vgic-mmio-v3.c 28.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/*
 * VGICv3 MMIO handling functions
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/irqchip/arm-gic-v3.h>
#include <linux/kvm.h>
#include <linux/kvm_host.h>
#include <kvm/iodev.h>
#include <kvm/arm_vgic.h>

#include <asm/kvm_emulate.h>
21 22
#include <asm/kvm_arm.h>
#include <asm/kvm_mmu.h>
23 24 25 26

#include "vgic.h"
#include "vgic-mmio.h"

27
/* extract @num bytes at @offset bytes offset in data */
28
unsigned long extract_bytes(u64 data, unsigned int offset,
29
			    unsigned int num)
30 31 32 33
{
	return (data >> (offset * 8)) & GENMASK_ULL(num * 8 - 1, 0);
}

34
/* allows updates of any half of a 64-bit register (or the whole thing) */
35 36
u64 update_64bit_reg(u64 reg, unsigned int offset, unsigned int len,
		     unsigned long val)
37 38 39 40 41 42 43 44 45 46
{
	int lower = (offset & 4) * 8;
	int upper = lower + 8 * len - 1;

	reg &= ~GENMASK_ULL(upper, lower);
	val &= GENMASK_ULL(len * 8 - 1, 0);

	return reg | ((u64)val << lower);
}

47 48 49 50 51 52 53
bool vgic_has_its(struct kvm *kvm)
{
	struct vgic_dist *dist = &kvm->arch.vgic;

	if (dist->vgic_model != KVM_DEV_TYPE_ARM_VGIC_V3)
		return false;

54
	return dist->has_its;
55 56
}

57 58 59 60 61
bool vgic_supports_direct_msis(struct kvm *kvm)
{
	return kvm_vgic_global_state.has_gicv4 && vgic_has_its(kvm);
}

62 63 64 65 66 67 68
/*
 * The Revision field in the IIDR have the following meanings:
 *
 * Revision 2: Interrupt groups are guest-configurable and signaled using
 * 	       their configured groups.
 */

69 70 71
static unsigned long vgic_mmio_read_v3_misc(struct kvm_vcpu *vcpu,
					    gpa_t addr, unsigned int len)
{
72
	struct vgic_dist *vgic = &vcpu->kvm->arch.vgic;
73 74 75 76
	u32 value = 0;

	switch (addr & 0x0c) {
	case GICD_CTLR:
77
		if (vgic->enabled)
78 79 80 81
			value |= GICD_CTLR_ENABLE_SS_G1;
		value |= GICD_CTLR_ARE_NS | GICD_CTLR_DS;
		break;
	case GICD_TYPER:
82
		value = vgic->nr_spis + VGIC_NR_PRIVATE_IRQS;
83
		value = (value >> 5) - 1;
84 85 86 87 88 89
		if (vgic_has_its(vcpu->kvm)) {
			value |= (INTERRUPT_ID_BITS_ITS - 1) << 19;
			value |= GICD_TYPER_LPIS;
		} else {
			value |= (INTERRUPT_ID_BITS_SPIS - 1) << 19;
		}
90 91
		break;
	case GICD_IIDR:
92
		value = (PRODUCT_ID_KVM << GICD_IIDR_PRODUCT_ID_SHIFT) |
93
			(vgic->implementation_rev << GICD_IIDR_REVISION_SHIFT) |
94
			(IMPLEMENTER_ARM << GICD_IIDR_IMPLEMENTER_SHIFT);
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
		break;
	default:
		return 0;
	}

	return value;
}

static void vgic_mmio_write_v3_misc(struct kvm_vcpu *vcpu,
				    gpa_t addr, unsigned int len,
				    unsigned long val)
{
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
	bool was_enabled = dist->enabled;

	switch (addr & 0x0c) {
	case GICD_CTLR:
		dist->enabled = val & GICD_CTLR_ENABLE_SS_G1;

		if (!was_enabled && dist->enabled)
			vgic_kick_vcpus(vcpu->kvm);
		break;
	case GICD_TYPER:
	case GICD_IIDR:
		return;
	}
}

123 124 125 126 127 128 129 130 131 132 133 134 135 136
static int vgic_mmio_uaccess_write_v3_misc(struct kvm_vcpu *vcpu,
					   gpa_t addr, unsigned int len,
					   unsigned long val)
{
	switch (addr & 0x0c) {
	case GICD_IIDR:
		if (val != vgic_mmio_read_v3_misc(vcpu, addr, len))
			return -EINVAL;
	}

	vgic_mmio_write_v3_misc(vcpu, addr, len, val);
	return 0;
}

137 138 139 140 141
static unsigned long vgic_mmio_read_irouter(struct kvm_vcpu *vcpu,
					    gpa_t addr, unsigned int len)
{
	int intid = VGIC_ADDR_TO_INTID(addr, 64);
	struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, NULL, intid);
142
	unsigned long ret = 0;
143 144 145 146 147

	if (!irq)
		return 0;

	/* The upper word is RAZ for us. */
148 149
	if (!(addr & 4))
		ret = extract_bytes(READ_ONCE(irq->mpidr), addr & 7, len);
150

151 152
	vgic_put_irq(vcpu->kvm, irq);
	return ret;
153 154 155 156 157 158 159
}

static void vgic_mmio_write_irouter(struct kvm_vcpu *vcpu,
				    gpa_t addr, unsigned int len,
				    unsigned long val)
{
	int intid = VGIC_ADDR_TO_INTID(addr, 64);
160
	struct vgic_irq *irq;
161
	unsigned long flags;
162 163 164 165 166

	/* The upper word is WI for us since we don't implement Aff3. */
	if (addr & 4)
		return;

167 168 169 170 171
	irq = vgic_get_irq(vcpu->kvm, NULL, intid);

	if (!irq)
		return;

172
	spin_lock_irqsave(&irq->irq_lock, flags);
173 174 175 176 177

	/* We only care about and preserve Aff0, Aff1 and Aff2. */
	irq->mpidr = val & GENMASK(23, 0);
	irq->target_vcpu = kvm_mpidr_to_vcpu(vcpu->kvm, irq->mpidr);

178
	spin_unlock_irqrestore(&irq->irq_lock, flags);
179
	vgic_put_irq(vcpu->kvm, irq);
180 181
}

182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
static unsigned long vgic_mmio_read_v3r_ctlr(struct kvm_vcpu *vcpu,
					     gpa_t addr, unsigned int len)
{
	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;

	return vgic_cpu->lpis_enabled ? GICR_CTLR_ENABLE_LPIS : 0;
}


static void vgic_mmio_write_v3r_ctlr(struct kvm_vcpu *vcpu,
				     gpa_t addr, unsigned int len,
				     unsigned long val)
{
	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
	bool was_enabled = vgic_cpu->lpis_enabled;

	if (!vgic_has_its(vcpu->kvm))
		return;

	vgic_cpu->lpis_enabled = val & GICR_CTLR_ENABLE_LPIS;

203 204
	if (!was_enabled && vgic_cpu->lpis_enabled)
		vgic_enable_lpis(vcpu);
205 206
}

207 208 209 210
static unsigned long vgic_mmio_read_v3r_typer(struct kvm_vcpu *vcpu,
					      gpa_t addr, unsigned int len)
{
	unsigned long mpidr = kvm_vcpu_get_mpidr_aff(vcpu);
211 212
	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
	struct vgic_redist_region *rdreg = vgic_cpu->rdreg;
213
	int target_vcpu_id = vcpu->vcpu_id;
214 215
	gpa_t last_rdist_typer = rdreg->base + GICR_TYPER +
			(rdreg->free_index - 1) * KVM_VGIC_V3_REDIST_SIZE;
216 217
	u64 value;

218
	value = (u64)(mpidr & GENMASK(23, 0)) << 32;
219
	value |= ((target_vcpu_id & 0xffff) << 8);
220 221

	if (addr == last_rdist_typer)
222
		value |= GICR_TYPER_LAST;
223 224
	if (vgic_has_its(vcpu->kvm))
		value |= GICR_TYPER_PLPIS;
225 226 227 228 229 230 231 232 233 234

	return extract_bytes(value, addr & 7, len);
}

static unsigned long vgic_mmio_read_v3r_iidr(struct kvm_vcpu *vcpu,
					     gpa_t addr, unsigned int len)
{
	return (PRODUCT_ID_KVM << 24) | (IMPLEMENTER_ARM << 0);
}

235 236 237 238 239 240 241 242 243 244 245 246
static unsigned long vgic_mmio_read_v3_idregs(struct kvm_vcpu *vcpu,
					      gpa_t addr, unsigned int len)
{
	switch (addr & 0xffff) {
	case GICD_PIDR2:
		/* report a GICv3 compliant implementation */
		return 0x3b;
	}

	return 0;
}

247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
static unsigned long vgic_v3_uaccess_read_pending(struct kvm_vcpu *vcpu,
						  gpa_t addr, unsigned int len)
{
	u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
	u32 value = 0;
	int i;

	/*
	 * pending state of interrupt is latched in pending_latch variable.
	 * Userspace will save and restore pending state and line_level
	 * separately.
	 * Refer to Documentation/virtual/kvm/devices/arm-vgic-v3.txt
	 * for handling of ISPENDR and ICPENDR.
	 */
	for (i = 0; i < len * 8; i++) {
		struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);

		if (irq->pending_latch)
			value |= (1U << i);

		vgic_put_irq(vcpu->kvm, irq);
	}

	return value;
}

273 274 275
static int vgic_v3_uaccess_write_pending(struct kvm_vcpu *vcpu,
					 gpa_t addr, unsigned int len,
					 unsigned long val)
276 277 278
{
	u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
	int i;
279
	unsigned long flags;
280 281 282 283

	for (i = 0; i < len * 8; i++) {
		struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);

284
		spin_lock_irqsave(&irq->irq_lock, flags);
285 286 287 288 289 290 291
		if (test_bit(i, &val)) {
			/*
			 * pending_latch is set irrespective of irq type
			 * (level or edge) to avoid dependency that VM should
			 * restore irq config before pending info.
			 */
			irq->pending_latch = true;
292
			vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
293 294
		} else {
			irq->pending_latch = false;
295
			spin_unlock_irqrestore(&irq->irq_lock, flags);
296 297 298 299
		}

		vgic_put_irq(vcpu->kvm, irq);
	}
300 301

	return 0;
302 303
}

304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
/* We want to avoid outer shareable. */
u64 vgic_sanitise_shareability(u64 field)
{
	switch (field) {
	case GIC_BASER_OuterShareable:
		return GIC_BASER_InnerShareable;
	default:
		return field;
	}
}

/* Avoid any inner non-cacheable mapping. */
u64 vgic_sanitise_inner_cacheability(u64 field)
{
	switch (field) {
	case GIC_BASER_CACHE_nCnB:
	case GIC_BASER_CACHE_nC:
		return GIC_BASER_CACHE_RaWb;
	default:
		return field;
	}
}

/* Non-cacheable or same-as-inner are OK. */
u64 vgic_sanitise_outer_cacheability(u64 field)
{
	switch (field) {
	case GIC_BASER_CACHE_SameAsInner:
	case GIC_BASER_CACHE_nC:
		return field;
	default:
		return GIC_BASER_CACHE_nC;
	}
}

u64 vgic_sanitise_field(u64 reg, u64 field_mask, int field_shift,
			u64 (*sanitise_fn)(u64))
{
	u64 field = (reg & field_mask) >> field_shift;

	field = sanitise_fn(field) << field_shift;
	return (reg & ~field_mask) | field;
}

#define PROPBASER_RES0_MASK						\
	(GENMASK_ULL(63, 59) | GENMASK_ULL(55, 52) | GENMASK_ULL(6, 5))
#define PENDBASER_RES0_MASK						\
	(BIT_ULL(63) | GENMASK_ULL(61, 59) | GENMASK_ULL(55, 52) |	\
	 GENMASK_ULL(15, 12) | GENMASK_ULL(6, 0))

static u64 vgic_sanitise_pendbaser(u64 reg)
{
	reg = vgic_sanitise_field(reg, GICR_PENDBASER_SHAREABILITY_MASK,
				  GICR_PENDBASER_SHAREABILITY_SHIFT,
				  vgic_sanitise_shareability);
	reg = vgic_sanitise_field(reg, GICR_PENDBASER_INNER_CACHEABILITY_MASK,
				  GICR_PENDBASER_INNER_CACHEABILITY_SHIFT,
				  vgic_sanitise_inner_cacheability);
	reg = vgic_sanitise_field(reg, GICR_PENDBASER_OUTER_CACHEABILITY_MASK,
				  GICR_PENDBASER_OUTER_CACHEABILITY_SHIFT,
				  vgic_sanitise_outer_cacheability);

	reg &= ~PENDBASER_RES0_MASK;
	reg &= ~GENMASK_ULL(51, 48);

	return reg;
}

static u64 vgic_sanitise_propbaser(u64 reg)
{
	reg = vgic_sanitise_field(reg, GICR_PROPBASER_SHAREABILITY_MASK,
				  GICR_PROPBASER_SHAREABILITY_SHIFT,
				  vgic_sanitise_shareability);
	reg = vgic_sanitise_field(reg, GICR_PROPBASER_INNER_CACHEABILITY_MASK,
				  GICR_PROPBASER_INNER_CACHEABILITY_SHIFT,
				  vgic_sanitise_inner_cacheability);
	reg = vgic_sanitise_field(reg, GICR_PROPBASER_OUTER_CACHEABILITY_MASK,
				  GICR_PROPBASER_OUTER_CACHEABILITY_SHIFT,
				  vgic_sanitise_outer_cacheability);

	reg &= ~PROPBASER_RES0_MASK;
	reg &= ~GENMASK_ULL(51, 48);
	return reg;
}

static unsigned long vgic_mmio_read_propbase(struct kvm_vcpu *vcpu,
					     gpa_t addr, unsigned int len)
{
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;

	return extract_bytes(dist->propbaser, addr & 7, len);
}

static void vgic_mmio_write_propbase(struct kvm_vcpu *vcpu,
				     gpa_t addr, unsigned int len,
				     unsigned long val)
{
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
403
	u64 old_propbaser, propbaser;
404 405 406 407 408

	/* Storing a value with LPIs already enabled is undefined */
	if (vgic_cpu->lpis_enabled)
		return;

409
	do {
410
		old_propbaser = READ_ONCE(dist->propbaser);
411 412 413 414 415
		propbaser = old_propbaser;
		propbaser = update_64bit_reg(propbaser, addr & 4, len, val);
		propbaser = vgic_sanitise_propbaser(propbaser);
	} while (cmpxchg64(&dist->propbaser, old_propbaser,
			   propbaser) != old_propbaser);
416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
}

static unsigned long vgic_mmio_read_pendbase(struct kvm_vcpu *vcpu,
					     gpa_t addr, unsigned int len)
{
	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;

	return extract_bytes(vgic_cpu->pendbaser, addr & 7, len);
}

static void vgic_mmio_write_pendbase(struct kvm_vcpu *vcpu,
				     gpa_t addr, unsigned int len,
				     unsigned long val)
{
	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
431
	u64 old_pendbaser, pendbaser;
432 433 434 435 436

	/* Storing a value with LPIs already enabled is undefined */
	if (vgic_cpu->lpis_enabled)
		return;

437
	do {
438
		old_pendbaser = READ_ONCE(vgic_cpu->pendbaser);
439 440 441 442 443
		pendbaser = old_pendbaser;
		pendbaser = update_64bit_reg(pendbaser, addr & 4, len, val);
		pendbaser = vgic_sanitise_pendbaser(pendbaser);
	} while (cmpxchg64(&vgic_cpu->pendbaser, old_pendbaser,
			   pendbaser) != old_pendbaser);
444 445
}

446 447 448 449 450 451 452
/*
 * The GICv3 per-IRQ registers are split to control PPIs and SGIs in the
 * redistributors, while SPIs are covered by registers in the distributor
 * block. Trying to set private IRQs in this block gets ignored.
 * We take some special care here to fix the calculation of the register
 * offset.
 */
453
#define REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(off, rd, wr, ur, uw, bpi, acc) \
454 455 456 457 458 459 460 461 462 463 464 465 466 467
	{								\
		.reg_offset = off,					\
		.bits_per_irq = bpi,					\
		.len = (bpi * VGIC_NR_PRIVATE_IRQS) / 8,		\
		.access_flags = acc,					\
		.read = vgic_mmio_read_raz,				\
		.write = vgic_mmio_write_wi,				\
	}, {								\
		.reg_offset = off + (bpi * VGIC_NR_PRIVATE_IRQS) / 8,	\
		.bits_per_irq = bpi,					\
		.len = (bpi * (1024 - VGIC_NR_PRIVATE_IRQS)) / 8,	\
		.access_flags = acc,					\
		.read = rd,						\
		.write = wr,						\
468 469
		.uaccess_read = ur,					\
		.uaccess_write = uw,					\
470 471 472
	}

static const struct vgic_register_region vgic_v3_dist_registers[] = {
473 474 475 476
	REGISTER_DESC_WITH_LENGTH_UACCESS(GICD_CTLR,
		vgic_mmio_read_v3_misc, vgic_mmio_write_v3_misc,
		NULL, vgic_mmio_uaccess_write_v3_misc,
		16, VGIC_ACCESS_32bit),
477 478 479
	REGISTER_DESC_WITH_LENGTH(GICD_STATUSR,
		vgic_mmio_read_rao, vgic_mmio_write_wi, 4,
		VGIC_ACCESS_32bit),
480
	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IGROUPR,
481
		vgic_mmio_read_group, vgic_mmio_write_group, NULL, NULL, 1,
482 483
		VGIC_ACCESS_32bit),
	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISENABLER,
484
		vgic_mmio_read_enable, vgic_mmio_write_senable, NULL, NULL, 1,
485 486
		VGIC_ACCESS_32bit),
	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICENABLER,
487
		vgic_mmio_read_enable, vgic_mmio_write_cenable, NULL, NULL, 1,
488 489
		VGIC_ACCESS_32bit),
	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISPENDR,
490 491
		vgic_mmio_read_pending, vgic_mmio_write_spending,
		vgic_v3_uaccess_read_pending, vgic_v3_uaccess_write_pending, 1,
492 493
		VGIC_ACCESS_32bit),
	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICPENDR,
494
		vgic_mmio_read_pending, vgic_mmio_write_cpending,
495
		vgic_mmio_read_raz, vgic_mmio_uaccess_write_wi, 1,
496 497
		VGIC_ACCESS_32bit),
	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISACTIVER,
498 499
		vgic_mmio_read_active, vgic_mmio_write_sactive,
		NULL, vgic_mmio_uaccess_write_sactive, 1,
500 501
		VGIC_ACCESS_32bit),
	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICACTIVER,
502 503 504
		vgic_mmio_read_active, vgic_mmio_write_cactive,
		NULL, vgic_mmio_uaccess_write_cactive,
		1, VGIC_ACCESS_32bit),
505
	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IPRIORITYR,
506 507
		vgic_mmio_read_priority, vgic_mmio_write_priority, NULL, NULL,
		8, VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
508
	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ITARGETSR,
509
		vgic_mmio_read_raz, vgic_mmio_write_wi, NULL, NULL, 8,
510 511
		VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICFGR,
512
		vgic_mmio_read_config, vgic_mmio_write_config, NULL, NULL, 2,
513 514
		VGIC_ACCESS_32bit),
	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IGRPMODR,
515
		vgic_mmio_read_raz, vgic_mmio_write_wi, NULL, NULL, 1,
516 517
		VGIC_ACCESS_32bit),
	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IROUTER,
518
		vgic_mmio_read_irouter, vgic_mmio_write_irouter, NULL, NULL, 64,
519 520
		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
	REGISTER_DESC_WITH_LENGTH(GICD_IDREGS,
521
		vgic_mmio_read_v3_idregs, vgic_mmio_write_wi, 48,
522 523 524 525 526
		VGIC_ACCESS_32bit),
};

static const struct vgic_register_region vgic_v3_rdbase_registers[] = {
	REGISTER_DESC_WITH_LENGTH(GICR_CTLR,
527
		vgic_mmio_read_v3r_ctlr, vgic_mmio_write_v3r_ctlr, 4,
528
		VGIC_ACCESS_32bit),
529 530 531
	REGISTER_DESC_WITH_LENGTH(GICR_STATUSR,
		vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
		VGIC_ACCESS_32bit),
532
	REGISTER_DESC_WITH_LENGTH(GICR_IIDR,
533
		vgic_mmio_read_v3r_iidr, vgic_mmio_write_wi, 4,
534 535
		VGIC_ACCESS_32bit),
	REGISTER_DESC_WITH_LENGTH(GICR_TYPER,
536
		vgic_mmio_read_v3r_typer, vgic_mmio_write_wi, 8,
537
		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
538 539 540
	REGISTER_DESC_WITH_LENGTH(GICR_WAKER,
		vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
		VGIC_ACCESS_32bit),
541
	REGISTER_DESC_WITH_LENGTH(GICR_PROPBASER,
542
		vgic_mmio_read_propbase, vgic_mmio_write_propbase, 8,
543 544
		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
	REGISTER_DESC_WITH_LENGTH(GICR_PENDBASER,
545
		vgic_mmio_read_pendbase, vgic_mmio_write_pendbase, 8,
546 547
		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
	REGISTER_DESC_WITH_LENGTH(GICR_IDREGS,
548
		vgic_mmio_read_v3_idregs, vgic_mmio_write_wi, 48,
549 550 551 552 553
		VGIC_ACCESS_32bit),
};

static const struct vgic_register_region vgic_v3_sgibase_registers[] = {
	REGISTER_DESC_WITH_LENGTH(GICR_IGROUPR0,
554
		vgic_mmio_read_group, vgic_mmio_write_group, 4,
555 556 557 558 559 560 561
		VGIC_ACCESS_32bit),
	REGISTER_DESC_WITH_LENGTH(GICR_ISENABLER0,
		vgic_mmio_read_enable, vgic_mmio_write_senable, 4,
		VGIC_ACCESS_32bit),
	REGISTER_DESC_WITH_LENGTH(GICR_ICENABLER0,
		vgic_mmio_read_enable, vgic_mmio_write_cenable, 4,
		VGIC_ACCESS_32bit),
562 563 564
	REGISTER_DESC_WITH_LENGTH_UACCESS(GICR_ISPENDR0,
		vgic_mmio_read_pending, vgic_mmio_write_spending,
		vgic_v3_uaccess_read_pending, vgic_v3_uaccess_write_pending, 4,
565
		VGIC_ACCESS_32bit),
566 567
	REGISTER_DESC_WITH_LENGTH_UACCESS(GICR_ICPENDR0,
		vgic_mmio_read_pending, vgic_mmio_write_cpending,
568
		vgic_mmio_read_raz, vgic_mmio_uaccess_write_wi, 4,
569
		VGIC_ACCESS_32bit),
570 571 572 573 574 575 576 577
	REGISTER_DESC_WITH_LENGTH_UACCESS(GICR_ISACTIVER0,
		vgic_mmio_read_active, vgic_mmio_write_sactive,
		NULL, vgic_mmio_uaccess_write_sactive,
		4, VGIC_ACCESS_32bit),
	REGISTER_DESC_WITH_LENGTH_UACCESS(GICR_ICACTIVER0,
		vgic_mmio_read_active, vgic_mmio_write_cactive,
		NULL, vgic_mmio_uaccess_write_cactive,
		4, VGIC_ACCESS_32bit),
578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601
	REGISTER_DESC_WITH_LENGTH(GICR_IPRIORITYR0,
		vgic_mmio_read_priority, vgic_mmio_write_priority, 32,
		VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
	REGISTER_DESC_WITH_LENGTH(GICR_ICFGR0,
		vgic_mmio_read_config, vgic_mmio_write_config, 8,
		VGIC_ACCESS_32bit),
	REGISTER_DESC_WITH_LENGTH(GICR_IGRPMODR0,
		vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
		VGIC_ACCESS_32bit),
	REGISTER_DESC_WITH_LENGTH(GICR_NSACR,
		vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
		VGIC_ACCESS_32bit),
};

unsigned int vgic_v3_init_dist_iodev(struct vgic_io_device *dev)
{
	dev->regions = vgic_v3_dist_registers;
	dev->nr_regions = ARRAY_SIZE(vgic_v3_dist_registers);

	kvm_iodevice_init(&dev->dev, &kvm_io_gic_ops);

	return SZ_64K;
}

602 603 604 605 606 607 608 609 610
/**
 * vgic_register_redist_iodev - register a single redist iodev
 * @vcpu:    The VCPU to which the redistributor belongs
 *
 * Register a KVM iodev for this VCPU's redistributor using the address
 * provided.
 *
 * Return 0 on success, -ERRNO otherwise.
 */
611
int vgic_register_redist_iodev(struct kvm_vcpu *vcpu)
612 613 614
{
	struct kvm *kvm = vcpu->kvm;
	struct vgic_dist *vgic = &kvm->arch.vgic;
615
	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
616 617
	struct vgic_io_device *rd_dev = &vcpu->arch.vgic_cpu.rd_iodev;
	struct vgic_io_device *sgi_dev = &vcpu->arch.vgic_cpu.sgi_iodev;
618
	struct vgic_redist_region *rdreg;
619 620 621
	gpa_t rd_base, sgi_base;
	int ret;

622 623 624
	if (!IS_VGIC_ADDR_UNDEF(vgic_cpu->rd_iodev.base_addr))
		return 0;

625 626 627 628 629 630
	/*
	 * We may be creating VCPUs before having set the base address for the
	 * redistributor region, in which case we will come back to this
	 * function for all VCPUs when the base address is set.  Just return
	 * without doing any work for now.
	 */
631
	rdreg = vgic_v3_rdist_free_slot(&vgic->rd_regions);
632
	if (!rdreg)
633 634 635 636 637
		return 0;

	if (!vgic_v3_check_base(kvm))
		return -EINVAL;

638 639 640
	vgic_cpu->rdreg = rdreg;

	rd_base = rdreg->base + rdreg->free_index * KVM_VGIC_V3_REDIST_SIZE;
641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667
	sgi_base = rd_base + SZ_64K;

	kvm_iodevice_init(&rd_dev->dev, &kvm_io_gic_ops);
	rd_dev->base_addr = rd_base;
	rd_dev->iodev_type = IODEV_REDIST;
	rd_dev->regions = vgic_v3_rdbase_registers;
	rd_dev->nr_regions = ARRAY_SIZE(vgic_v3_rdbase_registers);
	rd_dev->redist_vcpu = vcpu;

	mutex_lock(&kvm->slots_lock);
	ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, rd_base,
				      SZ_64K, &rd_dev->dev);
	mutex_unlock(&kvm->slots_lock);

	if (ret)
		return ret;

	kvm_iodevice_init(&sgi_dev->dev, &kvm_io_gic_ops);
	sgi_dev->base_addr = sgi_base;
	sgi_dev->iodev_type = IODEV_REDIST;
	sgi_dev->regions = vgic_v3_sgibase_registers;
	sgi_dev->nr_regions = ARRAY_SIZE(vgic_v3_sgibase_registers);
	sgi_dev->redist_vcpu = vcpu;

	mutex_lock(&kvm->slots_lock);
	ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, sgi_base,
				      SZ_64K, &sgi_dev->dev);
668
	if (ret) {
669 670
		kvm_io_bus_unregister_dev(kvm, KVM_MMIO_BUS,
					  &rd_dev->dev);
671
		goto out;
672
	}
673

674
	rdreg->free_index++;
675 676
out:
	mutex_unlock(&kvm->slots_lock);
677 678 679 680 681 682 683 684 685 686 687 688
	return ret;
}

static void vgic_unregister_redist_iodev(struct kvm_vcpu *vcpu)
{
	struct vgic_io_device *rd_dev = &vcpu->arch.vgic_cpu.rd_iodev;
	struct vgic_io_device *sgi_dev = &vcpu->arch.vgic_cpu.sgi_iodev;

	kvm_io_bus_unregister_dev(vcpu->kvm, KVM_MMIO_BUS, &rd_dev->dev);
	kvm_io_bus_unregister_dev(vcpu->kvm, KVM_MMIO_BUS, &sgi_dev->dev);
}

689
static int vgic_register_all_redist_iodevs(struct kvm *kvm)
690 691 692 693 694
{
	struct kvm_vcpu *vcpu;
	int c, ret = 0;

	kvm_for_each_vcpu(c, vcpu, kvm) {
695
		ret = vgic_register_redist_iodev(vcpu);
696 697 698 699 700 701
		if (ret)
			break;
	}

	if (ret) {
		/* The current c failed, so we start with the previous one. */
702
		mutex_lock(&kvm->slots_lock);
703
		for (c--; c >= 0; c--) {
704
			vcpu = kvm_get_vcpu(kvm, c);
705
			vgic_unregister_redist_iodev(vcpu);
706
		}
707
		mutex_unlock(&kvm->slots_lock);
708 709 710 711
	}

	return ret;
}
712

713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729
/**
 * vgic_v3_insert_redist_region - Insert a new redistributor region
 *
 * Performs various checks before inserting the rdist region in the list.
 * Those tests depend on whether the size of the rdist region is known
 * (ie. count != 0). The list is sorted by rdist region index.
 *
 * @kvm: kvm handle
 * @index: redist region index
 * @base: base of the new rdist region
 * @count: number of redistributors the region is made of (0 in the old style
 * single region, whose size is induced from the number of vcpus)
 *
 * Return 0 on success, < 0 otherwise
 */
static int vgic_v3_insert_redist_region(struct kvm *kvm, uint32_t index,
					gpa_t base, uint32_t count)
730
{
731
	struct vgic_dist *d = &kvm->arch.vgic;
732
	struct vgic_redist_region *rdreg;
733 734
	struct list_head *rd_regions = &d->rd_regions;
	size_t size = count * KVM_VGIC_V3_REDIST_SIZE;
735 736
	int ret;

737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769
	/* single rdist region already set ?*/
	if (!count && !list_empty(rd_regions))
		return -EINVAL;

	/* cross the end of memory ? */
	if (base + size < base)
		return -EINVAL;

	if (list_empty(rd_regions)) {
		if (index != 0)
			return -EINVAL;
	} else {
		rdreg = list_last_entry(rd_regions,
					struct vgic_redist_region, list);
		if (index != rdreg->index + 1)
			return -EINVAL;

		/* Cannot add an explicitly sized regions after legacy region */
		if (!rdreg->count)
			return -EINVAL;
	}

	/*
	 * For legacy single-region redistributor regions (!count),
	 * check that the redistributor region does not overlap with the
	 * distributor's address space.
	 */
	if (!count && !IS_VGIC_ADDR_UNDEF(d->vgic_dist_base) &&
		vgic_dist_overlap(kvm, base, size))
		return -EINVAL;

	/* collision with any other rdist region? */
	if (vgic_v3_rdist_overlap(kvm, base, size))
770 771 772 773 774 775 776 777
		return -EINVAL;

	rdreg = kzalloc(sizeof(*rdreg), GFP_KERNEL);
	if (!rdreg)
		return -ENOMEM;

	rdreg->base = VGIC_ADDR_UNDEF;

778
	ret = vgic_check_ioaddr(kvm, &rdreg->base, base, SZ_64K);
779
	if (ret)
780
		goto free;
781

782 783 784 785
	rdreg->base = base;
	rdreg->count = count;
	rdreg->free_index = 0;
	rdreg->index = index;
786

787 788 789 790 791 792 793
	list_add_tail(&rdreg->list, rd_regions);
	return 0;
free:
	kfree(rdreg);
	return ret;
}

794
int vgic_v3_set_redist_base(struct kvm *kvm, u32 index, u64 addr, u32 count)
795 796 797
{
	int ret;

798
	ret = vgic_v3_insert_redist_region(kvm, index, addr, count);
799 800
	if (ret)
		return ret;
801

802 803 804 805 806 807 808 809 810 811 812
	/*
	 * Register iodevs for each existing VCPU.  Adding more VCPUs
	 * afterwards will register the iodevs when needed.
	 */
	ret = vgic_register_all_redist_iodevs(kvm);
	if (ret)
		return ret;

	return 0;
}

813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840
int vgic_v3_has_attr_regs(struct kvm_device *dev, struct kvm_device_attr *attr)
{
	const struct vgic_register_region *region;
	struct vgic_io_device iodev;
	struct vgic_reg_attr reg_attr;
	struct kvm_vcpu *vcpu;
	gpa_t addr;
	int ret;

	ret = vgic_v3_parse_attr(dev, attr, &reg_attr);
	if (ret)
		return ret;

	vcpu = reg_attr.vcpu;
	addr = reg_attr.addr;

	switch (attr->group) {
	case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
		iodev.regions = vgic_v3_dist_registers;
		iodev.nr_regions = ARRAY_SIZE(vgic_v3_dist_registers);
		iodev.base_addr = 0;
		break;
	case KVM_DEV_ARM_VGIC_GRP_REDIST_REGS:{
		iodev.regions = vgic_v3_rdbase_registers;
		iodev.nr_regions = ARRAY_SIZE(vgic_v3_rdbase_registers);
		iodev.base_addr = 0;
		break;
	}
841 842 843 844 845 846
	case KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS: {
		u64 reg, id;

		id = (attr->attr & KVM_DEV_ARM_VGIC_SYSREG_INSTR_MASK);
		return vgic_v3_has_cpu_sysregs_attr(vcpu, 0, id, &reg);
	}
847 848 849 850 851 852 853 854 855 856 857 858 859 860
	default:
		return -ENXIO;
	}

	/* We only support aligned 32-bit accesses. */
	if (addr & 3)
		return -ENXIO;

	region = vgic_get_mmio_region(vcpu, &iodev, addr, sizeof(u32));
	if (!region)
		return -ENXIO;

	return 0;
}
861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921
/*
 * Compare a given affinity (level 1-3 and a level 0 mask, from the SGI
 * generation register ICC_SGI1R_EL1) with a given VCPU.
 * If the VCPU's MPIDR matches, return the level0 affinity, otherwise
 * return -1.
 */
static int match_mpidr(u64 sgi_aff, u16 sgi_cpu_mask, struct kvm_vcpu *vcpu)
{
	unsigned long affinity;
	int level0;

	/*
	 * Split the current VCPU's MPIDR into affinity level 0 and the
	 * rest as this is what we have to compare against.
	 */
	affinity = kvm_vcpu_get_mpidr_aff(vcpu);
	level0 = MPIDR_AFFINITY_LEVEL(affinity, 0);
	affinity &= ~MPIDR_LEVEL_MASK;

	/* bail out if the upper three levels don't match */
	if (sgi_aff != affinity)
		return -1;

	/* Is this VCPU's bit set in the mask ? */
	if (!(sgi_cpu_mask & BIT(level0)))
		return -1;

	return level0;
}

/*
 * The ICC_SGI* registers encode the affinity differently from the MPIDR,
 * so provide a wrapper to use the existing defines to isolate a certain
 * affinity level.
 */
#define SGI_AFFINITY_LEVEL(reg, level) \
	((((reg) & ICC_SGI1R_AFFINITY_## level ##_MASK) \
	>> ICC_SGI1R_AFFINITY_## level ##_SHIFT) << MPIDR_LEVEL_SHIFT(level))

/**
 * vgic_v3_dispatch_sgi - handle SGI requests from VCPUs
 * @vcpu: The VCPU requesting a SGI
 * @reg: The value written into the ICC_SGI1R_EL1 register by that VCPU
 *
 * With GICv3 (and ARE=1) CPUs trigger SGIs by writing to a system register.
 * This will trap in sys_regs.c and call this function.
 * This ICC_SGI1R_EL1 register contains the upper three affinity levels of the
 * target processors as well as a bitmask of 16 Aff0 CPUs.
 * If the interrupt routing mode bit is not set, we iterate over all VCPUs to
 * check for matching ones. If this bit is set, we signal all, but not the
 * calling VCPU.
 */
void vgic_v3_dispatch_sgi(struct kvm_vcpu *vcpu, u64 reg)
{
	struct kvm *kvm = vcpu->kvm;
	struct kvm_vcpu *c_vcpu;
	u16 target_cpus;
	u64 mpidr;
	int sgi, c;
	int vcpu_id = vcpu->vcpu_id;
	bool broadcast;
922
	unsigned long flags;
923 924

	sgi = (reg & ICC_SGI1R_SGI_ID_MASK) >> ICC_SGI1R_SGI_ID_SHIFT;
925
	broadcast = reg & BIT_ULL(ICC_SGI1R_IRQ_ROUTING_MODE_BIT);
926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960
	target_cpus = (reg & ICC_SGI1R_TARGET_LIST_MASK) >> ICC_SGI1R_TARGET_LIST_SHIFT;
	mpidr = SGI_AFFINITY_LEVEL(reg, 3);
	mpidr |= SGI_AFFINITY_LEVEL(reg, 2);
	mpidr |= SGI_AFFINITY_LEVEL(reg, 1);

	/*
	 * We iterate over all VCPUs to find the MPIDRs matching the request.
	 * If we have handled one CPU, we clear its bit to detect early
	 * if we are already finished. This avoids iterating through all
	 * VCPUs when most of the times we just signal a single VCPU.
	 */
	kvm_for_each_vcpu(c, c_vcpu, kvm) {
		struct vgic_irq *irq;

		/* Exit early if we have dealt with all requested CPUs */
		if (!broadcast && target_cpus == 0)
			break;

		/* Don't signal the calling VCPU */
		if (broadcast && c == vcpu_id)
			continue;

		if (!broadcast) {
			int level0;

			level0 = match_mpidr(mpidr, target_cpus, c_vcpu);
			if (level0 == -1)
				continue;

			/* remove this matching VCPU from the mask */
			target_cpus &= ~BIT(level0);
		}

		irq = vgic_get_irq(vcpu->kvm, c_vcpu, sgi);

961
		spin_lock_irqsave(&irq->irq_lock, flags);
962
		irq->pending_latch = true;
963

964
		vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
965
		vgic_put_irq(vcpu->kvm, irq);
966 967
	}
}
968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999

int vgic_v3_dist_uaccess(struct kvm_vcpu *vcpu, bool is_write,
			 int offset, u32 *val)
{
	struct vgic_io_device dev = {
		.regions = vgic_v3_dist_registers,
		.nr_regions = ARRAY_SIZE(vgic_v3_dist_registers),
	};

	return vgic_uaccess(vcpu, &dev, is_write, offset, val);
}

int vgic_v3_redist_uaccess(struct kvm_vcpu *vcpu, bool is_write,
			   int offset, u32 *val)
{
	struct vgic_io_device rd_dev = {
		.regions = vgic_v3_rdbase_registers,
		.nr_regions = ARRAY_SIZE(vgic_v3_rdbase_registers),
	};

	struct vgic_io_device sgi_dev = {
		.regions = vgic_v3_sgibase_registers,
		.nr_regions = ARRAY_SIZE(vgic_v3_sgibase_registers),
	};

	/* SGI_base is the next 64K frame after RD_base */
	if (offset >= SZ_64K)
		return vgic_uaccess(vcpu, &sgi_dev, is_write, offset - SZ_64K,
				    val);
	else
		return vgic_uaccess(vcpu, &rd_dev, is_write, offset, val);
}
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013

int vgic_v3_line_level_info_uaccess(struct kvm_vcpu *vcpu, bool is_write,
				    u32 intid, u64 *val)
{
	if (intid % 32)
		return -EINVAL;

	if (is_write)
		vgic_write_irq_line_level_info(vcpu, intid, *val);
	else
		*val = vgic_read_irq_line_level_info(vcpu, intid);

	return 0;
}