spi-tegra20-slink.c 35.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
/*
 * SPI driver for Nvidia's Tegra20/Tegra30 SLINK Controller.
 *
 * Copyright (c) 2012, NVIDIA CORPORATION.  All rights reserved.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

#include <linux/clk.h>
#include <linux/completion.h>
#include <linux/delay.h>
#include <linux/dmaengine.h>
#include <linux/dma-mapping.h>
#include <linux/dmapool.h>
#include <linux/err.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/kthread.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/spi/spi.h>
#include <linux/spi/spi-tegra.h>
38
#include <linux/clk/tegra.h>
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285

#define SLINK_COMMAND			0x000
#define SLINK_BIT_LENGTH(x)		(((x) & 0x1f) << 0)
#define SLINK_WORD_SIZE(x)		(((x) & 0x1f) << 5)
#define SLINK_BOTH_EN			(1 << 10)
#define SLINK_CS_SW			(1 << 11)
#define SLINK_CS_VALUE			(1 << 12)
#define SLINK_CS_POLARITY		(1 << 13)
#define SLINK_IDLE_SDA_DRIVE_LOW	(0 << 16)
#define SLINK_IDLE_SDA_DRIVE_HIGH	(1 << 16)
#define SLINK_IDLE_SDA_PULL_LOW		(2 << 16)
#define SLINK_IDLE_SDA_PULL_HIGH	(3 << 16)
#define SLINK_IDLE_SDA_MASK		(3 << 16)
#define SLINK_CS_POLARITY1		(1 << 20)
#define SLINK_CK_SDA			(1 << 21)
#define SLINK_CS_POLARITY2		(1 << 22)
#define SLINK_CS_POLARITY3		(1 << 23)
#define SLINK_IDLE_SCLK_DRIVE_LOW	(0 << 24)
#define SLINK_IDLE_SCLK_DRIVE_HIGH	(1 << 24)
#define SLINK_IDLE_SCLK_PULL_LOW	(2 << 24)
#define SLINK_IDLE_SCLK_PULL_HIGH	(3 << 24)
#define SLINK_IDLE_SCLK_MASK		(3 << 24)
#define SLINK_M_S			(1 << 28)
#define SLINK_WAIT			(1 << 29)
#define SLINK_GO			(1 << 30)
#define SLINK_ENB			(1 << 31)

#define SLINK_MODES			(SLINK_IDLE_SCLK_MASK | SLINK_CK_SDA)

#define SLINK_COMMAND2			0x004
#define SLINK_LSBFE			(1 << 0)
#define SLINK_SSOE			(1 << 1)
#define SLINK_SPIE			(1 << 4)
#define SLINK_BIDIROE			(1 << 6)
#define SLINK_MODFEN			(1 << 7)
#define SLINK_INT_SIZE(x)		(((x) & 0x1f) << 8)
#define SLINK_CS_ACTIVE_BETWEEN		(1 << 17)
#define SLINK_SS_EN_CS(x)		(((x) & 0x3) << 18)
#define SLINK_SS_SETUP(x)		(((x) & 0x3) << 20)
#define SLINK_FIFO_REFILLS_0		(0 << 22)
#define SLINK_FIFO_REFILLS_1		(1 << 22)
#define SLINK_FIFO_REFILLS_2		(2 << 22)
#define SLINK_FIFO_REFILLS_3		(3 << 22)
#define SLINK_FIFO_REFILLS_MASK		(3 << 22)
#define SLINK_WAIT_PACK_INT(x)		(((x) & 0x7) << 26)
#define SLINK_SPC0			(1 << 29)
#define SLINK_TXEN			(1 << 30)
#define SLINK_RXEN			(1 << 31)

#define SLINK_STATUS			0x008
#define SLINK_COUNT(val)		(((val) >> 0) & 0x1f)
#define SLINK_WORD(val)			(((val) >> 5) & 0x1f)
#define SLINK_BLK_CNT(val)		(((val) >> 0) & 0xffff)
#define SLINK_MODF			(1 << 16)
#define SLINK_RX_UNF			(1 << 18)
#define SLINK_TX_OVF			(1 << 19)
#define SLINK_TX_FULL			(1 << 20)
#define SLINK_TX_EMPTY			(1 << 21)
#define SLINK_RX_FULL			(1 << 22)
#define SLINK_RX_EMPTY			(1 << 23)
#define SLINK_TX_UNF			(1 << 24)
#define SLINK_RX_OVF			(1 << 25)
#define SLINK_TX_FLUSH			(1 << 26)
#define SLINK_RX_FLUSH			(1 << 27)
#define SLINK_SCLK			(1 << 28)
#define SLINK_ERR			(1 << 29)
#define SLINK_RDY			(1 << 30)
#define SLINK_BSY			(1 << 31)
#define SLINK_FIFO_ERROR		(SLINK_TX_OVF | SLINK_RX_UNF |	\
					SLINK_TX_UNF | SLINK_RX_OVF)

#define SLINK_FIFO_EMPTY		(SLINK_TX_EMPTY | SLINK_RX_EMPTY)

#define SLINK_MAS_DATA			0x010
#define SLINK_SLAVE_DATA		0x014

#define SLINK_DMA_CTL			0x018
#define SLINK_DMA_BLOCK_SIZE(x)		(((x) & 0xffff) << 0)
#define SLINK_TX_TRIG_1			(0 << 16)
#define SLINK_TX_TRIG_4			(1 << 16)
#define SLINK_TX_TRIG_8			(2 << 16)
#define SLINK_TX_TRIG_16		(3 << 16)
#define SLINK_TX_TRIG_MASK		(3 << 16)
#define SLINK_RX_TRIG_1			(0 << 18)
#define SLINK_RX_TRIG_4			(1 << 18)
#define SLINK_RX_TRIG_8			(2 << 18)
#define SLINK_RX_TRIG_16		(3 << 18)
#define SLINK_RX_TRIG_MASK		(3 << 18)
#define SLINK_PACKED			(1 << 20)
#define SLINK_PACK_SIZE_4		(0 << 21)
#define SLINK_PACK_SIZE_8		(1 << 21)
#define SLINK_PACK_SIZE_16		(2 << 21)
#define SLINK_PACK_SIZE_32		(3 << 21)
#define SLINK_PACK_SIZE_MASK		(3 << 21)
#define SLINK_IE_TXC			(1 << 26)
#define SLINK_IE_RXC			(1 << 27)
#define SLINK_DMA_EN			(1 << 31)

#define SLINK_STATUS2			0x01c
#define SLINK_TX_FIFO_EMPTY_COUNT(val)	(((val) & 0x3f) >> 0)
#define SLINK_RX_FIFO_FULL_COUNT(val)	(((val) & 0x3f0000) >> 16)
#define SLINK_SS_HOLD_TIME(val)		(((val) & 0xF) << 6)

#define SLINK_TX_FIFO			0x100
#define SLINK_RX_FIFO			0x180

#define DATA_DIR_TX			(1 << 0)
#define DATA_DIR_RX			(1 << 1)

#define SLINK_DMA_TIMEOUT		(msecs_to_jiffies(1000))

#define DEFAULT_SPI_DMA_BUF_LEN		(16*1024)
#define TX_FIFO_EMPTY_COUNT_MAX		SLINK_TX_FIFO_EMPTY_COUNT(0x20)
#define RX_FIFO_FULL_COUNT_ZERO		SLINK_RX_FIFO_FULL_COUNT(0)

#define SLINK_STATUS2_RESET \
	(TX_FIFO_EMPTY_COUNT_MAX | RX_FIFO_FULL_COUNT_ZERO << 16)

#define MAX_CHIP_SELECT			4
#define SLINK_FIFO_DEPTH		32

struct tegra_slink_chip_data {
	bool cs_hold_time;
};

struct tegra_slink_data {
	struct device				*dev;
	struct spi_master			*master;
	const struct tegra_slink_chip_data	*chip_data;
	spinlock_t				lock;

	struct clk				*clk;
	void __iomem				*base;
	phys_addr_t				phys;
	unsigned				irq;
	int					dma_req_sel;
	u32					spi_max_frequency;
	u32					cur_speed;

	struct spi_device			*cur_spi;
	unsigned				cur_pos;
	unsigned				cur_len;
	unsigned				words_per_32bit;
	unsigned				bytes_per_word;
	unsigned				curr_dma_words;
	unsigned				cur_direction;

	unsigned				cur_rx_pos;
	unsigned				cur_tx_pos;

	unsigned				dma_buf_size;
	unsigned				max_buf_size;
	bool					is_curr_dma_xfer;

	struct completion			rx_dma_complete;
	struct completion			tx_dma_complete;

	u32					tx_status;
	u32					rx_status;
	u32					status_reg;
	bool					is_packed;
	unsigned long				packed_size;

	u32					command_reg;
	u32					command2_reg;
	u32					dma_control_reg;
	u32					def_command_reg;
	u32					def_command2_reg;

	struct completion			xfer_completion;
	struct spi_transfer			*curr_xfer;
	struct dma_chan				*rx_dma_chan;
	u32					*rx_dma_buf;
	dma_addr_t				rx_dma_phys;
	struct dma_async_tx_descriptor		*rx_dma_desc;

	struct dma_chan				*tx_dma_chan;
	u32					*tx_dma_buf;
	dma_addr_t				tx_dma_phys;
	struct dma_async_tx_descriptor		*tx_dma_desc;
};

static int tegra_slink_runtime_suspend(struct device *dev);
static int tegra_slink_runtime_resume(struct device *dev);

static inline unsigned long tegra_slink_readl(struct tegra_slink_data *tspi,
		unsigned long reg)
{
	return readl(tspi->base + reg);
}

static inline void tegra_slink_writel(struct tegra_slink_data *tspi,
		unsigned long val, unsigned long reg)
{
	writel(val, tspi->base + reg);

	/* Read back register to make sure that register writes completed */
	if (reg != SLINK_TX_FIFO)
		readl(tspi->base + SLINK_MAS_DATA);
}

static void tegra_slink_clear_status(struct tegra_slink_data *tspi)
{
	unsigned long val;
	unsigned long val_write = 0;

	val = tegra_slink_readl(tspi, SLINK_STATUS);

	/* Write 1 to clear status register */
	val_write = SLINK_RDY | SLINK_FIFO_ERROR;
	tegra_slink_writel(tspi, val_write, SLINK_STATUS);
}

static unsigned long tegra_slink_get_packed_size(struct tegra_slink_data *tspi,
				  struct spi_transfer *t)
{
	unsigned long val;

	switch (tspi->bytes_per_word) {
	case 0:
		val = SLINK_PACK_SIZE_4;
		break;
	case 1:
		val = SLINK_PACK_SIZE_8;
		break;
	case 2:
		val = SLINK_PACK_SIZE_16;
		break;
	case 4:
		val = SLINK_PACK_SIZE_32;
		break;
	default:
		val = 0;
	}
	return val;
}

static unsigned tegra_slink_calculate_curr_xfer_param(
	struct spi_device *spi, struct tegra_slink_data *tspi,
	struct spi_transfer *t)
{
	unsigned remain_len = t->len - tspi->cur_pos;
	unsigned max_word;
	unsigned bits_per_word ;
	unsigned max_len;
	unsigned total_fifo_words;

286
	bits_per_word = t->bits_per_word;
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
	tspi->bytes_per_word = (bits_per_word - 1) / 8 + 1;

	if (bits_per_word == 8 || bits_per_word == 16) {
		tspi->is_packed = 1;
		tspi->words_per_32bit = 32/bits_per_word;
	} else {
		tspi->is_packed = 0;
		tspi->words_per_32bit = 1;
	}
	tspi->packed_size = tegra_slink_get_packed_size(tspi, t);

	if (tspi->is_packed) {
		max_len = min(remain_len, tspi->max_buf_size);
		tspi->curr_dma_words = max_len/tspi->bytes_per_word;
		total_fifo_words = max_len/4;
	} else {
		max_word = (remain_len - 1) / tspi->bytes_per_word + 1;
		max_word = min(max_word, tspi->max_buf_size/4);
		tspi->curr_dma_words = max_word;
		total_fifo_words = max_word;
	}
	return total_fifo_words;
}

static unsigned tegra_slink_fill_tx_fifo_from_client_txbuf(
	struct tegra_slink_data *tspi, struct spi_transfer *t)
{
	unsigned nbytes;
	unsigned tx_empty_count;
	unsigned long fifo_status;
	unsigned max_n_32bit;
	unsigned i, count;
	unsigned long x;
	unsigned int written_words;
	unsigned fifo_words_left;
	u8 *tx_buf = (u8 *)t->tx_buf + tspi->cur_tx_pos;

	fifo_status = tegra_slink_readl(tspi, SLINK_STATUS2);
	tx_empty_count = SLINK_TX_FIFO_EMPTY_COUNT(fifo_status);

	if (tspi->is_packed) {
		fifo_words_left = tx_empty_count * tspi->words_per_32bit;
		written_words = min(fifo_words_left, tspi->curr_dma_words);
		nbytes = written_words * tspi->bytes_per_word;
		max_n_32bit = DIV_ROUND_UP(nbytes, 4);
		for (count = 0; count < max_n_32bit; count++) {
			x = 0;
			for (i = 0; (i < 4) && nbytes; i++, nbytes--)
				x |= (*tx_buf++) << (i*8);
			tegra_slink_writel(tspi, x, SLINK_TX_FIFO);
		}
	} else {
		max_n_32bit = min(tspi->curr_dma_words,  tx_empty_count);
		written_words = max_n_32bit;
		nbytes = written_words * tspi->bytes_per_word;
		for (count = 0; count < max_n_32bit; count++) {
			x = 0;
			for (i = 0; nbytes && (i < tspi->bytes_per_word);
							i++, nbytes--)
				x |= ((*tx_buf++) << i*8);
			tegra_slink_writel(tspi, x, SLINK_TX_FIFO);
		}
	}
	tspi->cur_tx_pos += written_words * tspi->bytes_per_word;
	return written_words;
}

static unsigned int tegra_slink_read_rx_fifo_to_client_rxbuf(
		struct tegra_slink_data *tspi, struct spi_transfer *t)
{
	unsigned rx_full_count;
	unsigned long fifo_status;
	unsigned i, count;
	unsigned long x;
	unsigned int read_words = 0;
	unsigned len;
	u8 *rx_buf = (u8 *)t->rx_buf + tspi->cur_rx_pos;

	fifo_status = tegra_slink_readl(tspi, SLINK_STATUS2);
	rx_full_count = SLINK_RX_FIFO_FULL_COUNT(fifo_status);
	if (tspi->is_packed) {
		len = tspi->curr_dma_words * tspi->bytes_per_word;
		for (count = 0; count < rx_full_count; count++) {
			x = tegra_slink_readl(tspi, SLINK_RX_FIFO);
			for (i = 0; len && (i < 4); i++, len--)
				*rx_buf++ = (x >> i*8) & 0xFF;
		}
		tspi->cur_rx_pos += tspi->curr_dma_words * tspi->bytes_per_word;
		read_words += tspi->curr_dma_words;
	} else {
		for (count = 0; count < rx_full_count; count++) {
			x = tegra_slink_readl(tspi, SLINK_RX_FIFO);
			for (i = 0; (i < tspi->bytes_per_word); i++)
				*rx_buf++ = (x >> (i*8)) & 0xFF;
		}
		tspi->cur_rx_pos += rx_full_count * tspi->bytes_per_word;
		read_words += rx_full_count;
	}
	return read_words;
}

static void tegra_slink_copy_client_txbuf_to_spi_txbuf(
		struct tegra_slink_data *tspi, struct spi_transfer *t)
{
	unsigned len;

	/* Make the dma buffer to read by cpu */
	dma_sync_single_for_cpu(tspi->dev, tspi->tx_dma_phys,
				tspi->dma_buf_size, DMA_TO_DEVICE);

	if (tspi->is_packed) {
		len = tspi->curr_dma_words * tspi->bytes_per_word;
		memcpy(tspi->tx_dma_buf, t->tx_buf + tspi->cur_pos, len);
	} else {
		unsigned int i;
		unsigned int count;
		u8 *tx_buf = (u8 *)t->tx_buf + tspi->cur_tx_pos;
		unsigned consume = tspi->curr_dma_words * tspi->bytes_per_word;
		unsigned int x;

		for (count = 0; count < tspi->curr_dma_words; count++) {
			x = 0;
			for (i = 0; consume && (i < tspi->bytes_per_word);
							i++, consume--)
				x |= ((*tx_buf++) << i * 8);
			tspi->tx_dma_buf[count] = x;
		}
	}
	tspi->cur_tx_pos += tspi->curr_dma_words * tspi->bytes_per_word;

	/* Make the dma buffer to read by dma */
	dma_sync_single_for_device(tspi->dev, tspi->tx_dma_phys,
				tspi->dma_buf_size, DMA_TO_DEVICE);
}

static void tegra_slink_copy_spi_rxbuf_to_client_rxbuf(
		struct tegra_slink_data *tspi, struct spi_transfer *t)
{
	unsigned len;

	/* Make the dma buffer to read by cpu */
	dma_sync_single_for_cpu(tspi->dev, tspi->rx_dma_phys,
		tspi->dma_buf_size, DMA_FROM_DEVICE);

	if (tspi->is_packed) {
		len = tspi->curr_dma_words * tspi->bytes_per_word;
		memcpy(t->rx_buf + tspi->cur_rx_pos, tspi->rx_dma_buf, len);
	} else {
		unsigned int i;
		unsigned int count;
		unsigned char *rx_buf = t->rx_buf + tspi->cur_rx_pos;
		unsigned int x;
		unsigned int rx_mask, bits_per_word;

441
		bits_per_word = t->bits_per_word;
442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
		rx_mask = (1 << bits_per_word) - 1;
		for (count = 0; count < tspi->curr_dma_words; count++) {
			x = tspi->rx_dma_buf[count];
			x &= rx_mask;
			for (i = 0; (i < tspi->bytes_per_word); i++)
				*rx_buf++ = (x >> (i*8)) & 0xFF;
		}
	}
	tspi->cur_rx_pos += tspi->curr_dma_words * tspi->bytes_per_word;

	/* Make the dma buffer to read by dma */
	dma_sync_single_for_device(tspi->dev, tspi->rx_dma_phys,
		tspi->dma_buf_size, DMA_FROM_DEVICE);
}

static void tegra_slink_dma_complete(void *args)
{
	struct completion *dma_complete = args;

	complete(dma_complete);
}

static int tegra_slink_start_tx_dma(struct tegra_slink_data *tspi, int len)
{
	INIT_COMPLETION(tspi->tx_dma_complete);
	tspi->tx_dma_desc = dmaengine_prep_slave_single(tspi->tx_dma_chan,
				tspi->tx_dma_phys, len, DMA_MEM_TO_DEV,
469
				DMA_PREP_INTERRUPT |  DMA_CTRL_ACK);
470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
	if (!tspi->tx_dma_desc) {
		dev_err(tspi->dev, "Not able to get desc for Tx\n");
		return -EIO;
	}

	tspi->tx_dma_desc->callback = tegra_slink_dma_complete;
	tspi->tx_dma_desc->callback_param = &tspi->tx_dma_complete;

	dmaengine_submit(tspi->tx_dma_desc);
	dma_async_issue_pending(tspi->tx_dma_chan);
	return 0;
}

static int tegra_slink_start_rx_dma(struct tegra_slink_data *tspi, int len)
{
	INIT_COMPLETION(tspi->rx_dma_complete);
	tspi->rx_dma_desc = dmaengine_prep_slave_single(tspi->rx_dma_chan,
				tspi->rx_dma_phys, len, DMA_DEV_TO_MEM,
488
				DMA_PREP_INTERRUPT |  DMA_CTRL_ACK);
489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721
	if (!tspi->rx_dma_desc) {
		dev_err(tspi->dev, "Not able to get desc for Rx\n");
		return -EIO;
	}

	tspi->rx_dma_desc->callback = tegra_slink_dma_complete;
	tspi->rx_dma_desc->callback_param = &tspi->rx_dma_complete;

	dmaengine_submit(tspi->rx_dma_desc);
	dma_async_issue_pending(tspi->rx_dma_chan);
	return 0;
}

static int tegra_slink_start_dma_based_transfer(
		struct tegra_slink_data *tspi, struct spi_transfer *t)
{
	unsigned long val;
	unsigned long test_val;
	unsigned int len;
	int ret = 0;
	unsigned long status;

	/* Make sure that Rx and Tx fifo are empty */
	status = tegra_slink_readl(tspi, SLINK_STATUS);
	if ((status & SLINK_FIFO_EMPTY) != SLINK_FIFO_EMPTY) {
		dev_err(tspi->dev,
			"Rx/Tx fifo are not empty status 0x%08lx\n", status);
		return -EIO;
	}

	val = SLINK_DMA_BLOCK_SIZE(tspi->curr_dma_words - 1);
	val |= tspi->packed_size;
	if (tspi->is_packed)
		len = DIV_ROUND_UP(tspi->curr_dma_words * tspi->bytes_per_word,
					4) * 4;
	else
		len = tspi->curr_dma_words * 4;

	/* Set attention level based on length of transfer */
	if (len & 0xF)
		val |= SLINK_TX_TRIG_1 | SLINK_RX_TRIG_1;
	else if (((len) >> 4) & 0x1)
		val |= SLINK_TX_TRIG_4 | SLINK_RX_TRIG_4;
	else
		val |= SLINK_TX_TRIG_8 | SLINK_RX_TRIG_8;

	if (tspi->cur_direction & DATA_DIR_TX)
		val |= SLINK_IE_TXC;

	if (tspi->cur_direction & DATA_DIR_RX)
		val |= SLINK_IE_RXC;

	tegra_slink_writel(tspi, val, SLINK_DMA_CTL);
	tspi->dma_control_reg = val;

	if (tspi->cur_direction & DATA_DIR_TX) {
		tegra_slink_copy_client_txbuf_to_spi_txbuf(tspi, t);
		wmb();
		ret = tegra_slink_start_tx_dma(tspi, len);
		if (ret < 0) {
			dev_err(tspi->dev,
				"Starting tx dma failed, err %d\n", ret);
			return ret;
		}

		/* Wait for tx fifo to be fill before starting slink */
		test_val = tegra_slink_readl(tspi, SLINK_STATUS);
		while (!(test_val & SLINK_TX_FULL))
			test_val = tegra_slink_readl(tspi, SLINK_STATUS);
	}

	if (tspi->cur_direction & DATA_DIR_RX) {
		/* Make the dma buffer to read by dma */
		dma_sync_single_for_device(tspi->dev, tspi->rx_dma_phys,
				tspi->dma_buf_size, DMA_FROM_DEVICE);

		ret = tegra_slink_start_rx_dma(tspi, len);
		if (ret < 0) {
			dev_err(tspi->dev,
				"Starting rx dma failed, err %d\n", ret);
			if (tspi->cur_direction & DATA_DIR_TX)
				dmaengine_terminate_all(tspi->tx_dma_chan);
			return ret;
		}
	}
	tspi->is_curr_dma_xfer = true;
	if (tspi->is_packed) {
		val |= SLINK_PACKED;
		tegra_slink_writel(tspi, val, SLINK_DMA_CTL);
		/* HW need small delay after settign Packed mode */
		udelay(1);
	}
	tspi->dma_control_reg = val;

	val |= SLINK_DMA_EN;
	tegra_slink_writel(tspi, val, SLINK_DMA_CTL);
	return ret;
}

static int tegra_slink_start_cpu_based_transfer(
		struct tegra_slink_data *tspi, struct spi_transfer *t)
{
	unsigned long val;
	unsigned cur_words;

	val = tspi->packed_size;
	if (tspi->cur_direction & DATA_DIR_TX)
		val |= SLINK_IE_TXC;

	if (tspi->cur_direction & DATA_DIR_RX)
		val |= SLINK_IE_RXC;

	tegra_slink_writel(tspi, val, SLINK_DMA_CTL);
	tspi->dma_control_reg = val;

	if (tspi->cur_direction & DATA_DIR_TX)
		cur_words = tegra_slink_fill_tx_fifo_from_client_txbuf(tspi, t);
	else
		cur_words = tspi->curr_dma_words;
	val |= SLINK_DMA_BLOCK_SIZE(cur_words - 1);
	tegra_slink_writel(tspi, val, SLINK_DMA_CTL);
	tspi->dma_control_reg = val;

	tspi->is_curr_dma_xfer = false;
	if (tspi->is_packed) {
		val |= SLINK_PACKED;
		tegra_slink_writel(tspi, val, SLINK_DMA_CTL);
		udelay(1);
		wmb();
	}
	tspi->dma_control_reg = val;
	val |= SLINK_DMA_EN;
	tegra_slink_writel(tspi, val, SLINK_DMA_CTL);
	return 0;
}

static int tegra_slink_init_dma_param(struct tegra_slink_data *tspi,
			bool dma_to_memory)
{
	struct dma_chan *dma_chan;
	u32 *dma_buf;
	dma_addr_t dma_phys;
	int ret;
	struct dma_slave_config dma_sconfig;
	dma_cap_mask_t mask;

	dma_cap_zero(mask);
	dma_cap_set(DMA_SLAVE, mask);
	dma_chan = dma_request_channel(mask, NULL, NULL);
	if (!dma_chan) {
		dev_err(tspi->dev,
			"Dma channel is not available, will try later\n");
		return -EPROBE_DEFER;
	}

	dma_buf = dma_alloc_coherent(tspi->dev, tspi->dma_buf_size,
				&dma_phys, GFP_KERNEL);
	if (!dma_buf) {
		dev_err(tspi->dev, " Not able to allocate the dma buffer\n");
		dma_release_channel(dma_chan);
		return -ENOMEM;
	}

	dma_sconfig.slave_id = tspi->dma_req_sel;
	if (dma_to_memory) {
		dma_sconfig.src_addr = tspi->phys + SLINK_RX_FIFO;
		dma_sconfig.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
		dma_sconfig.src_maxburst = 0;
	} else {
		dma_sconfig.dst_addr = tspi->phys + SLINK_TX_FIFO;
		dma_sconfig.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
		dma_sconfig.dst_maxburst = 0;
	}

	ret = dmaengine_slave_config(dma_chan, &dma_sconfig);
	if (ret)
		goto scrub;
	if (dma_to_memory) {
		tspi->rx_dma_chan = dma_chan;
		tspi->rx_dma_buf = dma_buf;
		tspi->rx_dma_phys = dma_phys;
	} else {
		tspi->tx_dma_chan = dma_chan;
		tspi->tx_dma_buf = dma_buf;
		tspi->tx_dma_phys = dma_phys;
	}
	return 0;

scrub:
	dma_free_coherent(tspi->dev, tspi->dma_buf_size, dma_buf, dma_phys);
	dma_release_channel(dma_chan);
	return ret;
}

static void tegra_slink_deinit_dma_param(struct tegra_slink_data *tspi,
	bool dma_to_memory)
{
	u32 *dma_buf;
	dma_addr_t dma_phys;
	struct dma_chan *dma_chan;

	if (dma_to_memory) {
		dma_buf = tspi->rx_dma_buf;
		dma_chan = tspi->rx_dma_chan;
		dma_phys = tspi->rx_dma_phys;
		tspi->rx_dma_chan = NULL;
		tspi->rx_dma_buf = NULL;
	} else {
		dma_buf = tspi->tx_dma_buf;
		dma_chan = tspi->tx_dma_chan;
		dma_phys = tspi->tx_dma_phys;
		tspi->tx_dma_buf = NULL;
		tspi->tx_dma_chan = NULL;
	}
	if (!dma_chan)
		return;

	dma_free_coherent(tspi->dev, tspi->dma_buf_size, dma_buf, dma_phys);
	dma_release_channel(dma_chan);
}

static int tegra_slink_start_transfer_one(struct spi_device *spi,
		struct spi_transfer *t, bool is_first_of_msg,
		bool is_single_xfer)
{
	struct tegra_slink_data *tspi = spi_master_get_devdata(spi->master);
	u32 speed;
	u8 bits_per_word;
	unsigned total_fifo_words;
	int ret;
	unsigned long command;
	unsigned long command2;

722
	bits_per_word = t->bits_per_word;
723
	speed = t->speed_hz;
724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740
	if (speed != tspi->cur_speed) {
		clk_set_rate(tspi->clk, speed * 4);
		tspi->cur_speed = speed;
	}

	tspi->cur_spi = spi;
	tspi->cur_pos = 0;
	tspi->cur_rx_pos = 0;
	tspi->cur_tx_pos = 0;
	tspi->curr_xfer = t;
	total_fifo_words = tegra_slink_calculate_curr_xfer_param(spi, tspi, t);

	if (is_first_of_msg) {
		tegra_slink_clear_status(tspi);

		command = tspi->def_command_reg;
		command |= SLINK_BIT_LENGTH(bits_per_word - 1);
741
		command |= SLINK_CS_SW | SLINK_CS_VALUE;
742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805

		command2 = tspi->def_command2_reg;
		command2 |= SLINK_SS_EN_CS(spi->chip_select);

		command &= ~SLINK_MODES;
		if (spi->mode & SPI_CPHA)
			command |= SLINK_CK_SDA;

		if (spi->mode & SPI_CPOL)
			command |= SLINK_IDLE_SCLK_DRIVE_HIGH;
		else
			command |= SLINK_IDLE_SCLK_DRIVE_LOW;
	} else {
		command = tspi->command_reg;
		command &= ~SLINK_BIT_LENGTH(~0);
		command |= SLINK_BIT_LENGTH(bits_per_word - 1);

		command2 = tspi->command2_reg;
		command2 &= ~(SLINK_RXEN | SLINK_TXEN);
	}

	tegra_slink_writel(tspi, command, SLINK_COMMAND);
	tspi->command_reg = command;

	tspi->cur_direction = 0;
	if (t->rx_buf) {
		command2 |= SLINK_RXEN;
		tspi->cur_direction |= DATA_DIR_RX;
	}
	if (t->tx_buf) {
		command2 |= SLINK_TXEN;
		tspi->cur_direction |= DATA_DIR_TX;
	}
	tegra_slink_writel(tspi, command2, SLINK_COMMAND2);
	tspi->command2_reg = command2;

	if (total_fifo_words > SLINK_FIFO_DEPTH)
		ret = tegra_slink_start_dma_based_transfer(tspi, t);
	else
		ret = tegra_slink_start_cpu_based_transfer(tspi, t);
	return ret;
}

static int tegra_slink_setup(struct spi_device *spi)
{
	struct tegra_slink_data *tspi = spi_master_get_devdata(spi->master);
	unsigned long val;
	unsigned long flags;
	int ret;
	unsigned int cs_pol_bit[MAX_CHIP_SELECT] = {
			SLINK_CS_POLARITY,
			SLINK_CS_POLARITY1,
			SLINK_CS_POLARITY2,
			SLINK_CS_POLARITY3,
	};

	dev_dbg(&spi->dev, "setup %d bpw, %scpol, %scpha, %dHz\n",
		spi->bits_per_word,
		spi->mode & SPI_CPOL ? "" : "~",
		spi->mode & SPI_CPHA ? "" : "~",
		spi->max_speed_hz);

	BUG_ON(spi->chip_select >= MAX_CHIP_SELECT);

806 807
	/* Set speed to the spi max fequency if spi device has not set */
	spi->max_speed_hz = spi->max_speed_hz ? : tspi->spi_max_frequency;
808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839
	ret = pm_runtime_get_sync(tspi->dev);
	if (ret < 0) {
		dev_err(tspi->dev, "pm runtime failed, e = %d\n", ret);
		return ret;
	}

	spin_lock_irqsave(&tspi->lock, flags);
	val = tspi->def_command_reg;
	if (spi->mode & SPI_CS_HIGH)
		val |= cs_pol_bit[spi->chip_select];
	else
		val &= ~cs_pol_bit[spi->chip_select];
	tspi->def_command_reg = val;
	tegra_slink_writel(tspi, tspi->def_command_reg, SLINK_COMMAND);
	spin_unlock_irqrestore(&tspi->lock, flags);

	pm_runtime_put(tspi->dev);
	return 0;
}

static int tegra_slink_transfer_one_message(struct spi_master *master,
			struct spi_message *msg)
{
	bool is_first_msg = true;
	int single_xfer;
	struct tegra_slink_data *tspi = spi_master_get_devdata(master);
	struct spi_transfer *xfer;
	struct spi_device *spi = msg->spi;
	int ret;

	msg->status = 0;
	msg->actual_length = 0;
840 841 842 843 844 845
	ret = pm_runtime_get_sync(tspi->dev);
	if (ret < 0) {
		dev_err(tspi->dev, "runtime get failed: %d\n", ret);
		goto done;
	}

846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881
	single_xfer = list_is_singular(&msg->transfers);
	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
		INIT_COMPLETION(tspi->xfer_completion);
		ret = tegra_slink_start_transfer_one(spi, xfer,
					is_first_msg, single_xfer);
		if (ret < 0) {
			dev_err(tspi->dev,
				"spi can not start transfer, err %d\n", ret);
			goto exit;
		}
		is_first_msg = false;
		ret = wait_for_completion_timeout(&tspi->xfer_completion,
						SLINK_DMA_TIMEOUT);
		if (WARN_ON(ret == 0)) {
			dev_err(tspi->dev,
				"spi trasfer timeout, err %d\n", ret);
			ret = -EIO;
			goto exit;
		}

		if (tspi->tx_status ||  tspi->rx_status) {
			dev_err(tspi->dev, "Error in Transfer\n");
			ret = -EIO;
			goto exit;
		}
		msg->actual_length += xfer->len;
		if (xfer->cs_change && xfer->delay_usecs) {
			tegra_slink_writel(tspi, tspi->def_command_reg,
					SLINK_COMMAND);
			udelay(xfer->delay_usecs);
		}
	}
	ret = 0;
exit:
	tegra_slink_writel(tspi, tspi->def_command_reg, SLINK_COMMAND);
	tegra_slink_writel(tspi, tspi->def_command2_reg, SLINK_COMMAND2);
882 883
	pm_runtime_put(tspi->dev);
done:
884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
	msg->status = ret;
	spi_finalize_current_message(master);
	return ret;
}

static irqreturn_t handle_cpu_based_xfer(struct tegra_slink_data *tspi)
{
	struct spi_transfer *t = tspi->curr_xfer;
	unsigned long flags;

	spin_lock_irqsave(&tspi->lock, flags);
	if (tspi->tx_status ||  tspi->rx_status ||
				(tspi->status_reg & SLINK_BSY)) {
		dev_err(tspi->dev,
			"CpuXfer ERROR bit set 0x%x\n", tspi->status_reg);
		dev_err(tspi->dev,
			"CpuXfer 0x%08x:0x%08x:0x%08x\n", tspi->command_reg,
				tspi->command2_reg, tspi->dma_control_reg);
		tegra_periph_reset_assert(tspi->clk);
		udelay(2);
		tegra_periph_reset_deassert(tspi->clk);
		complete(&tspi->xfer_completion);
		goto exit;
	}

	if (tspi->cur_direction & DATA_DIR_RX)
		tegra_slink_read_rx_fifo_to_client_rxbuf(tspi, t);

	if (tspi->cur_direction & DATA_DIR_TX)
		tspi->cur_pos = tspi->cur_tx_pos;
	else
		tspi->cur_pos = tspi->cur_rx_pos;

	if (tspi->cur_pos == t->len) {
		complete(&tspi->xfer_completion);
		goto exit;
	}

	tegra_slink_calculate_curr_xfer_param(tspi->cur_spi, tspi, t);
	tegra_slink_start_cpu_based_transfer(tspi, t);
exit:
	spin_unlock_irqrestore(&tspi->lock, flags);
	return IRQ_HANDLED;
}

static irqreturn_t handle_dma_based_xfer(struct tegra_slink_data *tspi)
{
	struct spi_transfer *t = tspi->curr_xfer;
	long wait_status;
	int err = 0;
	unsigned total_fifo_words;
	unsigned long flags;

	/* Abort dmas if any error */
	if (tspi->cur_direction & DATA_DIR_TX) {
		if (tspi->tx_status) {
			dmaengine_terminate_all(tspi->tx_dma_chan);
			err += 1;
		} else {
			wait_status = wait_for_completion_interruptible_timeout(
				&tspi->tx_dma_complete, SLINK_DMA_TIMEOUT);
			if (wait_status <= 0) {
				dmaengine_terminate_all(tspi->tx_dma_chan);
				dev_err(tspi->dev, "TxDma Xfer failed\n");
				err += 1;
			}
		}
	}

	if (tspi->cur_direction & DATA_DIR_RX) {
		if (tspi->rx_status) {
			dmaengine_terminate_all(tspi->rx_dma_chan);
			err += 2;
		} else {
			wait_status = wait_for_completion_interruptible_timeout(
				&tspi->rx_dma_complete, SLINK_DMA_TIMEOUT);
			if (wait_status <= 0) {
				dmaengine_terminate_all(tspi->rx_dma_chan);
				dev_err(tspi->dev, "RxDma Xfer failed\n");
				err += 2;
			}
		}
	}

	spin_lock_irqsave(&tspi->lock, flags);
	if (err) {
		dev_err(tspi->dev,
			"DmaXfer: ERROR bit set 0x%x\n", tspi->status_reg);
		dev_err(tspi->dev,
			"DmaXfer 0x%08x:0x%08x:0x%08x\n", tspi->command_reg,
				tspi->command2_reg, tspi->dma_control_reg);
		tegra_periph_reset_assert(tspi->clk);
		udelay(2);
		tegra_periph_reset_deassert(tspi->clk);
		complete(&tspi->xfer_completion);
		spin_unlock_irqrestore(&tspi->lock, flags);
		return IRQ_HANDLED;
	}

	if (tspi->cur_direction & DATA_DIR_RX)
		tegra_slink_copy_spi_rxbuf_to_client_rxbuf(tspi, t);

	if (tspi->cur_direction & DATA_DIR_TX)
		tspi->cur_pos = tspi->cur_tx_pos;
	else
		tspi->cur_pos = tspi->cur_rx_pos;

	if (tspi->cur_pos == t->len) {
		complete(&tspi->xfer_completion);
		goto exit;
	}

	/* Continue transfer in current message */
	total_fifo_words = tegra_slink_calculate_curr_xfer_param(tspi->cur_spi,
							tspi, t);
	if (total_fifo_words > SLINK_FIFO_DEPTH)
		err = tegra_slink_start_dma_based_transfer(tspi, t);
	else
		err = tegra_slink_start_cpu_based_transfer(tspi, t);

exit:
	spin_unlock_irqrestore(&tspi->lock, flags);
	return IRQ_HANDLED;
}

static irqreturn_t tegra_slink_isr_thread(int irq, void *context_data)
{
	struct tegra_slink_data *tspi = context_data;

	if (!tspi->is_curr_dma_xfer)
		return handle_cpu_based_xfer(tspi);
	return handle_dma_based_xfer(tspi);
}

static irqreturn_t tegra_slink_isr(int irq, void *context_data)
{
	struct tegra_slink_data *tspi = context_data;

	tspi->status_reg = tegra_slink_readl(tspi, SLINK_STATUS);
	if (tspi->cur_direction & DATA_DIR_TX)
		tspi->tx_status = tspi->status_reg &
					(SLINK_TX_OVF | SLINK_TX_UNF);

	if (tspi->cur_direction & DATA_DIR_RX)
		tspi->rx_status = tspi->status_reg &
					(SLINK_RX_OVF | SLINK_RX_UNF);
	tegra_slink_clear_status(tspi);

	return IRQ_WAKE_THREAD;
}

static struct tegra_spi_platform_data *tegra_slink_parse_dt(
		struct platform_device *pdev)
{
	struct tegra_spi_platform_data *pdata;
	const unsigned int *prop;
	struct device_node *np = pdev->dev.of_node;
	u32 of_dma[2];

	pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
	if (!pdata) {
		dev_err(&pdev->dev, "Memory alloc for pdata failed\n");
		return NULL;
	}

	if (of_property_read_u32_array(np, "nvidia,dma-request-selector",
				of_dma, 2) >= 0)
		pdata->dma_req_sel = of_dma[1];

	prop = of_get_property(np, "spi-max-frequency", NULL);
	if (prop)
		pdata->spi_max_frequency = be32_to_cpup(prop);

	return pdata;
}

const struct tegra_slink_chip_data tegra30_spi_cdata = {
	.cs_hold_time = true,
};

const struct tegra_slink_chip_data tegra20_spi_cdata = {
	.cs_hold_time = false,
};

1068
static struct of_device_id tegra_slink_of_match[] = {
1069
	{ .compatible = "nvidia,tegra30-slink", .data = &tegra30_spi_cdata, },
1070
	{ .compatible = "nvidia,tegra20-slink", .data = &tegra20_spi_cdata, },
1071 1072 1073 1074
	{}
};
MODULE_DEVICE_TABLE(of, tegra_slink_of_match);

1075
static int tegra_slink_probe(struct platform_device *pdev)
1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
{
	struct spi_master	*master;
	struct tegra_slink_data	*tspi;
	struct resource		*r;
	struct tegra_spi_platform_data *pdata = pdev->dev.platform_data;
	int ret, spi_irq;
	const struct tegra_slink_chip_data *cdata = NULL;
	const struct of_device_id *match;

	match = of_match_device(of_match_ptr(tegra_slink_of_match), &pdev->dev);
	if (!match) {
		dev_err(&pdev->dev, "Error: No device match found\n");
		return -ENODEV;
	}
	cdata = match->data;
	if (!pdata && pdev->dev.of_node)
		pdata = tegra_slink_parse_dt(pdev);

	if (!pdata) {
		dev_err(&pdev->dev, "No platform data, exiting\n");
		return -ENODEV;
	}

	if (!pdata->spi_max_frequency)
		pdata->spi_max_frequency = 25000000; /* 25MHz */

	master = spi_alloc_master(&pdev->dev, sizeof(*tspi));
	if (!master) {
		dev_err(&pdev->dev, "master allocation failed\n");
		return -ENOMEM;
	}

	/* the spi->mode bits understood by this driver: */
	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
	master->setup = tegra_slink_setup;
	master->transfer_one_message = tegra_slink_transfer_one_message;
	master->num_chipselect = MAX_CHIP_SELECT;
	master->bus_num = -1;

	dev_set_drvdata(&pdev->dev, master);
	tspi = spi_master_get_devdata(master);
	tspi->master = master;
	tspi->dma_req_sel = pdata->dma_req_sel;
	tspi->dev = &pdev->dev;
	tspi->chip_data = cdata;
	spin_lock_init(&tspi->lock);

	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	if (!r) {
		dev_err(&pdev->dev, "No IO memory resource\n");
		ret = -ENODEV;
		goto exit_free_master;
	}
	tspi->phys = r->start;
1130 1131 1132
	tspi->base = devm_ioremap_resource(&pdev->dev, r);
	if (IS_ERR(tspi->base)) {
		ret = PTR_ERR(tspi->base);
1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
		goto exit_free_master;
	}

	spi_irq = platform_get_irq(pdev, 0);
	tspi->irq = spi_irq;
	ret = request_threaded_irq(tspi->irq, tegra_slink_isr,
			tegra_slink_isr_thread, IRQF_ONESHOT,
			dev_name(&pdev->dev), tspi);
	if (ret < 0) {
		dev_err(&pdev->dev, "Failed to register ISR for IRQ %d\n",
					tspi->irq);
		goto exit_free_master;
	}

1147
	tspi->clk = devm_clk_get(&pdev->dev, NULL);
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216
	if (IS_ERR(tspi->clk)) {
		dev_err(&pdev->dev, "can not get clock\n");
		ret = PTR_ERR(tspi->clk);
		goto exit_free_irq;
	}

	tspi->max_buf_size = SLINK_FIFO_DEPTH << 2;
	tspi->dma_buf_size = DEFAULT_SPI_DMA_BUF_LEN;
	tspi->spi_max_frequency = pdata->spi_max_frequency;

	if (pdata->dma_req_sel) {
		ret = tegra_slink_init_dma_param(tspi, true);
		if (ret < 0) {
			dev_err(&pdev->dev, "RxDma Init failed, err %d\n", ret);
			goto exit_free_irq;
		}

		ret = tegra_slink_init_dma_param(tspi, false);
		if (ret < 0) {
			dev_err(&pdev->dev, "TxDma Init failed, err %d\n", ret);
			goto exit_rx_dma_free;
		}
		tspi->max_buf_size = tspi->dma_buf_size;
		init_completion(&tspi->tx_dma_complete);
		init_completion(&tspi->rx_dma_complete);
	}

	init_completion(&tspi->xfer_completion);

	pm_runtime_enable(&pdev->dev);
	if (!pm_runtime_enabled(&pdev->dev)) {
		ret = tegra_slink_runtime_resume(&pdev->dev);
		if (ret)
			goto exit_pm_disable;
	}

	ret = pm_runtime_get_sync(&pdev->dev);
	if (ret < 0) {
		dev_err(&pdev->dev, "pm runtime get failed, e = %d\n", ret);
		goto exit_pm_disable;
	}
	tspi->def_command_reg  = SLINK_M_S;
	tspi->def_command2_reg = SLINK_CS_ACTIVE_BETWEEN;
	tegra_slink_writel(tspi, tspi->def_command_reg, SLINK_COMMAND);
	tegra_slink_writel(tspi, tspi->def_command2_reg, SLINK_COMMAND2);
	pm_runtime_put(&pdev->dev);

	master->dev.of_node = pdev->dev.of_node;
	ret = spi_register_master(master);
	if (ret < 0) {
		dev_err(&pdev->dev, "can not register to master err %d\n", ret);
		goto exit_pm_disable;
	}
	return ret;

exit_pm_disable:
	pm_runtime_disable(&pdev->dev);
	if (!pm_runtime_status_suspended(&pdev->dev))
		tegra_slink_runtime_suspend(&pdev->dev);
	tegra_slink_deinit_dma_param(tspi, false);
exit_rx_dma_free:
	tegra_slink_deinit_dma_param(tspi, true);
exit_free_irq:
	free_irq(spi_irq, tspi);
exit_free_master:
	spi_master_put(master);
	return ret;
}

1217
static int tegra_slink_remove(struct platform_device *pdev)
1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
{
	struct spi_master *master = dev_get_drvdata(&pdev->dev);
	struct tegra_slink_data	*tspi = spi_master_get_devdata(master);

	free_irq(tspi->irq, tspi);
	spi_unregister_master(master);

	if (tspi->tx_dma_chan)
		tegra_slink_deinit_dma_param(tspi, false);

	if (tspi->rx_dma_chan)
		tegra_slink_deinit_dma_param(tspi, true);

	pm_runtime_disable(&pdev->dev);
	if (!pm_runtime_status_suspended(&pdev->dev))
		tegra_slink_runtime_suspend(&pdev->dev);

	return 0;
}

#ifdef CONFIG_PM_SLEEP
static int tegra_slink_suspend(struct device *dev)
{
	struct spi_master *master = dev_get_drvdata(dev);

	return spi_master_suspend(master);
}

static int tegra_slink_resume(struct device *dev)
{
	struct spi_master *master = dev_get_drvdata(dev);
	struct tegra_slink_data *tspi = spi_master_get_devdata(master);
	int ret;

	ret = pm_runtime_get_sync(dev);
	if (ret < 0) {
		dev_err(dev, "pm runtime failed, e = %d\n", ret);
		return ret;
	}
	tegra_slink_writel(tspi, tspi->command_reg, SLINK_COMMAND);
	tegra_slink_writel(tspi, tspi->command2_reg, SLINK_COMMAND2);
	pm_runtime_put(dev);

	return spi_master_resume(master);
}
#endif

static int tegra_slink_runtime_suspend(struct device *dev)
{
	struct spi_master *master = dev_get_drvdata(dev);
	struct tegra_slink_data *tspi = spi_master_get_devdata(master);

	/* Flush all write which are in PPSB queue by reading back */
	tegra_slink_readl(tspi, SLINK_MAS_DATA);

	clk_disable_unprepare(tspi->clk);
	return 0;
}

static int tegra_slink_runtime_resume(struct device *dev)
{
	struct spi_master *master = dev_get_drvdata(dev);
	struct tegra_slink_data *tspi = spi_master_get_devdata(master);
	int ret;

	ret = clk_prepare_enable(tspi->clk);
	if (ret < 0) {
		dev_err(tspi->dev, "clk_prepare failed: %d\n", ret);
		return ret;
	}
	return 0;
}

static const struct dev_pm_ops slink_pm_ops = {
	SET_RUNTIME_PM_OPS(tegra_slink_runtime_suspend,
		tegra_slink_runtime_resume, NULL)
	SET_SYSTEM_SLEEP_PM_OPS(tegra_slink_suspend, tegra_slink_resume)
};
static struct platform_driver tegra_slink_driver = {
	.driver = {
		.name		= "spi-tegra-slink",
		.owner		= THIS_MODULE,
		.pm		= &slink_pm_ops,
		.of_match_table	= of_match_ptr(tegra_slink_of_match),
	},
	.probe =	tegra_slink_probe,
1304
	.remove =	tegra_slink_remove,
1305 1306 1307 1308 1309 1310 1311
};
module_platform_driver(tegra_slink_driver);

MODULE_ALIAS("platform:spi-tegra-slink");
MODULE_DESCRIPTION("NVIDIA Tegra20/Tegra30 SLINK Controller Driver");
MODULE_AUTHOR("Laxman Dewangan <ldewangan@nvidia.com>");
MODULE_LICENSE("GPL v2");