q);
	}

2771
	val =  CIDXINC_V(credits) | SEINTARM_V(q->intr_params);
2772 2773 2774 2775 2776

	/* If we don't have access to the new User GTS (T5+), use the old
	 * doorbell mechanism; otherwise use the new BAR2 mechanism.
	 */
	if (unlikely(q->bar2_addr == NULL)) {
2777 2778
		t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A),
			     val | INGRESSQID_V(q->cntxt_id));
2779
	} else {
2780
		writel(val | INGRESSQID_V(q->bar2_qid),
2781
		       q->bar2_addr + SGE_UDB_GTS);
2782 2783
		wmb();
	}
2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795
	spin_unlock(&adap->sge.intrq_lock);
	return credits;
}

/*
 * The MSI interrupt handler, which handles data events from SGE response queues
 * as well as error and other async events as they all use the same MSI vector.
 */
static irqreturn_t t4_intr_msi(int irq, void *cookie)
{
	struct adapter *adap = cookie;

2796 2797
	if (adap->flags & MASTER_PF)
		t4_slow_intr_handler(adap);
2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810
	process_intrq(adap);
	return IRQ_HANDLED;
}

/*
 * Interrupt handler for legacy INTx interrupts.
 * Handles data events from SGE response queues as well as error and other
 * async events as they all use the same interrupt line.
 */
static irqreturn_t t4_intr_intx(int irq, void *cookie)
{
	struct adapter *adap = cookie;

2811
	t4_write_reg(adap, MYPF_REG(PCIE_PF_CLI_A), 0);
2812 2813
	if (((adap->flags & MASTER_PF) && t4_slow_intr_handler(adap)) |
	    process_intrq(adap))
2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833
		return IRQ_HANDLED;
	return IRQ_NONE;             /* probably shared interrupt */
}

/**
 *	t4_intr_handler - select the top-level interrupt handler
 *	@adap: the adapter
 *
 *	Selects the top-level interrupt handler based on the type of interrupts
 *	(MSI-X, MSI, or INTx).
 */
irq_handler_t t4_intr_handler(struct adapter *adap)
{
	if (adap->flags & USING_MSIX)
		return t4_sge_intr_msix;
	if (adap->flags & USING_MSI)
		return t4_intr_msi;
	return t4_intr_intx;
}

2834
static void sge_rx_timer_cb(struct timer_list *t)
2835 2836
{
	unsigned long m;
2837
	unsigned int i;
2838
	struct adapter *adap = from_timer(adap, t, sge.rx_timer);
2839 2840
	struct sge *s = &adap->sge;

2841
	for (i = 0; i < BITS_TO_LONGS(s->egr_sz); i++)
2842 2843 2844 2845 2846 2847
		for (m = s->starving_fl[i]; m; m &= m - 1) {
			struct sge_eth_rxq *rxq;
			unsigned int id = __ffs(m) + i * BITS_PER_LONG;
			struct sge_fl *fl = s->egr_map[id];

			clear_bit(id, s->starving_fl);
2848
			smp_mb__after_atomic();
2849

2850
			if (fl_starving(adap, fl)) {
2851 2852 2853 2854 2855 2856 2857
				rxq = container_of(fl, struct sge_eth_rxq, fl);
				if (napi_reschedule(&rxq->rspq.napi))
					fl->starving++;
				else
					set_bit(id, s->starving_fl);
			}
		}
2858 2859 2860 2861 2862 2863
	/* The remainder of the SGE RX Timer Callback routine is dedicated to
	 * global Master PF activities like checking for chip ingress stalls,
	 * etc.
	 */
	if (!(adap->flags & MASTER_PF))
		goto done;
2864

2865
	t4_idma_monitor(adap, &s->idma_monitor, HZ, RX_QCHECK_PERIOD);
2866

2867
done:
2868 2869 2870
	mod_timer(&s->rx_timer, jiffies + RX_QCHECK_PERIOD);
}

2871
static void sge_tx_timer_cb(struct timer_list *t)
2872 2873 2874
{
	unsigned long m;
	unsigned int i, budget;
2875
	struct adapter *adap = from_timer(adap, t, sge.tx_timer);
2876 2877
	struct sge *s = &adap->sge;

2878
	for (i = 0; i < BITS_TO_LONGS(s->egr_sz); i++)
2879 2880
		for (m = s->txq_maperr[i]; m; m &= m - 1) {
			unsigned long id = __ffs(m) + i * BITS_PER_LONG;
2881
			struct sge_uld_txq *txq = s->egr_map[id];
2882 2883 2884 2885 2886

			clear_bit(id, s->txq_maperr);
			tasklet_schedule(&txq->qresume_tsk);
		}

2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900
	if (!is_t4(adap->params.chip)) {
		struct sge_eth_txq *q = &s->ptptxq;
		int avail;

		spin_lock(&adap->ptp_lock);
		avail = reclaimable(&q->q);

		if (avail) {
			free_tx_desc(adap, &q->q, avail, false);
			q->q.in_use -= avail;
		}
		spin_unlock(&adap->ptp_lock);
	}

2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928
	budget = MAX_TIMER_TX_RECLAIM;
	i = s->ethtxq_rover;
	do {
		struct sge_eth_txq *q = &s->ethtxq[i];

		if (q->q.in_use &&
		    time_after_eq(jiffies, q->txq->trans_start + HZ / 100) &&
		    __netif_tx_trylock(q->txq)) {
			int avail = reclaimable(&q->q);

			if (avail) {
				if (avail > budget)
					avail = budget;

				free_tx_desc(adap, &q->q, avail, true);
				q->q.in_use -= avail;
				budget -= avail;
			}
			__netif_tx_unlock(q->txq);
		}

		if (++i >= s->ethqsets)
			i = 0;
	} while (budget && i != s->ethtxq_rover);
	s->ethtxq_rover = i;
	mod_timer(&s->tx_timer, jiffies + (budget ? TX_QCHECK_PERIOD : 2));
}

2929
/**
2930 2931 2932 2933 2934
 *	bar2_address - return the BAR2 address for an SGE Queue's Registers
 *	@adapter: the adapter
 *	@qid: the SGE Queue ID
 *	@qtype: the SGE Queue Type (Egress or Ingress)
 *	@pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
2935
 *
2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948
 *	Returns the BAR2 address for the SGE Queue Registers associated with
 *	@qid.  If BAR2 SGE Registers aren't available, returns NULL.  Also
 *	returns the BAR2 Queue ID to be used with writes to the BAR2 SGE
 *	Queue Registers.  If the BAR2 Queue ID is 0, then "Inferred Queue ID"
 *	Registers are supported (e.g. the Write Combining Doorbell Buffer).
 */
static void __iomem *bar2_address(struct adapter *adapter,
				  unsigned int qid,
				  enum t4_bar2_qtype qtype,
				  unsigned int *pbar2_qid)
{
	u64 bar2_qoffset;
	int ret;
2949

2950
	ret = t4_bar2_sge_qregs(adapter, qid, qtype, 0,
2951 2952 2953
				&bar2_qoffset, pbar2_qid);
	if (ret)
		return NULL;
2954

2955
	return adapter->bar2 + bar2_qoffset;
2956 2957
}

2958 2959 2960
/* @intr_idx: MSI/MSI-X vector if >=0, -(absolute qid + 1) if < 0
 * @cong: < 0 -> no congestion feedback, >= 0 -> congestion channel map
 */
2961 2962
int t4_sge_alloc_rxq(struct adapter *adap, struct sge_rspq *iq, bool fwevtq,
		     struct net_device *dev, int intr_idx,
2963 2964
		     struct sge_fl *fl, rspq_handler_t hnd,
		     rspq_flush_handler_t flush_hnd, int cong)
2965 2966 2967
{
	int ret, flsz = 0;
	struct fw_iq_cmd c;
2968
	struct sge *s = &adap->sge;
2969
	struct port_info *pi = netdev_priv(dev);
2970
	int relaxed = !(adap->flags & ROOT_NO_RELAXED_ORDERING);
2971 2972 2973 2974 2975

	/* Size needs to be multiple of 16, including status entry. */
	iq->size = roundup(iq->size, 16);

	iq->desc = alloc_ring(adap->pdev_dev, iq->size, iq->iqe_len, 0,
2976 2977
			      &iq->phys_addr, NULL, 0,
			      dev_to_node(adap->pdev_dev));
2978 2979 2980 2981
	if (!iq->desc)
		return -ENOMEM;

	memset(&c, 0, sizeof(c));
2982 2983
	c.op_to_vfn = htonl(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
			    FW_CMD_WRITE_F | FW_CMD_EXEC_F |
2984
			    FW_IQ_CMD_PFN_V(adap->pf) | FW_IQ_CMD_VFN_V(0));
2985
	c.alloc_to_len16 = htonl(FW_IQ_CMD_ALLOC_F | FW_IQ_CMD_IQSTART_F |
2986
				 FW_LEN16(c));
2987 2988
	c.type_to_iqandstindex = htonl(FW_IQ_CMD_TYPE_V(FW_IQ_TYPE_FL_INT_CAP) |
		FW_IQ_CMD_IQASYNCH_V(fwevtq) | FW_IQ_CMD_VIID_V(pi->viid) |
2989 2990
		FW_IQ_CMD_IQANDST_V(intr_idx < 0) |
		FW_IQ_CMD_IQANUD_V(UPDATEDELIVERY_INTERRUPT_X) |
2991
		FW_IQ_CMD_IQANDSTINDEX_V(intr_idx >= 0 ? intr_idx :
2992
							-intr_idx - 1));
2993 2994 2995 2996
	c.iqdroprss_to_iqesize = htons(FW_IQ_CMD_IQPCIECH_V(pi->tx_chan) |
		FW_IQ_CMD_IQGTSMODE_F |
		FW_IQ_CMD_IQINTCNTTHRESH_V(iq->pktcnt_idx) |
		FW_IQ_CMD_IQESIZE_V(ilog2(iq->iqe_len) - 4));
2997 2998
	c.iqsize = htons(iq->size);
	c.iqaddr = cpu_to_be64(iq->phys_addr);
2999 3000
	if (cong >= 0)
		c.iqns_to_fl0congen = htonl(FW_IQ_CMD_IQFLINTCONGEN_F);
3001 3002

	if (fl) {
3003 3004
		enum chip_type chip = CHELSIO_CHIP_VERSION(adap->params.chip);

3005 3006 3007 3008 3009 3010 3011 3012 3013
		/* Allocate the ring for the hardware free list (with space
		 * for its status page) along with the associated software
		 * descriptor ring.  The free list size needs to be a multiple
		 * of the Egress Queue Unit and at least 2 Egress Units larger
		 * than the SGE's Egress Congrestion Threshold
		 * (fl_starve_thres - 1).
		 */
		if (fl->size < s->fl_starve_thres - 1 + 2 * 8)
			fl->size = s->fl_starve_thres - 1 + 2 * 8;
3014 3015 3016
		fl->size = roundup(fl->size, 8);
		fl->desc = alloc_ring(adap->pdev_dev, fl->size, sizeof(__be64),
				      sizeof(struct rx_sw_desc), &fl->addr,
3017 3018
				      &fl->sdesc, s->stat_len,
				      dev_to_node(adap->pdev_dev));
3019 3020 3021
		if (!fl->desc)
			goto fl_nomem;

3022
		flsz = fl->size / 8 + s->stat_len / sizeof(struct tx_desc);
3023
		c.iqns_to_fl0congen |= htonl(FW_IQ_CMD_FL0PACKEN_F |
3024 3025
					     FW_IQ_CMD_FL0FETCHRO_V(relaxed) |
					     FW_IQ_CMD_FL0DATARO_V(relaxed) |
3026 3027 3028 3029 3030 3031
					     FW_IQ_CMD_FL0PADEN_F);
		if (cong >= 0)
			c.iqns_to_fl0congen |=
				htonl(FW_IQ_CMD_FL0CNGCHMAP_V(cong) |
				      FW_IQ_CMD_FL0CONGCIF_F |
				      FW_IQ_CMD_FL0CONGEN_F);
3032 3033 3034 3035 3036 3037 3038 3039
		/* In T6, for egress queue type FL there is internal overhead
		 * of 16B for header going into FLM module.  Hence the maximum
		 * allowed burst size is 448 bytes.  For T4/T5, the hardware
		 * doesn't coalesce fetch requests if more than 64 bytes of
		 * Free List pointers are provided, so we use a 128-byte Fetch
		 * Burst Minimum there (T6 implements coalescing so we can use
		 * the smaller 64-byte value there).
		 */
3040
		c.fl0dcaen_to_fl0cidxfthresh =
3041 3042 3043
			htons(FW_IQ_CMD_FL0FBMIN_V(chip <= CHELSIO_T5 ?
						   FETCHBURSTMIN_128B_X :
						   FETCHBURSTMIN_64B_X) |
3044 3045 3046
			      FW_IQ_CMD_FL0FBMAX_V((chip <= CHELSIO_T5) ?
						   FETCHBURSTMAX_512B_X :
						   FETCHBURSTMAX_256B_X));
3047 3048 3049 3050
		c.fl0size = htons(flsz);
		c.fl0addr = cpu_to_be64(fl->addr);
	}

3051
	ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
3052 3053 3054 3055 3056 3057 3058 3059 3060 3061
	if (ret)
		goto err;

	netif_napi_add(dev, &iq->napi, napi_rx_handler, 64);
	iq->cur_desc = iq->desc;
	iq->cidx = 0;
	iq->gen = 1;
	iq->next_intr_params = iq->intr_params;
	iq->cntxt_id = ntohs(c.iqid);
	iq->abs_id = ntohs(c.physiqid);
3062 3063 3064 3065
	iq->bar2_addr = bar2_address(adap,
				     iq->cntxt_id,
				     T4_BAR2_QTYPE_INGRESS,
				     &iq->bar2_qid);
3066 3067 3068
	iq->size--;                           /* subtract status entry */
	iq->netdev = dev;
	iq->handler = hnd;
3069 3070 3071 3072
	iq->flush_handler = flush_hnd;

	memset(&iq->lro_mgr, 0, sizeof(struct t4_lro_mgr));
	skb_queue_head_init(&iq->lro_mgr.lroq);
3073 3074 3075 3076

	/* set offset to -1 to distinguish ingress queues without FL */
	iq->offset = fl ? 0 : -1;

3077
	adap->sge.ingr_map[iq->cntxt_id - adap->sge.ingr_start] = iq;
3078 3079

	if (fl) {
3080
		fl->cntxt_id = ntohs(c.fl0id);
3081 3082 3083
		fl->avail = fl->pend_cred = 0;
		fl->pidx = fl->cidx = 0;
		fl->alloc_failed = fl->large_alloc_failed = fl->starving = 0;
3084
		adap->sge.egr_map[fl->cntxt_id - adap->sge.egr_start] = fl;
3085

3086 3087
		/* Note, we must initialize the BAR2 Free List User Doorbell
		 * information before refilling the Free List!
3088
		 */
3089 3090 3091 3092
		fl->bar2_addr = bar2_address(adap,
					     fl->cntxt_id,
					     T4_BAR2_QTYPE_EGRESS,
					     &fl->bar2_qid);
3093 3094
		refill_fl(adap, fl, fl_cap(fl), GFP_KERNEL);
	}
3095 3096 3097 3098 3099 3100 3101 3102 3103 3104

	/* For T5 and later we attempt to set up the Congestion Manager values
	 * of the new RX Ethernet Queue.  This should really be handled by
	 * firmware because it's more complex than any host driver wants to
	 * get involved with and it's different per chip and this is almost
	 * certainly wrong.  Firmware would be wrong as well, but it would be
	 * a lot easier to fix in one place ...  For now we do something very
	 * simple (and hopefully less wrong).
	 */
	if (!is_t4(adap->params.chip) && cong >= 0) {
3105
		u32 param, val, ch_map = 0;
3106
		int i;
3107
		u16 cng_ch_bits_log = adap->params.arch.cng_ch_bits_log;
3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118

		param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
			 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DMAQ_CONM_CTXT) |
			 FW_PARAMS_PARAM_YZ_V(iq->cntxt_id));
		if (cong == 0) {
			val = CONMCTXT_CNGTPMODE_V(CONMCTXT_CNGTPMODE_QUEUE_X);
		} else {
			val =
			    CONMCTXT_CNGTPMODE_V(CONMCTXT_CNGTPMODE_CHANNEL_X);
			for (i = 0; i < 4; i++) {
				if (cong & (1 << i))
3119
					ch_map |= 1 << (i << cng_ch_bits_log);
3120
			}
3121
			val |= CONMCTXT_CNGCHMAP_V(ch_map);
3122
		}
3123
		ret = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
3124 3125 3126 3127 3128 3129 3130
				    &param, &val);
		if (ret)
			dev_warn(adap->pdev_dev, "Failed to set Congestion"
				 " Manager Context for Ingress Queue %d: %d\n",
				 iq->cntxt_id, -ret);
	}

3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152
	return 0;

fl_nomem:
	ret = -ENOMEM;
err:
	if (iq->desc) {
		dma_free_coherent(adap->pdev_dev, iq->size * iq->iqe_len,
				  iq->desc, iq->phys_addr);
		iq->desc = NULL;
	}
	if (fl && fl->desc) {
		kfree(fl->sdesc);
		fl->sdesc = NULL;
		dma_free_coherent(adap->pdev_dev, flsz * sizeof(struct tx_desc),
				  fl->desc, fl->addr);
		fl->desc = NULL;
	}
	return ret;
}

static void init_txq(struct adapter *adap, struct sge_txq *q, unsigned int id)
{
3153
	q->cntxt_id = id;
3154 3155 3156 3157
	q->bar2_addr = bar2_address(adap,
				    q->cntxt_id,
				    T4_BAR2_QTYPE_EGRESS,
				    &q->bar2_qid);
3158 3159 3160 3161
	q->in_use = 0;
	q->cidx = q->pidx = 0;
	q->stops = q->restarts = 0;
	q->stat = (void *)&q->desc[q->size];
3162
	spin_lock_init(&q->db_lock);
3163
	adap->sge.egr_map[id - adap->sge.egr_start] = q;
3164 3165 3166 3167 3168 3169 3170 3171
}

int t4_sge_alloc_eth_txq(struct adapter *adap, struct sge_eth_txq *txq,
			 struct net_device *dev, struct netdev_queue *netdevq,
			 unsigned int iqid)
{
	int ret, nentries;
	struct fw_eq_eth_cmd c;
3172
	struct sge *s = &adap->sge;
3173 3174 3175
	struct port_info *pi = netdev_priv(dev);

	/* Add status entries */
3176
	nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
3177 3178 3179

	txq->q.desc = alloc_ring(adap->pdev_dev, txq->q.size,
			sizeof(struct tx_desc), sizeof(struct tx_sw_desc),
3180
			&txq->q.phys_addr, &txq->q.sdesc, s->stat_len,
3181
			netdev_queue_numa_node_read(netdevq));
3182 3183 3184 3185
	if (!txq->q.desc)
		return -ENOMEM;

	memset(&c, 0, sizeof(c));
3186 3187
	c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_ETH_CMD) | FW_CMD_REQUEST_F |
			    FW_CMD_WRITE_F | FW_CMD_EXEC_F |
3188
			    FW_EQ_ETH_CMD_PFN_V(adap->pf) |
3189 3190 3191 3192 3193
			    FW_EQ_ETH_CMD_VFN_V(0));
	c.alloc_to_len16 = htonl(FW_EQ_ETH_CMD_ALLOC_F |
				 FW_EQ_ETH_CMD_EQSTART_F | FW_LEN16(c));
	c.viid_pkd = htonl(FW_EQ_ETH_CMD_AUTOEQUEQE_F |
			   FW_EQ_ETH_CMD_VIID_V(pi->viid));
3194 3195 3196 3197 3198 3199 3200 3201 3202
	c.fetchszm_to_iqid =
		htonl(FW_EQ_ETH_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X) |
		      FW_EQ_ETH_CMD_PCIECHN_V(pi->tx_chan) |
		      FW_EQ_ETH_CMD_FETCHRO_F | FW_EQ_ETH_CMD_IQID_V(iqid));
	c.dcaen_to_eqsize =
		htonl(FW_EQ_ETH_CMD_FBMIN_V(FETCHBURSTMIN_64B_X) |
		      FW_EQ_ETH_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) |
		      FW_EQ_ETH_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) |
		      FW_EQ_ETH_CMD_EQSIZE_V(nentries));
3203 3204
	c.eqaddr = cpu_to_be64(txq->q.phys_addr);

3205
	ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
3206 3207 3208 3209 3210 3211 3212 3213 3214 3215
	if (ret) {
		kfree(txq->q.sdesc);
		txq->q.sdesc = NULL;
		dma_free_coherent(adap->pdev_dev,
				  nentries * sizeof(struct tx_desc),
				  txq->q.desc, txq->q.phys_addr);
		txq->q.desc = NULL;
		return ret;
	}

3216
	txq->q.q_type = CXGB4_TXQ_ETH;
3217
	init_txq(adap, &txq->q, FW_EQ_ETH_CMD_EQID_G(ntohl(c.eqid_pkd)));
3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229
	txq->txq = netdevq;
	txq->tso = txq->tx_cso = txq->vlan_ins = 0;
	txq->mapping_err = 0;
	return 0;
}

int t4_sge_alloc_ctrl_txq(struct adapter *adap, struct sge_ctrl_txq *txq,
			  struct net_device *dev, unsigned int iqid,
			  unsigned int cmplqid)
{
	int ret, nentries;
	struct fw_eq_ctrl_cmd c;
3230
	struct sge *s = &adap->sge;
3231 3232 3233
	struct port_info *pi = netdev_priv(dev);

	/* Add status entries */
3234
	nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
3235 3236 3237

	txq->q.desc = alloc_ring(adap->pdev_dev, nentries,
				 sizeof(struct tx_desc), 0, &txq->q.phys_addr,
3238
				 NULL, 0, dev_to_node(adap->pdev_dev));
3239 3240 3241
	if (!txq->q.desc)
		return -ENOMEM;

3242 3243
	c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_CTRL_CMD) | FW_CMD_REQUEST_F |
			    FW_CMD_WRITE_F | FW_CMD_EXEC_F |
3244
			    FW_EQ_CTRL_CMD_PFN_V(adap->pf) |
3245 3246 3247 3248
			    FW_EQ_CTRL_CMD_VFN_V(0));
	c.alloc_to_len16 = htonl(FW_EQ_CTRL_CMD_ALLOC_F |
				 FW_EQ_CTRL_CMD_EQSTART_F | FW_LEN16(c));
	c.cmpliqid_eqid = htonl(FW_EQ_CTRL_CMD_CMPLIQID_V(cmplqid));
3249
	c.physeqid_pkd = htonl(0);
3250 3251 3252 3253 3254 3255 3256 3257 3258
	c.fetchszm_to_iqid =
		htonl(FW_EQ_CTRL_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X) |
		      FW_EQ_CTRL_CMD_PCIECHN_V(pi->tx_chan) |
		      FW_EQ_CTRL_CMD_FETCHRO_F | FW_EQ_CTRL_CMD_IQID_V(iqid));
	c.dcaen_to_eqsize =
		htonl(FW_EQ_CTRL_CMD_FBMIN_V(FETCHBURSTMIN_64B_X) |
		      FW_EQ_CTRL_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) |
		      FW_EQ_CTRL_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) |
		      FW_EQ_CTRL_CMD_EQSIZE_V(nentries));
3259 3260
	c.eqaddr = cpu_to_be64(txq->q.phys_addr);

3261
	ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
3262 3263 3264 3265 3266 3267 3268 3269
	if (ret) {
		dma_free_coherent(adap->pdev_dev,
				  nentries * sizeof(struct tx_desc),
				  txq->q.desc, txq->q.phys_addr);
		txq->q.desc = NULL;
		return ret;
	}

3270
	txq->q.q_type = CXGB4_TXQ_CTRL;
3271
	init_txq(adap, &txq->q, FW_EQ_CTRL_CMD_EQID_G(ntohl(c.cmpliqid_eqid)));
3272 3273 3274 3275 3276 3277 3278
	txq->adap = adap;
	skb_queue_head_init(&txq->sendq);
	tasklet_init(&txq->qresume_tsk, restart_ctrlq, (unsigned long)txq);
	txq->full = 0;
	return 0;
}

3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290
int t4_sge_mod_ctrl_txq(struct adapter *adap, unsigned int eqid,
			unsigned int cmplqid)
{
	u32 param, val;

	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DMAQ_EQ_CMPLIQID_CTRL) |
		 FW_PARAMS_PARAM_YZ_V(eqid));
	val = cmplqid;
	return t4_set_params(adap, adap->mbox, adap->pf, 0, 1, &param, &val);
}

3291 3292 3293
int t4_sge_alloc_uld_txq(struct adapter *adap, struct sge_uld_txq *txq,
			 struct net_device *dev, unsigned int iqid,
			 unsigned int uld_type)
3294 3295 3296
{
	int ret, nentries;
	struct fw_eq_ofld_cmd c;
3297
	struct sge *s = &adap->sge;
3298
	struct port_info *pi = netdev_priv(dev);
3299
	int cmd = FW_EQ_OFLD_CMD;
3300 3301

	/* Add status entries */
3302
	nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
3303 3304 3305

	txq->q.desc = alloc_ring(adap->pdev_dev, txq->q.size,
			sizeof(struct tx_desc), sizeof(struct tx_sw_desc),
3306
			&txq->q.phys_addr, &txq->q.sdesc, s->stat_len,
3307
			NUMA_NO_NODE);
3308 3309 3310 3311
	if (!txq->q.desc)
		return -ENOMEM;

	memset(&c, 0, sizeof(c));
3312 3313 3314
	if (unlikely(uld_type == CXGB4_TX_CRYPTO))
		cmd = FW_EQ_CTRL_CMD;
	c.op_to_vfn = htonl(FW_CMD_OP_V(cmd) | FW_CMD_REQUEST_F |
3315
			    FW_CMD_WRITE_F | FW_CMD_EXEC_F |
3316
			    FW_EQ_OFLD_CMD_PFN_V(adap->pf) |
3317 3318 3319
			    FW_EQ_OFLD_CMD_VFN_V(0));
	c.alloc_to_len16 = htonl(FW_EQ_OFLD_CMD_ALLOC_F |
				 FW_EQ_OFLD_CMD_EQSTART_F | FW_LEN16(c));
3320 3321 3322 3323 3324 3325 3326 3327 3328
	c.fetchszm_to_iqid =
		htonl(FW_EQ_OFLD_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X) |
		      FW_EQ_OFLD_CMD_PCIECHN_V(pi->tx_chan) |
		      FW_EQ_OFLD_CMD_FETCHRO_F | FW_EQ_OFLD_CMD_IQID_V(iqid));
	c.dcaen_to_eqsize =
		htonl(FW_EQ_OFLD_CMD_FBMIN_V(FETCHBURSTMIN_64B_X) |
		      FW_EQ_OFLD_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) |
		      FW_EQ_OFLD_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) |
		      FW_EQ_OFLD_CMD_EQSIZE_V(nentries));
3329 3330
	c.eqaddr = cpu_to_be64(txq->q.phys_addr);

3331
	ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
3332 3333 3334 3335 3336 3337 3338 3339 3340 3341
	if (ret) {
		kfree(txq->q.sdesc);
		txq->q.sdesc = NULL;
		dma_free_coherent(adap->pdev_dev,
				  nentries * sizeof(struct tx_desc),
				  txq->q.desc, txq->q.phys_addr);
		txq->q.desc = NULL;
		return ret;
	}

3342
	txq->q.q_type = CXGB4_TXQ_ULD;
3343
	init_txq(adap, &txq->q, FW_EQ_OFLD_CMD_EQID_G(ntohl(c.eqid_pkd)));
3344 3345 3346 3347 3348 3349 3350 3351
	txq->adap = adap;
	skb_queue_head_init(&txq->sendq);
	tasklet_init(&txq->qresume_tsk, restart_ofldq, (unsigned long)txq);
	txq->full = 0;
	txq->mapping_err = 0;
	return 0;
}

3352
void free_txq(struct adapter *adap, struct sge_txq *q)
3353
{
3354 3355
	struct sge *s = &adap->sge;

3356
	dma_free_coherent(adap->pdev_dev,
3357
			  q->size * sizeof(struct tx_desc) + s->stat_len,
3358 3359 3360 3361 3362 3363
			  q->desc, q->phys_addr);
	q->cntxt_id = 0;
	q->sdesc = NULL;
	q->desc = NULL;
}

3364 3365
void free_rspq_fl(struct adapter *adap, struct sge_rspq *rq,
		  struct sge_fl *fl)
3366
{
3367
	struct sge *s = &adap->sge;
3368 3369
	unsigned int fl_id = fl ? fl->cntxt_id : 0xffff;

3370
	adap->sge.ingr_map[rq->cntxt_id - adap->sge.ingr_start] = NULL;
3371
	t4_iq_free(adap, adap->mbox, adap->pf, 0, FW_IQ_TYPE_FL_INT_CAP,
3372
		   rq->cntxt_id, fl_id, 0xffff);
3373 3374 3375 3376 3377 3378 3379 3380 3381
	dma_free_coherent(adap->pdev_dev, (rq->size + 1) * rq->iqe_len,
			  rq->desc, rq->phys_addr);
	netif_napi_del(&rq->napi);
	rq->netdev = NULL;
	rq->cntxt_id = rq->abs_id = 0;
	rq->desc = NULL;

	if (fl) {
		free_rx_bufs(adap, fl, fl->avail);
3382
		dma_free_coherent(adap->pdev_dev, fl->size * 8 + s->stat_len,
3383 3384 3385 3386 3387 3388 3389 3390
				  fl->desc, fl->addr);
		kfree(fl->sdesc);
		fl->sdesc = NULL;
		fl->cntxt_id = 0;
		fl->desc = NULL;
	}
}

3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406
/**
 *      t4_free_ofld_rxqs - free a block of consecutive Rx queues
 *      @adap: the adapter
 *      @n: number of queues
 *      @q: pointer to first queue
 *
 *      Release the resources of a consecutive block of offload Rx queues.
 */
void t4_free_ofld_rxqs(struct adapter *adap, int n, struct sge_ofld_rxq *q)
{
	for ( ; n; n--, q++)
		if (q->rspq.desc)
			free_rspq_fl(adap, &q->rspq,
				     q->fl.size ? &q->fl : NULL);
}

3407 3408 3409 3410 3411 3412 3413 3414 3415
/**
 *	t4_free_sge_resources - free SGE resources
 *	@adap: the adapter
 *
 *	Frees resources used by the SGE queue sets.
 */
void t4_free_sge_resources(struct adapter *adap)
{
	int i;
3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428
	struct sge_eth_rxq *eq;
	struct sge_eth_txq *etq;

	/* stop all Rx queues in order to start them draining */
	for (i = 0; i < adap->sge.ethqsets; i++) {
		eq = &adap->sge.ethrxq[i];
		if (eq->rspq.desc)
			t4_iq_stop(adap, adap->mbox, adap->pf, 0,
				   FW_IQ_TYPE_FL_INT_CAP,
				   eq->rspq.cntxt_id,
				   eq->fl.size ? eq->fl.cntxt_id : 0xffff,
				   0xffff);
	}
3429 3430

	/* clean up Ethernet Tx/Rx queues */
3431 3432
	for (i = 0; i < adap->sge.ethqsets; i++) {
		eq = &adap->sge.ethrxq[i];
3433
		if (eq->rspq.desc)
3434 3435
			free_rspq_fl(adap, &eq->rspq,
				     eq->fl.size ? &eq->fl : NULL);
3436 3437

		etq = &adap->sge.ethtxq[i];
3438
		if (etq->q.desc) {
3439
			t4_eth_eq_free(adap, adap->mbox, adap->pf, 0,
3440
				       etq->q.cntxt_id);
3441
			__netif_tx_lock_bh(etq->txq);
3442
			free_tx_desc(adap, &etq->q, etq->q.in_use, true);
3443
			__netif_tx_unlock_bh(etq->txq);
3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454
			kfree(etq->q.sdesc);
			free_txq(adap, &etq->q);
		}
	}

	/* clean up control Tx queues */
	for (i = 0; i < ARRAY_SIZE(adap->sge.ctrlq); i++) {
		struct sge_ctrl_txq *cq = &adap->sge.ctrlq[i];

		if (cq->q.desc) {
			tasklet_kill(&cq->qresume_tsk);
3455
			t4_ctrl_eq_free(adap, adap->mbox, adap->pf, 0,
3456
					cq->q.cntxt_id);
3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467
			__skb_queue_purge(&cq->sendq);
			free_txq(adap, &cq->q);
		}
	}

	if (adap->sge.fw_evtq.desc)
		free_rspq_fl(adap, &adap->sge.fw_evtq, NULL);

	if (adap->sge.intrq.desc)
		free_rspq_fl(adap, &adap->sge.intrq, NULL);

3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480
	if (!is_t4(adap->params.chip)) {
		etq = &adap->sge.ptptxq;
		if (etq->q.desc) {
			t4_eth_eq_free(adap, adap->mbox, adap->pf, 0,
				       etq->q.cntxt_id);
			spin_lock_bh(&adap->ptp_lock);
			free_tx_desc(adap, &etq->q, etq->q.in_use, true);
			spin_unlock_bh(&adap->ptp_lock);
			kfree(etq->q.sdesc);
			free_txq(adap, &etq->q);
		}
	}

3481
	/* clear the reverse egress queue map */
3482 3483
	memset(adap->sge.egr_map, 0,
	       adap->sge.egr_sz * sizeof(*adap->sge.egr_map));
3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513
}

void t4_sge_start(struct adapter *adap)
{
	adap->sge.ethtxq_rover = 0;
	mod_timer(&adap->sge.rx_timer, jiffies + RX_QCHECK_PERIOD);
	mod_timer(&adap->sge.tx_timer, jiffies + TX_QCHECK_PERIOD);
}

/**
 *	t4_sge_stop - disable SGE operation
 *	@adap: the adapter
 *
 *	Stop tasklets and timers associated with the DMA engine.  Note that
 *	this is effective only if measures have been taken to disable any HW
 *	events that may restart them.
 */
void t4_sge_stop(struct adapter *adap)
{
	int i;
	struct sge *s = &adap->sge;

	if (in_interrupt())  /* actions below require waiting */
		return;

	if (s->rx_timer.function)
		del_timer_sync(&s->rx_timer);
	if (s->tx_timer.function)
		del_timer_sync(&s->tx_timer);

3514 3515 3516 3517 3518 3519
	if (is_offload(adap)) {
		struct sge_uld_txq_info *txq_info;

		txq_info = adap->sge.uld_txq_info[CXGB4_TX_OFLD];
		if (txq_info) {
			struct sge_uld_txq *txq = txq_info->uldtxq;
3520

3521 3522 3523 3524 3525
			for_each_ofldtxq(&adap->sge, i) {
				if (txq->q.desc)
					tasklet_kill(&txq->qresume_tsk);
			}
		}
3526
	}
3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541

	if (is_pci_uld(adap)) {
		struct sge_uld_txq_info *txq_info;

		txq_info = adap->sge.uld_txq_info[CXGB4_TX_CRYPTO];
		if (txq_info) {
			struct sge_uld_txq *txq = txq_info->uldtxq;

			for_each_ofldtxq(&adap->sge, i) {
				if (txq->q.desc)
					tasklet_kill(&txq->qresume_tsk);
			}
		}
	}

3542 3543 3544 3545 3546 3547 3548 3549 3550
	for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++) {
		struct sge_ctrl_txq *cq = &s->ctrlq[i];

		if (cq->q.desc)
			tasklet_kill(&cq->qresume_tsk);
	}
}

/**
3551
 *	t4_sge_init_soft - grab core SGE values needed by SGE code
3552 3553
 *	@adap: the adapter
 *
3554 3555
 *	We need to grab the SGE operating parameters that we need to have
 *	in order to do our job and make sure we can live with them.
3556
 */
3557 3558

static int t4_sge_init_soft(struct adapter *adap)
3559 3560
{
	struct sge *s = &adap->sge;
3561 3562 3563
	u32 fl_small_pg, fl_large_pg, fl_small_mtu, fl_large_mtu;
	u32 timer_value_0_and_1, timer_value_2_and_3, timer_value_4_and_5;
	u32 ingress_rx_threshold;
3564

3565 3566 3567 3568 3569
	/*
	 * Verify that CPL messages are going to the Ingress Queue for
	 * process_responses() and that only packet data is going to the
	 * Free Lists.
	 */
3570 3571
	if ((t4_read_reg(adap, SGE_CONTROL_A) & RXPKTCPLMODE_F) !=
	    RXPKTCPLMODE_V(RXPKTCPLMODE_SPLIT_X)) {
3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584
		dev_err(adap->pdev_dev, "bad SGE CPL MODE\n");
		return -EINVAL;
	}

	/*
	 * Validate the Host Buffer Register Array indices that we want to
	 * use ...
	 *
	 * XXX Note that we should really read through the Host Buffer Size
	 * XXX register array and find the indices of the Buffer Sizes which
	 * XXX meet our needs!
	 */
	#define READ_FL_BUF(x) \
3585
		t4_read_reg(adap, SGE_FL_BUFFER_SIZE0_A+(x)*sizeof(u32))
3586 3587 3588 3589 3590 3591

	fl_small_pg = READ_FL_BUF(RX_SMALL_PG_BUF);
	fl_large_pg = READ_FL_BUF(RX_LARGE_PG_BUF);
	fl_small_mtu = READ_FL_BUF(RX_SMALL_MTU_BUF);
	fl_large_mtu = READ_FL_BUF(RX_LARGE_MTU_BUF);

3592 3593 3594 3595 3596 3597
	/* We only bother using the Large Page logic if the Large Page Buffer
	 * is larger than our Page Size Buffer.
	 */
	if (fl_large_pg <= fl_small_pg)
		fl_large_pg = 0;

3598 3599
	#undef READ_FL_BUF

3600 3601 3602
	/* The Page Size Buffer must be exactly equal to our Page Size and the
	 * Large Page Size Buffer should be 0 (per above) or a power of 2.
	 */
3603
	if (fl_small_pg != PAGE_SIZE ||
3604
	    (fl_large_pg & (fl_large_pg-1)) != 0) {
3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622
		dev_err(adap->pdev_dev, "bad SGE FL page buffer sizes [%d, %d]\n",
			fl_small_pg, fl_large_pg);
		return -EINVAL;
	}
	if (fl_large_pg)
		s->fl_pg_order = ilog2(fl_large_pg) - PAGE_SHIFT;

	if (fl_small_mtu < FL_MTU_SMALL_BUFSIZE(adap) ||
	    fl_large_mtu < FL_MTU_LARGE_BUFSIZE(adap)) {
		dev_err(adap->pdev_dev, "bad SGE FL MTU sizes [%d, %d]\n",
			fl_small_mtu, fl_large_mtu);
		return -EINVAL;
	}

	/*
	 * Retrieve our RX interrupt holdoff timer values and counter
	 * threshold values from the SGE parameters.
	 */
3623 3624 3625
	timer_value_0_and_1 = t4_read_reg(adap, SGE_TIMER_VALUE_0_AND_1_A);
	timer_value_2_and_3 = t4_read_reg(adap, SGE_TIMER_VALUE_2_AND_3_A);
	timer_value_4_and_5 = t4_read_reg(adap, SGE_TIMER_VALUE_4_AND_5_A);
3626
	s->timer_val[0] = core_ticks_to_us(adap,
3627
		TIMERVALUE0_G(timer_value_0_and_1));
3628
	s->timer_val[1] = core_ticks_to_us(adap,
3629
		TIMERVALUE1_G(timer_value_0_and_1));
3630
	s->timer_val[2] = core_ticks_to_us(adap,
3631
		TIMERVALUE2_G(timer_value_2_and_3));
3632
	s->timer_val[3] = core_ticks_to_us(adap,
3633
		TIMERVALUE3_G(timer_value_2_and_3));
3634
	s->timer_val[4] = core_ticks_to_us(adap,
3635
		TIMERVALUE4_G(timer_value_4_and_5));
3636
	s->timer_val[5] = core_ticks_to_us(adap,
3637
		TIMERVALUE5_G(timer_value_4_and_5));
3638

3639 3640 3641 3642 3643
	ingress_rx_threshold = t4_read_reg(adap, SGE_INGRESS_RX_THRESHOLD_A);
	s->counter_val[0] = THRESHOLD_0_G(ingress_rx_threshold);
	s->counter_val[1] = THRESHOLD_1_G(ingress_rx_threshold);
	s->counter_val[2] = THRESHOLD_2_G(ingress_rx_threshold);
	s->counter_val[3] = THRESHOLD_3_G(ingress_rx_threshold);
3644 3645 3646 3647

	return 0;
}

3648 3649 3650 3651 3652 3653 3654
/**
 *     t4_sge_init - initialize SGE
 *     @adap: the adapter
 *
 *     Perform low-level SGE code initialization needed every time after a
 *     chip reset.
 */
3655 3656 3657
int t4_sge_init(struct adapter *adap)
{
	struct sge *s = &adap->sge;
3658
	u32 sge_control, sge_conm_ctrl;
3659
	int ret, egress_threshold;
3660 3661 3662 3663 3664

	/*
	 * Ingress Padding Boundary and Egress Status Page Size are set up by
	 * t4_fixup_host_params().
	 */
3665 3666 3667
	sge_control = t4_read_reg(adap, SGE_CONTROL_A);
	s->pktshift = PKTSHIFT_G(sge_control);
	s->stat_len = (sge_control & EGRSTATUSPAGESIZE_F) ? 128 : 64;
3668

3669
	s->fl_align = t4_fl_pkt_align(adap);
3670
	ret = t4_sge_init_soft(adap);
3671 3672 3673 3674 3675 3676 3677 3678 3679
	if (ret < 0)
		return ret;

	/*
	 * A FL with <= fl_starve_thres buffers is starving and a periodic
	 * timer will attempt to refill it.  This needs to be larger than the
	 * SGE's Egress Congestion Threshold.  If it isn't, then we can get
	 * stuck waiting for new packets while the SGE is waiting for us to
	 * give it more Free List entries.  (Note that the SGE's Egress
3680 3681 3682 3683 3684
	 * Congestion Threshold is in units of 2 Free List pointers.) For T4,
	 * there was only a single field to control this.  For T5 there's the
	 * original field which now only applies to Unpacked Mode Free List
	 * buffers and a new field which only applies to Packed Mode Free List
	 * buffers.
3685
	 */
3686
	sge_conm_ctrl = t4_read_reg(adap, SGE_CONM_CTRL_A);
3687 3688
	switch (CHELSIO_CHIP_VERSION(adap->params.chip)) {
	case CHELSIO_T4:
3689
		egress_threshold = EGRTHRESHOLD_G(sge_conm_ctrl);
3690 3691
		break;
	case CHELSIO_T5:
3692
		egress_threshold = EGRTHRESHOLDPACKING_G(sge_conm_ctrl);
3693 3694 3695 3696 3697 3698 3699 3700 3701
		break;
	case CHELSIO_T6:
		egress_threshold = T6_EGRTHRESHOLDPACKING_G(sge_conm_ctrl);
		break;
	default:
		dev_err(adap->pdev_dev, "Unsupported Chip version %d\n",
			CHELSIO_CHIP_VERSION(adap->params.chip));
		return -EINVAL;
	}
3702
	s->fl_starve_thres = 2*egress_threshold + 1;
3703

3704 3705
	t4_idma_monitor_init(adap, &s->idma_monitor);

3706 3707 3708
	/* Set up timers used for recuring callbacks to process RX and TX
	 * administrative tasks.
	 */
3709 3710
	timer_setup(&s->rx_timer, sge_rx_timer_cb, 0);
	timer_setup(&s->tx_timer, sge_tx_timer_cb, 0);
3711

3712
	spin_lock_init(&s->intrq_lock);
3713 3714

	return 0;
3715
}